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ABSTRACT

We present a novel method to significantly speed up cosmological parameter sampling.
The method relies on constructing an interpolation of the CMB-log-likelihood based on sparse
grids, which is used as a shortcut for the likelihood-evaluation. We obtain excellent results
over a large region in parameter space, comprising about 25 log-likelihoods around the peak,
and we reproduce the one-dimensional projections of the likelihood almost perfectly. In speed
and accuracy, our technique is competitive to existing approaches to accelerate parameter esti-
mation based on polynomial interpolation or neural networks, while having some advantages
over them. In our method, there is no danger of creating unphysical wiggles as it can be the
case for polynomial fits of a high degree. Furthermore, we do not require a long training time
as for neural networks, but the construction of the interpolation is determined by the time it
takes to evaluate the likelihood at the sampling points, which can be parallelised to an arbitrary
degree. Our approach is completely general, and it can adaptively exploit the properties of the
underlying function. We can thus apply it to any problem where an accurate interpolation of
a function is needed.
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1 INTRODUCTION

The main two bottlenecks in cosmological parameter estima-
tion using the power spectrum of the cosmic microwave back-
ground (CMB) are the calculation of the theoreticalCl-spectrum
using Boltzmann codes such asCMBFAST (Seljak & Zaldarriaga
1996),CAMB (Lewis et al. 2000), orCMBEASY (Doran 2005) and
the evaluation of the likelihood using the official WMAP likeli-
hood code1. There exist several methods to speed up the calcula-
tion of the power spectrum (Jimenez et al. 2004; Kaplinghat et al.
2002; Habib et al. 2007) or the WMAP likelihood functionL
(Sandvik et al. 2004; Fendt & Wandelt 2007; Auld et al. 2008).
These methods are based on different techniques, such as analytic
approximations, polynomial fits, and neural networks, which are
all trained using a set of training points, for which the realpower
spectra and likelihood values have to be calculated. Once the codes
are trained for a particular cosmological model, they can beused to
evaluate the power spectrum or the likelihood function in every sub-
sequent parameter estimation run, which significantly speeds up the
Markov Chain Monte Carlo (MCMC) simulations used for param-
eter estimation. Due to the ever-growing amount of available data,
a fast evaluation of the likelihood is becoming of increasing impor-

⋆ E-mail: mona@mpa-garching.mpg.de
† E-mail: pflueged@in.tum.de
1 http://lambda.gsfc.nasa.gov/product/map/dr3/likelihood get.cfm

tance, especially when combining CMB data with data-sets whose
likelihood is less expensive to evaluate. ThePlanck Surveyormis-
sion (Tauber 2000) will be the upcoming challenge in this respect.

In this work, we approximate the WMAP log-likelihood func-
tion lnL in the spirit of CMBfit (Sandvik et al. 2004) and Pico
(Fendt & Wandelt 2007), which work with polynomial fits, and
CosmoNet (Auld et al. 2008), an approach based on neural net-
works. In contrast to the fitting functions constructed therein, we
introduce the technique ofsparse gridsin this context to construct
an interpolation oflnL, returning the exact function values at a set
of sampling points.

Most straightforward interpolation techniques are based on
sets of sampling points in each dimension, typically based on (uni-
form) grid structures—consider, e. g., piecewised-linear or piece-
wise d-polynomial interpolation schemes. Unfortunately, grid-
based methods are only feasible in low-dimensional settings, as
they suffer from the so-calledcurse of dimensionality: Spending
Ñ function evaluations or grid points in one dimension leads to Ñd

grid points ind dimensions. The exponential dependency on the di-
mensionality imposes severe restrictions on the number of dimen-
sions that can be handled. Sparse grids, as introduced by Zenger
(1991), allow to overcome the curse of dimensionality to some ex-
tent, at least for sufficiently smooth functions as it is the case in our
setting. Sparse grid interpolation is based on an a priori selection of
grid points, requiring significantly fewer grid points thanconven-
tional interpolation on a full grid, while preserving the asymptotic
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error decay of a full-grid interpolation with increasing grid resolu-
tion up to a logarithmic factor. This permits us to compute higher-
dimensional interpolations and approximations than before. A very
good overview about sparse grids, discussing general properties,
can be found in Bungartz & Griebel (2004).

The sparse grid technique is a completely general approach,
not tailored to a single application, and can therefore be used to
interpolate any function which is sufficiently smooth. Additionally,
as it allows for arbitrary adaptive refinement schemes, the general,
fast convergence rates can be improved even further, by adapting to
the special characteristics of the underlying target function.

We obtain excellent results, which are competitive to
fitting procedures using polynomials (Fendt & Wandelt 2007;
Sandvik et al. 2004) or neural networks (Auld et al. 2008) in speed
and accuracy. Furthermore, we believe that the interpolation based
on sparse grids has several advantages over these approaches. First
of all, we can use the results of sparse grid approximation quality
(Bungartz & Griebel 2004), guaranteeing the convergence ofthe
interpolation towards the original function with increasing number
of grid points.

Second, once we have chosen the volume in which we want to
interpolate the function in question, the sparse grid structure itself
determines a priori the location of potential sampling points (which
can additionally be refined in an adaptive manner a posteriori). This
makes it unnecessary to assemble a set of training points before-
hand (e.g. by running MCMCs as it is done by Fendt & Wandelt
(2007)). The generation of the sampling points and the construc-
tion of the interpolant can be strongly parallelised, whichmakes
the sparse grid approach an ideal candidate for computational grid
projects such as the AstroGrid2. The time needed to construct the
interpolant is determined almost only by the time it takes toevalu-
ate the likelihood at the sampling points. We do not need additional
training time as in the case of Auld et al. (2008).

Furthermore, polynomial fits to a set of training points run the
risk of creating unphysical wiggles if the polynomial degree of the
fitting function is chosen too high with respect to the amountof
training points available. Using the sparse grids approach, piece-
wise polynomials of low degree are sufficient, as we are not fitting
certain evaluation points, but rather interpolating a function. In-
creasing the accuracy is therefore equivalent to evaluating at more
sampling points.

Sparse grids are based on a hierarchical formulation of the
underlying basis functions, which can be used to obtain a generic
estimate of the current approximation error while evaluating more
and more sampling points. This can be directly used as a criterion
for adaptive refinement as well as to stop further refinement.

Another advantage is that the projection of sparse grid interpo-
lations can be done in a very fast and simple way. This would make
sparse grids in principle a good candidate for sampling posteriors
and projecting them directly, without having to use a MarkovChain
approach in order to marginalise the posterior. Given that MCMCs
need to determine the points sequentially and can thereforenot be
parallelised (apart from running several chains at the sametime),
it would be highly desirable to find alternatives that can be run in
parallel.

We have attempted to use sparse grids in order to substi-
tute the MCMCs in cosmological parameter estimations. In or-
der to directly project the posterior distribution we wouldneed
to sample the posterior rather than its logarithm. Since, ingen-

2 http://www.d-grid.de/index.php?id=45&L=1

eral, the logarithm of a probability density function is considerably
more well-behaved than the function itself, Sandvik et al. (2004),
Fendt & Wandelt (2007), and Auld et al. (2008) all operate in log-
space to speed up the generation of MCMCs instead. As the conver-
gent phase of the interpolation with sparse grids sets in rather late
when interpolating Gaussian functions (and thus the WMAP like-
lihood, which is close to ad-dimensional Gaussian), we restricted
ourselves to the log-likelihood and thus to accelerating MCMCs,
too.

