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In the delayed explosion scenario of core-collapse supernovae (SNe), the accretion phase shows
pronounced convective overturns and a low-multipole hydrodynamic instability, the standing accre-
tion shock instability (SASI). These effects imprint detectable fast time variations on the emerging
neutrino flux. Among existing detectors, IceCube is best suited to this task, providing an event
rate of ∼ 1000 ms−1 during the accretion phase for a fiducial SN distance of 10 kpc, comparable
to what could be achieved with a megaton water Cherenkov detector. If the SASI activity lasts
for several hundred ms, a Fourier component with an amplitude of 1% of the average signal clearly
sticks out from the shot noise. We analyze in detail the output of axially symmetric hydrodynamical
simulations that predict much larger amplitudes up to frequencies of a few hundred Hz. If these
models are roughly representative for realistic SNe, fast time variations of the neutrino signal are
easily detectable in IceCube or future megaton-class instruments. We also discuss the information
that could be deduced from such a measurement about the physics in the SN core and the explosion
mechanism of the SN.

PACS numbers: 14.60.Pq, 97.60.Bw

I. INTRODUCTION

The delayed explosion scenario remains the standard
paradigm for the core collapse supernova (SN) mecha-
nism. After core bounce a shock wave forms that stalls at
a typical radius of 100–200 km while matter keeps falling
in, forming a standing accretion shock that can last for
several hundred ms before the shock is re-launched, pre-
sumably after sufficient neutrino energy deposition in the
region behind the shock. Two- and three-dimensional
hydrodynamic simulations reveal convective instabilities
that quickly develop into large-scale convective overturns
and a strong dipole oscillation of the neutron star against
the “cavity” formed by the standing shock, the standing
accretion shock instability (SASI) [1–7].

During the accretion phase, neutrino emission is partic-
ularly large, being powered primarily by the gravitational
energy of the in-falling material. In the SASI scenario the
neutrino emission is strongly modulated. As an example
we show in Fig. 1 the ν̄e luminosity as a function of time,
averaged over one hemisphere, from the two-dimensional
simulations of Marek, Janka and Müller (2009) [6]. As
noted by these authors, such large flux variations could
well become detectable in the high-statistics neutrino sig-
nal of the next galactic SN, revealing direct evidence for
the predicted SASI mode and convective overturns.

The detection of fast time variations, or equivalently,
identifying high-frequency Fourier modes in the signal,
is limited by the number of registered events: A sig-
nificant signal must stick above the shot noise caused
by the fluctuating event rate, so a large counting rate
is crucial. Among the existing or near-future detectors,
IceCube is the most promising because it detects a large

number of Cherenkov photons triggered by neutrinos. At
most one single Cherenkov photon is picked up from a
given neutrino, so every photon tags the arrival time of
a different neutrino. For our SN example of Fig. 1, as-
sumed at a fiducial distance of 10 kpc, the maximum
photon detection rate is roughly 1000 ms−1, similar to
the intrinsic background rate. On the other hand, for
Super-Kamiokande (fiducial volume 22.5 kt) the corre-
sponding neutrino detection rate is approximately two
orders of magnitude smaller, although essentially back-
ground free. Based on this simple estimate, we use Ice-
Cube as our benchmark detector. On the other hand, a
megaton-class water Cherenkov detector would achieve
neutrino detection rates similar to IceCube and in addi-
tion would provide event-by-event energy information, a
quantity also showing strong fluctuations. The potential
of such a detector will be studied elsewhere.
A possible limiting factor to detecting fast signal vari-

ations is time-of-flight dispersion caused by neutrino
masses. The delay of arrival times is

∆t = 0.57 ms
( m

eV

)2
(

30 MeV

E

)2 (

D

10 kpc

)2

. (1)

We will see that signal variations may be detectable up
to a few hundred Hz, corresponding to time scales of sev-
eral ms. So even for eV neutrino masses, arrival time
dispersion would be a marginal effect. Moreover, current
cosmological limits on the overall neutrino mass scale are
approximately 0.2 eV [8], very similar to the sensitivity
of the ongoing KATRIN experiment [9]. Assuming KA-
TRIN will confirm this limit, arrival time dispersion of
SN neutrinos will be completely irrelevant in our con-
text. Should KATRIN discover eV-scale neutrino masses
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FIG. 1: Top: ν̄e luminosity of our baseline SN model sampled
at 1 ms intervals. Red line: North hemispheric average. Black
line: Moving average with a Gaussian window function (σ =
7 ms). Middle: ν̄e rms energy. Red and black lines as the
panel above. Bottom: Detection rate in IceCube. Also shown
is the 1σ range caused by shot noise, assuming a bin width
of 1 ms.

in violation of cosmological limits one could return to this
study and include time-of-flight dispersion.

