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Episodic Accretion on to Strongly Magnetic Stars
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ABSTRACT

Some accreting neutron stars and young stars show unegglajrisodic flares in the form
of quasi-periodic oscillations or recurrent outburstsa lseries of two papers we present new
work on an instability that can lead to episodic outburstemithe accretion disc is trun-
cated by the star’s strong magnetic field close to the caootatdius (where the Keplerian
frequency matches the star’s rotational frequency). Ia gaper we outline the physics of
the instability and use a simple parameterization of the-fiedd interaction to explore the
instability numerically, which we show can lead to repeatedsts of accretion as well as
steady-state solutions, as first suggested by Sunyaev aldish The cycle time of these
bursts increases with decreasing accretion rate. Thasgostd show that the usually assumed
‘propeller’ state, in which mass is ejected from the systeegd not occur even at very low
accretion rates.

Key words: accretion, accretion discs — instabilities — MHD — stargiltagions — stars:
magnetic fields

J1808.8-3658 has been observed during the decay phase-of sev
eral outbursts (Patruno etlal. 2009). The time-scale andhitualg

The interaction between a strong stellar magnetic field andca of the variability in both sources suggest changes in aictreate
cretion disc can affect both the evolution and observatipraper- in the inner regions of the accretion disc, where it intevadth the
ties of the star. Close to the star the field is strong enoughttie star's magnetic field.
accretion disc is truncat’ed, and mass is (_:hannelled aldddifies In this paper we revisit a disc instability first suggested in
to accrete on to the star's surface. Atthe inner edge of teated Sunyaev & Shakura (1977) and developed in Spruit & Taam (1993
disc, the field and disc interact directly over some finitdorgal- (hereafter ST93), which can lead to episodic bursts of sioere
lowing angular momentum exchange from the differentiaition The instability arises when the magnetic field truncatesdise
between the Keplerian accretion disc and the star. near the corotation radius. The magnetic field initiallyntrates the
Angular momentum exchange between the field and the disc disc outside but close to the corotation radius, thus tearisfy an-
leads to two different states that can exist for a disc trtgtwchy a gular momentum from the star to the disc and inhibiting gamfr
magnetic field. The distinction depends on the position efttbn- accreting on to the star (the propeller state). Howevesector.,

cation radius relative to the corotation radius= (GM../Q2)

1/3 the energy and angular momentum transferred by the fieldeto th

(where M. and (2. are respectively the mass and spin frequency gas will not be enough to unbind much of the disc mass from the
of the star), the radius at which the Keplerian frequenchédisc system and drive an outflow. Instead, the interaction wighrttag-
equals the star’s rotational frequency. If the disc is tated in- netic field will prevent accretiorl (Sunyaev & Shakura 197%3.
sider. then the field-disc interaction extracts angular momentum gas in the inner regions of the disc piles up, the local gasspire
from the disc and accretion can proceed. If on the other hlaed t  increases, forcing the inner edge of the disc to move inwantis
disc is truncated outside., the star-field interaction will create a it crosses~.. When the inner region of the disc cross insidethe

centrifugal barrier that inhibits accretion. This is usyahlled the centrifugal barrier preventing accretion disappearscésimow the
‘propeller regime’, under the assumption that most of thesria differential rotation between star and disc has changeu) sigd
the disc is expelled as an outflow (lllarionov & Sunyaev 1975) the accumulated reservoir of gas is accreted on to the stae e

Accreting stars with strong magnetic fields such as T Tauri reservoir has been accreted, the accretion rate througtish®s
stars, and X-ray millisecond pulsars show a large degreef v inner edge decreases, and the disc will again move outsids-

ability in luminosity (corresponding to changes in acametiate), lowing another cycle to start.

which may be ascribable to magnetic activity. For examle piro- We study this process by following the time evolution of a
tostar EX Lupi (the prototype of the ‘EXor’ class), a TTautas thin axisymmetric viscous disc, with a paramaterizatiorhaf in-
increases and decreases in brightness by several magnéueley teraction between the disc and the magnetic field both ireide

2-3 years|(Herbig 2007). At much higher energies, a 1 Hz quasi outsider.. This approach allows us to investigate the behaviour of
periodic oscillation (QPO) in accreting millisecond pulssAX the disc on time-scales much longer than the rotation pefdde
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star. Long time-scales are important since the instatslitives on
viscous rather than dynamical time-scales of the disc. \Wehle
to reduce the uncertainties in the detailed MHD interadbietween
the field and the disc to two free (but constrained) pararaetés-
ing this description we can then investigate the physicatlitmns
for which the instability develops.

In this paper we describe in detail the physics that can lead
to episodic bursts of accretion and give a brief overviewhefdb-
served oscillations. In a later paper we will explore thegeiof
outbursts seen in our simulations in more detail, and dsstuesir
prospects for observability in specific stellar systems.

2 MAGNETOSPHERE-DISC INTERACTIONS

2.1 Interaction region between a disc and magnetic field

We consider a star with a strong dipolar magnetic field sunded

by a thin Keplerian accretion disc. We assume that the dijmole
aligned with both the star’s spin axis and the spin axis ofdilse,

so that the system is axisymmetric. Near the surface of tretst
magnetic field will truncate the disc, forcing gas into catin
with the star. This inner region (in which the gas dynamiaggi-
lated by the magnetic field) is called the magnetospherewartk-
fine themagnetospheric radius, ., as the radius at which the mag-
netic field is no longer strong enough to force the disc intm€o
tation (Spruit & Taam 1993). Outside, the magnetic field will
penetrate the disc and become strongly coupled over sonad rad
extent, which we call thinteraction region, Ar. Beyond the inter-
action region the disc and magnetic field are decoupled,adtik
outer parts of the disc are not directly affected by the atetiag-
netic field. Figurd Ll shows a schematic picture for the magnet
field configuration, with a closed magnetosphere close tetide
and a large region of opened field lines further out.