The article is organised as follows. First, we describe the ba-
sics of sparse grids in Sec. 2, introducing a modification of the stan-
dard sparse grid approach, thus adapting the latter to our problem.
In Sec. 3, we then present the interpolation of the WMAP like-
lihood for two different sets of parameters in both six and seven
dimensions. We show that the results obtained for regular (non-
adaptive) sparse grids are already competitive to other approaches
and demonstrate how adaptive refinement can further improvethe
results. Sec. 4 finally concludes our work.

2 BASICS OF SPARSE GRIDS

Standard grid-based approaches of interpolating a function f ex-
hibit the curse of dimensionality, a term going back to Bellman
(1961): Any straightforward discretisation scheme which employs
Ñ grid points (or, equivalently, degrees of freedom) in one dimen-
sion leads toÑd grid points ind dimensions. For reasonablẽN ,
the exponential dependency on the number of dimensions typically
does not allow to handle more than four-dimensional problems.

Sparse grids are able to overcome this hurdle to some ex-
tent, requiring significantly fewer grid points than a full grid,
while preserving the asymptotic error decay of full grid inter-
polation with increasing grid resolution up to a logarithmic fac-
tor. Sparse grids have originally been developed for the solution
of partial differential equations (Zenger 1991) and have mean-
while been applied to various problems, see Bungartz & Griebel
(2004) and the references cited therein. Recent work on sparse
grids includes stochastic and non-stochastic partial differential
equations in various settings (von Petersdorff & Schwab 2006;
Ganapathysubramanian & Zabaras 2007; Widmer et al. 2008), as
well as applications in economics (Reisinger & Wittum 2007;
Holtz 2008), regression (Garcke & Hegland 2009; Garcke 2006),
classification (Bungartz et al. 2008; Garcke et al. 2001), fuzzy
modelling (Klimke et al. 2006), and more. Note that (non-adaptive)
sparse grids are closely related to the technique of hyperbolic
crosses (Temlyakov 1993).

In this section, we provide a brief overview of sparse grids
for interpolation. For a detailed derivation of the characteristics of
sparse grids, we refer to Bungartz & Griebel (2004). We startby
formulating the interpolation on a conventional full grid using hi-
erarchical basis functions, from which we then derive the interpo-
lation on a sparse grid by omitting the basis functions contributing
least to the interpolation.

2.1 General idea of interpolation on a full grid

We consider the piecewised-linear interpolation of a function
f : Ω → R which is given only algorithmically, i.e., we have no
closed form off but we can only evaluatef at arbitrary points using
a numerical code. As we want to discretise our domain of interest
Ω, we restrictΩ to a compact sub-volume ofRd; here,Ω ≡ [0, 1]d,
the d-dimensional unit-hypercube. (For the standard approach of

c© 2008 RAS, MNRAS000, 1–13
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Figure 1. One-dimensional piecewise linear interpolationu(x), dashed, of
a functionf(x), solid, (left) by a linear combination of hat basis functions
(right).

sparse grids techniques, we only consider functions that are zero
on the boundary of the volume on which they are defined. This as-
sumption will be dropped when we come to the interpolation ofthe
log-likelihood of WMAP.)

To construct an interpolantu of f , we discretiseΩ via a reg-
ular grid, obtaining equidistant grid pointsxi, with mesh width
hn = 2−n for some discretisation or refinement leveln, at which
we evaluate and interpolatef . If we define a suitable set of piece-
wised-linear basis functionsϕi(x), we can obtainu(x) from the
space of continuous, piecewised-linear functionsVn by combining
them adequately as a weighted sum of basis functions, i.e.

f(x) ≈ u(x) ≡
∑

i

αiϕi(x)

with coefficients αi. Figure 1 sketches the idea for a one-
dimensional example, using the standard nodal basis.

The curse of dimensionality, encountered when using a full
grid, can be circumvented by a suitable choice of basis functions:
We need a basis where the relevant information is represented by
as few basis functions as possible. Most basis functions canthen be
omitted as they contribute only little to the interpolationof f , re-
ducing a full grid to a sparse grid and allowing us to handle higher-
dimensional functions than before. A suitable basis can be found by
a hierarchical construction as introduced in the followingsection.

2.2 Hierarchical basis functions in one dimension

Sparse grids depend on a hierarchical decomposition of the under-
lying approximation spaces. Therefore, and first considering only
the one-dimensional case which we will later extend tod dimen-
sions, we use the standard hat function,

ϕ(x) = max(1− |x|, 0) , (1)

from which we derive one-dimensional hat basis functions bydi-
latation and translation,

ϕl,i(x) ≡ ϕ(2lx− i) , (2)

which depend on a levell and an indexi, 0 < i < 2l. The basis
functions have local support and are centred at grid pointsxl,i =
2−li, at which we will interpolatef . Introducing the hierarchical
index sets

Il ≡
{
i ∈ N : 1 6 i 6 2l − 1, i odd

}
, (3)

we obtain a set of hierarchical subspacesWl,

Wl ≡ span{ϕl,i(x) : i ∈ Il} . (4)

Figure 2. One-dimensional basis functionsϕl,i and corresponding grid
pointsxl,i up to leveln = 3 in the hierarchical basis (left) and the common
nodal point basis (right).

We can then formulate the space of piecewise linear functions Vn

on a full grid with mesh widthhn for a given leveln as a direct
sum ofWl,

Vn =
⊕

l6n

Wl , (5)

see Figure 2. Note that all basis functions of the same subspace
Wl have the same size, shape, and compact support, that their sup-
ports are non-overlapping, and that together they cover thewhole
domain.

The interpolationu(x) ∈ Vn can then be written as a finite
sum,

u(x) =
∑

l6n,i∈Il

αl,iϕl,i(x) , (6)

where the so-called (hierarchical) surplusesαl,i are uniquely in-
dexed by the same level and index as the corresponding basis func-
tions.

2.3 Higher-dimensional interpolation on a full grid

The basis functions are extended to thed-dimensional case via a
tensor product approach,

ϕl,i(x) ≡
d∏

j=1

ϕlj ,ij (xj) , (7)

with the d-dimensional multi-indicesl and i indicating level and
index for each dimension. The other one-dimensional notations can
be transferred to the arbitrary-dimensional case as well, consider,
e.g. , the index setIl,

Il ≡
{
i : 1 6 ij 6 2lj − 1, ij odd, 1 6 j 6 d

}
, (8)

the subspacesWl, the spaceVn of piecewised-linear functions
with mesh widthhn in each dimension,

Vn =
⊕

|l|∞6n

Wl , (9)

leading to a full grid with(2n − 1)d grid points, and to the inter-
polantu(x) ∈ Vn,

u(x) =
∑

|l|∞6n,i∈Il

αl,iϕl,i(x) . (10)

Here and later on, we need thel1-norm |l|1 =
∑d

j=1 lj and the
maximum-norm|l|∞ = max16j6d lj of multi-indicesl. Figure
3 shows some 2-dimensional examples for the basis functionsof
the subspacesWl, which correspond to anisotropic sub-grids with
mesh-widthhlj in dimensionj characterised by the multi-indexl.

c© 2008 RAS, MNRAS000, 1–13
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Figure 3. Basis functions of the subspacesWl for |l|∞ 6 3 in two dimen-
sions.

