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ABSTRACT

We analyse the coarse-grained phase-space structure of the six Galaxy-scale dark
matter haloes of the Aquarius Project using a state-of-the-art 6D substructure finder.
Within r50, we find that about 35% of the mass is in identifiable substructures, pre-
dominantly tidal streams, but including about 14% in self-bound subhaloes. The slope
of the differential substructure mass function is close to −2, which should be compared
to ∼ −1.9 for the population of self-bound subhaloes. Near r50 about 60% of the mass
is in substructures, with about 30% in self-bound subhaloes. The inner 35 kpc of
the highest resolution simulation has only 0.5% of its mass in self-bound subhaloes,
but 3.3% in detected substructure, again primarily tidal streams. The densest tidal
streams near the solar position have a 3-D mass density about 1% of the local mean,
and populate the high velocity tail of the velocity distribution.

Key words: methods: numerical, cosmology: dark matter

1 INTRODUCTION

The detailed phase-space distribution of cold dark mat-
ter haloes can substantially affect prospects for dark mat-
ter detection. Direct detection experiments are starting
to probe significant fractions of the parameter space of
plausible theoretical models, so a first detection of dark
matter (DM) may be imminent. Only recently has re-
alistic prediction of the phase-space structure near the
Earth become possible, because very high-resolution nu-
merical simulations are required. It is now well established
that the outer regions of cold dark matter (CDM) haloes
have a complicated phase-space structure with many sub-
haloes and tidal streams (Moore et al. 1999; Klypin et al.
1999; Ghigna et al. 2000; Stoehr et al. 2002; Diemand et al.
2004, 2008; Springel et al. 2008). This raises the question
of whether similar structures might affect direct detection
probabilities. Could the Earth be sitting in a “hole”, i.e. a
locally very underdense region, in the DM distribution, as
might occur in a fractal structure, or if most of the mass near
the Sun were concentrated in dense, low-mass subhaloes.
Some simulators have indeed argued that a significant frac-
tion of the local mass could lie in solar or Earth-mass sub-

⋆ E-mail: michalm@mpa-garching.mpg.de

haloes (e.g. Diemand et al. 2005), although more recent sim-
ulations suggest that the local mass fraction in bound sub-
haloes of any mass is well below 1% (Vogelsberger et al.
2009; Vogelsberger & White 2010). Other possibilities might
be for the Earth to lie within a subhalo, or within a dense
tidal stream created by disruption of an earlier subhalo. Ei-
ther of these would produce a spike in the velocity distribu-
tion of local dark matter particles.

Quantifying the detailed phase-space structure of a
halo requires disentangling its various DM components: the
smooth component which is, in fact, a superposition of many
fundamental streams (Vogelsberger & White 2010); com-
pact, self-bound subhaloes; and tidal streams created by the
disruption of such subhaloes. Efficient identification of the
tidal streams requires a sensitive and robust structure-finder
in 6D phase-space. Recently Maciejewski et al. (2009a) pre-
sented an algorithm, Hierarchical Structure Finder (HSF),
designed specifically for this purpose. HSF identifies struc-
tures in an N-body simulation as coherent, overdense sets
of particles in the full 6D position-velocity distribution. In
this paper we use HSF to study the six Galaxy-scale halos
simulated as part of the Aquarius Project (Springel et al.
2008), providing a quantitative analysis of the various halo
components and focussing, in particular, on the inner halo
relevant for detection experiments.
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2 Maciejewski et al.

Our paper is organised as follows: Section 2 presents a
brief description of our Hierarchical Structure Finder. Sec-
tion 3 then explores the numerical convergence of our results
by analysing simulations of a single halo at a variety of res-
olutions. Finally we use the full set of six Aquarius halos to
study the expected scatter in substructure properties among
Galaxy-scale halos. Section 4 focusses on substructure in the
inner halo in order to assess possible consequences for direct
detection experiments. The final section gives our conclu-
sions.

2 HIERARCHICAL STRUCTURE FINDER

Many different algorithms for identifying (sub)structure
have been applied to N-body simulations of the growth of
cosmic structure. One of the first and most widely used is the
Friends-of-Friends (FOF) scheme introduced by Davis et al.
(1985); this defines “halos” as disjoint particle sets contain-
ing every particle closer than some maximal linking length
to at least one other member of its set. This bounds ob-
jects approximately by an isodensity surface, but makes
no assumption about their shape or internal structure. In
contrast, the Spherical Overdensity (SO) group-finder of
Cole & Lacey (1996) finds high-density peaks in the particle
distribution, grows spheres centred on each until the mean
enclosed density drops to a specified value (typically ∼ 200
times the cosmological mean) and then defines halos as the
contents of those spheres whose centres do not lie within
a more massive halo. More recent structure-finders [e.g.
SKID (Governato et al. 1997), SUBFIND (Springel et al.
2001), VOBOZ (Neyrinck et al. 2005), PSB (Kim & Park
2006), ADAPTAHOP (Aubert, Pichon & Colombi 2004),
AHF (Knollmann & Knebe 2010), HSF (Maciejewski et al.
2009a)] typically identify objects as connected self-bound
particle sets above some density threshold. Such methods
have two steps. Each particle is first linked to a local DM
density maximum by following the gradient of a particle-
based estimate of the underlying DM density field. The par-
ticle set attached to a given maximum defines a candidate
structure. In a second step, particles which are gravitation-
ally unbound to the structure are discarded until a fully self-
bound final object is obtained. The various methods differ
in the way particles are treated when they belong to more
than one candidate and in the way unbound particles are
redistributed. Most methods produce a hierarchical charac-
terisation of structure where halos contain subhaloes which
in turn can contain their own subhaloes.

