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ABSTRACT

We use Shen et al.’s (2009) measurements of luminosity-dependent clustering in the
SDSS Data Release 5 Quasar Catalog, at redshifts 0.4 6 z 6 2.5, to constrain the
relation between quasar luminosity and host halo mass and to infer the duty cycle fopt,
the fraction of black holes that shine as optically luminous quasars at a given time. We
assume a monotonic mean relation between quasar luminosity and host halo mass, with
log-normal scatter Σ. For specified fopt and Σ, matching the observed quasar space
density determines the normalization of the luminosity-halo mass relation, from which
we predict the clustering bias. The data show no change of bias between the faint and
bright halves of the quasar sample but a modest increase in bias for the brightest 10%.
At the mean redshift z = 1.45 of the sample, the data can be well described either by
models with small intrinsic scatter (Σ = 0.1 dex) and a duty cycle fopt= 6× 10−4 or
by models with much larger duty cycles and larger values of the scatter. “Continuity
equation” models of the black hole mass population imply fopt > 2×10−3 in this range
of masses and redshifts, and the combination of this constraint with the clustering
measurements implies scatter Σ > 0.4 dex. These findings contrast with those inferred
from the much stronger clustering of high-luminosity quasars at z ≈ 4, which require
minimal scatter between luminosity and halo mass and duty cycles close to one.

Key words: cosmology: theory – galaxies: active – galaxies: evolution – quasars:
general

1 INTRODUCTION

The strong correlations between the masses of central black
holes (BHs) and the luminosities, dynamical masses, and
velocity dispersions σ of their host galaxies imply that the
growth processes of BHs and their hosts are intimately
linked (e.g., Magorrian et al. 1998; Ferrarese & Merritt 2000;
Gebhardt et al. 2000; Ferrarese 2002; Ferrarese & Ford 2005;
Graham 2007; Tundo et al. 2007; Shankar et al. 2009b).
However, constraining the cosmological evolution of BHs re-
mains a challenge. Although a variety of theoretical mod-
els may roughly match observations, the underlying phys-
ical assumptions on BH growth can vary drastically from
one model to another (e.g., So ltan 1982; Silk & Rees 1998;
Salucci et al. 1999; Cavaliere & Vittorini 2000; Kauffmann
& Haehnelt 2000; Yu & Tremaine 2002; Steed & Weinberg
2003; Wyithe & Loeb 2003; Granato et al. 2004, 2006; Mar-
coni et al. 2004; Merloni et al. 2004; Yu & Lu 2004; Miralda-
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Escudè & Kollmeier 2005; Murray et al. 2005; Cattaneo et
al. 2006; Croton et al. 2006; Hopkins et al. 2006; Lapi et al.
2006; Shankar et al. 2004, 2006, 2009a; Malbon et al. 2007;
Monaco et al. 2007; Croton 2009; Cook et al. 2009). Quasar
clustering provides additional, independent constraints on
the BH population, helping to discriminate among otherwise
viable models. As outlined by Martini & Weinberg (2001)
and Haiman & Hui (2001; see also Wyithe & Loeb 2005;
Lidz et al. 2006; Hopkins et al. 2007a; White et al. 2008;
Shen et al. 2009a,b; Shankar et al. 2009c; Wyithe & Loeb
2009; Bonoli et al. 2009), the clustering is an indirect mea-
sure of the masses, and therefore number densities, of the
halos hosting the quasars. In turn, the ratio between the
quasar luminosity function and the halo mass function pro-
vides information on the duty cycle, i.e., the fraction of halos
that host active quasars at a given time. In general terms,
stronger clustering implies that quasars reside in rarer, more
massive hosts, and matching the observed quasar space den-
sity then requires a higher duty cycle.

In this paper, we model Shen et al.’s (2009a; S09 here-
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2 Shankar et al.

after) recent measurements of luminosity-dependent quasar
clustering derived from the quasar redshift survey (Schnei-
der et al. 2007) of the Sloan Digital Sky Survey (SDSS; York
et al. 2000) Data Release 5 (DR5; Adelman-McCarthy et al.
2007). Ross et al. (2009) also analyze the clustering of this
quasar survey, concentrating on redshift evolution, but here
we focus on the S09 results because they isolate the lumi-
nosity dependence of clustering. Our aim is to answer basic
questions about the evolution of the AGN and supermas-
sive BH population at z 6 2.5. Does the duty cycle depend
on quasar luminosity and/or redshift? What is the underly-
ing relation between quasar luminosity and halo mass? Does
it have scatter? More generally, what combinations of duty
cycle and scatter are allowed by the measurements?

