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ABSTRACT

Aims. We outline the Bayesian approach to inferring fNL, the level of non-Gaussianities of local type. Phrasing fNL

inference in a Bayesian framework takes advantage of existing techniques to account for instrumental effects and
foreground contamination in CMB data and takes into account uncertainties in the cosmological parameters in an
unambiguous way.
Methods. We derive closed form expressions for the joint posterior of fNL and the reconstructed underlying curvature
perturbation, Φ, and deduce the conditional probability densities for fNL and Φ. Completing the inference problem
amounts to finding the marginal density for fNL. For realistic data sets the necessary integrations are intractable.
We propose an exact Hamiltonian sampling algorithm to generate correlated samples from the fNL posterior. For
sufficiently high signal-to-noise ratios, we can exploit the assumption of weak non-Gaussianity to find a direct Monte
Carlo technique to generate independent samples from the posterior distribution for fNL. We illustrate our approach
using a simplified toy model of CMB data for the simple case of a 1-D sky.
Results. When applied to our toy problem, we find that, in the limit of high signal-to-noise, the sampling efficiency of
the approximate algorithm outperforms that of Hamiltonian sampling by two orders of magnitude. When fNL is not
significantly constrained by the data, the more efficient, approximate algorithm biases the posterior density towards
fNL = 0.

Key words. cosmic microwave background - cosmological parameters - Methods: data analysis - Methods: numerical -
Methods: statistical

1. Introduction

The analysis of cosmic microwave background (CMB) radiation data has considerably improved our understanding
of cosmology and played a crucial role in constraining the set of fundamental cosmological parameters of the universe
(Spergel et al. 2007; Hinshaw et al. 2009). This success is based on the intimate link between the temperature fluctuations
we observe today and the physical processes taking place in the very early universe. Inflation is currently the favored
theory predicting the shape of primordial perturbations (Guth 1981; Linde 1982), which in its canonical form leads
to very small non-Gaussianities that are far from being detectable by means of present-day experiments (Maldacena
2003; Acquaviva et al. 2003). However, inflation scenarios producing larger amounts of non-Gaussianity can naturally be
constructed by breaking one or more of the following properties of canonical inflation: slow-roll, single-field, Bunch-Davies
vacuum, or a canonical kinetic term (Bartolo et al. 2004). Thus, a positive detection of primordial non-Gaussianity would
allow us to rule out the simplest models. Combined with improving constraints on the scalar spectral index ns, the test
for non-Gaussianity is therefore complementary to the search for gravitational waves as a means to test the physics of
the early Universe.

A common strategy for estimating primordial non-Gaussianity is to examine a cubic combinations of filtered CMB sky
maps (Komatsu et al. 2005). This approach takes advantage of the specific bispectrum signatures produced by primordial
non-Gaussianity and yields to a computationally efficient algorithm. When combined with the variance reduction tech-
nique first described by Creminelli et al. (2006) these bispectrum-based techniques are close to optimal, where optimality
is defined as saturation of the Cramer-Rao bound. Lately, a more computationally costly minimum variance estimator
has been implemented and applied to the WMAP5 data (Smith et al. 2009).

Recently, a Bayesian approach has been introduced in CMB power spectrum analysis and applied successfully to
WMAP data making use of Gibbs-sampling techniques (Jewell et al. 2004; Wandelt et al. 2004). Within this framework,
one draws samples from the posterior probability density given the data without explicitly calculating it. The target
probability distribution is finally constructed out of the samples directly, thus computationally costly evaluations of
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the likelihood function or its derivatives are not necessary. Another advantage of the Bayesian analysis is that the
method naturally offers the possibility to include a consistent treatment of the uncertainties associated with foreground
emission or instrumental effects (Eriksen et al. 2008). As it is possible to model CMB and foregrounds jointly, statistical
interdependencies can be directly factored into the calculations. This is not straightforward in the frequentist approach
where the data analysis is usually performed in consecutive steps. Yet another important and desirable feature is the
fact that a Bayesian analysis obviates the necessity to specify fiducial parameters, whereas in the frequentist approach
it is only possible to test one individual null hypothesis at a time.

