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1 INTRODUCTION

Galaxies are believed to form from gas condensing at theesnt

ABSTRACT

We carry out fully 3-dimensional simulations of evolutianin self-similar, spherically sym-
metriclinear perturbations of a Cold Dark Matter dominated Einstein-eSuniverse. As
a result of the radial orbit instability, the haloes whiclowrfrom such initial conditions are
triaxial with major-to-minor axis ratios of order 3:1. Thagvertheless grow approximately
self-similarly in time. In all cases they have power-law signprofiles and near-constant ve-
locity anisotropy in their inner regions. Both the powerlimdex and the value of the veloc-
ity anisotropy depend on the similarity index of the initt@nditions, the former as expected
from simple scaling arguments. Halo structure is thus natversal” but remembers the ini-
tial conditions. On larger scales the density and anisgtppfiles show two characteristic
scales, corresponding to particles at first pericentre afistapocentre after infall. They are
well approximated by the NFW model only for one value of thmikirity index. In contrast,
at all radii within the outer caustic the pseudo phase-sgansity can be fit by a single power
law with an index which depends only very weakly on the sintjyandex of the initial con-
ditions. This behaviour is very similar to that found for te$ formed fromACDM initial
conditions and so can be considered approximately universa
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alisations to include randomly oriented rosette orbitdwaitscale-
free eccentricity distribution resulted in sphericallyrsyetric sim-
ilarity solutions for whichy = 9¢/(1 + 3¢) for all ¢ > 0

of massive dark matter haloes as these grow by collapse and ag ( | b [ 1055 1dof7 7
gregation from weak density fluctuations emerging from taeye [W] hl[te] I& Zarltsl 2Q1Q969) Insélfjl\élr?newgdelghe mnegr del:l;nygmso

UniverseM@S .
The earliest theoretical ir)15i hts into the formation and-ev of the final haloes reflects the scaling properties of théainion-

. g . C ditions.
lution of dark matter haloes were provided by the spherictalli
model ofl Gunn & Gott[(1972) arld Gbft (1975). In this model, an In contrast, N-body simulations have shown for more than a
isolated overdensity in an otherwise unperturbed Einsleisitter decade that dark matter haloes formed from fully 3-dimeedio
universe first expands with the Hubble flow, then turns arcamdi ~ cosmologically realistic initial conditions do not haverppower-
collapses. Surrounding material continues to fall ontaothject un- law density profiles. Rather, the logarithmic slope of siated! pro-

til its mass greatly exceeds that of the originally pertdrbegion.
Asymptotically, a power-law density profile is establishetth

files changes slowly but continuously with radius. In addfitithe
shape of these profiles is almost independent of halo masssef

p o< 7~ %2% The late-time structure of this model is a similarity molpgical parameters, and of the power spectrum of i.nitlai-fl
solution whose structure was worked out in detail by Beftspdt tuations(Navarro et &l. 1997). The most popular repretientaf

(1985). More general similarity solutions where the initisass ~ this "universal” shape is the NFW model which behaves asin
perturbation scales with enclosed massyas/M oc M~ were the inner regions and dgr in the outskirts 97).

presented by Fillmore & Goldreich (1984) who showed thas¢he ~ Even haloes formed by monolithic collapse in the first ncedin

produce haloes withh « r~7, wherey = 2 for0 < e < 2/3

phases of hot and warm dark matter models (HDM and WDM) are

andy = 9¢/(1 + 3¢) for e > 2/3. The change in behaviour at well repr'esented by NFW fits,.showing that hierarchical dghoig
¢ = 2/3 reflects the fact that all orbits are purely radial in these Notrequired to produce this universality (WML@%_
models. No superposition of radial orbits can self-coesitsy pro- Wang & Whit (2009)). Recent N-body simulations with signifi
duce a power-law shallower tharr2 at smallr. Further gener- cantly increased numerical resolution have found smalklhgrtif-
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icant deviations from NFW shape which depend systemayical