Throughout the paper we adopt Ωm = 0.26, ΩΛ = 0.74,
h ≡ H0/100 km s−1 Mpc−1 = 0.7, Ωb = 0.0435, ns = 0.95,
σ8 = 0.78, and the transfer function of Eisenstein & Hu
(1999; with zero neutrino contribution), which matches the
cosmology used by S09.

2 DATA

The sample used by S09 is a homogeneous subset of a cata-
log of 77,429 spectroscopically identified quasars brighter
than Mi = −22, in the redshift range 0.1 . z . 5.0.
Shen et al. (2007) computed the correlation function of the
high-redshift quasars at z > 2.9, modeled subsequently by
White et al. (2008) and Shankar et al. (2009c). Here in-
stead we focus on the correlation function of lower red-
shift quasars in the range 0.4 6 z 6 2.5. To probe the
luminosity dependence of the bias, S09 divided the low-z
sample into subsamples containing the fainter half of the
quasars, the brighter half of the quasars, and the brightest
10% of the quasars (see their Fig. 2). In each luminosity
bin, they computed the quasar correlation function. In par-
ticular, S09 estimated for the full sample a mean cluster-
ing bias of b = 2.16 ± 0.24, 2.26 ± 0.33, 4.05 ± 0.73 for the
faint, bright, and brightest subsamples, with median lumi-
nosity log Lmed/erg s−1 = 46.31, 46.56, 46.84, respectively.1

We will first compare with their data on the bias by comput-
ing models at the average redshift z = 1.45 of their sample
(Figure 1). We will then compute the full correlation func-
tions for the faint, bright, and brightest subsamples averaged
over the full redshift distribution of the sample, and compare
them with the S09 measurements (Figure 2).

3 METHOD

By imposing a cumulative match between the space densities
of quasars and their host halos, and assuming that only a
fraction fopt of halos of a given mass shine as optical quasars
at a given time, we can estimate the mean host halo mass
given the observed number density of quasars. Formally, this

1 We here use the S09 conversion to bolometric luminosities L =
10[Mi(z=2)−90]/(−2.5), with Mi(z = 2) = Mi(z = 0) − 0.596,
the i-band, z = 2 K-corrected magnitude system introduced by
Richards et al. (2006).

concept reads as (e.g., White et al. 2008)
∫ ∞

xmin

n(x, z)dx =

∫ ∞

−∞

dyfoptΦ(y, z) ×

1

2
erfc

[

ln

(

10ymin(xmin)

10y

)

1√
2 ln(10)Σ

]

, (1)

with x = Mi(z = 2) and y = log M . Here Φ(y, z) is the
comoving number density of halos, in units of Mpc−3 dex−1

for H0 = 70 km s−1 Mpc−1, which we take from Sheth &
Tormen (1999), while n(x, z) is the comoving number den-
sity of quasars (in Mpc−3) with absolute magnitude in the
range x → x + dx. We take the observed luminosity func-
tion n(x, z) from Richards et al. (2006), corrected to our
cosmology. The quantity fopt in Eq. (1) is the duty cycle,
i.e., the fraction of halos that host quasars shining above a
minimum luminosity xmin = Mi,min at redshift z. Eq. (1)
also takes into account a lognormal scatter with dispersion
Σ (in dex) around the mean quasar luminosity-halo mass re-
lation.2. This scatter includes both the scatter between BH
mass and halo mass and the scatter between luminosity and
BH mass (i.e., in the Eddington ratio), and our analysis does
not distinguish the two contributions.

At each redshift, Eq. (1) defines the minimum halo mass
ymin corresponding to the minimum luminosity in the sample
xmin (the latter taken from S09). We then compute the mean
bias b̄ associated to a given subsample at redshift z with
median luminosity 〈x〉 = Mi,med and minimum luminosity
xmin as

b̄〈x〉(z) =

∫ ∞

0
dyΦ(y, z)W [ymin(xmin), y]b(y, z)
∫ ∞

0
dyΦ(y, z)W [ymin(xmin), y]

, (2)

with

W [ymin(xmin), y] = erfc

[

ln

(

10ymin(xmin)

10y

)

1√
2 ln(10)Σ

]

(3)

and b(y, z) the halo bias given by Sheth et al. (2001). We
stress here that an upper luminosity limit to the bin, corre-
sponding to an upper cut in halo mass (see footnote 2), does
not significantly alter the expected bias given by Eq. (2).