These methods can be extended to higher dimensions, in
particular to 6D phase-space. The main complication is then
that the smoothed density field and its gradient must be
estimated from the particle distribution in six dimensions.
The Hierarchichal Structure Finder (HSF) presented by
Maciejewski et al. (2009a) is an algorithm of this type, and
can be used, just like the above 3D algorithms, to identify
bound subhaloes. Other six dimensional phase-space struc-
ture finders have been developed recently by Diemand et al.
(2006, 6dFOF) and Sharma & Johnston (2009, EnLink). In
the following we describe the HSF method in somewhat
more detail, since this is the method we will use for the
rest of this paper. Further technical details and tests can be
found in Maciejewski et al. (2009a).

To find candidate structures we first need to estimate
phase-space densities at the positions of all the particles.
Furthermore we need to calculate local phase-space den-
sity gradients. HSF does this using a six-dimensional SPH
smoothing kernel with a local adaptive metric as imple-
mented in the EnBiD code (Sharma & Steinmetz 2006).
Neighbouring particles can then be used to derive the re-
quired gradients. For the SPH kernel we use Nsph = 64
neighbours whereas for the gradient estimate we use Nngb =
20 neighbours.

Once phase-space densities have been calculated, we
sort the particles according to their density in descending
order. Then we start to grow structures from high to low
phase-space densities. While walking down in density we
mark for each particle the two closest (according to the lo-
cal phase-space metric) neighbours with higher phase-space
density, if such particles exist. In this way we grow disjoint
structures until we encounter a saddle point, which can be
identified by observing the two marked particles and seeing
if they belong to different structures. A saddle point occurs
at the border of two structures. In the standard setup of
HSF, which is used throughout this paper, the masses of the
two structures separated by the saddle point are compared
and the smaller one is cut, defining a complete individual
structure. All particles below the saddle point whose higher
density neighbours are part of the cut object are attached
to the other, larger structure. Pursuing this procedure un-
til all particles have been considered divides a halo into a
unique disjoint set of substructures, of which the most mas-
sive, which also contains the lowest phase-density particles,
is the main substructure.

When we wish to isolate self-bound subhaloes, we follow
an identical procedure, except that each time we reach a
saddle point, we remove all unbound particles iteratively
from the smaller structure and attach them provisionally to
the larger structure. Once we have followed this algorithm
down to the lowest phase-density particle, we are left with
a set of self-bound subhaloes and a few particles which are
bound to no subhalo, not even the most massive self-bound
subhalo which again is the one containing the lowest phase-
density bound particles.

Both these procedures divide a halo into a disjoint set of
phase-space structures, each containing a single phase-space
density peak and bounded approximately by a level surface
of phase-space density. In the first procedure each structure
normally contains both bound and unbound particles, and
all halo particles are assigned to some structure. In the sec-
ond procedure, each structure is self-bound, and some halo
particles are not assigned to any structure. To be specific,
in the following we will refer to all particles inside r50

1 as
the halo. We call the most massive substructure constructed
from these particles the main halo. Note that by definition it
cannot extend beyond r50 and that its mean density within
r50 will be less than 50 times the critical density. Note also
that the main halo will change slightly according to whether
we do or do not apply the unbinding and reassignment pro-
cedures. In the former case we refer to all other structures

1 This is defined as the radius of the largest sphere centred on
the halo density peak which encloses a mean density at least 50
times the critical value.
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as (self-bound) subhaloes, whereas in the latter case we re-
fer to them as substructures. A subhalo is thus always part
of a substructure, but a substructure does not necessarily
contain a subhalo.

3 STRUCTURES IN THE AQUARIUS

SIMULATIONS

We study the phase-space structure of Milky Way-sized
DM haloes using the high-resolution simulations of the
Aquarius Project (Springel et al. 2008). The cosmological
parameters for these simulations are Ωm = 0.25,ΩΛ =
0.75, σ8 = 0.9 and H0 = 73km s−1Mpc−1. For this project
six Galaxy-mass haloes (Aq-A to Aq-F) were selected from
a lower resolution version of the Millennium-II Simulation
(Boylan-Kolchin et al. 2009) and resimulated with progres-
sively higher particle number and smaller softening length.
The haloes were selected to have no close massive companion
at z = 0. When studying differences in phase-space structure
between these haloes, we use the second resolution level (the
highest for which results are available for all six objects). At
this resolution all haloes have more than 1.6× 108 particles
inside r50, corresponding to a particle mass ∼ 104M⊙. In
addition, we use resimulations of the Aq-A halo at four dif-
ferent resolution levels to check the numerical convergence
of our results. In the final section of this paper we inves-
tigate phase-space structure in the inner halo, defined as
r < rinner = 35 kpc. For this purpose we use three resolu-
tion levels of the Aq-A halo with the largest one (Aq-A-1)
having almost 1.5 × 109 particles inside r50 and more than
2 × 108 particles inside rinner. Together with the ability of
HSF to analyse the full 6D particle distribution, this simu-
lation set allows the first robust and fully general quantifi-
cation of the various phase-space components predicted by
the ΛCDM model at r ∼ 8 kpc where direct detection takes
place.