halo mass (Hayashi & White 2008: Navarro et al. 2010). This ha

density profiles are not truly universal. Neverthelesssehearia-
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Figure 1. Projected density maps of the haloes formedefer 0.4 (left) ande = 0.8 (right). In each case, the long axis of the bar is horizoritsishort
axis is vertical, and the region plotted is a slice of thidS®r,uter caustic @Nd Side4router caustic WNEI€Touter caustic IS the radius of the outer caustic
(first apocentre after the turnaround) in the sphericallanity solution. The thick and thin green circles have ratfiirouter caustic @Nd 27outer caustic
respectively. In units of the outer-caustic radius, thelbagth is approximately “universal”, although time-degent features are still visible in these plots,
for example, in the lack of left-right symmetry.

tions are much smaller than those predicted by the simjlant causes rapid evolution to an entirely different nonlindaucture.
lutions, and the profiles can be considered universal to d gpe A number of authors have noted situations where the radial or
proximation. bit instability gives rise to haloes with NFW-like densityofiles

The differences in behaviour between similarity solutiand Henriksen & Widrow. 1 9: Huss et'al. 1999: Bames et al. 2005
numerical simulations reflect the fact that the former erté@pher- IMacMillan et al. 2006 Bellovary et al. 2008). There are tlfas

ical symmetry and a potential which varies smoothly witheiat- ~ €ast) two possibilities for the long-term evolution ofutture from
cording to the similarity scaling, while the latter involsgrongly (almost) spherically symmetric, self-similar linear ialtcondi-
time-dependent and fully three-dimensional potentialtéiations ~ tions. Either it may approach a non-spherical self-sinsizution,
which exchange energy and angular momentum between differ- Which would then have a potential which changes smoothlymie t
ent parts of the system through the classical “violent reiax” and no violent relaxation, or the strongly time-dependehigdviour
mechanism|[(Lynden-Bell 1967). Even though extensions ef th May continue indefinitely, allowing violent relaxation arrange
original similarity solutions allow non-radial orbits wita variety ~ Material in the inner regions. In the former case an NFWAlike

of eccentricity distributions (White & Zaritsky 1992; Sike et al. versal profile is only consistent with similarity scaling fo= 1/6,
1995/ 1997t Nussér 2001; MacMillan etlal. 2006), they rebaitn wheregs ip the Iatter.case an NFW-like profile could, in ppites
spherical symmetry and strict similarity scaling, and sclecde be maintained at all times.
violent relaxation and any possibility for it to drive comgence
towards a universal (i.e-independent) nonlinear structure. Large
and time-dependent potential fluctuations are requiredddyze ing evolution from spherically symmetric, self-similainéar ini-
such convergence. These occur naturally in hierarchicanably tial conditions for a variety of values of. As we showed in
rjno.dels but. aIsp |n.other situations, for.example, dyrlngmaq- Vogelsberger et all (2009) particle noise leads to the rapigt of
lithic, quasi-ellipsoidal collapse of the first generatifrhaloes in the radial orbit instability in such simulations, so thagithlater
HDM or WDM cosmogonies (Zel'Dovich 1970; Sheth etlal. 2001;  ponlinear evolution is strongly non-spherical. Here wevstioat
Wang & Whitel 2009). while some chaotic time-dependence remains at late tinves, e
It has long been known that spherical equilibria dominated lution is nevertheless approximately self-similar. Theenstruc-
by radial orbits are violently unstable and evolve on a few dy ture of the haloes remembers the initial conditions fromoltihey
namical times into strongly ellipsoidal bars with signifitanon- formed, depending oain the same way as in the spherical similar-
radial motions|(AntondV 1973; Herdn 1973; PolyachEnko 1981 ity solutions. In SectioRl2 we present our simulations andysthe
henk hukhmAn 1981; Barnes 1985: Merritt & Agliilar formation of ellipsoidal “bars”. In Sectidil 3 we study hovette
[1985; Meza & Zamorano 1997). The original similarity sabms bars affect the velocity anisotropy and density profilesimitiner
of [Fillmore & Goldreich [(1984) and Bertschingér (1085) anest halo. The transition between the infall and quasi-equilitor re-
not viable models for the formation of real systems — thenséigt gions, and the inner and outer scales which define it are sscu
non-spherical perturbation of their quasi-equilibriumeén regions in Sectiorl 4. Finally in Sectidd 5 we demonstrate that, irticst to