2.4 Sparse grids

Starting from the hierarchical representation ofVn by the subspaces
Wl, we can now select those subspaces that contribute most to the
overall solution of the full-grid interpolation (10). If the function
we want to approximate meets certain smoothness conditions—the
mixed second derivatives have to be bounded—this can be donea
priori as we can derive bounds for the contributions of the different
subspaces. We then obtain the sparse grid space

V (1)
n ≡

⊕

|l|16n+d−1

Wl , (11)

leaving out those subspaces from the full grid spaceVn with many
basis functions of small support. (The exact choice of subspaces de-
pends on the norm in which we measure the error; the result above
is optimal for both theL2 norm and the maximum norm.) Note that
in the one-dimensional case, the sparse grid space equals the full
grid space.

Figure 4 shows the selection of subspaces and the resulting
sparse grid forn = 3, i.e. the sparse grid spaceV (1)

3 . Com-
pared to the full grid for the same discretisation leveln (the full
grid spaceV3 would also comprise the grey subspaces in Figure
4), this reduces the number of grid points (and therefore function
evaluations and unknowns) significantly fromO(h−d

n ) = O(2nd)
to O(h−1

n (log h−1
n )d−1) – whereas the asymptotic accuracy de-

teriorates only slightly fromO(h2
n) to O(h2

n(log h
−1
n )d−1), see

Bungartz & Griebel (2004) for detailed derivations. Figure5 shows
sparse grids in two and three dimensions for leveln = 6 each.

Functions which do not meet the smoothness requirements
or which show significantly differing characteristics (comprising
steep regions as well as flat ones, e.g.) can be tackled as well,
if adaptive refinement is used. The sparse grid structure (11) de-
fines an a priori selection of grid points which is optimal if certain
smoothness conditions are met and no further knowledge about the
function in question is known or used. An adaptive (a posteriori) re-
finement can additionally select which grid points in a sparse grid
structure should be refined next, due to local error estimation, e.g.
To refine a grid point, often all2d children in the hierarchical struc-

V
(1)
3

Figure 4. The two-dimensional subspacesWl up to l = 3 (h3 = 1/8) in
each dimension. The optimal selection of subspaces (black)and the corre-

sponding sparse grid on leveln = 3 for the sparse grid spaceV (1)
3 . The

corresponding full grid of level 3 corresponds to the directsum of all sub-
spaces that are shown.

Figure 5. Sparse grids in two and three dimensions for leveln = 6.

ture are added to the current grid, if they haven’t been created yet.
Note that it usually has to be ensured that all missing parents have
to be created, as algorithms working on sparse grids depend on
traversals of the hierarchical tree of basis functions. If additional
knowledge about the problem at hand is available, it can be used
in the criterion for adaptive refinement, allowing to betteradapt to
problem specific characteristics.

2.5 Extension to functions that are non-zero on the boundary

Up until now we have only considered functions that are zero on
the domain’s boundaryδΩ. To allow for non-zero values on the
boundary, usually additional grid points located directlyon δΩ are
introduced. For example, the one-dimensional basis on level one,
containing onlyϕ1,1(x), is extended by two basis functions with
level 0 and indices0 and1 restricted toΩ, namelyϕ0,0(x) and
ϕ0,1(x). They are then extended to thed-dimensional case as be-
fore, with the exception that the new basis now contains basis func-
tions on the modified level one with overlapping support.

Apparently, this approach results in many more grid points
(and therefore expensive function evaluations) than before. This
shows quite nicely that it is not sufficient to just consider the
asymptotic behaviour: asymptotically, nothing changes, but for
very high dimensionalities we are not able to even start to inter-
polate any more. Ind dimensions, the basis for the subspaceW1

for example contains already3d basis functions, rather than a sin-
gle one. Especially in settings where a very high accuracy close to
the boundary is not required—which holds in our case—(or where

c© 2008 RAS, MNRAS000, 1–13



Efficient cosmological parameter sampling using sparse grids 5

Figure 6. Modified one-dimensional basis functionsϕl,i: constant on level
1 and “folded up” if adjacent to the boundary on all other levels.

an adaptive selection of grid points is used in any case), it can be
advantageous to omit the grid points on the boundary, and instead
modify the basis functions to extrapolate towards the boundary of
the domain.

We modify the one-dimensional basis functions as follows:
On level 1, we have only one degree of freedom; the best guess
towards the boundary is to assume the same value, leading to a
constant basis function. On all other levels, we extrapolate linearly
towards the boundary, “folding up” the uttermost basis functions.
All other basis functions remain unchanged, yielding

ϕl,i(x) ≡






1 if l = 1 ∧ i = 1 ,

ϕleft
l,i (x) if l > 1 ∧ i = 1 ,

ϕright
l,i (x) if l > 1 ∧ i = 2l − 1 ,

ϕ
(
x · 2l − i

)
else,

(12)

with

ϕleft
l,i (x) ≡

{
2− 2l · x if x ∈

[
0, 1

2l−1

]

0 else

}
, (13)

ϕright
l,i (x) ≡

{
2l · x+ 1− i if x ∈

[
1− 1

2l−1
, 1
]

0 else

}
. (14)

Examples of the modified one-dimensional basis functions are
shown in Figure 6. Thed-dimensional basis functions are obtained
as before via a tensor product of the one-dimensional ones.

3 INTERPOLATION OF THE WMAP LIKELIHOOD
SURFACE

We now construct an interpolation of the WMAP log-likelihood,
lnL, using sparse grids. In order to adapt the problem to our in-
terpolation approach, we first use a 6-dimensional set of so-called
normal parameters introduced in Sandvik et al. (2004), which are
a transformation of the usual cosmological parameters suchthat
the major axes of the Gaussian align with the coordinate axes. The
logarithm of the likelihood is then well-approximated by a sum of
one-dimensional parabolas in the different parameters, a fact that
we will take advantage of by using the modified basis-functions
described in (12). For this set of normal parameters, we obtain
an accurate interpolation already for a comparably low refinement
level. This is shown for the 6-dimensional model as well as for a
7-dimensional extension, using the running of the spectralindex as
an additional parameter.

However, as a subsequent step we demonstrate that the param-
eter transformation is not essential for obtaining a good interpola-
tion. By investing more grid points, we obtain an accurate interpo-
lation as well when using directly the 6- and 7-dimensional stan-
dard parameter set, which is usually used in cosmological param-
eter sampling. This approach shows the advantage of sparse grids
of being rather generic. Furthermore, we are not restrictedto the
parameter range in which the transformation to normal parameters
can be inverted.