In the interaction region, the differential rotation betmehe
Keplerian disc and star shears the magnetic field, gengratiraz-
imuthal componentB,, from the initially poloidal field. This in
turn creates a magnetic stress which exerts a torque on she di
transferring angular momentum between the disc and sta. Th
torque per unit area exerted by the field on the disc is given by
dtau/dr = rS, 4%, where

ByB.
y (1)

is the magnetic stress generated by the twisted field lines sign
of the torque will depend on the location of the coupled disc r
gion relative to the corotation radius, = (G M. /Q2)/3. If the
coupling takes place inside the torque will extract angular mo-
mentum from the disc, spinning down the disc (and spinning up
the star), while if the coupling is outside the torque adds angular
momentum to the disc, spinning it up (and spinning down the st
The radial extent of the interaction region has been a point
of long-standing controversy in the study of accretion slisc
In an early series of influential papers, Ghosh et al. (1977,
Ghosh & Lamp 1979al,b) argued that the coupled region is large
(Ar/r > 1), so that the magnetic field exerts a torque over a
considerable fraction of the disc with a resulting largeuefice
on the spin evolution of the star. However, the original niguie-
posed by Ghosh & Lamb was shown to be inconsistent by Wang
(1987), since the magnetic pressure they derived from fidahdw
ing far fromr. is high enough to completely disrupt the majority
of the disc.
More recent analytical and numerical work has shown that the

SZ¢EZE

interaction region is likely much smaller, and much of thecdis
disconnected from the star (see Uzdehsky 2004 for a recgatre
This comes about from the fact that in force-free regionsefwithe
magnetic pressure dominates over the gas pressure) akedyedi
exist above an accretion disc, field lines will tend to openasp
the twisting increases (Aly 1985; Lynden-Bell & Boily 1994s

the disc and star rotate differentially, the increasingstwi¢ in

the field line will only increase thé, component to some maxi-
mum B, ~ B, before the increased magnetic pressure above the
disc causes the field lines to become inflated and eventupdig,o
severing the connection between the disc and star. Andfttities

of a sheared force-free magnetic field (Aly 1985; van Baltgign
1994, Uzdensky et al. 2002) have shown that Bhe component

will grow to a maximum twist angled¢ ~ = before opening.
The twist angle grows on the time-scale of the beat frequency
= |, — Qx| ™, which is very short compared to the viscous time-
scale in the disc except in a very small region around caostat

To prevent field lines from opening, they must be able to slip
through the disc faster than the rate at which the field isdoein
wound up. The rate at which the field can move through the disc
is set by the effective diffusivityy, of the disc. Like the effective
viscosity, v, that drives the transport of angular momentum, the
effective diffusivity is also assumed to be driven by tudmnilpro-
cesses in the disc. Recent numerical studies of MRI (Magoieto
tional Instability) turbulence (believed to be resporsitar angular
momentum transport in at least the inner regions of acareligcs)
have tried to measure directly. In these simulations, an external
magnetic field is imposed on a shearing box simulation, aa@th
fective magnetic diffusivity is estimated as the flow becemesta-
ble. The results suggest that the effective diffusivity aistosity
are of similar size, that is, the effective magnetic Prandthber,

Pr = v/nis of order unity (Fromang & Storne 2009). Such a large
magnetic Prandtl number implies that for realistic discapaeters
the magnetic field will not be able to slip through the majonf
the disc fast enough enough to prevent field lines from omenin
(Lovelace et all_1995; Uzdensky et al. 2002). Outside thigore
there will still be some coupling between the disc and the asa
the gas moves from Keplerian to corotating orbits, but thigwate
suggests that the actual extent of coupling is smalt(r < 1)
regardless of where the disc is truncated relative to thetation
radius.

Once the field lines are opened, there may be some re-
connection across the region above the disc between open mag
netic field lines (e.g. Aly & Kuijpers 1990; Goodson etial. 799
Uzdensky et al. 2002). The effective size of the interactigion
would then depend on the efficiency of reconnection, anddcalsb
then become time-dependent (although likely on time-soail®r-
der the dynamical time, which is much shorter than the visexo-
lution time-scale). The opening and reconnection of figiddi has
also been suggested as a possible launching mechanismaiog st
disc winds and a jet (e.g. Aly & Kuijpers 1990; Hayashi et al.
1996; Goodson et &l. 1997). This picture of a small intecacte-
gion with some reconnection was first proposed by Lovelaed et
(1995), and has been supported by 2 and 3D simulations of ac-
cretion discs interacting with a magnetic field (e.q. MigeStone
1997; Goodson et al. 1997; Hayashi etlal. 1996; Romanova et al
2009).

In summary, although the extent of the interaction regiamis
certain (subject to uncertainties in the effective diffityi of mag-
netic field in the disc and its possible reconnection in thgmeto-
sphere, as well as the detailed interaction between thedistield
near the magnetosphere), numerical and analytic work stgjtiet
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disc

magnetosphere

Figure 1. Global magnetic field configuration for a strongly magnetar s
surrounded by an accretion disc. In this picture, the mgjai the field
exists in an open configuration, and the connected regioneaet the field
and the disc is very small. Adapted from Lovelace et al. (3995

itis small. Except for very special geometries for the maigrfeeld
(such as Agapitou & Papaloizou 2000; Shu et al. 1994), thesfow
fective magnetic diffusivity in the disc will force the maggic field
into a largely open configuration, and the majority of theraton
disc will be decoupled from the star, in strong contrast ®he-
diction of the_ Ghosh & Lamb (1979a) model.

The extent of the interaction region as well as the average
magnitude of theB, component generated by the disc-field inter-
action will depend on the detailed interaction between tke and
the field as the gas moves from Keplerian orbits to corotatiith
the star, as well as the frequency and magnitude of poss&bnr
nection events. In the present work we therefore assumetbat
time-averaged, component generated by field-line twisting will
be some constant fraction &f., so thatBs/B. = n < 1. We also
assume thaf\r/r is small < 1) but leave it as a free parameter.

2.2 Accretion and angular momentum transport

In this paper we describe the evolution of an accretion disc i
which the conditions at the inner boundary are changingnieti
Before doing this, however, we review how the conditionshat t
inner boundary affect the angular momentum transport anditye
structure of a thin accretion disc. In the thin-disc limi¢ #avolution
equation for the surface densifycan be written:

05 _30 10
E_rar[r or )

wherev is the effective viscosity in the disc that enables angular
momentum transport. In a steady state (in which the accretite
is constant throughout the disc), the general solutionr¥ois given

(-5()")

wherer; is the inner edge of the disadyis the accretion rate anglis
a dimensionless measure of the angular momentum flux thittiegh

(rl/QuE)],
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All accretion discs have a boundary layer at their inner edge
that connects the disc with either the surface of the stdreostar’s
magnetosphere. In the boundary layer the gas must tram§itim
Keplerian orbits to orhits corotating with the star in ortieaccrete.
The structure of this boundary layer will determine the eatd 3
in (3). In the standard accretion scenario, that is, foretamn on to
a slowly-rotating star or on to the star's magnetospheriglénthe
corotation radius, the gas in the boundary layer will be dzaéed,
meaning that there will be a maximum in the rotation profiléy).

At the maximum inQ2(r), there is no longer an outward transfer
of angular momentum from viscous torques, which in the thse
approximation will cause the surface density to decreaambh so
thatg = 1 in (3) (Pringle & Rees 1972; Shakura & Sunyaev 1973).
The maximum inQ(r) effectively corresponds to the inner radius
of the disc, since inside this radius gas is viscously delealfoom

the rest of disc. The gas falling through the inner bounddthe
disc will add its specific angular momentum{2,Q) to the star,
spinning it up.