In the present paper we investigate these issues by simulat-
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Figure 2. Left panel: Halo axis ratios as a function of radius for aefyriof similarity scaling parameters. Different coloursrespond to different values

of the scaling parametet For eachr, axis ratios are estimated from the princ

ipal values of antia tensor calculated for all particles within an ellipsof

mean radiug. Dashed lines denote minor-to-major axis ratios whiledslities denote intermediate-to-major ratios. For each Igitiom, radii are normalised
by that of the outer caustic in the corresponding similasitjution. The left panel shows results for the final time= 1. In the right panel these are replotted

as thick lines and compared with results éo&= 0.5 (the thin lines).

the velocity anisotropy and density profiles, the profile séydo-
phase-space density is almost universal in these models.

2 RADIAL-ORBIT INSTABILITY: BAR FORMATION

The similarity solutions assume an Einstein-de Sitter ensig in
which the linear mass perturbatiéi/; within a sphere containing
unperturbed masa/;, initially satisfies

wheree is a scaling index and/, is a reference mass taken to
be the mass within the turnaround radius,) at the initial time.
The paramete is restricted to positive values in order to ensure
that more distant mass shells turn around and fall back thter
inner ones. The mass within the shell that is just turningiiado
and the physical radius of this shell at turnaround theneseéth
time asM:a oc t2/3¢ andrea o t2/312/9¢ 50 that the mean mass
density contained within the turnaround radius is alwagstitnes
the cosmic mean (the critical density) and so satigfigsx ¢t~ 2.

Since these initial conditions are spherically symmettie,
system remains spherically symmetric at later times (iGib#ities
are ignored/suppressed) and the particles on each sphsiielh
all execute identical though differently oriented radigbits. The
scale-free nature of the initial conditions ensures thaotfiits ex-
ecuted by different shells are identical when scaled ta thdivid-
ual turnaround radii and tim dEbn) showed dha
radii much smaller thamy, this results in a stable halo with den-
sity profile p o 7~%/* whene = 1, the only case they considered.
i ich (1984) generalised this to other valwée,

oM;
— =1.0624
M

%

M;

(5

@

0
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finding the inner profile to vary with the initial scaling prenies:

—2

r e<?

p(r) o« (2

T*Qe/(1+3€)

e}%.

The change of behaviour at= 2/3 is due to the fact that no self-
consistent spherical equilibrium system built from radiddits can
have a power-law slope shallower that2, because every parti-
cle is constrained to pass through the centre of the system on
per orbit. The full structure of the similarity solution ftiie case
e = 1 was worked out b85), who showed that
the power-law inner structure breaks in the transition wittiall
regime, and that the confinement of non-zero phase-spasiyen
to a 3-dimensional sheet results in a series of sharp spihedas-
tics which are superposed on the inner power-law densitfil@ro
and are located at any given time at the positions of pasticle-
rently passing through apocentre.