To perform a detailed comparison with the S09 data,
for at least some of the models discussed below, we also
compute the quasar auto- and cross-correlation functions
for each of S09’s redshift and luminosity bins. The quasar
auto-correlation function is given by

ξ(R, z) = D2(z)b̄2〈x〉(z)ξm(R) , (4)

where D(z) is the linear growth factor of perturbations, and
ξm(R) is the linear matter correlation function at z = 0
derived from the power spectrum. To compute the cross-
correlation function to compare with the S09 10% most lu-
minous quasars we instead use the relation

ξcross(R, z) = D2(z)b̄brightestb̄faintξm(R) , (5)

2 Note that when comparing with the S09 measurements, Eq. (1)
should have an upper limit on the left-hand side corresponding
to the maximum luminosity Mi,max considered in the clustering
measurement of a given subsample. However, we have checked
that, as long as the right-hand side also has a similar cut-off in
halo masses above the halo mass corresponding to Mi,max, our
results do not change.
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Black hole duty cycles and clustering 3

Figure 1. Bias as a function of bolometric luminosity. In all panels, the solid circles are the mean bias measured by S09 from the quasar
auto-correlation function for the faint, bright, and brightest subsamples in their analysis. The open circle with dashed error bars is the
bias measured for the brightest subsample including in the fits the bins with negative correlation function. The open square is the bias
computed from the cross-correlation of the most luminous sources with the rest of the sample. The data are compared with predictions of
several models for the mean bias at z = 1.45, the average redshift of the S09 sample. Left panel : Comparison among models with the same
value for the duty cycle fopt= 6 × 10−4 and different values of the intrinsic Gaussian scatter Σ (in dex) in the quasar luminosity-host
halo relation, as labeled. Central panel : Comparison among models with the same scatter Σ = 0.1 dex but different values of the duty

cycle fopt, as labeled. Right panel : Comparison among three different models: one with constant fopt= 6× 10−4 at all luminosities and
scatter Σ = 0.1 (solid line); another with equal scatter but with a decreasing duty cycle fopt= 6× 10−4 at log(L/erg s−1) = 46.31 and
fopt/2 and fopt/4 at log(L/erg s−1) = 46.56 and 46.84, respectively (dotted line); and finally a model with fopt= 2× 10−3 and Σ = 0.5
(long-dashed line).

where b̄brightest is the bias associated to the most luminous
quasars, while b̄faint is the average bias associated to the
faintest luminosity in the sample at the same redshift.

We then convert the auto-correlation function into a
projected correlation function via the relation

wP (RP , z) = 2

∫ ∞

0

dRz ξ
(

R =
√

R2
p + R2

z, z
)

. (6)

Finally, we compute the average projected correlation func-
tion by weighting with the quasar number redshift distribu-
tion N(z) and volumes probed in each bin considered as

wP (RP ) =

∫

dz (dV/dz)N2(z)wP (RP , z)
∫

dz (dV/dz)N2(z)
. (7)

By comparing the bias and the average projected correlation
function with the data, we can extract useful information
on the underlying duty cycle fopt and scatter Σ. We have
checked that including subhalos as quasar hosts, with the
methods of Giocoli et al. (2008), does not noticeably alter
our predicted quasar bias or correlation function, because
the abundance of massive subhalos is very small compared
to the abundance of halos above the minimum halo masses
probed here.

4 RESULTS

4.1 Clustering Constraints on Duty Cycle and

Scatter

Figure 1 compares the bias factor predicted by several il-
lustrative models to the values inferred by S09 from the
quasar correlation function for the faint, bright, and bright-
est subsamples, shown by the solid circles. At each redshift,
these subsamples contain the fainter half, brighter half, and
brightest 10% of the quasars above the SDSS magnitude
threshold. The open square shows the bias factor inferred
from the cross-correlation of the brightest sample with the

remaining quasars. The open circle with dashed error bars
shows the bias measured for the brightest subsample (de-
rived by S09 directly from the cross-correlation function us-
ing their Eq. [3]) when negative correlation function points
are included in the bias fit. As discussed by S09, it is un-
clear whether the negative points are purely statistical fluc-
tuations or artifacts of the redshift variation of quasar se-
lection efficiency, so there is some ambiguity about whether
it is more accurate to retain or omit these data points. This
question should be resolved by the larger data sample from
the final SDSS data release, which will have smaller sta-
tistical fluctuations. Nevertheless, we will show below that
our main conclusions hold irrespective of the exact data set
considered.