However, there are in fact a wide range of solutions for the
surface density profile of an accretion disc depending orctime
ditions imposed by the boundary layer, which in turn set #ie of
angular momentum transport across the inner boundary afisce
In a nonmagnetic star spinning close to breakup (Paczyrg ;1
Popham & Narayan 19091), the angular momentum flux can be in-
ward or outward, depending on the accretion history of the $he
dimensionless angular momentum fléixan in principle have any
value less than 1 in this case. The top panel of Eig. 2 shows the
steady-state surface density profile for a range of diffevatues
of 5 from-1to 1.

Sunyaev & Shakural (1977) studied a similar situation in
which there is outward angular momentum transport in aneaccr
tion disc, and showed adding angular momentum at the inrge ed
of the accretion can in fact halt accretion altogether. Twodugion
of the disc in this case depends on the rate at which angularemo
tum is being injected at the inner edge of the disc compardideto
rate at which itis carried outwards via viscous couplingrfular
momentum is injected into the inner boundary of the disc at#y
the same rate as viscous transport carries it outwards,athew-
cretion on to the star will cease. For a steady state liketehéist,
the outward angular momentum flux due to the magnetic tortjue a
the inner edge of the disc has to be taken up at some largandeést
In a binary system, this sink of angular momentum can be thi¢ or
of the companion star. If the disc is sufficiently large, tmga
lar momentum can also be taken up by the outer parts of the disc
while the inner parts of the disc are close to a steady staeirF
ner edge of the disc then slowly moves outward under the infleie
of the angular momentum flux. The surface density distrityuin
this case can be found frofn] (3) by taking the limiit— 0, while
letting 8 — —oo (noting that it measures the angular flux per unit
accreted mass). This yields:

ve = i) ()7,

where f(r;) is a measure of the torque exterted at the inner edge
of the disc. The bottom panel of Fig. 2 shows the surface tensi
scaled to the value of (r;), for two instances of{4) with different
values ofriy, .

Sunyaev & Shakura (1977) refer to this solution as a ‘dead
disc’, since there is no accretion on to the star. In this page
call non-accreting discs without large outflows ‘quiesadists’, to

4)

disc per unit mass accreted (Popham & Nargyan|1991; Padzynsk avoid confusion with ‘dead zones’ thought to be present otgsr

1991).

stellar discs (regions in which there is insufficient ioniaa to
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Figure 2. Surface density’Y of a thin disc as a function of distance from
the corotation radius, for a steady, thin viscous disc. Top: steady accre-
tion at a fixed accretion rate:, for inner edge of the disc at corotatiofi.
measures the angular momentum fl@x~= 1 corresponding to the stan-
dard case of accertion on to a slowly rotation object. Fet 0 the angular
mometum flux is outward (spindown of the star). Bottom: ‘ggient disc’
solutions withrhn = 0 and a steady outward angular momentum flux due
to a torquef applied at the inner edge. The two curves show solutions for
rin/Te =2and 4.

drive angular momentum transport via MRI but are too hot fer e
ficient angular momentum transport via gravitational ibiizes;
e.g. Gammie 1996). These quiescent discs play a role in g cy
solutions discussed in Sectigh 3. In these solutions dngrphases
are separated by long intervals in which the inner disc iseckn
the quiescent state described Bl (4).

2.3 Evolution of a disc truncated inside the corotation radiis

When the accretion disc is truncated by a magnetic field éntid
corotation radius, the standafi = 1 case applies for a steady-
state solution. The location of the inner edge of the diswill be
determined by the interaction between the disc and magfielic
and change with changing conditions at the inner edge (saittea
accretion rate on to the star). Here we estimate the locafien,,
and use it to show how the inner boundary of the disc will cleang
in a non-steady disc.

azimuthal equation of motion for gas at the magnetosphedius
to obtain an estimate for,in a disc (see, e.g. ST93):

8 min a
QWEE(M(Z,) - g(rw}) +27mrS.e =0, (5)
whereri, = —27rXwv, is the accretion rate through the inner

edge of the disc[{5) neglects viscous angular momentursoah
through the inner regions of the disc, under the assumplianit
will be much smaller than angular momentum transport froe th
magnetic field. Using, = Q.r (since atri, the gas corotates
with the star), and assuming a steady-state soluiyi®{ = 0),

(5) becomes:

m&ls

TinB¢Bz

w e S T ©
where S, is the magnetic stress from the coupling between the
disc and star (introduced in Sectibnl2.1). As long as the wind
time for the field is shorter than the rate at whigh is changing,
By /B will be roughly constant, so we make the assumption that
By, = nB., wheren < 1 and is constant.

For a dipole field aligned with the star’s axis of rotatid®.(=
w/r®, wherey = BsR? is the star’'s magnetic dipole momenk) (6)
can be re-written:

1/5
Tin = 7]#2 ! .
" 4Q*min

Forn = 0.1, this estimate gives a value fey, about 40% smaller
than the simple estimate found by equating the magnetic- pres
sure from the field B2 /8r) to the ram pressure from spherically-
symmetric gas in free-fall on to the star (elg. Pringle & Rees
(2972)).

The derivation forri, above holds for steady accretion. For
the problem studied here the position of the inner edge (sétd
location of the magnetosphere) will change in time, whidures
a minor reinterpretation of17). If;, is moving in time, the mass
flux r., in the reference frame comoving with, differs from the
mass fluxyi, measured in a fixed frame:

@)

®)

Teo = 1 + 277 S,

wherery, is the time derivative ofiy.

Since the torque between the magnetosphere and the disc acts
at the inner edge, the mass flux entering the magnetosphezd (u
in (@) is given by, Nnotr. As beforegi itself is given in terms
of the surface density by the usual thin disc expression:

(r1/21/2)

2.4 Evolution of a disc truncated outside the corotation
radius

120
mor

™ = 3r

9)

Tin

If the star is spinning fast enough, the magnetic field cancate
the discoutside r.. In this case the interaction with the magnetic
field will add angular momentum to the disc, creating a centrifu-
gal barrier that inhibits accretion. This scenario was flestcribed
byllllarionov & Sunyaevl(1975) and is often termed the ‘pritge
regime, under the assumption that the interaction with tagmatic
field will expel the disc ati, as an outflow via the ‘magnetic sling-
shot’ mechanism _(Blandford & Payhe 1982).

However, in order for the gas to be ejected from the sys-
tem, it must be accelerated to at least the escape speed £

We define the inner edge of the disc as the point at which ma- /G M. /2r). At the inner edge of the interaction region the gas is

terial in the disc is forced into corotation with the star. We the

brought into corotation with the star, where = Q.r. If this is
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less than the escape speed, the majority of the gas will netded-
erated enough to be expelled. Setting. = v = /GM./rdr
implies that forri, < 1.26r. most of the gas will not be expelled.