In this paper, we pursue the modest goal of developing the formalism for the extension of the Bayesian approach to
the analysis of non-Gaussian signals, in particular to local models, where the primordial perturbations can be modeled
as a spatially local, non-linear transformation of a Gaussian random field. Utilizing this method, we are able to write
down the full posterior probability density function (PDF) of the level of non-Gaussianity. We demonstrate the principal
aspects of our approach using a 1-D toy sky model. Although we draw our discussion on the example of CMB data
analysis, the formalism presented here is of general validity and may also be applied within a different context.

The paper is organized as follows. In Sect. 2 we give a short overview of the theoretical background used to characterize
primordial perturbations. We present a new approximative approach to extract the amplitude of non-Gaussianities from
a map in Sect. 3 and verify the method by means of a simple synthetic data model (Sect. 4). We compare the performance
of our technique to an exact Hamiltonian Monte Carlo sampler which we developer in Sect. 6 and discuss the extensions
of the model required to deal with a realistic CMB sky map (Sect. 7). Finally, we summarize our results in Sect. 8.

2. Model of non-Gaussianity

The expansion coefficients aℓm of the observed CMB temperature anisotropies in harmonic space can be related to the
primordial fluctuations via

aℓm =
2bℓ
π

∫

k2dk r2dr [ Φℓm(r) gadiℓ (k) + Sℓm(r) gisoℓ (k) ] jℓ(kr) + nℓm , (1)

where Φℓm(r) and Sℓm(r) are the primordial curvature and isocurvature perturbations at comoving distance r, gadiℓ (k)
and gisoℓ (k) their corresponding transfer functions in momentum space. The spherical Bessel function of order ℓ is denoted
by jℓ(kr), bℓ includes beam smearing effects, and nℓm describes instrumental noise. As curvature perturbations dominate
over isocurvature perturbations (Bean et al. 2006; Trotta 2007), we will neglect the contribution of Sℓm in our subsequent
analysis.

Any non-Gaussian signature imprinted in the primordial perturbations will be transferred to the aℓm according to Eq. 1
and is therefore detectable, in principle. Theoretical models predicting significant levels of non-Gaussian contributions
to the observed signal can be subdivided into two broad classes (Babich et al. 2004): one producing non-Gaussianity of
local type, the other of equilateral type. The former kind of non-Gaussianity is achieved to very good approximation
in multi-field inflation as described by the curvaton model (Moroi & Takahashi 2001; Enqvist & Sloth 2002; Lyth et al.
2003), or in cyclic/ekpyrotic universe models (Khoury et al. 2001; Steinhardt & Turok 2002). The latter type of non-
Gaussianity is typically a result of single field models with non-minimal Lagrangian including higher order derivatives
(Alishahiha et al. 2004; Senatore 2005).

Concentrating on local models, we can parametrize the non-Gaussianity of Φ by introducing an additional quadratic
dependence on a purely Gaussian auxiliary field ΦL, that is local in real space, of the form (Verde et al. 2000;
Komatsu & Spergel 2001)

ΦNL(r) = ΦL(r) + fNL[Φ
2
L(r) − 〈Φ

2
L(r)〉] , (2)

where fNL is a dimensionless measure of the amplitude of non-Gaussianity.

3. Bayesian inference of non-Gaussianity

It has been shown to be feasible to reconstruct the primordial curvature potential out of temperature or temperature
and polarization sky maps (Yadav & Wandelt 2005; Elsner & Wandelt 2009), which allows searching for primordial non-
Gaussianities more sensitively. Although the mapping from a 3D potential to a 2D CMB sky map is not invertible
unambiguously, a unique solution can be found by requiring that the result minimizes the variance. In this conventional
frequentist approach, the level of non-Gaussianity and an estimate of its error is derived from a cubic combination of
filtered sky maps (Komatsu et al. 2005). We will show in the following sections how to sample fNL from the data and
unveil the full posterior PDF using a Bayesian approach.

