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Abstract. All the currentr-process scenarios relevant to core-collapse supernovae are facing severe
difficulties. In particular, recent core-collapse simulations with neutrino transport show no sign of
a neutron-rich wind from the proto-neutron star. In this paper, we discuss nucleosynthesis of the
r-process in an alternative astrophysical site, “black holewinds”, which are the neutrino-driven
outflow from the accretion torus around a black hole. This condition is assumed to be realized in
double neutron star mergers, neutron star – black hole mergers, or hypernovae.
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INTRODUCTION

In the past decades, core-collapse supernovae have been considered to be the most
promising astrophysical site that provides the suitable conditions for nucleosynthesis
of the r-process. The scenarios include the neutrino-driven wind [1, 2, 3, 4, 5, 6], the
prompt explosion of a collapsing iron core [7] or of an oxygen-neon-magnesium (O-Ne-
Mg) core [8], and the shocked surface layer of an O-Ne-Mg core[9]. However, recent
hydrodynamical simulations of collapsing iron cores (e.g., [10]) and of an collapsing
O-Ne-Mg core do not support the prompt explosion [11] or the shocked surface layer
[12] scenarios. The nucleosynthesis calculations [13, 14]with these hydrodynamical
results also show that the production of neutron-capture elements proceeds only up to
A=90 (N= 50). Furthermore, recent long-term simulations of core-collapse supernovae
show that the neutrino-driven outflows are proton-rich all the way [15, 16], which poses
a severe difficulty to all the scenarios relevant to the neutrino-driven winds of core-
collapse supernovae.

In contrast, another popular scenario of the astrophysicalr-process, the mergers of
double neutron stars (NS-NS) [17] or of a black hole and a neutron star (BH-NS) [18] in
a close binary system has not been fully explored. The decomposition of cold unshocked
neutron-rich matter from NS-NS is suggested to be an alternative or additionalr-process
site [19, 20, 21, 22]. In addition, both NS-NS and BH-NS are expected to form an
accretion torus around a black hole, giving rise to the neutrino-driven winds (“black
hole winds”), which are also expected to provide suitable physical conditions for the
r-process [23].

The reason that the merger scenarios have been disfavored compared to those of
core-collapse supernovae is probably due to discrepanciesbetween Galactic chemical
evolution models and the spectroscopic analyses of Galactic halo stars. The estimated
low event rate (∼ 10−5 yr−1) of mergers and the long lifetime of the binary system
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FIGURE 1. Sketch of our model settings for the black hole winds. A rotating black hole with the mass
MBH = 4M⊙ is located in the center of an accretion torus (“neutrino surface”) that lies between 2RS and
5RS from the center, whereRS is the Schwarzschild radius (= 11.8 km). The wind is assumed to be radial,
where the neutrino surface is replaced with an equivalent radius from the center (e.g., the star on the dotted
circle).

(> 100 Myr) are expected to lead to the delayed appearance of ther-process elements
in the Galactic history with too large star-to-star scattering of their abundances [24],
which is in conflict with the observational results of halo stars. However, some recent
studies of Galactic chemical evolution based on the hierarchical clustering of sub-halos
[25, 26] do not exclude the mergers as the dominant astrophysical site of ther-process.
Therefore, the mergers cannot be excluded as ther-process site, and more studies of
nucleosynthesis are desired when considering the difficultsituation of the supernova
scenarios.

In this paper, we examine ther-process in black hole winds, which are common both
in NS-NS and BH-NS mergers, and presumably, in “collapsars”[27, 28]. The previous
studies of nucleosynthesis relevant to these conditions are based on phenomenological
models [28, 23]. Currently, however, three-dimensional simulations of the mergers are
out of reach for the wind phase after the formation of a stableaccretion torus [17, 18].
Hence, we apply the semi-analytic wind model for nucleosynthesis calculations, which
has been developed for the studies of ther-process in the neutrino-driven winds of core-
collapse supernovae [5, 29].