3.1 A resolution study

We begin by analysing the mass functions of substructures
and of self-bound subhaloes in the Aq-A halo and their de-
pendence on resolution. To be consistent with earlier work
we define the edge of the halo at r50 = 433 kpc and we
count all objects within this radius, but we note that this is
a large radius and, as a result, the counts are dominated by
objects beyond 100 kpc, more than an order of magnitude
further from the Galactic Centre than the Sun. In the upper
panel of Fig. 1 we compare the differential mass functions
of substructures (solid curves) and of self-bound subhaloes
(dashed curves) at four different resolutions. The lower panel
shows the corresponding cumulative mass functions. In both
cases the mass functions agree quite well between the simu-
lations above their respective resolution limits. For the self-
bound subhaloes, the slope of the differential mass function
is close to −1.9, as found earlier in the SUBFIND analysis of
Springel et al. (2008). At lower resolution the distribution is
better approximated, particularly in the low mass bins, by
a slope close to −1.8. For the Aq-A-2 halo, we find that
14% of the halo mass is in self-bound subhaloes, which is
20% higher than the corresponding SUBFIND value (12%
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Figure 1. Top panel: Differential substructure mass functions
for different resolutions of the Aq-A halo in the region r < r50 =
433 kpc. Solid lines indicate mass functions for the substructures
identified when HSF is executed without unbinding and reassign-
ment procedures (see the text), while dashed lines indicate the
corresponding functions for the self-bound subhaloes found when
these procedures are implemented. Different colours refer to the
different resolution levels as indicated in the plot. The straight

black line is a power-law fit, dN/dM ∝ M−1.9, to the data for
self-bound subhaloes. The data for substructures are instead fit by
a power-law of slope −2 (the horizontal red line). Bottom panel:
Corresponding cumulative mass functions inside r50, expressed
as the total fraction of the enclosed mass in identified substruc-
ture. Line styles are the same as in the top panel. Black and red
lines are based on the fits in the upper panel with a high mass
truncation at 2% of the total mass.
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- Springel et al. 2008), reflecting the fact that HSF typi-
cally attaches more mass to each identified object than SUB-
FIND. In the lower resolution simulations, particles from un-
resolved low-mass substructures are in many cases attached
to more massive objects. This explains the shifts in the mass
functions at high masses that are well resolved by all simu-
lations (see the bottom panel of Fig.1). The mass fraction in
self-bound subhaloes changes from 11% for Aq-A-5 to 14%
for Aq-A-2.

The power-law behaviour of the mass function of self-
bound subhaloes has been known for some time, but there
has been controversy over its slope. If this slope is −2, then
the mass fraction in subhaloes diverges logarithmically at
low mass, and is cut off at a mass corresponding to the free-
streaming length of the underlying DM particle (typically
Earth mass for neutralino candidates). If the slope is -1.9,
however, as found above, then the mass fraction in subhaloes
has already effectively converged at the limit of the highest
resolution Aquarius simulations and hence is ∼ 15% within
r50. Within smaller radii this fraction drops dramatically, as
we will see below.

HSF makes it possible to find unbound substructures
also, and the solid lines in Fig. 1 show that within r50 rough
numerical convergence is achieved for their mass function.
In this case, however, the slope appears close to −2 and the
mass in substructures exceeds that in self-bound subhaloes
by more than a factor of 2 at all masses, and by increas-
ingly large amounts at small mass. To the resolution limit
of Aq-A-2, 35% of the mass within r50 is in substructure,
showing the total mass detected in unbound tidal streams
to be significantly larger than in self-bound subhaloes. With
increasing resolution, significantly more substructures are
found, and mass shifts from massive to smaller substruc-
tures, as found above for self-bound subhaloes but even more
strongly. The behaviour seen in the lower panel of Fig. 1 can-
not be extrapolated straightforwardly to lower mass. As we
will see below, at the resolution of Aq-A-2, most of the mass
in the outer halo is resolved into substructures, but relatively
little of the mass in the inner regions. At higher resolution it
will be the transition between these two regimes which con-
trols the total mass fraction in substructure, rather than the
increase in resolved substructures at any particular radius.