3.1. Joint probability distribution

In our analysis we assume the data vector d to be a superposition of the CMB signal s and additive noise n

d = Bs+ n

= BMΦ+ n , (3)
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where information about observing strategy and the optical system are encoded in a pointing matrix B and M is a linear
transformation matrix. In harmonic space, the signal is related to the primordial scalar perturbation as

sℓm =
2

π

∫

k2dk r2drΦℓm(r) gadiℓ (k) jℓ(kr)

≈
∑

i

MiΦℓm(ri)

≡MΦℓm . (4)

Our aim is to construct the posterior PDF of the amplitude of non-Gaussianities given the data, P (fNL|d). To do so,
we subsume the remaining set of cosmological parameters to a vector θ and calculate the joint distribution as

P (d,ΦL, fNL, θ) = P (d|ΦL, fNL, θ)P (ΦL|θ)P (θ)P (fNL) . (5)

Now, we can use Eq. 2 to express the probability for data d given ΦL, fNL, and θ

P (d|ΦL, fNL, θ) =
1

√

|2πN |
e−1/2 [d−BM(ΦL+fNL(Φ

2

L
−〈Φ2

L
〉))]†N−1[d−BM(ΦL+fNL(Φ

2

L
−〈Φ2

L
〉))] , (6)

whereN is the noise covariance matrix. The prior probability distribution for ΦL given θ can be expressed by a multivariate
Gaussian by definition. Using the covariance matrix PΦ of the potential, we derive

P (ΦL|θ) =
1

√

|2πPΦ|
e−1/2Φ†

L
P−1

Φ
ΦL . (7)

For flat priors P (fNL), P (θ) we finally obtain

P (d,ΦL, fNL, θ) ∝ exp

{

−
1

2

[

(d−BM(ΦL + fNL(Φ
2
L − 〈Φ

2
L〉)))

†N−1

×(d−BM(ΦL + fNL(Φ
2
L − 〈Φ

2
L〉))) + Φ†

LP
−1
Φ ΦL

]

}

(8)

as an exact expression for the joint distribution up to a normalization factor.
To derive the posterior density, P (fNL|d), one has to marginalize the joint distribution over ΦL and θ. As it is not

possible to calculate the high dimensional ΦL integral directly, an effective sampling scheme must be found to evaluate the
expression by means of a Monte Carlo algorithm. One possibility would be to let a Gibbs sampler explore the parameter
space. Unfortunately, we were not able to find an efficient sampling recipe from the conditional densities for fNL and ΦL

as the variables are highly correlated. An algorithm that also generates correlated samples, but is potentially suitable for
non-Gaussian densities and high degrees of correlation is the Hamiltonian Monte Carlo approach. We will return to this
approach in Sect. 6.

For now we attempt to go beyond correlated samplers and see whether we can develop an approximate scheme,
valid in the limit of weak non-Gaussianity, to sample fNL independently. We start out by expanding the target posterior
distribution into an integral of conditional probabilities over the non-linear potential ΦNL,

P (fNL|d) =

∫

dΦNLdθ P (fNL|ΦNL, θ)P (ΦNL|d, θ)P (θ|d) . (9)

To construct the conditional probability P (ΦNL|d, θ) in the integrand, we need to find an equivalent equation for the
joint distribution (Eq. 8) as a function of the field ΦNL. However, a simple analytic expression for the prior distribution
of ΦNL does not exist because it is a non-linear transform of the Gaussian auxiliary field ΦL. To quantify the expected
correction, we calculate its covariance matrix,

(PΦNL
)ij = 〈(ΦNL)i(ΦNL)j〉

= 〈(ΦL)i(ΦL)j〉+ f2
NL[〈(ΦL)

2
i (ΦL)

2
j〉 − 〈(ΦL)

2
i 〉〈(ΦL)

2
j 〉]

= (PΦL
)ij + 2f2

NL(PΦL
)2ij . (10)

As the covariance matrix PΦL
is of the order O(10−10) and the non-Gaussian contribution to ΦNL is known to be small,

we neglect the higher order correction in the prior distribution in what follows. That is, we approximate the true prior
probability function by a Gaussian distribution in ΦNL and in this way derive a simple expression for the joint density,
as a function of ΦNL,

P (d,ΦNL, θ) ∝ exp

{

−
1

2

[

(d−BMΦNL)
†N−1(d−BMΦNL) + Φ†

NLP
−1
Φ ΦNL

]

}

. (11)
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Note, that the approximation applies to the second term only, the first part of the expression remains unaffected. As
this approximation is equivalent to imposing the prior belief of purely Gaussian primordial perturbations, we expect to
underestimate fNL in the low signal-to-noise regime, as we tend to replace the Wiener filtered noise with purely Gaussian
signal. Contrary, the method is unbiased when the likelihood dominates over the prior which is unlikely for data derived
by the Planck mission.