In this paper we simulate evolution from initial condi-
tions which obey the spherical similarity solutions, ekaets in

Mogelsberger et all (2009), but for a variety of values .diVe use

a fully three-dimensional N-body solver, a version of GaeRje
), and we allow particle noise to drive theabalr-
bit instability. This happens in the first few expansion ¢astso
that the later stages of the simulations all contain fullyedeped
ellipsoidal “bars”. All our simulations follow evolutionwer a fac-
tor of 1000 in time corresponding to expansion of the backgdo
cosmology frome = 0.01 and untila = 1. The softening length
is kept fixed in comoving coordinates @000257.(a = 1). The
final halo is represented by abafi6® /2 ~ 8.4 x 10° particles
within r,.
In Fig.[d we show images of the bar in the final state of two

of our simulations¢ = 0.4 on the left and: = 0.8 on the right. In
each case the bars extend slightly beyond the position afuter
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Figure 3. Left panel: Velocity anisotrop(r) = 1 — o2 /o2 as a function of radius, normalised by the turnaround radius, (¢). Hereo . (r) ando (r) are
the 1-dimensional radial and transverse velocity dispassaveraged over spherical shells. Different colours @esimulations with different values efas
indicated. Solid lines are far = 1 and dashed lines far = 0.5. Beyond the outer caustic, all particles are falling in fog first time, but they nevertheless
have nonzero radial and tangential velocity dispersiorailree the quadrupole moment of the ellipsoidal inner regioduces variations in infall velocity
and infall direction at each. Both dispersions jump dramatically as the outer caustitdssed and the anisotropy is slowly varying and relatigehall in
the inner quasi-equilibrium regions. The softening radiuso small to affect the velocity dispersions over theabdinge plotted. Right panel: Mass density
averaged in spherical shells as a function of radius, agaimalised byr,. Line colours and types correspond to those in the left pdiied density is given
in units of the current critical density and is multiplied by/r+)? to suppress the dominant dependence and to allow easieracismp of the curves. In
both panels the structure is very similar at the two timessiired. The dependence ors very clear in the density profiles and appears significkat ia

the anisotropy profiles.

caustic of the corresponding spherical similarity solutiwhich we
indicate with a green circle. The location of the actual pagaistic
corresponds to the transition in colour from blue to red.llar
simulations we find bars with semi-major axes (delineatedhisy
outer caustics) which are about 1.2 times the radius of therggal
caustic. Thus measured in units of the latter, our bar lengipear
universal. In both the cases shown there are clear left-agym-
metries in the inner structure of the bars (the yellow regjoBuch
asymmetry is a clear indicator of time-dependent behavioamy
exact non-spherical similarity solution is expected to dfe-flight
symmetric.

We show the axis-ratios of equidensity surfaces of our final
bars as a function of semi-major axis in the left panel of Big.
These ratios were obtained by calculating the moment ofitnef
all particles within an ellipsoidal surface, deriving thgenvalues
and principal axes, and then iterating until the shape areh-or
tation of the bounding ellipsoid are consistent with thesotation
and relative axis lengths inferred from the moment of imeifhese
ratios are thus cumulative, referring to all material i@eto the
quoted radius rather to an ellipsoidal shell at this radlie axis
ratios take their most extreme values just inside the owest,
with all simulations giving minor-to-major values close@® and
intermediate-to-major values close to 0.35. They appraatty
rapidly at larger radii, and also rise steadily though mdosvly
towards smaller radii. There is no clear trend as a function, o
suggesting that the exact values may be stochasticallyndieted
and perhaps also time-dependent. We test this in the rigil jogy
replotting the curves using a thick line-style and compatimem
with results ata = 0.5, represented by thin lines. The overall pat-

tern is very similar at the two times. There is some indicatiat
the deviation of individual models from the mean is cohelmst
tween the two times, but there are also substantial vanstiime-
dependent effects appear to be influencing the measuresignts
nificantly, and these plausibly have a relatively long tinoher-
ence. In consequence it is not possible to decide whetheipier-
ent trends withe are real, or just reflect unrelated time-dependent
variations. The overall similarity of all the curves at btithes sug-
gest that the shape behaviour is approximately both seifesiand
“universal”.