For this same resolution series of Aq-A simulations,
Fig. 2 shows the mass fractions in substructures and in self-
bound subhaloes for a set of of 10 disjoint spherical shells
extending from 1 kpc to r50. Within 35 kpc we also show re-
sults for the highest resolution simulation Aq-A-1. Although
the results for a single simulation are rather noisy, they can
be represented reasonably well by

f loc
sub = exp[γ + β ln(r/r50) + 0.5α ln2(r/r50)], (1)

with parameters α = −0.31, β = 0.98 and γ = −1.09 for the
subhaloes. This analytic form was used to fit the radial dis-
tribution of SUBFIND subhaloes in Springel et al. (2008).
We note that the quoted parameters were obtained from a
fit to data for the full set of six level 2 Aquarius haloes (see
below). The distribution of HSF subhaloes is very similar
to that of SUBFIND subhaloes, but HSF attaches slightly
more particles to objects near the centre.

We find substructures down to 0.6 kpc in Aq-A-1 and
down to 2 kpc in Aq-A-2 and Aq-A-3 simulations. For Aq-
A-4, however, no substructures are found within ∼ 9 kpc,
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Figure 2. Fraction of mass in substructures and in self-bound
subhaloes as a function of radius estimated from a set of disjoint
spherical shells and for various resolution levels of the Aq-A halo
as indicated by colour. We take the mass within r50 for the 4
lower resolution haloes. For Aq-A-1 only the mass within the
inner 35 kpc was used. Solid lines represent the substructures
and dashed lines the self-bound subhaloes. The black line is an
analytic fit based on data for the full set of 6 Aquarius haloes
(see below) f loc

sub
= exp[γ + β ln(r/r50) + 0.5α ln2(r/r50)] with

parameters α = −0.31, β = 0.98 and γ = −1.09. The red line is
the same function shifted vertically to γ = 0.35.

demonstrating that at least ∼ 107 particles are needed
within r50 to begin to study streams around the Sun’s posi-
tion. The red curve shows the prediction of Eq. (1) for pa-
rameters α = −0.31, β = 0.98 and γ = 0.35 but, in contrast
to the situation with subhaloes, it is clear that the results
in the inner regions are not converging with increasing res-
olution. The results for Aq-A-1 lie well above the red line
and should clearly still be considered as a lower limit to the
mass fraction contained in tidal streams in these regions.

3.2 Mass distribution inside r50

In this section we quantify the object-to-object scatter in the
substructure mass function by analysing all six level 2 haloes
of the Aquarius Project. Two of our haloes Aq-A and Aq-C
did not experience major mergers below redshift 3. Haloes
Aq-B and Aq-F on the other hand each underwent a major
merger below redshift 1.5. More information on the merger
history of the Aquarius haloes and how representative these
haloes are of the population of Milky Way-like haloes can
be found in Boylan-Kolchin et al. (2009) and in Wang et al.
(2010).

The top panel of Fig. 3 shows the differential substruc-
ture mass function for the six Aquarius haloes Aq-A-2 to Aq-
F-2; the bottom panel presents corresponding cumulative
mass functions. Table 1 lists values for the total mass frac-
tion in substructure in each halo using different substructure

c© 2010 RAS, MNRAS 000, 1–11
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Halo SUBFIND NSUBFIND HSF subhaloes NHSF HSF substructures
(per cent) (per cent) (per cent)

Aq-A-2 12.16 45024 14.14 48052 34.71
Aq-B-2 10.54 42537 14.44 44143 33.65
Aq-C-2 7.17 35022 7.72 36525 29.60
Aq-D-2 13.06 47014 14.26 49726 34.49
Aq-E-2 10.75 42725 13.10 44400 33.65
Aq-F-2 13.39 52503 15.16 57269 34.18

Table 1. Total mass in substructures within r50 for the 6 Aquarius haloes and different structure-finding methods. Mass fractions are
calculated relative to the total mass within r50. Halo: Aquarius halo label, SUBFIND: total mass fraction of particles in bound subhaloes
found by SUBFIND; NSUBFIND: number of bound subhaloes found by SUBFIND; HSF subhaloes: total mass fraction of particles in
bound subhaloes found by HSF; NHSF: number of bound subhaloes found by HSF; HSF substructures: total mass fraction of particles
in substructures found by HSF.

identification methods. SUBFIND subhaloes (Springel et al.
2008) and subhaloes found by HSF follow the same power-
law with a slope close to −1.9. Halo Aq-C-2 evolves in a
quiet merger environment and this explains its deficit in
substructures. For the general substructures the slope of the
power-law is close to −2, but it is difficult to measure this
value accurately because the low-mass end is contaminated
by substructure arising through discreteness noise, particles
which are connected by HSF but do not represent physical
substructures.

In Aq-C-2 only 8% of the mass within r50 belongs to
self-bound subhaloes, while for Aq-E-2 this number is 13%
and for the other haloes it is 14 − 16%. The subhalo mass
of Aq-F-2 is dominated by the largest subhaloes. It is in-
teresting to observe that although Aq-C-2 has the fewest
self-bound subhaloes, its mass fraction in substructures is
about 30%, close to the value for Aq-B-2 (34%) which had
completely different and much richer merger history. All the
other haloes also have substructure mass fractions around
34%. The slope of the differential substructure mass func-
tion is similar in all haloes except Aq-F-2, where the very
recent merger apparently causes a bias towards massive sub-
structures.