The direct evaluation of the joint distributions over a grid in the high dimensional parameter space is computationally
not feasible. One option would be to approximate the PDF around its maximum to get an expression for the attributed
errors (Tegmark 1997; Bond et al. 1998). These methods are still computationally expensive and can also not recover
the full posterior. An alternative approach to overcome these problems is to draw samples from the PDF which is to be
evaluated as we will discuss in the next section.

3.2. Conditional probabilities

To construct the target posterior density Eq. 9, we have to find expressions for the conditional probabilities P (ΦNL|d, θ)
and P (fNL|ΦNL, θ). The former distribution can easily be derived from the joint probability density Eq. 11. Since the
exponent is quadratic in ΦNL in our approximation, the conditional PDF of ΦNL given d and θ is Gaussian. Therefore,
we can calculate mean and variance of the distribution via differentiating the expression,

〈ΦNL〉 = 〈(ΦNL − 〈ΦNL〉)
2〉 M †B†N−1d

〈(ΦNL − 〈ΦNL〉)
2〉 =

[

M †B†N−1BM + P−1
Φ

]−1
. (12)

As a next step, we derive the conditional probability distribution of fNL for given ΦNL. This expression is not affected
by the approximation and can be derived from a marginalization over ΦL,

P (fNL|ΦNL, θ) =

∫

dΦL P (fNL|ΦL,ΦNL)P (ΦL|θ)

=

∫

dΦL δ(ΦNL − ΦL − fNL(Φ
2
L − 〈Φ

2
L〉))P (ΦL|θ) . (13)

Using Eq. 7, we can calculate the integral and obtain

P (fNL|ΦNL, θ) ∝

∣

∣

∣

∣

∣

∏

i

1

1 + 2fNL(Φ̃L)i

∣

∣

∣

∣

∣

e−1/2 Φ̃†
L
P−1

Φ
Φ̃L , (14)

where Φ̃L is a function of fNL and can be regarded as inversion of Eq. 2,

Φ̃L =
1

2fNL

[

−1 +
√

1 + 4fNL(ΦNL + fNL〈Φ2
L〉)

]

. (15)

Note that we can resolve the ambiguity in sign in the weakly non-Gaussian limit (Babich 2005). Because the absolute
value of the elements of the second solution is typically larger by orders of magnitude, the probability of its realization
is strongly disfavored by the prior P (ΦL). The factor of suppression is typically less than 10−1000 and further vanishing
with decreasing fNL.

After setting up the conditional densities, we now can sample from the distributions iteratively. First, we draw ΦNL

from a Gaussian distribution using Eqs. 12. Then, fNL can be sampled according to Eq. 14 using the value of ΦNL derived
in the preceding step. Thus, the sampling scheme reads as

Φi
NL ←֓ P (ΦNL|d, θ)

f i
NL ←֓ P (fNL|Φ

i
NL, θ) . (16)

Note that this is not Gibbs sampling. For a fixed set of cosmological parameters, we can chain together samples
from the conditional densities above, producing independent fNL samples. The efficiency of such a direct Monte Carlo
sampler is therefore expected to be much higher than that of a Gibbs sampler, which, in the general case, would produce
correlated samples.

As an extension of the sampling scheme presented so far, we sketch an approach to account for uncertainties in
cosmological parameters and foreground contributions. Complementing the scheme (Eqs. 16) by an additional step
allows to take into account the error in the parameters θ,

Φi
NL ←֓ P (ΦNL|d, θ

i−1)

f i
NL ←֓ P (fNL|Φ

i
NL, θ

i−1)