Part of the disc could still be expelled in an outflow, but whil
the majority of the gas remains confined in the disc, the digt ¢
act as an efficient sink for angular momentum from the stataand
cretion can effectively be halted. The open field lines ajdaradii
could launch a disc wind which would provide an additionaksi
for angular momentum and somewhat change the structuresof th
disc (e.gl Matt & Pudritz 2005). Numerical studies of thedfidIsc
interaction, for example, find that reconnection acrosgl figles
can lead to intermittent accretion (e.9. Goodson &t al. 1987 also
Sectior[6). However, models of disc winds typically includass
loss rate as a parameter of the problem, so that the amourdss m
actually lost to the wind is uncertain. In this paper we mdieas-
sumption that the disc becomes quiescent, that is;;ifor> r. no
accretion or outflows occur. The steady-state disc solutidhen
given by [3).

In the next section we will derivg (rin), the boundary con-
dition for the surface density at the inner edge of a quiesdise.
Like for cases whemi, < r., we want to study non-steady-state
solutions in whichr;, moves in time. As in the steady-state case,
to deriveri, we consider the difference in accretion rate;atin a
fixed frame and in a frame comoving with,. Since for a quiescent
disc no matter is being accreted on to the stay,= 0, so that[(B)
2TrYrin = —37;

can be written:
1/2
e or (T ! VE)

Together with [(R), a viscosity prescription and conditiam the
outer boundary, we can use the results from this section lzad t
previous one to study the time-dependent behaviour of aretoo
disc interacting with a magnetic field.

12 0

(10)

Tin

3 CYCLIC ACCRETION

The existence of quiescent disc solutions can naturally kea
bursts of accretion. Since there is very little accretionmthe star
or outflow, if mass continues to accrete from larger radii il w
pile up in the inner regions in the disc until the gas pres&inigh
enough to overcome the centrifugal barrier from the magriietid-
disc interaction and accretion can proceed. Once the m@sémas
been emptied the inner edge of the disc will move back outkiele
corotation radius and the reservoir will start to build upiag

In Sectiong 213 and 2.4 we showed how the inner radius of a
thin viscous accretion disc will evolve inside and outsideota-
tion. To study the time-dependent evolution of a disc, wetroas-
nect these two states as the inner edge of the disc passeagtihro
the corotation radius. We also require a descriptionffot., ), the
inner boundary condition for the disc truncated outside

3.1 Surface density profile forri, > 7.

When the interaction region is outsidg the star is rotating faster
than the Keplerian disc and the magnetic field lines lead the d
adding angular momentum to the material in the inner regidas
discussed in Sectidn 2.1, the torque per unit area exertetieon
disc will be (S;.)r, so that the torque exerted across the entire
interaction region (assuming it is small) is approximately

T =~ 47 (Sp. ) rin ATZ, (11)

5

where the extra factor 2 comes from coupling to both sides®f t
disc.

As argued in the previous section, if the disc is truncatedel
to but outsider., the majority of the gas in the interaction region
will not be expelled in an outflow. Instead, the angular momen
tum from the magnetic field is transferred outwards to thé oés
the disc. We can derive a relationship between the positi@amd
surface density at the inner edge of non-interacting dismfthe
conservation of angular momentum across the interactigiome

Since the interaction region is small we do not consider its
density profile explicitly, focusing instead on its influenon the
non-interacting disc. We therefore defing as the point in the disc
just outside the interaction region, where there is no mégoeu-
pling between the disc and the star. Across the interacggion
the density in the disc decreases sharply (since the gasdsdio
into nearly corotating orbits with the star). We make thepdify-
ing assumption that none of the mass in the disc escapes, &ith
an outflow or through the magnetosphere on to the star. The inn
edge of the interaction region,, — Ar, is therefore defined as the
point at which the surface density drops to zero.

To determine® atr;,we consider the angular momentum flux
acrossAr whenri, > r.. The flux of angular momentum must
be continuous acrosAr, meaning that the viscous angular mo-
mentum transport outsid&r must balance the angular momentum
flux added by the magnetic field across the interaction redibis
balance is written:

mr?Q — 2rr (V) T r?Q = (12)
rm+AT

mr?Q — 2rr(VE) Q) + / 412 S, pdr.

In this equationy®™ andX* are the viscosity and surface den-
sity inside (') and outside {) Ar, i = 27r(3Zv,)T is the mass
flux throughAr (wherew, is the radial velocity of the gas) ar§el
is the orbital frequency ati,. The first term on either side of the
equation denotes the advection of angular momentum aeress
while the second is the angular momentum transported bypwssc
stresses. The final term on the right hand side is the anguwar m
mentum added by the magnetic field to the coupled region of the
disc. The first term on both sides cancel (to enforce conserva
of mass acrosé\r), and we make the further assumption that in
the interaction region most of the angular momentum is paried
through external magnetic torques rather than viscoussstse that
(v2)” < (vX)T. For a small interaction region, the last term in
(I2) can be re-written:

/Tin
Tin — AT

(@2) can then be re-written to yield the surface density at
rin fOr r > re:

2<Sz¢>AT
e
As predicted in Section 2.4, (1L4) shows that the surface den-
sity atri, will be large, a consequence of the torque being applied
by the disc-magnetic field coupling (Sunyaev & Shakura 1977;
Popham & Narayan 1991; Paczynski 1991).](14) corresponds to
the function f(rin) introduced in Sectioh 2.2 for;, > 7., that
is, the boundary condition at the inner edge of the disc. ima-t
dependent system, as gas accretes from larger radii (vi@uss
torques) it will pile up neari,and the increased gas pressure will
push the inner edge of the disc further inwards towatds

4ArrS,pdr = AT Arrin(Sze). (13)

o)t = (14)
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3.2 Transition region

When the inner edge;, is well insider., conditions at the inner
edge are the standard ones for accretion of a thin disc omadyslo
rotating object:

X(rin) =0, (15)

while the time-dependent position of the inner edge is datesd

by (@):

1/5
()"

wherern., is the mass flux in a frame comoving with, as dis-
cussed above.

When the inner edge is outside the corotation radius, the mag
netosphere does not accrete:

nu?

—_— 16
4o (16)

17

Meo = 0,

while the surface density at, is determined by a magnetic torque,
as discussed above. With the Keplerian value(¥ri,) and as-
suming a dipolar magnetic field, the results of Sedfion 3 lwa
re-written:

ot Ar
3n(GM.)1/2 972"

in

o)t = (18)

To connect these two limiting cases, we assume that the ef-
fect of the interaction processes is equivalent to a smoatisition
in the conditions. This is valid since the time-scales weiater-
ested in are much longer than the orbital time-scale on wthieh
conditions of the transition region between disc and marppétere
vary. The assumption is thus that the effect of the fast mmein
the transition region can be represented by averages. Téefina
on to the magnetosphere is therefore taken to vary smoatity ®
for r;, well outside corotation to the value [n{16) valid well insid
Mo = ymm+7 (19)
wherern ™ is given by [16). For the connecting functign, we take
a simple function that varies from 0 to 1 across the transitio

o (55

whereAr; is the nominal width of the disc-magnetosphere transi-
tion and a parameter of the problem.