Fig. 4 shows the fractions of mass in substructures (solid
lines) and in self-bound subhaloes (dashed lines) as a func-
tion of distance from halo centre. For most of the haloes the
latter follows Eq. (1), indicated as a black solid line. Clearly,
HSF identifies substructures close to the centre in all halos.
This is possible because of the high density contrast in 6D
phase-space compared to 3D configuration space. Eq. (1)
with a different normalisation (i.e. a vertical shift, see the
solid black line) also gives a rough fit to the radial depen-
dence of the substructure mass fraction in most haloes, but
we note that an independent fit of the same functional form
(the black dashed line) suggests that the mass fraction in
substructures increases relative to that in self-bound sub-
haloes in the inner regions of the haloes.

In the outskirts of the haloes, near r50, up to 30% of
the mass is in the form of self-bound subhaloes and up to
60% resides in substructures.

4 THE INNER HALO

For many years experimenters have been trying to detect
DM in laboratory devices. Detector signals are very sensi-

tive to the local DM phase-space distribution, so it is im-
portant to study halo structure in detail at the solar po-
sition. This requires high-resolution simulations like those
of the Aquarius Project. A first phase-space analysis using
the Aquarius haloes was carried out by Vogelsberger et al.
(2009) with a focus on the local velocity and spatial distri-
butions and their imprints on direct detection signals. Here
we extend this study and focus on phase-space structures at
r ∼ 8 kpc. We go beyond the self-bound subhalo analysis of
Springel et al. (2008) by using HSF, which efficiently iden-
tifies gravitationally unbound structures like tidal streams.
Such features can have a significant impact on DM experi-
ments, and our goal here is to quantify the total amount of
structure in the inner halo, both bound and unbound. We
therefore concentrate on the region within rinner = 35 kpc
and use the excellent resolution of Aq-A-1 to analyse struc-
tures near the solar circle.

4.1 Substructure in the inner halo

To give a first impression of phase-space structure in the in-
ner halo we use the technique of Maciejewski et al. (2009b).
We estimate the phase-space density at the position of each
particle with EnBiD (Sharma & Steinmetz 2006) and plot
an r-vr phase-space portrait in which each pixel is colour-
coded according to the maximum phase-space density of the
particles it contains. The top panel of Fig. 5 shows the re-
sulting phase-space plot for the inner part of the Aq-A-2
halo, while the bottom panel shows the corresponding plot
for Aq-A-1. Aq-A-2 has about 2.5 × 107 and Aq-A-1 about
2 × 108 particles inside rinner. The increased resolution re-
sults in substantially more self-bound structures and tidal
streams being visible in the inner regions of Aq-A-1. In the
following we quantify these phase-space structures in some
detail.

The solid lines in Fig. 6 show the differential mass func-
tions of the substructures found by HSF within rinner for the
three highest resolution Aq-A haloes. The number of sub-
structures more massive than 107M⊙ is quite small and only
for Aq-A-1 is the dynamic range sufficient to determine a
power-law slope, which is close to −2. While the differential
mass function for substructures within r50 (the top panel of
Fig. 3) converges reasonably well with increasing resolution,
this is not the case for the inner regions. Here, increasing res-
olution enables tidal streams to be followed to significantly
lower contrast, substantially increasing the mass attached to

c© 2010 RAS, MNRAS 000, 1–11
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Figure 3. Top panel: Differential subhalo mass function for the
six different Aquarius haloes Aq-A-2 to Aq-F-2. Solid lines show
substructures and dashed lines self-bound subhaloes. The red line
shows a power law dN/dM ∝ M−1.9 which is a good fit to the
differential mass function of the self-bound subhaloes. The black
line shows a −2 power-law which better describes the differential
mass function of substructures. Bottom panel: The corresponding
cumulative mass functions. Line styles are the same as in the top

panel.

each one and so the total mass in substructures. This effect
was already visible in Fig. 2 and is confirmed by the cumu-
lative mass function shown in Fig. 7. Here also the curves
for different resolutions agree much less well than was the
case when we focused on substructures within r50 (see the
bottom panel of Fig. 3).

Only 0.5% of the mass inside rinner is in the form of
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Figure 4. Fraction of mass in substructure as a function of ra-
dius for the six different haloes Aq-A-2 to Aq-F-2. Solid lines
are for all substructures and dashed lines are for self-bound sub-
haloes. Red lines show the mean of the halo sample and black lines
show analytic fits using the function f loc

sub
= exp[γ+β ln(r/r50)+

0.5α ln2(r/r50)] with parameters α = −0.31, β = 0.98 and γ =
−1.09 for subhaloes and the same function shifted vertically to
γ = 0.35 for substructures. The black dashed line shows the best
fit for substructures with parameters α = −0.16, β = 1.10 and
γ = 0.10.

self-bound subhaloes. Although this number includes only
subhaloes resolved in Aq-A-1, it is expected to increase by
at most a factor of two if one extrapolates down to the
free-streaming length (see Springel et al. 2008). The mass
fraction in substructures in this same region increases from
0.82% for Aq-A-3 to 3.3% for Aq-A-1. Thus tidal streams
contain almost 7 times as much mass as self-bound sub-
haloes at the resolution of Aq-A-1, and presumably would
contain even more at higher resolution. As Fig. 4 shows, the
substructure mass fraction varies as a function of radius.
At the solar circle about 0.05% of the mass is in self-bound
subhaloes and about 0.6% in tidal streams at the resolution
of Aq-A-1. More than 99% of the mass appears smoothly
distributed even at this extremely high resolution and when
processed with a state-of-the-art 6D structure finder.