3.1 Choice of basis functions

We use the modified basis functions as introduced in (12), which
are well-suited for our problem. First, and as already indicated in
Sec. 2, the region close to the domain’s boundary is less impor-
tant in our setting than the centre ofΩ: We will centre the domain
of interest roughly at the maximum of the log-likelihood function
lnL and determine the boundary such that it includes the region
with (lnLmax − lnL) . 25, which we will refer to as the 25 log-
likelihood region (see Sec. 3.3).

Towards the boundaries of our intervals, the likelihood is then
effectively zero and thus no great accuracy is needed in these re-
gions. Therefore, we do not want to spend too much work onδΩ.
Using the modified boundary functions, we extrapolate (d-linearly)
towardsδΩ, see the discussion of the modified basis functions
above.

Second, the modifications are especially well-suited if the
function to interpolate can be separated into a sum of one-
dimensional functions. Assume that the likelihoodL was a perfect
product of one-dimensional Gaussians,

L(x) = c · e−a1(x1−µ1)
2−...−ad(xd−µd)

2

, (15)

centred at(µ1, . . . , µd)
T . Then the interpolation of the log-

likelihood lnL reduces tod one-dimensional problems,

lnL(x) = ln c+
d∑

k=1

fk(xk) , (16)

with

fk(xk) = −ak(xk − µk)
2 , (17)

separating into a constant term plus a sum of functions that are
constant in all directions but one.

Keeping in mind that the one-dimensional basis function on
level 1,ϕ1,1(x), is constant (cf. Figure 6), this simplifies the in-
terpolation task. Thed-dimensional basis function on level1,
ϕ1,1(x), serves as an offset. (Only if(µ1, . . . , µd)

T is the centre
of Ω, α1,1ϕ1,1(x) exactly expressesln c.) Additionally, it is suffi-
cient to spend only grid points on the main axes of the sparse grid
(level 1 in all dimensions but one) to approximate the remaining
one-dimensional contributionsfk(xk) arbitrarily well:

u(x) = α1,1ϕ1,1(x)︸ ︷︷ ︸
ln c

+

d∑

k=1




∑

lk,ik

αl,i ϕlk,ik(xk)
∏

16j6d,j 6=k

ϕ1,1(xj)





︸ ︷︷ ︸
fk(xk)

. (18)

Of course,L is not a perfect product of one-dimensional Gaus-
sians; grid points that do not lie on the sparse grid’s main axes ac-
count for the additional mixed (correlated) terms oflnL. Given

c© 2008 RAS, MNRAS000, 1–13
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that in sparse grids a large amount of points lie on the main axes,
this mechanism works very well—the better, the less correlation
between the different parameters exists.

In order to take as much advantage as possible of the ef-
fects described above, we introduce a parameter transformation
in the following section, for which the new parameters are less
correlated. However, the fact that the interpolation usingthe stan-
dard parameters—which have much stronger correlations—works
as well, spending just more grid points, will show that the sparse
grid approach does not depend on this argumentation: Sparsegrids
can make use of such properties but do not rely on them.

3.2 Normal parameters

The set of cosmological parameters describing theΛCDM model
consists of the Hubble constant,h ≡ H0

100 km/(sMpc)
, the density

parameter of vacuum energy,ΩΛ, the ones of baryons,Ωb, and of
matter (baryonic + dark),Ωm, the optical depth to the last scatter-
ing surface,τ , the scalar spectral index of the primordial power
spectrum,ns, and the scalar initial amplitude,As. We will re-
fer to these parameters as cosmological parameters. For a more
detailed description of the cosmological parameters, we refer to
Coles & Lucchin (2002). In the literature, there have been several
attempts to transforming these parameters into a set of parameters
that mirror the various physical effects on the CMB power spec-
trum (Hu et al. 2001; Kosowsky et al. 2002). In Chu et al. (2003),
a set of parameters is provided in which the likelihood-surface of
the CMB is well approximated by a multivariate Gaussian withthe
major axes aligned with the coordinate axes. In this work, weuse
the parameters given by Sandvik et al. (2004), where the parame-
ter set of Chu et al. (2003) is combined with the other parameter
sets mentioned, in order to bring the major axes of the likelihood
surface even closer to the coordinate axes. The new parameters are
then{Θs, h2, h3, t, A∗, Z}, which we refer to as normal param-
eters. When working with the latter, the logarithm of the likeli-
hood is well-approximated by a sum of one-dimensional parabolas
in the different parameters. The basis functions introduced above
are therefore ideally adapted to this problem. In the following, we
repeat the definitions of the normal parameters for convenience.

The first parameter of our set is the angle subtended by the
acoustic scale

Θs ≡ rs(als)

DA(als)

180

π
, (19)

where the indexls denotes the time of last scattering,DA(als)
stands for the comoving angular diameter distance to the surface
of last scattering (which we will come back to later), andrs(als) is
the comoving sound horizon at last scattering,

rs(als) ≡
∫ tls

0

cs(t)

a(t)
dt . (20)

Here,cs(t) denotes the sound speed for the baryon-photon-fluid at
time t, which is well approximated by

cs(t)
2 ≈ 1

3
(1 + 3

ρb
ργ

)−1 , (21)

with the indexb standing for baryons and the indexγ for photons.
Using the Friedmann equations and ignoring the vacuum energy
at last scattering,rs(als) can be shown to be (Sandvik et al. 2004;

Kosowsky et al. 2002)

rs(als) =
2
√
3

3H0

√
Ωm

√
als

Rls
ln

√
1 +Rls +

√
Rls + rlsRls

1 +
√
rlsRls

,

(22)
where

Rls ≡ 3ρb(als)

4ργ(als)
= 30wb

( zls
103

)−1

, (23)

rls ≡ ρr(als)

ρm(A∗)
= 0.042w−1

m

( zls
103

)
. (24)

The indexr stands for radiation, i.e.,ρr consists of the sum of
photon and neutrino energy densities, and the indexm is used for
matter (baryons + dark matter). We definewm ≡ Ωmh2 in the
same way aswb ≡ Ωbh

2. The redshift at last scattering,zls, is well
approximated by (Hu et al. 2001)

zls = 1048 (1 + 0.00124w−0.738
b )(1 + g1w

g2
m ) , (25)

g1 ≡ 0.0783w−0.238
b (1 + 39.5w0.763

b )−1 , (26)

g2 ≡ 0.560 (1 + 21.1w1.81
b )−1 . (27)

As already mentioned,DA(als) in (19) denotes the comoving an-
gular diameter distance to the surface of last scattering and is given
by

DA(als) =
c

H0

∫ 1

als

1√
ΩΛã4 + Ωm ã+Ωr

dã . (28)

The second and third parameters in our set are the ratios of
the second and the third peak to the first peak in theCT

l spectrum
of the CMB (Hu et al. 2001), where the tilt-dependence is factored
out (Page et al. 2003),

h2 ≡ 0.0264w−0.762
b

exp
(
−0.476 [ln(25.5wb + 1.84wm)]2

)
, (29)

h3 ≡ 2.17

(
1 +

( wb

0.044

)2
)−1

w0.59
m

(
1 + 1.63

(
1− wb

0.071

)
wm

)−1

. (30)

We use the tilt parameter given by Sandvik et al. (2004), which is a
slightly modified version of the one in Chu et al. (2003) in order to
minimise the correlation withwb:

t ≡
( wb

0.024

)−0.5233

2ns−1 . (31)