3 DENSITY AND VELOCITY ANISOTROPY PROFILES

The central bar torques infalling particles, inducing madial mo-
tions which transform the purely radial orbits of the orgjisimi-
larity solution into fully three-dimensional orbits. Thadters both
the density and the velocity dispersion structure of thelinear
regions, as we now illustrate. A velocity anisotropy pareamés
conventionally defined as

/3(7"):1—0}2/0'?, (3)

whereo,(r) ando(r) are 1-dimensional radial and transverse ve-
locity dispersions averaged over spherical shells of sadiurhe
left panel of FiglB shows(r) at two different timesa = 0.5
(dashed lines) and = 1 (solid lines). The right panel shows
(7/7a)p(r)/ps at the same two times. The two quantities are
evaluated using the same set of logarithmically spacedriahe
shells. Neither profile changes systematically with timewplot-

(© 2010 RAS, MNRASO00, [1H§
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ted againstr/r:., consistent with the expectations of self-similar 0.4 T T T T T T
evolution.

The spherically-averaged density profiles in the right pahe
Fig.[3 show three distinct regimes. At radii larger than thieo 0.35

caustic, only one (infalling) matter stream is present.e-i¢here
is essentially perfect agreement betweee= 0.5 anda = 1 in

all cases, and the effective power-law index of the profikgsifi-
cantly greater than-2 and similar for alk. Only the position of the
outer caustic (in units of,) varies significantly withe. Between
this outer caustic and the typical radii of particles pagsireir first
pericentre after turnaroufidthe density profile has a mean effec-
tive index which is similar for alt and substantially less than2.
The behaviour in this regime is quite irregular, howeved #rere
are substantial differences between= 0.5 anda = 1 in several
cases. Examination of phase-space plots (see, for exaFigle8 0.15
of Mogelsberger et all (2009)) suggests that this time-dégece

is driven by large-scale irregularities which grow arouhd first

apocentre after turnaround but are washed out by phasegnéti 0.1
later times. Inside the radius of first pericentre, the peefdecome 0z 03 04 05 06 07 08 09
more regular and agree well between the two times shown. To a €

good approximation, they are power laws that are well fitsl (
r — 0) by

o
w

0.25

Touter caustic/ Ma

o
(V)

Figure4. The radius of first apocentre after turnaround (i.e. theraaas-
(4 tic radius) in units of the current turnaround radius as a&tion of ¢ in the

—9¢/(1+43¢)
’ spherically symmetric similarity solutions with radialkis.

p(r) ocr e > 0.

This is the value expected for a perfect similarity solution

in the presence of nonradial motions (White & Zaritsky 1992;

Sikivie et al. 1995/ 1997 Nussér 2001; MacMillan €tlal. 2006 10!

demonstrating that the time-dependent behaviour seeneatria-

diate radii is not sufficient to destroy the similarity soaliand

enforce “universal” structure. Note that both the steepeslover

the decade immediately inside the outer caustic radiusc{wis

roughly at the conventional virial radius) and the break &hal-

lower slope at smaller radii are qualitatively similar te tfuni-

versal” behaviour encapsulated by the NFW profile. Howetber,

inner slope matches the NFW value only o= 1/6, smaller than 5

any of the values tested here. Z 10°
The left panel of Fid.13 shows that velocity anisotropy pesfil z

are similar for all values of, exhibiting distinct behaviour in the

same three regimes seen in the density profiles. At large etk

ticles are falling in for the first time on very nearly radiabis, 4

gradually gaining angular momentum as they feel the quadeup 10

moment of the central bar. As they cross the outer caustig the

are mixed with particles which have already passed periegabd

B(r) drops to much smaller values. Inside the radius of first peri-

centre,3(r) is almost constant in the quasi-equilibrium region, de- 10 P PN B P .

clining slightly towards the centre. In this region thergaars to 0.001 0.01 01 1

be a weak but significant dependence of anisotropy on siiyilar Ir

index, with larger values of giving rise to slightly more radially

biased velocity dispersions. This behaviour is a consezpiehthe

dependence of the inner density profile orfor largere the in- Figure 5. Histograms of first pericentre distance, measured dirdiiy
ner mass distribution is more strongly centrally conceattaso our simulations, in units of the fiducial current outer causddius given in
that its quadrupole moment become less significant rel&divee Fig.[. In these units the distribution of first pericentrstaice is almost
monopole and less angular momentum is induced in the orbits o independent o, peaking at about 0.1.
infalling particles.