Similarly the surface density at the inner edge makes a $moot
transition from its value if(18) to O:

1

ym:§

Tin — Tc

(20)
T2

Yin = y=XT, (21)
where the connecting functiay: is:

1 Tin — Tc
ys =3 [1 —|—tanh( )} . (22)

All the uncertainties in the transition region are thus suisd
in the parameterar and Ars. In SectiorL b we study the effect of
these uncertainties with a parameter survey. The effeuotidéhs
of the transition of magnetospheric accretion rate andriedge
surface density need not be the same, and we in fact find that th
difference betweem\r and Ar, is important for the form of the
resulting accretion cycles.

3.3 Physical constraints omrAr and Arz

In this paper we treaf\r and Ar» as free parameters. However, a
lower limit on both parameters can be set by consideringttitls
ity of the inner regions of the disc to the interchange infitgbin
the quiescent disc, the low-density magnetosphere mupbstiibe
high-density disc against infall. This configuration wik linsta-
ble to interchange instability (the analog of the Kelvinkidkoltz
instability), unless the surface density gradient in theraction
region is shallow enough to suppress it. This sets a limitten t
minimum width of the interaction regiom\r, where the density
gradient falls from its maximum (at,) to close to zero in the mag-
netosphere.

This instability also sets a limit on the minimum width of
Ara, the transition length over which the disc moves from a non-
accreting quiescent disc to one in which there is accretioough
the inner boundary. Asi, moves closer to. the width of the in-
teraction region preventing accretion (i.e. where the fielels are
adding angular momentum to the disc) decreases. When thike wid
of the interaction region outside becomes smaller than is stable
against the interchange instability, accretion throughrttagneto-
sphere will begin.Ar, must therefore be larger or equal to this
value, that is, at this minimum distance fromaccretion onto the
star will take place.

Spruit et al. [(1995) studied the stability of a disc inteiragt
with a magnetic field to interchange instabilities, and vtithe
following linear stability criterion:

B.B.d | % do\?
Assuming thatB,, ~ By, in our formulation this inequality
becomes:
2 N\ 3/2)\ 2
S — <£> >2(1- (T—) . (24)
1+ tanh (ﬁ) r Tc

For a = 0.1 and assuming{/r is in the range 0.07-0.1,
the range ofAr/r = [0.05,0.1] will satisfy this inequality for
Arg/r = [0.01, 0.02]. In this inequality larger values akr cor-
respond to smaller possible values for,, since largeAr corre-
spond to smaller maximurEi(ri,) and hence shallower gradients.
This instability has recently been studied using 3D nuna¢sm-
ulations (Kulkarni & Romanova 2008), who find numerically- ap
proximately the same criterion for stability las Spruit et(&B95).
The shaded regions of Fidd. 7 ddd 8 show the valueg\ferand
Ar that are unstable to the instability studied in this papke 3im-
ple analysis of this section suggests that at least parteo$tiaded
sections in Fig$.]7 arid 8 will be stable against the interghamsta-
bility, so that the larger magnetosphere-disc instabilayld occur.

4 NUMERICAL IMPLEMENTATION
4.1 Disc equation and viscosity prescription

To study the surface density evolution of an accretion diseri
acting with a magnetic field as outlined in the previous segti
we use a time-dependent numerical simulation of a diffusive
cretion disc. Our assumption that the interaction regioanmsll
(Ar/r < 1) means that rather than calculate the disc behaviour in
the interaction region explicitly we can instead use thespisyof

the interaction region to derive boundary conditions fa thner
edge of the non-interacting disc.
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We assume that the accretion disc (outside the interaation r
gion) can be treated in the thin-disc limit, so that the etioluequa-
tion for the surface densit¥. is given by [2). We assume that the
viscosity in the disc follows a power-law dependence, st tha

v=uvor’, (25)

wherevy = a(GM.)Y*(H/R)? andy = 0.5 following the
standarda-viscosity prescription| (Shakura & Sunyaev 1973). To
evolve [2) in time, we require boundary conditions-gtandroys,
plus an additional equation to describe the movement of rihe i
ner edge of the disc;,. We set the outer boundary by defining
the mass accretion rate through the outer edge of the dig¢ (
which we vary as a parameter of the problem. This definesnte ti
averaged mass accretion rate in the disc. The surface glensite
inner edge of the disc is given dy {21):

2
— T AT Tin — Tc
= GW(GM*)1/2VO 7"9/2+’y [tanh (—AT ) + 1] . (26)

E(’/‘in)

We calculate the displacement of the inner boundary usiag th
results of Sections 2.3 and P.4, by considering the difiezene-
tween the total mass flux at, in a fixed and comoving frame of

reference:
Teo = M + 2707 S 4n, (27)

wherern., is given by [I9). This expression can be re-written:

67rri1n/2 % (¥Erin) = —277in X (Tin ) Tin + (28)
2
Tin — Tc nu
1 — tanh .
{ an ( Arso )] 80rd,

Taken together[{2)[(25)_(R6). (28) and an outer boundary
condition describe the time-dependent evolution of an ety
disc.

4.2 Steady-State solution

From the results of the previous sections, we can calculse t
steady-state solutions for a given, the average mass accretion
rate. For certain values of,, Ar and Ar,, this equilibrium is un-
stable, leading to oscillations in, and corresponding accretion
bursts.

In a steady-state, the accretion rate is constant throagheu
disc, i.e.mco = 1

ny’

. 1 Tin — Tc
m—2 {1 tanh( A )] 49715[1.

Implicitly solving (29) forrin yields the inner radius of the disc in
a steady-state solution.

The general steady-state surface density profile was eoll
in Section 2.2, and is given bfl(4) with an additional termcsin
m # 0 in the disc. The functiorf (rin) is given by equatior(18).
The steady-state surface density profile will thus be:

(29)

vy = 3% {1 - (”7“)1/2] (30)
nulAr 1+ tanh (Fin—Te
+67rri4n(GMr)1/2 [ +tan ( )]

The numerical simulations described in the following setdi
of the evolution of a viscous accretion disc show that thei-equ
librium solution given by[(29) and(30) can become unstable t
episodic bursts of accretion by the process outlined ini@ea&:

7

4.3 Numerical setup

To follow the time-dependent evolution of a viscous acoretlisc
interacting with a magnetic field we use a 1D numerical sitiorg
first making a series of mathematical transformations.

The power-law prescription for the viscositly, 125), allous
to define a new functiony, for convenience:

u=Srt/A (31)

To make our results more readily applicable to different mag
netic stars (e.g. neutron stars, magnetic white dwarvegeotd-
stars), we adopt scale-free coordinates. The instabilitglied in
this paper varies on viscous time-scales of the inner dibiiware
in general much shorter than the time-scale over which Hresfer
of angular momentum between the star and the disc can substan
tially change the star’s rotation period. A constant ratatperiod
implies that a constant corotation radius, making it a r&thoice
for scaling our variables. We thus scale the radial cootditathe
corotation radius, and the time in terms of the viscous titele
(r?/v) at the corotation radius. Further, since we are most inter-
ested in the behaviour of inner regions of the disc, we adagi-a
ordinate system comoving with,,:

’ T — Tin |

r = ;
Tc

Vo

—.
re !