Lines in Figure 1 show model predictions for a variety
of assumptions. By applying Eqs. (1) and (2) we compute
the mean bias as a function of bolometric luminosity at the
single redshift z = 1.45, the mean redshift of the S09 sam-
ple, for different input duty cycle fopt and scatter Σ. The
solid line in the left panel shows a reference model consis-
tent with the data on the bias, defined by a small scatter
Σ = 0.1 dex and a constant duty cycle fopt= 6 × 10−4. As
expected, increasing the scatter to, e.g., Σ = 0.5, 0.8, lowers
the predicted bias and flattens the relation between bias and
luminosity (long-dashed and dotted lines), as it increases
the contamination by the much more numerous, less mas-
sive, and less biased halos. The corresponding effective halo
masses Meff for the faint, bright, and brightest subsamples
are computed by solving the equation b(Meff , z) = 〈b〉(z),
which yields Meff ∼ 2 × 1012 h−1 M⊙, ∼ 3 × 1012 h−1 M⊙,
and ∼ 1013 h−1 M⊙, respectively, for the reference model 〈b〉
values. The central panel of Figure 1 compares models with
the same scatter Σ = 0.1 dex but different values of the duty
cycle fopt, as labeled. Increasing fopt implies mapping the
same number of quasars to less numerous halos (cfr. Eq. [1]),
which are more massive and more biased, thus inducing an

c© 2010 RAS, MNRAS 000, ??–8
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Figure 2. The projected correlation functions from S09 (solid points with error bars) are compared with the predictions of the low-scatter
model from Figure 1. The left, middle, and right panels refer to the faint, bright, and brightest subsamples (with the cross-correlation
shown for the brightest sample). The solid lines refer to a model with constant duty cycle fopt= 6×10−4 at all luminosities and redshifts,
while the long-dashed lines refer to a model with a redshift-dependent duty cycle fopt= 6× 10−4 × (1 + z/2.45)8. The predictions of the
constant duty cycle model for the faint sample are also shown as dotted lines in the last two panels for comparison.

Figure 3. Constraints on the optical duty cycle fopt and luminosity-halo mass scatter Σ derived from the b(L) data points shown in
Fig. 1. Contours mark the regions of parameter space with χ2 = 1.0, 4.0, and 9.0, corresponding to 68%, 95%, and 99.7% confidence levels
for one degree of freedom (three data points minus two parameters). Results in the left panel adopt the autocorrelation b(L) estimate
for the highest luminosity bin (rightmost solid circle in Fig. 1), while results in the right panel adopt the cross-correlation estimate
(open square in Fig. 1), which has a lower central value and smaller error bar. In both panels, shaded regions indicate the duty cycles
fopt < 2× 10−3 that are inconsistent with the expectations from continuity-equation models of the black hole population (see §4.2).

overall increase in the average predicted bias. Just the op-
posite is true if the duty cycle is decreased.

The S09 bias measurements are consistent with a con-
stant duty cycle fopt= 6 × 10−4 and small scatter Σ = 0.1
dex, though this model is 0.5 − 1σ high in the faint and
bright bins and 1σ low (compared to the solid circle) in the
brightest bin. Allowing an increase in fopt with increasing
luminosity would slightly improve the match to the data.
On the other hand, the right panel of Fig. 1 shows that
a model with a significantly decreasing duty cycle (dotted
line), equal to fopt= 6 × 10−4 at log(L/erg s−1) = 46.31
and to fopt/2 and fopt/4 at log(L/erg s−1) = 46.56 and
log(L/erg s−1) = 46.84, respectively, is inconsistent with the
autocorrelation bias for the highest luminosity bin at the
∼ 2σ level. However, if we take the S09 bias measurement
that includes negative data points, or the cross-correlation
measurement, then the discrepancy is only ∼ 1σ. A model

characterized by a high duty cycle and a larger scatter in the
luminosity-halo relation (long-dashed line) is also consistent
with the data at the ∼ 1σ level.

To make use of the full data sets available, we com-
pute the correlation function for a subset of representative
models. The solid circles with error bars in the left, central,
and right panels of Fig. 2 are the projected correlation func-
tions Wp(Rp) estimated by S09 for the faint, bright, and
brightest quasar samples, respectively (the cross-correlation
function is shown for the brightest sample). The solid lines
in each panel refer to the prediction of the reference model
discussed in Fig. 1 defined by a constant fopt=6 × 10−4,
with the correlation function computed via Eq. (7) by inte-
grating over the redshift distribution of the clustering sam-
ple. We have verified that simply computing the correlation
function at the mean redshift of z = 1.45 produces essen-
tially the same result (the correlation function in the lat-
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ter case is systematically lower by only ∼ 3 − 4%, at fixed
fopt). The reference model agrees well with the wP (RP )
data at RP 6 40h−1 Mpc. While the increases in the pre-
dicted wP (RP ) for the bright and brightest samples are mod-
est, they clearly improve the fit to the data relative to a
luminosity-independent wP (RP ) (dotted lines).