θi ←֓ P (θ|d, f i
NL) , (17)
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where the last equation updates the cosmological parameters that can be sampled from the data by means of standard
Monte Carlo analysis tools1. Now, the scheme formally reads as a Gibbs sampler and can in principle take into account the
correlation among fNL and the other cosmological parameters exactly. In practice, however, the impact of a non-vanishing
fNL is expected to be negligible, i.e. P (θ|d, fNL) ≈ P (θ|d). Likewise, we can allow for an additional sampling step to deal
with foreground contributions, e.g. from synchrotron, free-free, and dust emission. Foreground templates f sync, free, dust,
that are available for these sources, can be subtracted with amplitudes csync, free, dust which are sampled from the data
in each iteration, ci ←֓ P (c|d, f sync, free, dust, θi) (Wandelt et al. 2004). Alternatively, component separation techniques
could be used to take foreground contaminants into account without the need to rely on a priori defined templates
(Eriksen et al. 2006). The traditional approach to deal with point sources is to mask affected regions of the sky to exclude
them from the analysis. Discrete object detection has been demonstrated to be possible within a Bayesian framework
(Hobson & McLachlan 2003; Carvalho et al. 2009), and can be fully included into the sampling chain. However, as sources
are only successfully detected down to an experiment-specific flux limit, a residue-free removal of their contribution is in
general not possible.

As the angular resolution of sky maps produced by existing CMB experiments like WMAP is high and will further
increase once data of the Planck satellite mission becomes available, computational feasibility of an analysis tool is an

issue. The speed of our method in a full implementation is limited by harmonic transforms which scale as O(N
3/2
pix ) and

are needed to calculate the primordial perturbations at numerous shells at distances from the cosmic horizon to zero.
Thus, it shows the same scaling relation as fast cubic estimators (Komatsu et al. 2005; Yadav et al. 2007), albeit with a
larger prefactor.

4. Implementation and Discussion

To verify our results and demonstrate the applicability of the method, we implemented a simple 1-D toy model. We
considered a vector ΦL of random numbers generated from a heptadiagonal covariance matrix with elements

PΦ =









. . .
. . . 0 0.1 0.2 0.5 1.0 0.5 0.2 0.1 0 . . .

. . .









× 10−10 . (18)

Then, a data vector with weak non-Gaussianity according to Eq. 2 was produced and superimposed with Gaussian white
noise. Constructed in this way, it is of the order O(10−5), thus the amplitude of the resulting signal s is comparable to
CMB anisotropies.

The data vector had a length of 106 pixels; for simplicity, we set the beam function B and the linear transformation
matrix M to unity. This setup allows a brute force implementation of all equations at a sufficient computational speed.
We define the signal-to-noise ratio (S/N) per pixel as the standard deviation of the input signal divided by the standard
deviation of the additive noise. It was chosen in the range 0.5-10 to model the typical S/N per pixel of most CMB
experiments. To reconstruct the signal, we draw 1000 samples according to the scheme in Eq. 16.

Whereas the ΦNL can be generated directly from a simple Gaussian distribution with known mean and variance, the
construction of the fNL is slightly more complex. For each ΦNL, we ran a Metropolis Hastings algorithm with symmetric
Gaussian proposal density with a width comparable to that of the target density and started the chain at fNL = 0.
We run the fNL chain to convergence. We ensured that after ten accepted steps the sampler has decorrelated from the
starting point. Our tests conducted with several chains run in parallel give 1 < R < 1.01, where R is the convergence
statistic proposed by Gelman & Rubin (1992). We record the last element of the chain as the new fNL sample.

Finally, we compared the obtained sets of values {Φi
NL}, {f

i
NL} to the initial data. An example is shown in Fig. 1,

where we illustrate the reconstruction of a given potential ΦNL for different signal-to-noise ratios per pixel. The 1 − σ
error bounds are calculated from the 16 % and 84 % quantile of the generated sample. Typical posterior densities for
fNL as derived from the sample can be seen in Fig. 2. We considered the cases fNL = 0 and fNL = 200 with S/N = 10
per pixel and show the distributions generated from 1000 draws. The derived posterior densities possesses a mean value
of fNL = 6 ± 40 and fNL = 201 ± 40, respectively. The width of the posterior is determined by both the shape of
the conditional PDF of fNL for a given ΦNL and the shift of this distribution for different draws of ΦNL (Fig. 3). The
analysis of several data sets indicate that the approximation does not bias the posterior density if the data are decisive.
We illustrate this issue in the left panel of Fig. 4, where we show the distribution of the mean values 〈fNL〉 of the
posterior density constructed from 100 independent simulations. For an input value of fNL = 200 we derive a mean value
〈fNL〉 = 199.3±34.8 and conclude that our sampler is unbiased for these input parameters. For a high noise level, however,
the ΦNL can always be sampled such that they are purely Gaussian fields and thus the resulting PDF for fNL is then
shifted towards fNL = 0. This behavior is demonstrated in Fig. 5 where we compare the constructed posterior density
for the cases S/N = 10 and S/N = 0.5 per pixel. If the noise level becomes high, the approximated prior distribution
dominates and leads to both, a systematic displacement and an artificially reduced width of the posterior. Therefore,
the sampler constructed here is conservative in a sense that it will tend to underpredict the value of fNL if the data are
ambiguous.