=t

(32

Dropping the prime notation, the surface density evoluéignation
in the new coordinate system then becomes:

ou = 37“”’71/2& {rl/z@} i 2 (33)

ot or or Tin g

with the boundary condition at,, given by:

2 R
e Ar s {tanh (T”‘Ar 1) + 1] .(34)

T 3r(GM)Puord Tin
The evolution of the inner edge of the disc is given by:

u(7in)

o 2 —11/2+4~
Tin = {1 — tanh <Tm 1)] Uln 573 lin (35)
Arg 167 12rd u(Tin)
o o
w(rin) OF lry,

Finally, to increase the resolution at the inner edge of tke d
we make a further coordinate transformation to an expoaknti
scaled grid:

1 {111(77’_““ ) +1] ,
a Tout — Tin

wherea is a scaling factor to set the clustering of grid points atbun
Tin.

T

(36)

We calculate the second-order discretization of the dpatia
derivatives on an equally-spaced grid4n To evolve the result-
ing system of equations in time requires an algorithm sietédr
stiff equations. This is necessary to follow the evolutidrihe in-
ner boundary,[(28). When, > r., (28) reduces to a differential
equation that is first order in time. However, fof < rc, X(rin)
becomes very small, and the equation essentially becommes ti
independent. We have formulated the problem soXiat.) stays
small but non-zero for all values of,, (so that the solutions is con-
tinuous at all values af;,), but its small value inside. means that
the differential equation is stiff (since the evolution atjan forri,
in (28) contains terms of very different sizes). To perfoha time
evolution, we therefore use the semi-implicit extrapolatmethod
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(Press et all (1992), p. 724), which is second-order aceimdime

and suitable for stiff equations. 1041' [ R
Since the grid comoves with the inner radius, the outer bound I 1

ary of our disc also moves. We set the accretion rate at ther out 1.02F

boundary to be fixed in the moving coordinate system, so that i r

changes slightly as the outer boundary moves. The effeatdgs n ~ — 1-00]

ligible as long as the disc is large enough that the outers prt o 98:
. . N . . @ -

the disc are unaffected by the changing inner boundary tiongdi ~ [

which we confirm by varying the position of the outer boundaifry £ 096}

the disc. [
0.94f

The solutions are sensitive to the changing conditions et th ’
inner boundary of the disc. To confirm that our results areisbb 092k
for the grid we have chosen, we varied the various numerigal p [ 1 1 1 1 104
rameters of the problem: grid resolution, the exponentiatsh 000 005 0410 015 020 025
parameter at the inner boundary (see{36)) and the fractional ac- Time [tye]
curacy of the solution computed by the semi-implicit extlagion
method (which sets the maximum possible timestep). Figure 3. Growth of instability from steady-state solutioR 129) afE ),

for m/mc = 1, Ar/r = 0.05, and Ary/r = 0.014. The inner radius
(solid curve) evolves around its steady-state value (dhbbézontal line),
5 RESULTS causing the net accretion rate on to the star to change agdashed curve).

Our primary goal in this paper is to study the conditions fdrick
the disc is unstable to episodic outbursts. To do this wevothe
evolution of an accretion disc in which the mean mass aaoreti
rate,rn is a parameter of the problem by settifigas the accretion
rate through the disc’s outer boundary. The other systemnpar
ters of the problem are the stellar maség,, frequencyf2., and
magnetic momenty. The interaction between the magnetic field
and the disc introduces three additional parametgrs: B, /B,
the fractional width of the interaction regiakr /r, and the length
scaleArz /r over which the inner edge of the disc moves from a
non-accreting to accreting state. Finally, our descriptibthe vis-
cosity, [25), introduces three additional parametessthe aspect
ratio of the discH /R (assumed constant), andthe radial power-
law dependence of the viscosity.

The problem has two scale invariances, which reduces the
number of free parameters. As seen[inl (2b)and H/R are de-
generate. Additionally, the system parameters\/., Q2. andm
can be re-written as the rati@ /., wherern. is the accretion
rate in [7) that puts the magnetospheric radius.afThis ratio is
equivalent to the ‘fastness parameté®;, /2. (where€;, is the
Keplerian frequency ati,) which is sometimes used to describe
disc-magnetosphere interactions.

For reference, our dimensionless paramstgrn. can be ex-
pressed in terms of physical parameters appropriate foogtedlar
systems:

and Arz /r (~ 0.01), andm/m. < 1, the position of the inner
boundary quickly becomes unstable and begins oscillagimce

the position ofri,, determines the mass accretion rate on to the star,
(@9), the change im;, leads to an accretion outburst. We use the
steady-state solution (given By {29) ahd](30)) as an initaldition

for all our simulations.

Fig. [3 shows the growth of the instability foh/m. = 1,
Ar/r = 0.05 andArz/r = 0.014. The solid curve shows the evo-
lution in ri,, scaled to the corotation radius. The horizontal dashed
line shows the steady-state value fgr. The right-hand axis plots
the accretion rate on to the star as a function of time (thaeths
curve). The accretion rate is scaled to units of the stetatg-sic-
cretion rateyi. The instability quickly grows out of the equilibrium
solution, and saturates into steady oscillations.

We observe a wide range of oscillatory solutions that span
three orders of magnitude in frequency, depending on theesal
of i /mc, Ar/r andArz /7. The shape of the accretion burst itself
also changes dramatically depending on the system panesmate
larger/m. the bursts are quasi-sinusoidal oscillations, as in Fig.
and the bottom panel of Figl 4. As the mean accretion rate-is d
creased, the bursts take the shape of a relaxation ostiletere
the bursts are characterized by an initial sharp spike afetion
which then relaxes to a quasi-steady accretion rate foruhatidn
of the burst, before abruptly turning off as the reservoietsp-

m ™m M. \® 3 tied andri, quickly moves well outside:.. During the outburst
o (2_3 X 10*7M®yr*1) (O.GM@) (87) phase, higher frequency sub-oscillations are also sorestsaen

me
B —2 R -6/ p 7/3 with Vf_irying intensity. _ _
( u ) ( - ) ( - ) . Figs.[4 and’b show the evolution ef, and accretion rate
2000G 21Ro 1 day as we varymn /. but the other parameters stay fixed. From bot-
We assume that the time-averag®} component will be tom to top, the panels of Fi§] 4 show the instability far/r.