For the bright and brightest samples, the data at
larger scales do not follow the theoretically predicted shape.
Since this shape is generic to ΛCDM models with scale-
independent large scale bias, and thus to models that accu-
rately describe observed galaxy clustering at lower redshifts
(e.g., Reid et al. 2009), we attribute little significance to this
discrepancy at present; error bars in wP (RP ) are correlated,
and the jackknife method may underestimate them at large
scales.

Other methods (see §4.2 below) favour duty cycles that
evolve in time. The study by Shankar et al. (2009a) yields
a rapidly evolving duty cycle that can be approximated as
f = f(z = 1.45) × ((1 + z)/2.45)8 in the range 0.5 . z . 2
(see their Fig. 7c). Applying the latter model to Eqs. (7)
yields the long-dashed lines in Fig. 2, which is very similar
to the reference model computed at z = 1.45.

Figure 1 demonstrates a tradeoff between fopt and Σ:
the bias decreases with either decreasing duty cycle or in-
creasing scatter. The contours in Figure 3 present this trade-
off systematically, showing regions in the (fopt,Σ) parame-
ter space that are consistent with the b(L) data at the 1,
2, and 3σ confidence levels. For these contours we assume
that fopt is independent of L and compute the predicted
bias at z = 1.45. The two parameters are not completely de-
generate, as raising Σ flattens the b(L) relation in addition
to lowering its amplitude. If we adopt the autocorrelation
estimate of b(L) for the highest luminosity bin (rightmost
solid circle in Fig. 1, left panel of Fig. 3), then values of
Σ > 0.65 are inconsistent at the 1σ level because they pre-
dict a b(L) relation that is too flat. However, the lower b(L)
estimated from cross-correlation (open square in Fig. 1, right
panel of Fig. 3) allows higher Σ values, and the 2σ con-
straints are weak in either case. Future bias measurements
with smaller uncertainties could help to break the fopt-Σ
degeneracy, but only to the extent that they clearly demon-
strate a luminosity-dependent clustering trend. For now, we
turn to independent constraints on optical duty cycles de-
rived from the observed space density of quasars and models
of the underlying black hole population.

4.2 Additional constraints from the black hole

continuity equation

A widely used method to model the accretion history of the
BH population employs a continuity equation (Cavaliere et
al. 1972; Small & Blandford 1992) to track the growth of the
BH mass function that is implied by the observed quasar
luminosity function. This approach is reviewed extensively
by Shankar et al. (2009a; hereafter SWM), who apply it to
a compilation of recent data sets, and whose results and
methodology we adopt here. The parameters of a model are
the radiative efficiency ǫ, which converts an observed lu-
minosity to a corresponding mass accretion rate, and the
Eddington ratio λ = L/LEdd, which determines the mass of
the BHs to be associated with a given observed luminosity.
The method can be generalized to allow a distribution of λ

values (Shankar 2009). For a single λ value, the duty cycle
is simply

f(MBH, z) =
Φ(L, z)

ΦBH(MBH, z)
, (8)

where Φ(L, z) is the quasar luminosity function
and Φ(MBH, z) is the BH mass function at the
mass that corresponds to luminosity L, MBH =
108λ−1(L/1046.1 erg s−1)M⊙. For a distribution of λ,
one must take some care in defining the meaning of the
term “active.” At redshifts z > 1, BH mergers are expected
to play a minor role in shaping Φ(MBH, z) relative to
accretion (SWM), and we neglect them here.