MODELING THE BLACK HOLE WINDS

Our model of black hole winds is based on the semi-analytic, spherically symmetric,
general relativistic model of proto-neutron star winds [5,29], as illustrated in Figure 1.
The mass of a central black hole is taken to beMBH = 4M⊙, which may correspond
to, e.g., NS-NS binaries with the equal masses of∼ 2M⊙ or BH-NS binaries with the
masses of∼ 2.5M⊙ and∼ 1.5M⊙. This can be also interpreted as the accreting black
hole of the collapsar from a massive (> 30M⊙) progenitor. The accretion torus around
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FIGURE 2. Left: Neutrino luminosityLν as a function of the distance from the center.Lν is assumed
to increase linearly from 1051 erg s−1 to 1053 erg s−1 between 2RS (= 23.6 km) and 3RS (= 35.4 km) and
take a constant value on the outer side. Right: Mass ejectionrateṀ obtained with theLν profile assumed
in the left panel, as a function of the distance from the center.

the black hole, which is defined as the “neutrino surface”, isassumed to lie between 2RS
(= 23.6 km) and 5RS (= 35.4 km) from the center (whereRS is the Schwarzschild radius
= 11.8 km) in the light of detailed hydrodynamical simulations ofBH-NS merging [18].

In order to connect the aspherical configuration of the windsfrom the torus to our
spherical model, an arbitrary point on the torus is replacedby a point on the hypothetical
neutrino sphere with an equal distance from the center,Rν (dotted circle in Figure 1).
The solution of the wind from the neutrino sphere withMBH andRν is then obtained
in the same manner as for proto-neutron star winds. The rms average neutrino energies
are taken to be 15, 20, and 30 MeV, for electron, anti-electron, and the other flavors of
neutrinos, respectively [18]. The neutrino luminosities of all the flavors are assumed to
be the same valueLν . The mass ejection rate at the neutrino sphereṀ is determined so
that the wind becomes supersonic through the sonic point.

As anticipated from Figure 1, the neutrino flux from the outerregions of the torus is
shielded in the vicinity of the black hole by the presence of the torus itself. In order to
mimic this effect in our spherical models, we simply assume thatLν increases linearly
from 1051 erg s−1 to 1053 erg s−1 between 2RS (= 23.6 km) and 3RS (= 35.4 km) and
takes a constant value on the outer side, as shown in Figure 2 (left panel). This roughly
reproduces the peak energy deposition rate byνν̄ annihilation intoe+e− pairs in the
vicinity of the black hole (∼ 1030 erg s−1 cm−3) [17, 18]. We define the outflows from
Rν < 3RS andRν > 3RS as the inner and outer winds, respectively.

As shown in Figure 2 (right panel), inner winds have rather small Ṁ owing to the small
Lν atRν . As a result, the inner winds obtain substantially higher asymptotic entropies (at
0.5 MeV, up to∼ 800kB per nucleon, wherekB is the Boltzmann constant; Figure 3, left
panel) and short expansion timescales (defined as thee-folding time of temperature from
0.5 MeV, down to∼ 1 ms; Figure 3, right panel). This is due to the larger heatingrate
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FIGURE 3. Left: Asymptotic entropy (at 0.5 MeV) as a function of the distance from the center. Right:
Expansion timescale (thee-folding time of temperature from 0.5 MeV) as a function of the distance from
the center.

per unit massby νν̄ annihilationafter leaving the neutrino surface, owing to the smaller
matter density in the inner wind (see the same effect in anisotropic proto-neutron star
winds in [29]). This indicates that the inner winds are favored for the strongr-process
(see speculations in [17]).