To give a visual impression of the structures found by
HSF, Fig. 8 shows some typical substructures in the inner
halo of Aq-A-1. The top panel presents the main halo with
all HSF substructures (bound and unbound) removed. In the
second row we show the biggest bound subhalo and its at-
tached tidal streams. These extend over nearly 60 kpc. The
mass of this biggest substructure is 2.9 × 108 M⊙ of which
1.9 × 108 M⊙ is in the self-bound subhalo. In the middle
row we show an example of the same kind of substructure,
but here the tidal tails are more pronounced and the stream
passes within 8 kpc of halo centre. The bottom two rows
show two typical stream-like structures which have no asso-
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space density at each particle using EnBiD (Sharma & Steinmetz
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space density is measured in units of M⊙ kpc−3km−3 s3.
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rinner = 35 kpc) at various resolutions. Solid lines show results
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105 106 107 108

Msub [ MO • ] 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

M
su

b
cu

m
(<

M
su

b)
/M

in
ne

r

Aq-A-1
Aq-A-2
Aq-A-3

Figure 7. Cumulative mass functions for the inner part of the Aq-
A halo (r < rinner = 35 kpc) at different resolutions. Solid lines
represent substructures and dashed lines self-bound subhaloes.
All curves are normalised to Minner, the mass within rinner.

ciated self-bound subhalo. Their masses are similar to those
of the biggest subhaloes.
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Figure 8. Plots of the main halo and some selected substructures
in x-y and r-vr projections for Aq-A-1. We create a 500 × 500
image and colour each pixel according to the logarithm of the
maximum 6D phase-space density over the enclosed particles as
estimated using EnBiD. The phase-space density is measured in
units of M⊙ kpc−3km−3 s3. The mass of each substructure is
given in units of M⊙ at the bottom right of each row.

4.2 Density probability distribution function

In this section we try to understand how the different com-
ponents contribute to the dark matter density near the Sun.
We ask how likely is it for the Solar System to lie within a
subhalo or tidal stream of given local density. This is accom-
plished by computing probability density distributions for
the space density at random points within a thick spherical
shell centred at the Solar radius, as in Vogelsberger et al.
(2009), but separating the dark matter into the different
phase-space components identified by HSF. The result of
this procedure is presented in Fig. 9.

The left panel of Fig. 9 shows the probability distribu-
tion function of DM density for various structures in the
inner halo. To make this plot we first estimated the density
at the position of every particle with radius between 6 and
12 kpc using a standard SPH scheme based on 32 neigh-
bours. As described in Vogelsberger et al. (2009), we then
fitted a smooth model to these values assuming the density
to be stratified on similar, concentric ellipsoids and to be a
power law of radius. This defines a model density ρshell at
the position of each particle which can be compared with the
directly estimated local density. This step is crucial to ac-
count for the large density gradients in the inner halo so that
we can focus on small-scale variations due to substructure.
We then repeat the SPH density estimates for the subsets of
particles in this radial range corresponding to each individ-
ual subcomponent: the main subhalo and each individual
self-bound subhalo and substructure. In the following we
plot all density distributions as functions of ρ/ρshell and we
construct volume-weighted probability distributions by his-
togramming the particles with individual weights mp/ρV ,
where mp is the particle mass and V the total volume be-
tween 6 and 12 kpc. For the total mass distribution and the
main subhalo the resulting distributions give the probability
that an observer at a random point in this radial range will
see local density contrast ρ/ρshell. For the self-bound sub-
halo and substructure components, the distributions show
the mean number of self-bound subhaloes or substructures
with local density contrast ρ/ρshell at a random point.

If we consider first the probability distribution of den-
sity contrast for the total mass (i.e. the sum of all the compo-
nents) we see that there is a lognormal distribution centred
on ρ/ρshell = 1 with an additional low amplitude, power-
law tail to high densities. This result was already given in
Vogelsberger et al. (2009). As they showed, the lognormal
part of the distribution reflects discreteness noise in our den-
sity estimator. We demonstrate this again here by plotting
as a dashed black line the distribution of analogous den-
sity estimates for points sampled from a uniform Poisson
distribution. This line cannot be distinguished from that
corresponding to the main subhalo in Fig. 9, demonstrat-
ing that this component follows our ellipsoidal model very
closely. The power law tail is due to self-bound subhaloes,
as is evident from its close agreement with the distribution
calculated directly from this component. This general be-
haviour was pointed out not only in the analysis of this
same simulation by Vogelsberger et al. (2009), but also in
the analytic model of Kamionkowski & Koushiappas (2008)
and in the analysis of a different high resolution simulation
by Kamionkowski et. al. (2010).