The left panel of Figll3 suggests that in the inner part of the
halo the3 parameter may approach an asymptotic value which de- dark matter haloes (see alsg.Navarro et al [(2010)). Using E. 4
pends on the value of [Hansen & Moore| (2006) have proposed Which is indeed valid in the inner part of our haloes, the &b+

TRN90
O0O00O0 ]
coO~NOU1h ]

rperi outer caustic(aperi)

that the equatior(r) = —0.2(d(Inp)/d(Inr + 0.8)) relates ve- lationship reduces to

locity anisotropy and density profile slope in the inner past 50 9¢ 0 o )
(14 3¢) c) e ’

1 We investigate these scales in more detail below. which gives 3 = {0.17,0.2,0.23,0.25,0.29} for ¢ =

© 2010 RAS, MNRAS000, [1H§



6  \ogelsberger et al.

1=

UL Y
4

&/

09 [
0.8

iR
OSO0O00O
0o~ O 01~

0.7
0.6

@ 05

-

0.4

Rt

1
P /pb (r /rta)gs/(1+3e)

0.3

0.2

0.1

0.01 0.1 1 0.01 0.1 1

r/r r/r

outer caustic outer caustic

Figure 6. Using the radius of the outer caustic as a characteristie scakes the nonlinear structure of haloes appear almospémtient ot. Left and right
panels show the effect of using this scaling on the velodiigaropy and density profiles, respectively. In the riglgl, they-axis is furthermore multiplied
by ane-dependent power law of radius chosen so that the inner @iagipears flat and equal to unity (see[Bq. 4). Solid lines shew = 1 profiles, whereas
dashed lines show the profiles at time= 0.5.

{0.4,0.5,0.6,0.7,0.9}. These values are in good agreement with dius. Although this is the natural scale for models with sjufadly
those inferred from the left panel of F[d. 3, even though aloés symmetric initial perturbations of the kind studied hetéins out
form in a quite different (and “nonuniversal”) manner frord’ that scaling to the outer caustic radius (i.e. the positiothe first
haloes. apocentre after turnaround) results in greater uniformwitshe in-
ner nonlinear structure of our haloes as a function.de show
this in Fig.[8 which may be compared with Fig. 3, Note that i@ th
right panel of Figlh, the outer transition occurs slightiybnd the
nominal outer caustic radius. This is because we have exbcat
ing the value for the spherically symmetric similarity dobn, as
plotted in Fig[4. This is slightly smaller than caustic kalat the

4 THEINNER AND OUTER SCALES: FIRST
PERICENTRE AND OUTER CAUSTIC RADII

In the previous section, we found approximate similaritiydgour

for nonspherical haloes formed by infall from power-law aid
most spherically symmetric initial conditions. As in thdyispher-
ically symmetric similarity solution the re-
sulting nonlinear density profile is a power law only at sugitly

end of our numerical bars, as is clearly visible in Eig. 1.