The amplitude parameter is

A∗ ≡ Ãs

2.95× 10−9
e−2τ

(
k

kp

)ns−1

w−0.568
m , (32)

wherekp = 0.05Mpc−1 denotes the pivot point. The normalisa-
tion factor of 2.95 × 10−9 comes in because we use the scalar
amplitudeÃs of CMBEASY, which is defined as the primordial
power of the curvature fluctuations evaluated at the pivot point,
Ãs ≡ ∆2

R(kp). It is related to the scalar amplitudeAs of CMB-

FAST, which is used in Sandvik et al. (2004), byAs = Ãs

2.95×10−9

(cf. Verde et al. 2003). Finally, we use the physical dampingdue to
the optical depth to last scattering as our last parameter:

Z ≡ e−τ . (33)

In order to construct the interpolation of the likelihood surface,
we need the transformation that maps the normal parameters back
onto cosmological parameters. The reason for this is the waywe
construct the interpolation: Our sparse grid algorithm chooses the
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Efficient cosmological parameter sampling using sparse grids 7

normal parameters where it wants to refine the grid, which we then
need to transform into cosmological parameters to runCMBEASY
and the WMAP-likelihood code. Our technique of inverting the pa-
rameter transformation is presented in appendix A.

3.3 Generation of test set and choice of interpolation range

For choosing the parameter range in which to construct the inter-
polation, we have run MCMCs containing about 50,000 points at
a temperature ofT = 3. That is, in the Metropolis algorithm we
choose the transition probabilitya(x,y) from a pointx in the

chain to a new pointy to bea(x, y) ≡ min
{
(L(y)/L(x)) 1

T , 1
}

.

Using this transition probability withT = 1 results in the usual
Metropolis algorithm, whereas choosingT = 3 allows us to ex-
plore a larger parameter range than with the regular algorithm.
These chains covered a region reaching out to about 25 log-
likelihoods around the peak.

The optical depth to the last scattering surface,τ , which can
be determined from the CMB polarization, is not well-constrained
by the WMAP polarization data due to their low signal-to-noise
ratio. Therefore, when running the MCMCs atT = 3, we had to
restrictτ to the physically meaningful rangeτ > 0. This restriction
corresponds toZ 6 1 for the normal parameters. In the case of the
normal parameters in 7 dimensions, we had to additionally restrict
the intervals toh2 6 0.52 andh3 > 0.38, which is the range in
which the parameter transformation is invertible. Furthermore, we
chose to restrict our set of points to be within the 25 log-likelihood
region around the peak.

In order to roughly centre our intervals at the maximum of
the log-likelihood function, we have determined the latterusing
a few runs of a simple simplex search.3 The interval boundaries
were then defined as the box centred at the maximum which con-
tains all points of the above-described chains. Note that itis not
important for the accuracy of the interpolation that the intervals are
well-centred at the maximum. Note further that we have used this
set of points as a test set for comparing our interpolation with the
real log-likelihood.

3.4 Results

We have interpolated the log-likelihood of the WMAP 5 year data
in the 6-dimensional normal parameter space described in Sec. 3.2.
The same has been done for a 7-dimensional model, in which we
have chosen the running of the spectral index of the primordial
power spectrum,α, as an additional parameter. Constructing the
interpolation can be parallelised to an arbitrary degree, according
to the available computational resources.

For the 6-dimensional model, we plot the absolute error of
the log-likelihood,(u − lnL), against the negative WMAP log-
likelihood, (− lnL), for the points in the test set in Figure 7. We
have used an interpolation on a sparse grid of leveln = 5 (con-
sisting of 2561 grid points) in the top panel, and of leveln = 6
(consisting of 10625 grid points) in the bottom panel. One clearly
sees the improvement in accuracy when increasing the grid level

3 We were running several simplex searches and chose the result with the
highest value of the log-likelihood. The runs did not all converge to ex-
actly the same point, which we think was due to numerical issues (the log-
likelihood was presumably not completely convex, which could be due to
the dips we will mention in Sec. 3.5).

Figure 7. Absolute error of the interpolation with respect to the reallog-
likelihood in 6 dimensions for an interpolation with a sparse grid of level 5
(top panel) and of level 6 (bottom panel) for normal parameters.

Figure 8. Absolute error of the interpolation with respect to the reallog-
likelihood in 7 dimensions for an interpolation with a sparse grid of level 6
(top panel) and of level 7 (bottom panel) for normal parameters.
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from n = 5 to n = 6. Figure 8 shows the same plot for the 7-
dimensional model, for grid leveln = 6 (18943 grid points) in
the top panel andn = 7 (78079 grid points) in the bottom panel.
We again see the improvement in accuracy with increasing refine-
ment level. However, the additional parameterα is quite strongly
correlated with many of the other parameters, whereas the correla-
tions between the normal parameters in 6 dimensions are reduced
to a minimum. We therefore have to increase the grid level by one
in 7 dimensions, in order to obtain results comparable to the6-
dimensional ones. In both figures, we note a systematic negative
offset of the interpolation with respect to the real function, which
becomes less severe for the higher refinement levels. This offset is
due to the fact that we construct ad-linear interpolant of a convex
function, which systematically lies below the function. This could
be easily coped with by adding a small offset toα1,1 after the inter-
polation, or, even better, by using piecewise polynomial instead of
the piecewise linear basis functions. We leave the usage of piece-
wise polynomial basis functions, which promise to be well-adapted
to the log-likelihood, for future work.

Note that we have restricted the plot range to [-2,2], because
only 0.1 per cent or less of the points lie outside this range.4 Al-
most all of these points lie in the corners ofΩ due to relatively
strongly correlated parameters. These are the regions in parameter
space where the 25 log-likelihood range around the peak extends to
the interval boundaries. Due to the extrapolation we use close to the
boundaries (cf. the end of Sec. 2), we obtain relatively large uncer-
tainties in those regions, which do not affect the one-dimensional
projections of the likelihood function, though. The uncertainties
can be further reduced, spending (adaptively) more grid points in
those regions, see also the discussion about adaptivity in Sec. 3.5.

For the 6-dimensional interpolation with a sparse grid of level
6, 2.5 per cent of the test points have an absolute error> 0.25 in the
log-likelihood, and 0.03 per cent of the test points have an absolute
error> 1. In 7 dimensions and for refinement level 7, the corre-
sponding numbers are 9 per cent and 0.5 per cent, respectively. This
is a higher level of accuracy as reached by Pico (Fendt & Wandelt
2007), for which about 90 per cent of the points in a region reaching
out to 25 log-likelihoods around the peak have been calculated with
an absolute error below 0.25. However, we note that these numbers
for Pico are valid for a 9-dimensional parameter space, whereas
we work in 6- and 7-dimensional spaces and leave the extension to
higher-dimensional models to future work. But we also note that
in all settings where a systematic offset in the interpolation error
can be observed, it is sufficient to reduce the offset to improve our
results significantly, in particular for interpolations onlower levels
(see, e.g., the scatterplot for the 6-dimensional model andgrid level
5, Figure 7).