1 E.g. as described in Lewis & Bridle (2002)



6 Elsner et al.: Probing local non-Gaussianities

5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3
x 10

−5

N
 i

φ  N
L

5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3
x 10

−5

N
 i

φ  N
L

Fig. 1. Examples of reconstructed potentials ΦNL. Left panel: The input parameters for the calculation were fNL = 200
and S/N = 1. Right panel: Analysis of the same data set for a signal-to-noise ratio of S/N = 10. For clarity, we show only
40 elements of the ΦNL-vector (thick solid line) and its reconstruction (thin solid line) as well as the 1− σ error bounds
(dashed lines). As the difference between ΦNL and the linear potential ΦL is very small, ΦL can not be distinguished
from ΦNL in this plot. In both cases 1000 samples were drawn.

An example of the evolution of the drawn fNL samples with time can be seen in Fig. 6, where we in addition show
the corresponding autocorrelation function as defined via

ξ(∆N) =
1

N

N
∑

i

(f i
NL − µ) · (f i+∆N

NL − µ)

σ2
, (19)

where N is the length of the generated fNL chain with mean µ and variance σ2. The uncorrelated samples of fNL ensure
an excellent mixing of the chain resulting in a fast convergence rate.

5. Optimality

In a frequentist analysis, parameter inference corresponds to finding an estimator that enables to compute the most
probable value of the quantity of interest as well as a bound for the error. Ideally, the estimator is unbiased and optimal,
i.e. it’s expectation value coincides with the true value of the parameter and the error satisfies the Cramer-Rao bound.
Contrary, in a Bayesian approach, one calculates the full probability distribution of the parameter directly. Strictly
speaking, optimality is therefore an ill-defined term within the Bayesian framework. All we have to show is that the
approximation adopted in Eq. 11 does not affect the outcome of the calculation significantly. Note that the simplification
corresponds to imposing the prior of a purely Gaussian data set. In the case of the CMB, this is a very reasonable
assumption because up to now no detection of fNL has been reported.

To investigate the effects of the approximation, we checked the dependence of the width of the posterior distribution
on fNL by running a set of simulations with varying input values fNL = 0, 50, 100, 150, 200, 250. The estimated standard
deviation σfNL

of the drawn fNL samples, each averaged over 10 simulation runs, are depicted in the right panel of Fig. 4.
Contrary to the KSW estimator that shows an increase of σfNL

with fNL, we find no such indication of sub-optimal
behavior in the relevant region of small non-Gaussianity. In particular, as the width of the distribution stays constant
in the limit fNL → 0 where our approximated equations evolve into the exact expressions, we conclude that the adopted
simplification does not affect the result significantly.

This finding can also be interpreted from a different point of view: It is possible to define a frequentist estimator for
fNL based on the mean of the posterior distribution. Our results indicate that such an estimator is unbiased in the high
signal-to-noise regime.

We apply an additional test in the next section where we compare our sampling algorithm to a slower but exact
scheme.

6. Hamiltonian Monte Carlo sampling

In addition to the sampling technique presented above, we tested whether an exact Hamiltonian Monte Carlo (HMC)
sampler is applicable to the problem. Within this approach one uses the methods developed in classical mechanics to
describe the motion of particles in potentials. The quantity of interest is regarded as the spatial coordinate of a particle
and the potential well corresponds to the PDF to evaluate (Duane et al. 1987). To each variable (fNL,ΦL,1, . . . ,ΦL,n),
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Fig. 2. Examples of a constructed posterior distribution for fNL. The input parameters used in this runs were Npix = 106,
S/N = 10 and fNL = 0 (left panel) or fNL = 200 (right panel). For each parameter combination 1000 samples were drawn.
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Fig. 3. Build-up of the posterior distribution of fNL. We depict the conditional probability distributions P (fNL|ΦNL, θ)
for several realizations of ΦNL (left panel) and the constructed posterior after 1000 drawn samples (right panel). The
input parameters were chosen to be Npix = 106, fNL = 0, and S/N = 2.

a mass and a momentum is assigned and the system is evolved deterministically from a starting point according to the
Hamilton equations of motion.