Next, we consider the inner scale at aroun@l1r:, (see
Fig.[3). We follow the trajactories of all simulation patéis and
record the radial position of their first pericentric passdgor all

particles which pass first pericentre betweer- 0.5 anda = 1,
we follow their radial position along their orbit and record its first

small radii, but in our case the transition between the lirdat
quasi-equilibrium regimes is more complex than when thétorb
are pure|y radial. As we have seen, there appear to be twiadlist minimum, as well as the time when this minimum occurs. Thetat
scales: an inner scale at around1r., and an outer scale ataround ~ allows us to calculate the position of the outer causticdeding to
0.171a. In the last section we asserted that the former can be associ the spherical similarity solution) at the time of pericenpassage,
ated with the first pericentric passage of infalling paeticland the ~ and thus to measure the ratio of these two lengths. A histogra
latter with the following apocentric passage, which ocaftrshe Of rperi/Touter caustic iS presented in Fidll5. There is considerable
outer caustic. Here we support these assertions by a magfucar ~ Scatter in this ratio because pericentric radius depemdsgiy on
Study of the radial position of these orbital turning_psint the angle betWeen the |nfa“ dil’ection Of a particle and m@laxis

In the spherical similarity solution, the outer caustidis bor- of the bar. Itis very small for infall along one of the prinalmxes,
der between the one- and three-stream regions. Outsideathiiss and it maximises at angles well away from any of these axeseiNe
all particles are falling in for the first time, while withitt many theless, there is a well-defined “typical” pericentric drste which
of them have passed through the centre at least once. IAlfig. 4 1S ~ 0-17outer caustic for all values ofe. This agrees well with the
show how the radius of this outer caustic, evaluated diyodim inner transition scale of the and density profiles in FigEl 3 ahdl 6.
the similarity solution, increases with Comparison with the right
panel of Fig[B shows that the sharp change in profile shapehwhi
delineates the inner boundary of the infall regime in ourudan
tions is indeed very close to this radius and dependsexactly as
predicted.

In Fig.[3, all radii are expressed in units of the turnaroumd r

5 PSEUDO-PHASE-SPACE DENSITY PROFILES

A property of dark matter haloes with rather intriguing cwr
teristics is the pseudo-phase-space density. This is defise

(© 2010 RAS, MNRAS000, [1H§
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Figure 7. Left panel: Pseudo-phase-space density profiles for vaeievaluated at: = 0.5 (dashed) and = 1 (solid). The radial coordinate is scaled with
rta and the pseudo-phase-space density Wiith= p,t3/r,. With these scalings, the profiles do not change signifigawith time, and, remarkably, are
very similar and are close to a power law within the outer iadisr all €, even though though they differ in the infall region. Thex@d obvious feature at the
radius of first pericentre. Right panel: Pseudo-phaseesgansity profiles of the inner parts of our haloes after teggéhe horizontal and vertical axes by
Tta/Touter caustic @NA DY (Touter caustic/Tta)® respectively. This scaling brings the overall profiles igtote close agreement within the outer caustic, as
can be seen in the inset. The slope of the inner profile nealeg depends weakly enln the main panel we have additionally scaledBy?7?, the inverse

of the behaviour expected theoretically for= 1. Dashed lines show the pseudo-phase-space density padfiles 0.5. The thin straight lines in the lower
left indicate the slopes of the analytic predictions of[Bq. 6

p/c®, wherep(r) ando(r) are the mass density and the (three- phase-space density by the characteristic value= pyt>/r2,.
dimensional) velocity dispersion averaged over a sheladiusr. The very good agreement between the curvesifer 0.5 and for
Even though neithep(r) nor o(r) is itself close to a power law, a = 1 demonstrates that the pseudo-phase-space density evolves
this particular combination is very close to a power law faldes self-similarly in time. This is no surprise, given that wevhaal-
formed fromACDM initial conditions, and, remarkably, its power-  ready seen good scaling for the density and velocity amipgtr
law index is very similar to that found in the spherically syetric profiles. More surprising is the fact that inside the outeustia
similarity solution o @BS). This curigsivas first radius the profiles show very little dependencespeither in slope
pointed out by Taylor & Navarro (2001), and since that timiezis or in amplitude. Furthermore, they are all good approxioretito
been investigated by many authors who have found the balravio a power law, and there is no obvious feature near the radifissbf
to be quite robust, to extend over more than three decades in r pericentre despite the very strong features seen at thissraal
dius, and to hold also for other kinds of initial conditiorse¢, for Fig.[3. Once again scaling to the radius of the outer caustésgn

examplel Ludlow et al. 2010; Navarro eilal. 2010)).