The left panel of Figure 4, analogous to figure 7c of
SWM, shows the optical duty cycle as a function of black
hole mass at z = 1.45 predicted by several different conti-
nuity equation models. The model shown by the solid curve
has λ = 0.6 and ǫ = 0.065, independent of mass and redshift,
which SWM show yields a good match to observational esti-
mates of the local black hole mass function. We convert the
total duty cycle to the optical duty cycle using fopt = f/3,
based on the ratio of the optical luminosity function for the
SDSS quasar sample to the bolometric luminosity function
in SWM. Above MBH = 108.8M⊙, the predicted duty cycle
is fopt = 3.6×10−3 , while the differing shapes of the quasar
luminosity function and the evolved black hole mass function
imply higher duty cycles at lower masses. The thick vertical
lines mark the masses that correspond to the lower luminos-
ity limit of the S09 sample at z = 1.45, log MBH = 8.2−log λ.
As discussed by SWM, including black hole mergers in the
mass function evolution or varying the bolometric luminos-
ity functions or bolometric corrections within observation-
ally acceptable bounds has minimal impact on the inferred
duty cycles at these redshifts; the largest systematic un-
certainties are associated with the choices of λ and ǫ. The
dotted curve shows a model with λ = 0.3, which has similar
shape but higher normalization. The normalization trend is
easily understood: the integrated quasar emissivity deter-
mines the total mass density of the black hole population
(So ltan 1982), and assuming lower λ shifts this density to
more massive, hence rarer, black holes, which must have a
higher duty cycle to reproduce the luminosity function. The
dashed curve shows a model with a spread in Eddington
ratios, Gaussian in log λ with 0.6-dex dispersion and peak
at λmed = 0.3, evolved with the techniques described in
Shankar (2009). Results are intermediate between the two
constant-λ models. However, in this case the S09 luminosity
threshold does not correspond to a sharp mass cut, so the
dot-dashed curve shows fopt with the additional criterion
that log λ > 8.2 − log MBH, which eliminates those lower
mass black holes whose Eddington ratio would be too low
to enter the S09 sample at z = 1.45. This curve is slightly
jagged because the calculation uses a discrete representa-
tion of the Gaussian log λ distribution rather than a smooth
function (see Shankar 2009).

The right panel of Figure 4 shows the optical duty cy-
cle at MBH = 109M⊙ and z = 1.45 for models with a range
of Eddington ratios and radiative efficiencies. For lower ǫ,
the observed quasar emissivity implies a higher black hole
mass density, hence a higher space density of black holes at
a given mass, and thus a lower duty cycle. However, obser-
vational estimates of the local black hole mass density imply

c© 2010 RAS, MNRAS 000, ??–8



6 Shankar et al.

Figure 4. Optical duty cycles predicted by continuity-equation models of the black hole population, as discussed in §4.2, including a
factor of three correction for obscuration, fopt = f/3. Left: Optical duty cycle vs. black hole mass at z = 1.45 for models with Eddington
ratio λ = 0.6 (solid line), λ = 0.3 (dotted line), and a 0.6-dex Gaussian spread of log λ centered at λmed = 0.3 (dashed line), all assuming
radiative efficiency ǫ = 0.065. Thick vertical dotted lines show the masses corresponding to the S09 sample luminosity threshold at
z = 1.45 for λ = 1.0, 0.5, 0.1 (left to right). The dot-dashed curve shows the duty cycle in the Gaussian case with the additional
requirement that the Eddington ratio is high enough to pass this luminosity threshold. Right: Optical duty cycle at MBH = 109M⊙ and
z = 1.45 for models with different choices of λ = L/LEdd and ǫ, as indicated. Within a given model, the values of λ and ǫ have no scatter
and are held fixed during evolution.

ǫ & 0.06 (see SWM for extensive discussion), and arguments
from accretion disk theory favor ǫ ≈ 0.08 − 0.2 depending
on assumptions about typical black hole spins (e.g., Berti &
Volonteri 2008, and references therein). Together with ob-
servational estimates favouring Eddington ratios λ ≈ 0.25
(Kollmeier et al. 2006) or even lower (e.g., Netzer & Trakht-
enbrot 2007) at this luminosity and redshift, we conclude
that continuity-equation models imply optical duty cycles
fopt(z = 1.45) > 2 × 10−3 in the S09 luminosity range. The
robustness of this lower limit depends on how pessimistically
one views the systematic uncertainties in the local black
hole mass density (hence ǫ), direct black hole mass estimates
(hence λ), and obscuration fractions (hence fopt/f), but it
is much easier to find ways to push fopt higher than to push
it lower.

Returning to Figure 3, the shaded bands show the val-
ues of fopt < 2 × 10−3 excluded by the continuity equa-
tion arguments. Models consistent with this constraint and
the 95% constraint from the b(L) data have high scatter,
Σ > 0.4 dex. This conclusion holds regardless of whether
we use the autocorrelation or cross-correlation estimates of
the bias in the highest luminosity bins (left and right pan-
els, respectively). In the right panel of Figure 1, the long-
dashed line shows an explicit example of b(L) for a model
with fopt = 2 × 10−3 and Σ = 0.5. The prediction is very
similar to that of the low-scatter model with fopt = 6×10−4,
though the larger scatter does produce slightly flatter b(L).