The applicability of HMC sampling techniques to cosmological parameter estimation has been demonstrated in Hajian
(2007), and the authors of Taylor et al. (2008) compared HMC with Gibbs sampling for CMB power spectrum analysis.
To apply HMC sampling to fNL inference, we deduced the expression of the Hamiltonian

H =
∑

i

p2i
2mi

− log[P (d,ΦL, fNL, θ)] , (20)

where the potential is related to the PDF as defined in Eq. 8. The Hamilton equations of motion,

dxi

dt
=

∂H

∂pi
,

dpi
dt

= −
∂H

∂xi
=

∂ log[P (d,ΦL, fNL, θ)]

∂xi
, (21)
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Fig. 4. Properties of the sampler. Left panel: Shown is the distribution of the derived mean values of fNL from 100
simulations for a fiducial value of fNL = 200. Right panel: We display the estimated standard deviation σfNL

of the drawn
fNL samples as a function of fNL. Each data point is averaged over 10 simulations. The input parameters used in this
runs were Npix = 106 and S/N = 10, in each simulation 1000 samples were drawn.
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the distribution becomes too narrow and systematically shifted towards fNL = 0. Right panel: For comparison, we show
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Fig. 7. Performance of the Hamilton Monte Carlo sampler. Left panel : Analysis of the data set of Fig. 3 using the HMC
sampler. Here, 15 000 samples were draw. Right panel : The autocorrelation function of fNL.

are integrated for each parameter {xi; pi} = {fNL, ΦL; pfNL
, pΦL

} using the leapfrog method with step size δt,

pi(t+
δt

2
) = pi(t) +

δt

2

∂ log[P (d,ΦL, fNL, θ)]

∂xi

∣

∣

∣

∣

x(t)

xi(t+ δt) = xi(t) +
δt

mi
pi(t+

δt

2
)

pi(t+ δt) = pi(t+
δt

2
) +

δt

2

∂ log[P (d,ΦL, fNL, θ)]

∂xi

∣

∣

∣

∣

x(t+δt)

. (22)

The equations of motion for xi are straightforward to compute, as they only depend on the momentum variable. To
integrate the evolution equations for the pi, we derive

∂ log[P (d,ΦL, fNL, θ)]

∂fNL
= (Φ2

L − 〈Φ
2
L〉)

†M †B†N−1(d−BMΦL − fNLBM(Φ2
L − 〈Φ

2
L〉)) ,

∂ log[P (d,ΦL, fNL, θ)]

∂ΦL
≈M †B†N−1(d−BMΦL)− P−1

Φ ΦL + 2fNL diag(M
†B†N−1d)ΦL +O(Φ2

L) , (23)

where we have truncated the gradient in the latter equation at order O(Φ2
L). The final point of the trajectory is accepted

with probability p = min(1, exp[−∆H ]), where ∆H is the difference in energy between the end- and starting point. This
accept/reject step allows us to restore exactness as it eliminates the error introduced by approximating the gradient in
Eq. 23 and by the numerical integration scheme. In general, only accurate integrations where ∆H is close to zero result
in high acceptance rates. Furthermore, the efficiency of a HMC sampler is sensitive to the choice of the free parameters
mi, which corresponds to a mass. This issue is of particular importance if the quantities of interest possess variances
varying by orders of magnitude. Following Taylor et al. (2008), we chose the masses inversely proportional to the diagonal
elements of the covariance matrix which we reconstructed out of the solution of the sampling scheme from Sect. 3. We
initialized the algorithm by performing one draw of ΦNL from the conditional PDF P (ΦNL|d, θ) and setting fNL = 0. The
outcome of repeated analyses of the data set presented in Fig. 3 is shown in Fig. 7. The consistency of the distributions
confirms the equivalence of the two sampling techniques in the high signal-to-noise regime. However, convergence for the
HMC is far slower, even for the idealized choice for mi and a reasonable starting guess, as can be seen from the large
width of the autocorrelation function (see right panel of Fig. 7).