constant with radius in the coupled region, and set the petm = [0.095, 0.052, 0.031]7% = [2.2,1.2,0.73] x 10 ¥ Mgyr—*

n = 0.1. For the viscosityy = a(GM*)1/2(H/R)2r”, we take for the parameters i (87)). At the highest mean accretios, ra

a = 0.1 andH/R = 0.1 to calculate the magnitude of, and rin (the solid curve) oscillates with a high frequency aroursd it

assumey = 0.5 everywhere in the disc. Varying, H/R and~y steady-state value (dashed line), with correspondingtdoifsac-

will change the time-scale over which outbursts occur, hlltnet cretion on to the star (dashed curve). As/m. is decreased,

change the general character of our outburst solutions. the accretion profile changes to much lower frequency ostbur
This leaves three scale-free parameters in the probiefw., with long periods of quiescence as, moves away fronr. and

Ar/r and Ary/r. We vary each of these parameters to explore accretion ceases completely. The high-frequency odoifiahat
the range of unstable solutions. For small valueg\ofr (~ 0.1) dominates form/m. = 0.095 is superimposed over the low-
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Figure 4. Outburst profiles of;,, andri for moderate values of:/ri.. From bottom to topsi /7 =[0.095,0.052, 0.031]. For adopted protostellar pararaete
this corresponds tr = [2.2,1.2,0.73] x 10~8 Mgyr—!. The lines are the same as in Hij. 3.

frequency accretion bursts for lowen/m.. Fig.[3 shows the
continuation of Fig[[¥ fonn /7. = [0.019,0.0084,0.003,0.0022]
(h = [4.5,1.9,0.95,0.38] x 10~ Mgyr~"'). The characteris-
tic accretion burst profile essentially stays the samengs. is

comparatively long quiescent phases. Ag/r increases, the fre-
quency of the outburst decreases, and the duty cycle ireseha-
matically. For very largeAr/r the outburst lasts about 200 times
as long as for the minimum\r /r but at lower accretion rate after

decreased, with sharp spikes at the beginning and end of-an ac the initial spike. The burst profile of the instability is theensitive

cretion outburst. The overall amplitude of the outburstreases
only slightly with decreasing mean accretion rate. Thedh#pike

to small changes id\r/r, but the range im\r/r over which the
instability exists is quite small.We find a similar range otlurst

decreases by about 20% as the mean accretion rate drops fronprofiles by changing\rs /r and keepingAr/r fixed, except with

m/me = 0.052 torn/m. = 0.0022. The more significant effect is
that the length of time between outbursts increases withedse

ing m/m., since at low average accretion rates it takes longer to
build enough mass to drive another outburst. The overalpesha
of the outburst is relatively insensitive to changifig/rh., be-
coming shorter ash/m. decreases. At the lowest accretion rate
(3.8 x 107 *° Myyr~!; the top panel of Fid.]5), the burst consists
of only one sharp spike. As we have formulated the problem, th
instability will persist down to arbitrarily low accretiaates.

Changing the other parametetsy /r andAr; /r, has a much
stronger effect on the shape of the outburst than changenméan
accretion rate. Fi§l]6 shows the outburst profiles for diffiervalues
for Ar/r, settingrn /. = 0.04 andAr2 /7 = 0.014. From the bot-
tom to top,Ar/r =[0.03,0.05,0.07,0.09], which spans the unstable
region of Ar/r for the adoptedn /ri.. For smallAr /r the insta-
bility manifests itself as repeating short bursts of agoretwith

the opposite trend: for largArz /7 the instability manifests as a
series of short spiky bursts, becoming longef\as /r decreases.

We next considered the parameter spac&jin., Ar/r and
Ary /T over which the instability occurs. We have briefly explored
the effect of varying botAr/r and Ar,/r over a small range
in mh/m. and found that, although the outburst profile changes
somewhat, the range over whickr/r and Ary/r produce un-
stable solutions are independent. We therefore assume\that
and Ar, /r vary independently of each other for atl /7., and
consider the range of the instability over the friv., Ar/r] and
[rh /e, Are/r] Spaces separately.

Fig.[d shows the range of unstable solutions (shown as shaded
regions) changingn/m. and Ar/r, but keepingArz /r fixed at
0.014. Although there is a small unstable branch arateh. =
1, in general ag\r/r increases, a lowei /. is required before
the instability sets in.
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Figure 5. Outburst profiles of-;,, andri for small values ofin/rc.From bottom to topyi /7. = [0.019,0.0084,0.003,0.0022]. For adopted protostellar
parameters this correspondsito= [4.5, 1.9,0.95,0.38] x 10~2 Mgyr~1!. The lines are the same as in Hig. 3.
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Figure 7. Parameter map of instability as a functionraf/ 7. and width of
interaction regiomAr /r, with constantAro = 0.014. The shaded regions
denote unstable parameters.

Fig. [ shows the unstable solutions changingr. and
Ara /7 but keepingAr /r fixed at 0.05. The opposite trend from
Fig.[d is seen, with a larger range of unstable accretiorsrateere
is again a range of unstable solutions arount. = 1, although

1.00

co

S [
< 0.10¢

0.01

0.005 0.010 0.015 0.020 0.025
AR2/Rco

Figure 8. Parameter map of instability as a functiorvof 1. and accretion
transition lengthAry /7, with constantAr, = 0.014. The shaded regions
denote unstable parameters.

in this case the unstable region extends over the eMite/r pa-
rameter space. The instability likely extends to smalles /r, but
we do not explore the region smaller thAm, = 0.005 on physical
grounds, since such a small transition length will likely bbesta-
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Figure 6. Outburst profiles of;,, andri for changingAr /r, with Ara /r = 0.014 andri /ri. = 0.04. From bottom to top)r /r = [0.03,0.05, 0.07, 0.09].
The lines are the same as in Hig). 3.

ble to other instabilities like the interchange instabi(gee Section
[B3). As with changing\r /r, the outburst profile changes substan-
tially over the small range ahr /7 in which the instability occurs.

magnetosphere-disc interaction region have an equallyitapt
effect.