We have projected both the interpolation and the WMAP like-
lihood function using MCMCs of about 150,000 points, and com-
pare the results for the 7-dimensional model for grid leveln = 6 in
Figure 9. We reproduce the projected one-dimensional likelihood
curves almost perfectly. The results for the 6-dimensionalmodel
for grid level n = 5 are very similar to the 7-dimensional ones.
Note that we obtain these excellent results for the 6-dimensional
model using only 2561 grid points. The visual comparison of our
results with the projected one-dimensional likelihoods obtained by
CosmoNet (Auld et al. 2007, 2008) shows that we reproduce the

4 In 6 dimensions, the number of points outside this range is 0.02 per cent
(0.003 per cent) forn = 5 (n = 6); in 7 dimensions, it is about 0.1 per cent
for both grid levels.
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Figure 9. Comparison of the one-dimensional projections of the 7-
dimensional WMAP 5 year likelihood (solid) and its interpolation (dashed)
using a sparse grid of leveln = 6 (consisting of 18943 grid points) for
normal parameters. The curves match almost perfectly.

original curves with a higher accuracy than the latter. Notealso
that our interpolation is constructed in a rather wide region, en-
compassing about 25 log-likelihoods around the peak, whereas in
Auld et al. (2008) the region in whichlnL was fitted covers only
4σ around the peak for the combined likelihood of CMB and LSS.
This corresponds to a region of about 8 log-likelihoods around the
peak for the combined likelihood, and even less when using only
the CMB likelihood.

Consider now the interpolation of the WMAP likelihood
surface using directly the standard parameters, which are used
by default when doing cosmological parameter sampling with
the MCMC driver from CMBEASY (Doran & Müller 2004):
{wm, wb, h, τ, ns, ln(10

10As)− 2τ}, to which we again addα as
an additional parameter in the 7-dimensional case. Workingwith
these parameters has the advantage that we do not have to restrict
ourselves to the parameter range in which the parameter transfor-
mation is invertible. However, the problem is now less adapted to
our choice of basis functions, due to the stronger correlations be-
tween the different parameters. We therefore pay the price of hav-
ing to increase the grid level by one in this case in order to reach an
accuracy as good as before. We show the absolute error of the log-
likelihood,(u− lnL), against the negative WMAP log-likelihood,
(− lnL), for the 6-dimensional model for grid leveln = 6 (10625
points) andn = 7 (40193 points) in Figure 10,5 and for the 7-
dimensional one forn = 7 (87079 points) andn = 8 (297727

5 Here, about 0.3 per cent (0.2 per cent) of the points in the test set lie
outside the chosen plot-range for the grid of leveln = 6 (n = 7).
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Efficient cosmological parameter sampling using sparse grids 9

Figure 10. Absolute error of the interpolation with respect to the reallog-
likelihood in 6 dimensions for an interpolation with a sparse grid of level 6
(top panel) and of level 7 (bottom panel) for standard parameters.

points) in Figure 11.6 For the 6-dimensional (7-dimensional) inter-
polation with a sparse grid of leveln = 7 (n = 8), the fraction
of test points with absolute error> 0.25 in the log-likelihood is
6 per cent (20 per cent), and 0.5 per cent (2.5 per cent) for an ab-
solute error> 1. Again, the one-dimensional projections of the
6-dimensional case for leveln = 6 and of the 7-dimensional case
for leveln = 7 are very similar to the ones in Figure 9, and are thus
not shown.

We have tested the evaluation time of our interpolation by
evaluating a sparse grid interpolant of level 6 in 6 dimensions for
2,000,000 points randomly chosen from withinΩ. On a conven-
tional desktop computer (Intel chipset, 2.8 GHz), this tookabout
92µs per point, including the random generation of the point. In 7
dimensions on the same level we have twice as many grid points
and one dimension more, which doubles the evaluation time to
189µs. For CosmoNet and Pico, the evaluation of a 6-dimensional
model is specified to take about10µs and 250µs, respectively
(Auld et al. 2008). Note that we do not know on which hardware
the evaluation times of CosmoNet and Pico have been measured,
which makes a comparison hardly possible. Note further thatour
code to evaluate a sparse grid function is not optimised for fast
evaluation times and that there is still room for improvement. In
any case, for all of these codes the bottleneck in cosmological pa-
rameter sampling is now the MCMC algorithm itself rather than the
evaluation of the likelihood, at least with the MCMC driver used in
this work (Doran & Müller 2004).

Note that in 7 dimensions, we need significantly more grid
points than in 6 dimensions, since the additional parameterα

6 About 1 per cent of the points in the test set lie outside the chosen plot-
range for the grid of both leveln = 7 and leveln = 8.

Figure 11. Absolute error of the interpolation with respect to the reallog-
likelihood in 7 dimensions for an interpolation with a sparse grid of level 7
(top panel) and of level 8 (bottom panel) for standard parameters.

strongly correlates with the other parameters, and we thus need to
increase the grid level by one to obtain good results. As the stor-
age requirements are rather low, this mainly increases the number
of evaluations that are needed for constructing the sparse grid in-
terpolation. As already stated before, though, the construction of
the interpolation can be parallelised to an arbitrary degree, accord-
ing to available computational resources, so that this should not be
an issue. To store the interpolant for a regular sparse grid in d di-
mensions for levell with N grid points, we would only needN
doubles for the coefficients and two integers to remember both d
andl, leading to(N + 1) · 8 Bytes. For adaptively refined sparse
grids, we additionally have to store at least which grid points have
been refined, requiring slightly more storage. For current hardware
architectures, the size of the memory is therefore not a limiting fac-
tor for our application.

We have shown in this section, that the interpolation of the log-
likelihood with regular sparse grids provides excellent and compet-
itive results in both 6 and 7 dimensions, even when interpolating in
the rather wide range covering about 25 log-likelihoods around the
peak. The memory requirements to store the sparse grid are rather
low and the evaluation times are very fast. We have demonstrated
that the one-dimensional projections of the interpolants match the
original ones almost perfectly, and that the scatterplots of the errors
exhibit only a small fraction of grid points with higher errors. For
standard parameters, more grid points have to be spent to obtain the
same accuracy than for normal parameters, as the latter onescorre-
late less. In the next section, we will therefore focus on an adaptive
extension of the method used so far to further reduce the number of
grid points that are required.
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3.5 Improvements with adaptive sparse grids

As it has already been mentioned, the log-likelihood is not aperfect
sum of one-dimensional functions. The different parameters con-
tribute differently toL and correlate more or less with each other. It
is therefore reasonable, especially when using the standard param-
eters which correlate more, to employ adaptivity, spendingmore
grid points in critical regions and less grid points elsewhere. In this
section, we demonstrate the utility of adaptivity by showing some
first results as a proof of concept. As they can clearly be improved
further, we leave a thorough study of adaptive sparse grids for the
interpolation oflnL to future work. We start by specifying how to
refine, we formally derive a suitable criterion that can be used to
specify where to refine as well as to measure the quality of an in-
terpolation, and we finally provide results that show how adaptivity
can improve the interpolation obtained for regular sparse grids.