NUCLEOSYNTHESIS IN WINDS

The nucleosynthetic yields in each wind trajectory are obtained by solving an extensive
nuclear reaction network code. The network consists of 6300species between the proton
and neutron drip lines, all the way from single neutrons and protons up to theZ = 110
isotopes (see [14] for more detail). Each nucleosynthesis calculation is initiated when
the temperature decreases to 9× 109 K, at which only free nucleons exist. The initial
compositions are then given by the initial electron fraction Ye0 (number of protons per
nucleon). In this study,Ye0 is taken to be a free parameter. We explore the nucleosynthe-
sis for all the winds withYe0= 0.10,0.15,0.20,0.25,0.30, which are consistent with a
recent hydrodynamic study of BH-NS [23]. Note that the initial Ye in the torus, consist-
ing of decompressed NS matter is low, andYe in the outgoing wind remains to be low
becauseLν̄e > Lνe for the torus during a significant time of its evolution (e.g., [30]).

The neutron-to-seed ratios at the onset ofr-processing (defined at 2.5×109 K) are
shown in Figure 4 (left panel). Note thatYe at this stage is∼ 0.1 higher thanYe0 owing
to the neutrino effects, which is obviously overestimated in our assumption ofLν̄e = Lνe.
In all the Ye0 cases, the neutron-to-seed ratios are substantially higher than 100 (that
is required for the 3rdr-process peak formation) in the innermost winds owing to the
high entropies and the short expansion timescales (Figure 3), where the fission cycling
is expected. In the outer winds, however, only the lowYe0 case attains a high neutron-to-
seed ratio (up to∼ 70) because of the moderate entropies and expansion timescales.

For eachYe0 case, the nucleosynthetic yields are mass-averaged over the entire range
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FIGURE 4. Left: Neutron-to-seed ratios at the onset ofr-processing (2.5×109 K) as a function of the
distance from the center for various initial electron fractions (Ye0= 0.10, 0.15, 0.20, 0.25, and 0.30). Right:
Mass-averaged nucleosynthetic yields for various initialelectron fractions (lines), which are compared
with the solarr-process distribution (dots).

of Rν (from 2RS to 5RS), which is shown in Figure 4 (right panel). Despite the high
neutron-to-seed ratios in the inner winds, theYe0= 0.25 and 0.30 cases contribute only
up to the 2ndr-process peak (A= 130) because of the very smallṀ in the inner winds
(Figure 2, right panel). Our result indicates that neutron-rich winds withYe0 < 0.20
(< 0.30 at the onset ofr-processing) are required to account for the 3rdr-process peak
formation (A= 195). Notable is that the “envelope” made by the curves for variousYe0
reasonably fits the solarr-process distribution. This implies that the wide range ofYe
(in terms of space and time) in the presented case leads to production of all the heavy
r-process nuclei.

IMPLICATIONS

Our model of black hole winds suggests that the innermost wind trajectories attain
substantially higher entropies (> 100kB per nucleon) and shorter expansion timescales
(< 10 ms). This indicates that all the relevant astrophysical conditions, i.e., NS-NS and
BH-NS mergers and collapsars (or hypernovae) are potentialfactories of ther-process
nuclei. However, our nucleosynthesis result shows that significant neutron-richness in
the wind is still required in order to account for the formation of the 3rdr-process
peak. In this regard, NS-NS and BH-NS are favored compared tocollapsars, since the
accretion tori originate from neutron-star matter (and moreover,Lν̄e > Lνe) in the former
case and iron-peak (or alpha) elements in the latter, respectively.

Obviously, more elaborate hydrodynamical studies of the relevant astrophysical sites
are needed to obtain information of the neutrino field that controls the dynamics as well
as the neutron-richness in the black hole winds. Note that the aforementioned astrophys-
ical phenomena are also suggested to be the sources of (shortand long, respectively)
gamma-ray bursts. An interesting possibility in this context is that the neutron-rich nu-



clei ejected in and after NS-NS or BH-NS mergers might lead todetectable transient
electromagnetic signal [31]. The studies of Galactic chemical evolution will be also im-
portant to test the contributions of NS-NS, BH-NS, and collapsars (or hypernovae) to
the enrichment history of ther-process elements in the Milky Way.
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