If we now consider the density contrast distributions
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Figure 9. Left panel: Volume-weighted density probability distributions for particles in the radial range 6− 12 kpc in Aq-A-1. For each
particle an SPH-density is calculated using 32 neighbours. The resulting density field is fitted to a smooth ellipsoidal power-law model
to obtain ρshell. SPH-densities are also calculated using the particles in each individual subhalo and substructure separately; we do not
consider individual subcomponents containing fewer than 64 particles. The results can be used to derive a density contrast ρ/ρshell at
each particle’s position, both in total mass and for the individual subcomponent to which the particle belongs. If V denotes the total
volume between 6 and 12 kpc and mp is the particle mass, then mp/ρV is the probability that a random point in this radial range
overlaps the particle. By histogramming this quantity for all particles we obtain the probability that a random point has density contrast
ρ/ρshell (the black solid line). By instead histogramming this quantity for the particles in a single component using the ρ values calculated
for individual subcomponents we obtain the mean number of subcomponents at a random position with local density contrast ρ/ρshell
(yellow solid curve for the main subhalo, green for the set of self-bound subhaloes, red for the set of all substructures). Labels give the
total mass in each component (in units of M⊙). The black dashed line indicates the density contrast distribution produced by our density
estimator for a Poisson realisation of a uniform density field. Right panel: Fraction of the mass in the radial range 6 to 12 kpc with
density contrast above ρ/ρshell for all particles, for the main subhalo, for the self-bound subhalo population and for the substructure
population. For the latter two, the density contrast is that of the individual object containing the particle. Colours are as in the left
panel. This panel also shows cumulative mass fraction plots for the five most massive self-bound subhaloes (long-dashed lines) and for
the five most massive substructures (dotted lines). The masses of the individual objects are given in parentheses (in units of M⊙).

of the individual components, we see that self-bound sub-
haloes are detectable not only in the high-density tail but
also down to contrasts as small as 10−4. This reflects the
excellent resolution of the Aq-A-1 simulation and, more im-
portantly, the fact that our 6-D structure finder can iden-
tify subhalo material even at very low density contrast be-
cause of its small internal velocity dispersion. HSF identifies
general phase-space substructure (e.g. tidal streams) down
to even lower contrasts, of order 10−7. The additional sub-
structure mass which is not part of self-bound subhaloes is
almost entirely in this low-contrast regime. It is interesting
that the “probability” a random point lies in such a low-
density tidal stream reaches values much larger than one,
meaning that HSF has identified multiple structures at each
point in 3-space. Note, however, that because low-density
tidal streams have an effective spatial dimensionality less
than 3, their ρ/ρshell values are biased low (and the mean
stream number correspondingly high) by the spherical kernel
of the SPH density estimator. In the radial range between
6 and 12 kpc selected for this analysis about 0.09% of the
mass is in the form of self-bound subhaloes and about 0.7%
in substructure. Thus low-density tidal streams account for
almost 90% of the substructure detected by HSF.

The right panel of Fig. 9 shows, for the various compo-

nents, a cumulative plot of the mass at local density con-
trast exceeding ρ/ρshell, expressed as a fraction of the total
mass between 6 and 12 kpc. Here we see explicitly that the
substructure component contains almost ten times as much
mass as the bound subhalo component and that this excess
lies almost exclusively at contrasts below 0.1. This panel
also gives similar cumulative data for the five individually
most massive self-bound subhaloes and for the five individu-
ally most massive substructures. Almost a third of the mass
in self-bound subhaloes is contained in these five objects,
almost all of it at density contrasts exceeding unity. How-
ever, only the most massive subhalo corresponds to one of
the five most massive substructures, accounting for most of
its mass. The other four massive substructures are unbound
tidal streams with no associated subhalo. The maximum
density contrast of these unbound streams is ∼ 10−2 (again
this is probably biased low). The five most massive sub-
structures together account for only about 10% of the total
substructure mass.

4.3 Velocity distributions

Not only the mass density, but also the velocity distribu-
tion of DM particles in the vicinity of the Earth is relevant
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for direct detection experiments. Vogelsberger et al. (2009)
showed that although this velocity distribution is quite well
approximated by a smooth trivariate Gaussian, potentially
measurable features are imprinted on the corresponding en-
ergy distribution by the detailed formation history of the
Milky Way’s halo. Here we concentrate on the velocities of
the different phase-space components in the inner halo. In
Fig. 10 we show vr-vt projections of the distribution of all
particles in the radial range 6 to 12 kpc (top), of those in
substructures (middle), and of those in self-bound subhaloes
(bottom). These plots are two-dimensional histograms, with
colour encoding the mass in the corresponding bin as indi-
cated by the colour bar (in units of solar masses per 2 km/s
x 2 km/s pixel). The total mass contributing to each panel
is given in its top right-hand corner. The main halo and
so the bulk of the particles lie primarily at velocities below
200 km s−1, whereas subhaloes and tidal streams are found
almost exclusively at higher velocities. As a result, the most
massive subhaloes are still (just) visible in the top panel
despite the fact that they contribute less than a tenth of
a percent of the mass. These structures contribute to the
high-energy tail of the recoil spectrum in direct DM detec-
tion experiments, and so may be visible in high resolution
experiments, particularly those with directional sensitivity
which can detect the common motion of the substructure
particles.