We conclude, therefore, that the direct sampling scheme presented in Sect. 3 is more efficient than HMC when applied
to the detection of local non-Gaussianities in the high signal-to-noise regime. However, as shown in the rightmost panel
of Fig. 5, the exact analysis using a HMC algorithm remains applicable at high noise level.

7. Extension to realistic data

Applying the method to a realistic CMB data set requires recovering the primordial potential ΦL on shells at numerous
distances ri from the origin to the present time cosmic horizon. Thus, the product of the transfer matrix M with the
potential transforms to

MΦ→
∑

i

MiΦ(ri) . (24)
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Here, the matrix M projects a weighted combination of the Φ(ri) at different radii to a resulting two dimensional signal
map s. The resolution of the r-grid can be coarser where the transfer functions for radiation are close to zero and must
be finer at the distances of recombination and reionization. Another modification concerns the covariance matrix PΦ of
the potential. Now it additionally describes the correlation of Φ on distinct shells at different distances,

Φ†P−1
Φ Φ→

∑

i,j

Φ(ri)P
−1
Φ(ri),Φ(rj)

Φ(rj) , (25)

and can be calculated from the primordial power spectrum P(k) predicted by inflation

PΦ(ri),Φ(rj) ℓ =
2

π

∫

k2dkP(k) jℓ(k r1) jℓ(k r2) . (26)

To tighten the constraints on Φ, polarization information can be included into the analysis as well simply by replacing
the temperature by the polarization transfer function in the expression for M . We plan to study the application of our
methods to realistic CMB data in a future publication.

The computational speed of a complete implementation is limited by harmonic transforms that scale as O(N
3/2
pix ).

8. Summary

In this paper, we developed two methods to infer the amplitude of the non-Gaussianity parameter fNL from a data set
within a Bayesian approach. We focused on the so called local type of non-Gaussianity and derived an expression for the
joint probability distribution of fNL and the primordial curvature perturbations, Φ. Despite the methods are of general
validity, we tailored our discussion to the case example of CMB data analysis.

We developed an exact Markov Chain sampler that generates correlated samples from the joint density using the
Hamiltonian Monte Carlo approach. We implemented the HMC sampler and applied it to a toy model consisting of sim-
ulated measurements of a 1-D sky. These simulations demonstrate that the recovered posterior distribution is consistent
with the level of simulated non-Gaussianity.

With two approximations that exploit the fact that the non-Gaussian contribution to the signal is next order in per-
turbation theory, we find a far more computationally efficient Monte Carlo sampling algorithm that produces independent
samples from the fNL posterior. The regime of applicability for this approximation is for data with high signal-to-noise
and weak non-Gaussianity.

By comparison to the exact HMC sampler, we show that our approximate algorithm reproduces the posterior location
and shape in its regime of applicability. If non-zero fNL is not supported by the data the method is biased towards
Gaussianity. The approximate posterior more strongly prefers zero fNL compared to non-zero values than the exact
posterior, as expected given the nature of the approximations which Gaussianize the prior. This method is therefore only
applicable if the data contains sufficient support for the presence of non-Gaussianity essentially overruling the preference
for Gaussianity in our approximate prior.

Our efficient method enables us to perform a Monte Carlo study of the behavior of the posterior density for our toy
model data with high signal-to-noise per pixel. We found that the width of the posterior distribution does not change as
a function of the level of non-Gaussianity in the data, contrary to the frequentist estimator where there is an additional,
fNL dependent, variance component (Creminelli et al. 2007; Liguori et al. 2007). Our results suggest that this may be an
advantage of the Bayesian approach compared to the frequentist approach, motivating further study of the application
of Bayesian statistics to the search for primordial local non-Gaussianity in current and future CMB data.

We close on a somewhat philosophical remark. Even though we chose a Gaussian prior approximation for expediency,
it may actually be an accurate model of prior belief for many cosmologists since canonical theoretical models predict
Gaussian perturbations. From that perspective our fast, approximate method may offer some (philosophically interesting)
insight into the question “what level of signal-to-noise in the data is required to convince someone of the presence of
non-Gaussianity whose prior belief is that the primordial perturbations are Gaussian?”
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