Employing adaptivity, one can attempt to either obtain better
results fixing roughly the number of grid points used, or to achieve
a similar accuracy using less grid points. In the following,we show
results for the former, tackling the 7-dimensional exampleusing
the standard parameters on level 7 with 78079 grid points presented
above. We start with a regular sparse grid of some low level and re-
fine grid points, creating all2d children in the hierarchical structure
(if possible) each, until the grid size exceeds 78000 grid points. In
settings where the contributions of the dimensionalities differ sig-
nificantly, it can be useful to start with level 2 to allow dimensional
adaptivity, neglecting unimportant dimensions; here, thegrid points
on low levels will be created in any case, so we can start with a
sparse grid on level 5, e.g., to save on the number of adaptivesteps.

Choosing a suitable refinement criterion, it can be determined
whether to refine in a broad way (close to regular sparse grids) or
in a more greedy way in the sparse grid’s hierarchical tree struc-
ture. It is reasonable to take the surpluses of the grid points into ac-
count as they contain the local information about the functions, i.e.,
if the function has a high gradient locally. Furthermore, they de-
cay quickly with increasing level-sum in the convergent phase. The
mere surplus-based criterion, refining the grid points withthe high-
est absolute value of the surplus first, is known to tend to minimise
theL2-norm of the error. As we do not spend grid points on the do-
main’s boundary, and as we are extrapolating towards the boundary,
the biggest surpluses per level can be found for the modified basis
functions which are adjacent to the boundary. A mere surplus-based
criterion will therefore only refine towards the boundary. This re-
duces the error especially for sampling points with a high error in
the scatterplots, as they are located towards the boundary of the
domain.

In the following, we theoretically derive a refinement crite-
rion which is better suited to our problem than the purely surplus-
based one. In order to maximise the information our interpola-
tion contains about the real likelihood, we attempt to minimise the
Kullback-Leibler distancedKL between the interpolation and the
likelihood function,

dKL ≡
∫

ddxL(x) ln L(x)
exp(u(x))

=

∫
ddxL(x) (lnL(x)− u(x)) , (34)

which is defined for two normalised probability distributionsL and
exp(u). Let us now derive the refinement criterion we obtain from
minimising dKL. Assume that we have already computed an in-
terpolationu(x) with N grid points, then the Kullback-Leibler
distancedKL when evaluating the function at an additional point

xN+1 is changed by

∣∣∣dnewKL − doldKL

∣∣∣ =

∣∣∣∣

∫
ddxL(x)

[
lnL(x)− unew(x).

− lnL(x) + uold(x)

]∣∣∣∣

=

∣∣∣∣

∫
ddxL(x)

[
uold(x)− unew(x)

]∣∣∣∣

=

∣∣∣∣∣

∫
ddxL(x)

[
N∑

i=1

αiϕi(x)−
N+1∑

i=1

αiϕi(x)

]∣∣∣∣∣

=

∣∣∣∣

∫
ddxL(x) [αN+1ϕN+1(x)]

∣∣∣∣ . (35)

If we refine the interpolation around the grid point that contributed
most to the Kullback-Leibler distance, we can hope to converge to-
wards the minimum ofdKL fastest. In order to obtain a suitable
refinement criterion, we have to simplify the formula in (35)con-
siderably. We thus assume the likelihoodL(x) as well as the basis
functionϕN+1(x) to be locally constant onϕN+1’s support, ob-
taining

∣∣∣dnewKL − doldKL

∣∣∣ ∼ VN+1L(xN+1) |αN+1| , (36)

whereVN+1 is the volume covered by the basis functionϕN+1

(i.e. its support), and we have usedϕN+1(xN+1) = 1.
With (36), we have derived an estimation of the contributionof

a basis function todKL, which is a reasonable refinement criterion
in our setting. In addition to the surplus of the grid point,|αN+1|, it
takes into account the value of the likelihoodL(xN+1) at the grid
point, and the volume of the basis functionVN+1. The likelihood
takes care of the fact that we would like to be more accurate where
the likelihood is higher. The regions of very low likelihoodare less
interesting for us—the likelihood being already very closeto zero
beyond a difference of about 20 log-likelihoods. The volumefactor,
on the other hand, prevents the interpolation to refine too deeply
(to very high grid levels) locally in the parameter space. However,
since this usually only takes effect after several refinement steps,
and as we have restricted the number of grid points, we choosenot
to include the volume factor but rather to refine several points at
the same time, which addresses this issue in an alternative way, and
which will be discussed later on. We further choose to introduce a
temperatureT again, which allows us to weight the likelihood with
respect to the surplus and thus to influence how much to refine close
to the maximum. The refinement criterion we used in this studyis
thus

(
L(xl,i)

Lmax

)1/T

|αl,i| , (37)

where we have divided the likelihood by its peak value,Lmax,
(which we have already obtained determining the interpolation do-
main) because the WMAP code returns the log-likelihood onlyup
to a constant offset, so that we do not know the correct normalisa-
tion of L. ForT = 1, refinement takes place only very close to the
maximum asL decays quickly; a temperature ofT = 6 showed to
provide good results within the whole domain of interest.

Refining only one grid point per refinement step often causes
adaptivity to get stuck in a single, special characteristicof the func-
tion. InterpolatinglnL with our choice of basis functions, all grid
points are likely to be created only in the direction where the log-
likelihood decays fastest, or around one of the local dips wewill
address later on. Refining more than one grid point at the sametime
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Figure 12. Absolute error of the interpolation with respect to the reallog-
likelihood in 7 dimensions for an interpolation with an adaptively refined
sparse grid for standard parameters.

helps to circumvent such effects, resulting in a broader refinement
scheme.

The Kullback-Leibler distancedKL can also be used to mea-
sure the quality of our interpolation: The distance betweenthe real
likelihood and or interpolation should be as small as possible. How-
ever, as we have already mentioned above, we do not know the nor-
malisation of the WMAP likelihood function. Therefore,dKL is
not necessarily positive and thus looses its property of being a use-
ful measure of the ‘closeness’ of the two functions. We thus use a
slightly modified version,

d̂KL ≡
∫

ddxL(x)| lnL(x)− u(x)| , (38)

as a measure of the quality of our interpolation, instead of the ac-
tual Kullback-Leibler distance. It can be easily calculated from an
MCMC with T = 1 obtained forL, by simply averaging the ab-
solute errors| lnL(xi)− u(xi)| over all points in the chains. Fur-
thermore, we quote this value averaged over a chain ofT = 3
(exploiting the interpolation domain better), which corresponds to∫
ddxL(x) 1

T | lnL(x)− u(x)|.
Figure 12 shows the scatterplot for an adaptively refined

sparse grid in 7 dimensions. Starting from a regular grid of level
5, we refined 100 grid points each according to the refinement cri-
terion (37) withT = 6. Needing only about as much grid points
(78551) as for the regular sparse grid of level 7, Tab. 1 showsthat
we obtain results which are close to those of a regular sparsegrid
of level 8 with almost 4 times as many grid points. We provide the
Mean Squared Error (MSE) as well aŝdKL for bothT = 1 and
T = 3 chains for regular sparse grids of level 7 and 8, and for
the adaptively refined case. We also quote how many points exhibit
an absolute error larger than 1 or 0.25 for theT = 3 chains. We
do not show the histograms of the adaptively refined model, asthe
histograms for both the regular grid on level 8 and the adaptively
refined one, are very close to the histograms for normal parameters
in 7 dimensions shown in Figure 9.