In the framework of a true similarity solution with nonraldia
motions the inner density profile must obey Ely. 4 forealt 0 and
B(r) must become constant at small radii. Since the circular ve-
locity and the velocity dispersions must have the samersgaie-
haviour, the pseudo-phase-space density is also a powevhask
is easily verified to be

% oc p 339/ (2(0436) for all € (6)

For the original similarity solutions of Fillmore & Goldre
(1984) which had purely radial orbits, this behaviour haldsy for
e > 2/3. The specific case = 1 studied be85)

givesp/o® oc r15/8,

We have directly evaluated the pseudo-phase-space density

profiles of our simulated haloes using logarithmic bins tiua and
subtracting the mean radial motion before evaluating thecity
dispersion. We show the results in Hi§j. 7. In the left panergdial
coordinate is normalised by the turnaround radius and thedms

(© 2010 RAS, MNRAS000, [1H§

even better overlap since it matches the break at large esdgan
be seen in the inset in the right panel.

We focus on the innermost part of our haloes (the regions in-
side the first pericentre) in the main plot of the right parfdig. 7.
We again use the outer caustic radius to scale the radii andips
phase-space densities, and we additionally multiply treugs-
phase-space density by°/® to take out the dominant trend. The
power-law slopes expected for exact similarity scalingradecated
by thin straight lines and are seen to be a good but not pdiféat
the simulated behaviour. The differences are small enchagtitiey
can probably be ascribed to residual time-dependent belradn
interpretation which is supported by the differences betwthe
a = 0.5 anda = 1 curves for each.

Thus, unlike the velocity anisotropy and the density prsfile
the pseudo-phase-space density profile is close to a powenier

the full nonlinear extent of our haloes and it depends onhy ve
weakly one. Thus, to a good approximation it can be considered
“universal”.
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6 CONCLUSIONS

We have shown that although the classic spherically sym-
metric similarity solutions of_Fillmore & Goldreich (1984nd
r5) are violently unstable to the radibltansta-
bility, evolution from the initial conditions they presupge gives
rise to ellipsoidal, bar-like haloes which neverthelessagin an
approximately self-similar way.

The nonlinear structure of these objects shows two characte
istic radii. The outer caustic separates the infall and istuétam re-
gions and occurs at approximately the same position as iorthe
inal spherically symmetric similarity solutions. The sedaharac-
eristic radius is about an order of magnitude smaller andrscat
the typical first pericentre distance of the infalling pelistream.

It can be considered the outer edge of the quasi-equilibragion.
Relative to the turnaround radius, both radii increase thighvalue
of the similarity parameter.

Both the density and velocity anisotropy profiles show sjron
features at the first pericentre radius. Within this radhes den-
sity profile is approximately a power lay, oc =7 with v =
9¢/(1+ 3¢), and the velocity anisotropy is approximately constant,
B = 0.2(vy — 0.8). At larger radii the density profile becomes sub-
stantially steeper and the velocity anisotropy rises $yeep

Despite the strong features in the density and velocity
anisotropy profiles at the first pericentre radius, the psqlthse-
space density profiles of all our haloes are close to powes law
all the way out to the outer caustic radius. Furthermore they
pend only very weakly om and are similar to the profiles of haloes
formed fromACDM initial conditions. Thus this profile seems re-
markably “universal”.

Our simulations were carried out at the Computing Centre
of the Max-Planck-Society in Garching. RM thanks French ANR
OTARIE for support. We thank Niayesh Afshordi, Ed Bertscjan
James Binney, Jacques Colin, Aaron Ludlow and Julio Navarro
useful discussions.
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