5 CONCLUSIONS

We study the population of subhaloes and tidal streams
in six Milky Way-like DM haloes taken from the Aquar-
ius Project. These structures are identified using the Hier-
archical Structure Finder (HSF Maciejewski et al. 2009a),
a state-of-the-art structure finder which operates in 6-D
phase-space.

We find that that the differential mass function of self-
bound subhaloes can be well described by a power-law with
slope close to −1.9. This agrees with results from an inde-
pendent analysis using the 3-D structure finder SUBFIND
(Springel et al. 2008). Typically HSF attaches slightly more
particles to subhaloes than SUBFIND, and also finds slightly
more subhaloes above the simulation resolution limit (see
Table 1). This agrees with previous results described in
Maciejewski et al. (2009a). About 14% of the mass within
r50 is in self-bound subhaloes, with significant scatter among
the six haloes Aq-A to Aq-F. HSF subhalo masses are ∼ 10%
larger than those found by SUBFIND, although the increase
can be larger near halo centre. In most haloes the total sub-
halo mass is dominated by the largest objects. The radial
distributions of HSF and SUBFIND subhaloes are almost
identical, although HSF can identify subhaloes closer to halo
centre due to their enhanced density contrast in phase-space.

The differential mass function for substructures (i.e.
both subhaloes and tidal streams) is also well described with
a power-law, but in this case the slope is close to −2. This
is independent of simulation resolution and holds approxi-
mately for all six haloes, thus appearing robust. For most of
the level 2 haloes around 35% of the mass within r50 is as-
signed to substructures with mass above ∼ 3×105M⊙. The
radial distribution of these objects can be approximated by
equation (1) introduced in Springel et al. (2008) but with a
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Figure 10.Radial velocity vr – tangential velocity vt phase-space
plots for the 6− 12 kpc region of the Aq-A-1 halo. For each plot
a two-dimensional histogram was calculated and colours were set
to reflect the mass in each 2 km s−1 x 2 km s−1 pixel as shown
by the colour bar, labelled in units of M⊙. The top, middle and
bottom panels show the distributions for all particles, for sub-
structures and for subhaloes respectively. The low velocity region
is dominated by the main halo but some substructures/subhaloes
are still visible in the the high vr and vt velocity regions. HSF
only detects significant substructure in these regions of phase-
space. The total component mass in M⊙ is indicated in the top
right-hand corner of each panel.
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higher normalisation than applies for self-bound subhaloes.
In the inner halo almost 10 times as much mass is detected
in unbound tidal streams as in self-bound subhaloes. This
reflects the efficiency with which tidal forces destroy bound
subhaloes in the inner halo.

In our highest resolution halo, Aq-A-1, HSF assigns
about 0.5% of the mass within 35 kpc to self-bound sub-
haloes, and about 3.3% to substructures (subhaloes and
tidal streams), with masses higher then 3× 104M⊙. In this
region the largest phase-space substructures are either self-
bound subhaloes with massive tidal tails stretching across
the entire inner 35 kpc region or equally massive tidal
streams with no attached subhalo at r < 35 kpc. The largest
individual substructures in the inner region have masses up
to 3× 108M⊙.

Vogelsberger et al. (2009) showed that the density field
in the radial range from 6 to 12 kpc is very well represented
by a simple smooth model where density is stratified on
similar concentric ellipsoids and falls as a power law of ra-
dius. Fluctuations around this model are small except for a
low-amplitude power-law tail to high density contrast which
corresponds to self-bound subhaloes. Our HSF analysis is
consistent with these results and allows us, in addition, to
study the contrast of individual substructures with respect
to the smooth background, the main subhalo, in which they
are embedded. HSF is able to identify not only the high-
contrast cores of individual self-bound subhaloes, but also
their outskirts where the density contrast drops to values
as low as ∼ 10−4. The maximum contrast of unbound tidal
streams is ∼ 10−2. Since these streams contain 0.6% of the
total mass between 6 and 12 kpc, of order one massive tidal
stream is predicted to pass through every point, contributing
a few tenths of a percent of the local DM density. In con-
trast, only 0.09% of the mass in this region is contributed
by self-bound subhaloes, and the chance that the Earth lies
in the high-density contrast region of such a subhalo is be-
low 10−4. Both subhaloes and tidal streams populate the
high-energy tail of the velocity distribution preferentially,
and would show up in direct DM detection experiments as a
small but significant part of the signal in events with almost
identical (vector) momenta.
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