5 SUMMARY AND IMPLICATIONS

Studies of quasar clustering have generally failed to find any
significant dependence of clustering strength on quasar lu-
minosity, at least at z 6 2.5. The S09 study is one of the

first to separate luminosity dependence from redshift evolu-
tion, and it mostly confirms this basic finding, except for the
∼ 2σ increase in bias for the brightest 10% of the quasars
at z 6 2.5. At first glance, the absence of luminosity depen-
dence appears to contradict models like those of Martini &
Weinberg (2001) or Haiman & Hui (2001), which assume a
monotonic relation between quasar luminosity and host halo
mass and therefore predict a stronger bias for more luminous
quasars. However, Figures 1 and 2 show that the S09 results
can be reproduced by a model with constant duty cycle for
optical quasar activity, fopt ≈ 6 × 10−4, and minimal scat-
ter between luminosity and halo mass. The weakness of the
predicted luminosity dependence arises because, even with
the large size of the SDSS quasar survey, the dynamic range
of luminosity at fixed redshift is not very large (≈ 0.5 dex),
and the host halos at these luminosities and redshifts are
not on the extreme, steeply rising tail of the b(M) relation.
Croton (2009) reaches a similar conclusion (comparing to
other data sets), with a model that is different in technical
implementation from ours but similar in practice.

However, the S09 bias measurements can also be fit
by models with a higher duty cycle and substantial scat-
ter between luminosity and halo mass. The increase in bias
for S09’s highest luminosity bin implies an upper limit on
scatter, but this increase is only marginally detected de-
pending on which method is used to estimate the bias. Fig-
ure 1 shows an explicit example of an acceptable model with
fopt = 2 × 10−3 and log-normal scatter Σ = 0.5 dex, and
Figure 3 shows the regions of the fopt − Σ parameter space
that yield acceptable agreement with the S09 bias measure-
ments. As discussed in §4.2, models of the quasar population
that infer the duty cycle by evolving the BH mass func-
tion and comparing to the quasar luminosity function imply
fopt & 2 × 10−3. Taken together, the clustering constraints

c© 2010 RAS, MNRAS 000, ??–8



Black hole duty cycles and clustering 7

and the continuity equation models imply substantial scat-
ter in the luminosity-halo mass relation, with Σ > 0.4 dex.

Applying linewidth estimators of BH mass in the AGN
and Galaxy Evolution Survey (AGES), Kollmeier et al.
(2006) infer a scatter in quasar Eddington ratios of σλ 6 0.3
dex, though Netzer et al. (2007) and Shen et al. (2008) argue
for somewhat larger scatter based on other data sets. The
total scatter between luminosity and halo mass is a com-
bination (in quadrature) of the scatter in Eddington ratios
and the scatter between halo mass and BH mass. Physically,
many models of quasar activity predict broad Eddington ra-
tio distributions as a consequence of “post-peak” accretion
onto a central BH, after a rapid growth phase in which the
BH mass grows exponentially at a near-Eddington accre-
tion rate (e.g., Yu & Lu 2008; Hopkins & Hernquist 2009;
Shen 2009). Various authors have argued that such pro-
longed post-peak activity is the key to reconciling the faint
end of the AGN luminosity function with measurements of
quasar bias at low redshift (e.g., the above papers and Lidz
et al. 2006; Marulli et al. 2008; Bonoli et al. 2009; Shankar et
al., in prep.). We conclude that scatter of 0.4−0.6 dex in the
luminosity-halo mass relation at these redshifts is plausible
on both theoretical and observational grounds.

Several groups have recently tried to measure, or limit,
redshift evolution of the scaling between BH mass and host
galaxy properties. As several recent papers have pointed out
(e.g., Lauer et al. 2007; Merloni et al. 2010; Shankar et al.
2009b; Shen & Kelly 2009), a large scatter between quasar
luminosity and the galaxy scaling property (such as stel-
lar mass or velocity dispersion σ) can bias such measure-
ments. These biases arise from a combination of flux-limit
effects, rapidly falling stellar mass (or velocity dispersion)
functions of galaxies, and intrinsic scatter in the scaling re-
lations themselves, which conspire to cause an apparent rise
in the mean BH mass at fixed galaxy properties with in-
creasing redshift. Merloni et al. (2010) note that an increas-
ing scatter with increasing z could be enough to explain the
trend of evolving black hole mass over galaxy mass ratio
measured in their data. Decarli et al. (2010; see also Ben-
nert et al. 2010 for similar conclusions at lower redshifts)
argue that strong evolution in the black hole mass-galaxy
mass relation is still present even after carefully accounting
for flux-limit effects, although they did not allow the possi-
bility of redshift-dependent scatter in the relations (see also
discussion in Shen & Kelly 2009). The substantial scatter
inferred from our analysis shows that biases associated with
this scatter must be carefully assessed in studies of the evo-
lution of scaling relations.