From Figs[¥ anf]8 it appears that there are two differentskind
of instability. One of these operates in a narrow range ofedicm
rates, around the value where steady accretion would puties
edge at corotation. The instability in this case is of thestghown
In this paper we studied a disc instability first explored by in Fig.[3: an approximately sinusoidal modulation, chaggstic
Sunyaev & Shakura (1977) and ST93, with a more physically mo- for a weak form of instability. The inner edge of the disc datés
tivated and general formulation of the problem than was used about a mean value, but stays inside the width of the tramsit-
ST93. In particular, we have improved the description ofdise- gion. The longer cycles in the upper parts of F[gs. 7[@nd 8 are a

6 DISCUSSION

field interaction when the disc is truncated outside coimtaby
deriving conditions for a ‘quiescent’ state, in which thegalar
momentum transferred from the star into the disc halts &éocre

strongly non-linear, relaxation type of oscillation. Thmér edge
is somewhat outside the transition region for much of théeoyith
no accretion taking place (the ‘quiescent’ phase), and idifisr a

altogether. In agreement with ST93, we observe a wide rahge o brief episode of accretion before moving back out agains Thi
oscillatory behaviour, and the frequency range of indigidout- the kind of cycle envisaged hy Sunyaev & Shakura (1977). Dur-
bursts spans three orders of magnitude. ing the quiescent phase, the disc (Sunyaev & Shakura|(1%i7) ¢

The period of the cycle seen in Figd.[8-5 varies from 0.02 it a ‘dead disc’) extracts angular momentum from the starhay t
to 20, wheret. is the nominal viscous time-scale at the coro- magnetic interaction at its inner edge. These two forms sthiil-

tation radiust. = rZ2/v(r.). Though cycle times scale with,
this is evidently not the only factor. As discussed in ST88, \is-
cous time-scale relevant for the cycle period depends ositleeof

ity are merged into a continuum in ST93, as a result of thecfft
(and less realistic) assumptions made there about theatien be-
tween disc and magnetosphere outside corotation. Thisrelifte

the disc region involved. This depends itself on the cycleope
hence the period must be determined by additional factare. @
these is the mean accretion rate, but the physical conditiothe

also affects the dependence on the mean accretion rate edgher
in ST93 cyclic behavior was found only in a limited range of ac
cretion rates, our results show that cycles can occur irciplie at
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arbitrarily low accretion rates, with steadily increasoygle period
and decreasing duty cycle of the accretion phase.
Figs.[4 and b show that the radius of the inner edge of the

disc does not move by more than 10% around corotation, even at

the lowest mean accretion rates. For example in the¢g8#.
9.5 x 1072 of Fig.[, the standard ‘ram pressure’ estimate would
yield a much larger magnetosphere radius, abgut 3.6 r.. The
difference arises because in our cyclic accretion statesondi-
tions in the inner disc are very different from those assurined
conventional estimates of,; the density in the inner disc, for ex-
ample, is much higher.

At ri, < 1.17c, the velocity difference between the magne-
tosphere and the disc is only 5%, much less than the 40% which
mass would need in order to escape from the system. ‘Propelle
ing’ of mass out of the system is thus unlikely to be effectiliis
does not exclude that some mass loss (powered by a magnetic wi
from the disc or the interaction region around the inner ealge
the disc) may also take place, but our results show that $hiet
a necessary consequence for a disc in what is traditionallgd
‘propeller’ regime.

At sufficiently low accretions rates one would expect, how-
ever, that propellering would also be a possible outcontheifro-
tation rate of the star is high enough, matter could be ejdmtéore
it has the time to form a dense disc. The existence of a cyatio f
of accretion at low accretion rates thus suggests that tfferelnt
accretion states are possible, and that there would be ad@es
rameter determining which of the two is realised. This mgititply
be the history of the system.

If a disc is initially absent and accretion is started, tha-de
sity will initially be low enough that ejection by propelleg can
prevent accretion altogether. The cataclysmic variableM3E(e.g.
Wynn et al! 1997) is likely to be such a case. On the other hiénd,
adisc is initially in a high accretion state such that thesinedge is
inside corotation, a subsequent decline to low accretit@sreould
lead to the cyclic accretion described here. Such a situatold
be at work in the TTauri star EX Lupi (where the initial high-ac
cretion phase has ended). It could also be appropriatedoX-ttay
millisecond pulsar, SAX J1808.8-3658, which has shown az1-H
QPO in the decline phase of several outbursts Patruno 20419§.
The pile-up of mass at the magnetosphere will maintain tee di
this state, and prevent propellering even when the meartamer
rate drops to very low values.

The instability studied in this work has not yet been obsgrve
in numerical simulations, partly because most numericaluia-
tions do not run for long enough to observe it, but mainly bsea
most simulations have focused on either accreting or stprog
peller cases. However, in virtually all numerical simuat out-
flows and variability in the disc are observed, with an iniigritat
varies between different simulations. Gas pile-up at tineiiredge
of the disc is also observed, with the amount of pile-up tied t
the effective diffusivity of magnetic field at the inner edgkthe
disc (e.g.?). The process of closing and opening field lines pro-
vides a source of mass to launch both a weakly-collimatefioaut
(the disc wind) and a well-collimated jet (e.g Hayashi el18196;
Goodson et al. 1997; Romanova et al. 2009). The whole cykésta
place on time-scales that can vary between the dynamicaliand
cous time-scales at the inner edge of the disc, but are dbnefa
higher frequency than the disc instability studied in trapgr. The
inner edge of the disc also oscillates significantly (altftoit re-
mains on average outside corotation), from between a felhaiste
radii (Romanova et al. 2009) up to 30 stellar radii (Goodsaalle
1997). Even if such variability is present, the instabiliydied

in this paper can still occur provided the outflows/accretiorsts
generated by field lines opening are not strong enough tg full
empty the reservoir of matter accumulating just outside

7 CONCLUSIONS

We have studied the accretion of a thin viscous disc on to & mag
netosphere of a magnetic star, under the influence of the etiagn
torque it exerts on the disc. We focused in particular on<asth
low accretion rates. For high accretion rates such thatriheri
edgeri, of the disc is inside the corotation radius, standard steady
thin viscous disc solutions are recovered. However, wherirther
edge is near corotation we find that the accretion becomes tim
dependent, and takes the form of cycles consisting of altem
accreting and non-accreting (‘quiescent’) states. Thiagef this
cycle varies from a small fraction of the characteristicuiss time
scale in the inner dise;2, /v, to a large multiple of it, depending
on the mean accretion rate as well as on the precise corgliion
sumed at the magnetosphere.

These cyclic accretion solutions continue to exist indedlpi
with decreasing accretion rate. The cycle period increashie
the duty cycle of the accreting phase decreases with décgeas
cretion rate. In the quiescent phase after a burst of aocretihe
inner edge of the disc moves outward, and mass starts pifing u
the inner regions of the disc. In response, the inner edga eaky
starts moving back in again and accretion picks up.asrosses the
corotation radius. This empties the inner regions of the,diaus-
ing the inner edge to move outward again. The cycle thus hes th
properties of a relaxation oscillator, as found before iI®&TThe
reservoir involved is the mass in the inner region of the.di$ese
results (as well as those lof Sunyaev & Shakura (1977) and)ST93
show that accretion without mass ejection can occur at toare
rates well inside what is usually called the ‘propeller’ireg. In-
stead of the mass being ejected, the accreting mass canilg@dy p
up at high surface density in the inner disc, just outsidetebion.
We have suggested that systems with very low accretion cates
be in either of these states. Propellering would occur whdis@
is initially absent and mass transfer is first initiated ¢hse of AE
Agr for example), while a system with an accretion rate thapd
from an initially high value would end in the cyclic accretistate
described in this paper. This would apply to most cataclgsrari-
ables and X-ray binaries, as well as some TTauri stars.
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