We would like to mention, that, due to numerical problems,
the current version ofCMBEASY produces local, unphysical and
sometimes rather high dips. This problem is already known and
will be corrected in the next release. For stochastic approaches, this
is not a big problem, though: The dips are local and just causesome
noisy evaluations. But it poses a problem for numerical approaches
if a grid point hits a dip. Then it can happen, that spending more
grid points can even deteriorate the results. For our regular grid in 6
dimensions using the standard parameters, e.g., increasing the level
from 7 to 8 caused a higher overall error on the chain-data used

for the histograms, as especially two new basis functions close to
the peak caused an error of up to 12 of the log-likelihood for all
evaluations affected by those basis functions.

Fortunately, dips can be detected automatically due to the hi-
erarchical structure of the sparse grid and the smoothness of lnL,
using a criterion that is once more based on the surpluses. Further-
more, it is not a severe problem when using adaptivity, as adaptivity
localises the effects of the dips automatically. One just has to take
care not to spend too much grid points to compensate for the dips.

The first adaptive results are promising, but there is still room
for a lot of improvement. Even better refinement criteria than
those used so far could be employed. Using not only piecewise
linear functions, but rather piecewise polynomials, and applying
adaptivity in both the mesh-width and the polynomial degreeis
very promising; especially the extrapolation properties towards the
boundary would be improved, and less grid points would be needed
to obtain the same accuracies.

4 CONCLUSIONS

In this work, we have explored the utility of interpolating the
WMAP log-likelihood surface using sparse grids. We demonstrated
that the results are excellent and competitive to other approaches
regarding speed and accuracy, and we discussed advantages over
fitting the likelihood surface with polynomials (Fendt & Wandelt
2007; Sandvik et al. 2004) or neural networks (Auld et al. 2008):

The interpolation based on sparse grids converges towards the
exact function in the limit of the grid level going to infinity. We
can therefore reach an arbitrary accuracy by simply increasing the
amount of work we spend. In the case of a polynomial fit, this isnot
guaranteed since increasing the polynomial degree runs therisk of
becoming unstable.

In order to construct the sparse grid interpolation, we do not
need to sample a set of training points using MCMCs beforehand,
since the sampling points are determined by the sparse grid struc-
ture which is given a priori. Once we have chosen the volume of
interest, the time for constructing the interpolation is dominated by
the evaluation of the likelihood function at the grid points. We do
not need additional training time as for neural networks (Auld et al.
2008), for example. Constructing the interpolation can thus be done
almost arbitrarily in parallel, only limited by the computational re-
sources that are available.

The sparse grid technique is rather general and not restricted
to certain classes of functions. In particular, the choice of sampling
points and basis functions is not tailored to a single problem as
for neural networks, where the topology of the network has tobe
chosen problem-specifically (often in a heuristic way). Thesparse
grid interpolation technique as well as our extensions can therefore
be readily applied to other problems in astrophysics and cosmology,
and will be useful in further tasks, where an accurate interpolation
of a function is needed.

The excellent performance of the sparse grid interpolationcan
be further improved, leaving future research to do: It can beapplied
to models with more than seven parameters by spending more com-
putational effort. Further modification of the basis functions, for ex-
ample allowing for a piecewise polynomial interpolation, promises
better convergence rates and higher accuracies. Adaptive refine-
ment schemes, which take into account the characteristics of the
interpolated function, can be used to further increase the accuracy
of the interpolation, as we have already demonstrated for a first ex-
ample in this work.
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err> 1, T=3 err> 0.25, T=3 MSE, T=1 MSE, T=3 d̂KL, T=1 d̂KL, T=3

level 7 4.2% 50.5% 0.087 0.532 0.256 0.354
level 8 2.3% 19.3% 0.017 0.210 0.091 0.193
adaptive 1.8% 23.6% 0.027 0.202 0.110 0.204

Table 1.Comparison of errors of regular sparse grids of level 7 and level 8, respectively, and an adaptively refined sparse grid using approximately as many
grid points as contained in the regular grid of level 7. Shownare the number of points with an absolute error larger than 1 or 0.25 in theT = 3 chains, the
MSE for chains ofT = 1 andT = 3, andd̂KL, which denotes the absolute value of the error averaged overchains ofT = 1 andT = 3.
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APPENDIX A: INVERSION OF THE PARAMETER
TRANSFORMATION

In the following, we present a technique of inverting the parameter
transformation of Sec. 3.2 to compute the cosmological parameters
given the normal parameters. The normal parameterh2 in terms of
cosmological parameters is given by

h2(wm, wb) = 0.0264w−0.762
b

exp
(
−0.476 [ln(25.5wb + 1.84wm)]2

)
. (A1)

We solve this equation forwm as a first step:

wm(h2, wb) =

(
exp

{

±
[
− 1

0.476
ln

(
h2

0.0264
w0.762

b

)]1/2
}

−25.5wb

)
1

1.84
. (A2)

Inconveniently, there exist two different solutions forwm(h2, wb),
which complicates the inversion. We now substitutewm in
h3(wm, wb) (30) for (A2) and thus obtainh3(h2, wb), which, of
course, has two solutions as well. An example of the two branches
of h3(h2, wb) for h2 = 0.45 is depicted in Fig. A1. We can com-
pute the critical point where only one solution exists usingthe con-
dition

− 1

0.476
ln

(
h2

0.0264
w0.762

b

)
= 0 , (A3)

c© 2008 RAS, MNRAS000, 1–13



Efficient cosmological parameter sampling using sparse grids 13

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.01  0.012  0.014  0.016  0.018  0.02  0.022  0.024

h 3

wb

Figure A1. The two branches ofh3 versuswb for h2 = 0.45.

as can be seen from (A2). This condition gives us the following
formulae for the parameter values at the critical point:

wb,crit(h2) =

(
0.0264

h2

)1/0.762

, (A4)

wm,crit(h2) = (1− 25.5wb,crit)
1

1.84
, (A5)

h3,crit(h2) = 2.17

(
1 +

(wb,crit

0.044

)2
)−1

w0.59
m,crit

(
1 + 1.63

(
1− wb,crit

0.071

)
wm,crit

)−1

. (A6)

The two parametersh2 andh3 can now be inverted towm andwb.
For a givenh2, we expressh3 in terms ofh2 andwb, as described
above. We then useh3,crit(h2) to choose the upper branch of
h3(h2, wb) if our givenh3 is bigger thanh3,crit(h2), and the lower
branch if it is smaller. Using the respective branch ofh3(h2, wb),
we search numerically inwb until h3(h2, wb) matches the given
h3. Substituting that value ofwb into equation (A2), we readily
obtain the value forwm.

Now it is straightforward to compute the values forns and
As from t andA∗. To obtainh from Θs, we follow the procedure
suggested by Kosowsky et al. (2002), expressingΘs in terms of
h in terms ofh and then searching inh numerically untilΘs(h)
matches the given value ofΘs.
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