A large dispersion between quasar luminosity and host
halo mass cannot be the general rule at all redshifts and lu-
minosities. In particular, explaining the high clustering am-
plitude measured for SDSS quasars at z ≈ 4 by Shen et al.
(2007) requires both minimal scatter and duty cycles close
to one (White et al. 2008; Shankar et al. 2009c; Bonoli et
al. 2009). The quasars in this z ≈ 4 sample are consider-
ably more luminous than the lower redshift quasars whose
clustering is modeled here, so in principle the difference in
scatter could reflect either redshift dependence or luminos-
ity dependence. Fine et al. (2008) claim direct empirical ev-
idence for a decrease of Σ with increasing quasar luminosity,
based on linewidth estimates of BH mass, and a decrease of
this sort is also found in numerical simulations of merger-

driven quasar activity (e.g., Hopkins & Hernquist 2009, and
references therein). Assuming that λ ≈ 1 sets an upper limit
on BH luminosity, decreasing scatter at high luminosity is
plausible because the BH mass function declines rapidly at
high masses, so that the most luminous quasars will almost
always be powered by BHs radiating near the maximum al-
lowed Eddington ratio. (These arguments address only the
scatter in λ, not the scatter in BH mass at fixed halo mass.)
We have checked that we can fit the b(L) data in Figure 1 us-
ing models with fopt ≈ 10−3 and decreasing scatter at high
luminosity, e.g., Σ(L) = 0.6, 0.3, 0.1 dex for the three bins
of increasing luminosity, or even Σ(L) = 0.4, 0.2, 0.1 dex.
However, the bias in the highest luminosity bin, which is
rather uncertain at present, can significantly constrain such
models.

The duty cycles inferred from our analysis at z ≈ 1.45
are substantially lower than the values f ≈ 0.2 and f ≈ 1
inferred from the Shen et al. (2007) measurements of the
clustering of quasars at z ≈ 3 and z ≈ 4 (see Shen et al.
2007; White et al. 2008; Shankar et al. 2009c). This decline
in duty cycle at low redshifts is expected from continuity
equation models: the BH mass function grows in time, but
the observed quasar luminosity function declines at z < 2,
so a lower duty cycle is required to reconcile them (see, e.g.,
figure 7 of SWM). Our current analysis does not constrain
duty cycle evolution at z < 2, but strong evolution over this
interval is predicted by the SWM model and is consistent
with the S09 correlation function data (see Figure 2).

The measurements in S09 provide significant con-
straints on the relation between quasar luminosity and halo
mass, though leaving substantial degeneracy between the
duty cycle and the scatter in this relation. Reducing sta-
tistical errors and remaining systematic uncertainties, espe-
cially for the brightest luminosities, would tighten these con-
straints; in particular, an unambiguous and precise measure-
ment of luminosity-dependent bias would place much tighter
restrictions on scatter. The quasar catalog from SDSS DR7
(Adelman-McCarthy et al. 2008) should yield noticeable im-
provements, with roughly 50% smaller error bars and fewer
issues with internal boundaries in the survey region. Since
the SDSS quasar sample has high completeness and (with
DR7) covers most of the high-latitude northern sky, it will
be difficult to go much further with autocorrelation mea-
surements in the S09 luminosity and redshift range. Cross-
correlation against denser samples of objects — fainter AGN
or bright galaxies — could yield higher precision cluster-
ing measurements, perhaps with photometric samples from
surveys such as Pan-STARRS and LSST, but perhaps re-
quiring spectroscopic samples like those envisioned for am-
bitious baryon acoustic oscillation experiments. The con-
straints on host halo populations can also be improved by
extending clustering measurements to smaller scales, where
quasar pairs from the same halo contribute, and to fainter lu-
minosities, such as those probed by the 2dF Quasar Redshift
Survey, the SDSS photometric quasar catalog, and X-ray
surveys (e.g., Hennawi et al. 2006; Myers et al. 2007; Plionis
et al. 2008, Hennawi et al. 2009); for example, Shen et al.
(2009b) use small scale measurements to put constraints on
the duty cycle of BHs in satellite galaxies. Quasar cluster-
ing as a cosmological tool has moved from a prospect (Os-
mer 1981) to reality, and the growing precision and dynamic
range of these measurements — in luminosity, redshift, and
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lengthscale — will teach us about the growth of supermas-
sive black holes and the mechanisms that transform them
from dormant monsters to brilliant beacons, and back.
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