In Sec. II we review the detector response of IceCube
to SN neutrinos. In Sec. III we use the output from the
numerical models of Marek, Janka and Müller (2009) [6]
and study the signal power as a function of frequency
relative to the detector shot noise. In Sec. IV we briefly
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FIG. 2: Same as Fig. 1 using the EoS of Hillebrandt and
Wolff.

discuss the fluctuations of neutrino energies relative to
luminosity variations. In Sec. V we consider the modi-
fication caused by a stiffer nuclear equation of state. In
Sect. VI we interpret the results of our analysis on the
basis of present explosion models and our understanding
of the physics relevant in the SN core. We also briefly
address the question what could be learned if SASI and
convective neutrino signal variations were detected. We
discuss and summarize our findings in Sec. VII. In Ap-
pendix A we derive the detector shot noise and define the
normalization of our Fourier transform of binned data.
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II. DETECTOR MODEL

The IceCube detector, soon to be completed at the
South Pole, currently provides by far the largest detec-
tion rate for the next nearby SN. For our sensitivity fore-
cast we use a somewhat schematic model for its response
to a SN neutrino signal. For the finished detector with
4800 optical modules, the latest efficiencies provide a de-
tection rate of Cherenkov photons originating from the
dominant inverse beta reaction ν̄e+p → n+e+ of [10–12]

Rν̄e = 114 ms−1 Lν̄e

1052 erg s−1

(

10 kpc

D

)2 (
Erms

15 MeV

)2

.

(2)
Here we use the definition

E2
rms =

〈E3〉
〈E〉 , (3)

where the average is to be taken over the neutrino distri-
bution function. This quantity plays the role of an rms
energy relative to the energy spectrum, not the flux spec-
trum. Other authors use the definition Erms =

√

〈E2〉,
which is perhaps more appropriately called the rms en-
ergy, but our definition is what appears in the Ice-
Cube rate and thus will be used. In other words, be-
cause the Cherenkov light measures the neutrino en-
ergy deposition in ice, Lν̄e and Erms are the most nat-
ural parameters to describe the instantaneous neutrino
flux. Our estimate of the photon count rate Eq. (2)
uses an approximate inverse beta cross section of σ =
9.52× 10−44 cm2 (Eν̄e/MeV)2 to obtain a simple scaling
behavior with energy.
For low-energy neutrino detection, IceCube is a very

coarse detector, implying that from a given neutrino it
picks up at most one Cherenkov photon. Assuming more
closely spaced optical modules, the average photon de-
tection rate remains unchanged, but the fluctuations in-
crease in that several detected photons may have been
triggered by the same neutrino. This increased shot
noise reduces the capability to detect fast time varia-
tions. In the extreme case of a densely instrumented
detector such as Super-Kamiokande, one measures so
many photons from a given neutrino that one can re-
construct detailed energy and directional information, at
the expense of relatively few neutrino events and there-
fore much larger shot noise. In this sense the apparent
weakness of IceCube for low-energy neutrino detection
is actually a virtue for diagnosing fast time variations.
Since for IceCube a single photon detection is identical
with detecting the arrival time of a neutrino (except for
background), we use the term “event” interchangeably
for “photon detection” or “neutrino detection.”
For our SN models, a typical rate during the accretion

phase is around 103 ms−1. This is to be compared with
the estimated IceCube background rate of [11]

Rbkgd = 1.34× 103 ms−1 . (4)

This is the dark current of 280 s−1 per optical module,
multiplied with 4800 optical modules of the final detec-
tor to be completed by the end of this year. Therefore,
for a SN at the fiducial distance, the signal and back-
ground rates are comparable, but the background domi-
nates. Therefore, it is essentially the shot noise of the
background that limits the detectability of fast signal
variations unless the SN is closer.
IceCube samples the data in 1.6384 ms bins whereas

low-energy water Cherenkov or scintillator detectors reg-
ister the times tj of every event with high precision. The
bin width, or the absence of binning, only affects the sen-
sitivity to frequencies that we will see are too high to be
detected. Therefore, the details of signal binning do not
enter our discussion. We have found it convenient to use
1 ms as a nominal bin width and also as a sampling rate
of the numerical SN results.
The main obstacle to detecting fast time variations is

shot noise (Poisson fluctuations of the limited number of
events). In the lower panel of Fig. 1 we show as a vertical
bar the 1 σ fluctuation per 1 ms bin for an event rate of
900 ms−1. Therefore, it is evident that with IceCube one
can follow the overall neutrino light curve with excellent
precision.
To estimate the required amplitude for a fast periodic

variation to be detectable, we model the signal as a se-
quence of arrival times tj with j = 1, . . . , N . The Fourier
transform of this signal (frequency f) is

g(f) =

N
∑

j=1

e−i2πftj (5)

with the spectral power G(f) = |g(f)|2. The detection
rate has units of inverse time, so the Fourier components
are dimensionless. If the sequence of events is completely
random, i.e. the times tj sample a uniform distribution
on a given time interval, one can show (Appendix A) that

〈Gf 6=0〉
Gf=0

=
1

N
(6)

and we note that G(0) = N2.
Next we assume the signal has a frequency fa im-

printed upon it, i.e. it is proportional to [1+a cos(2πfat)].
The power of this signal vanishes everywhere except
at f = 0 and f = ±fa. The relative power is
G(±fa)/G(0) = a2/4. Therefore, an imprinted cosine

variation with the amplitude a = 2/
√
N is equal to the

shot noise. Assuming that the accretion phase lasts for
400 ms and using the background rate of Eq. (4) as the
dominant source of shot noise, the number of events is
N = 5.4 × 105 and the shot-noise level corresponds to
a cosine amplitude of a = 3 × 10−3. Of course, to stick
reliably above background, a Fourier component would
need to be somewhat larger. In other words, for a SN at
10 kpc one can expect to detect signal variations with an
amplitude roughly on the 1% level of the average rate.
The signal variations shown in the lower panel of Fig. 1
would easily show up in IceCube.
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III. NUMERICAL SUPERNOVA SIGNAL

A. Description of the model

To make this rough estimate more concrete, we next
use a numerical simulation to compare the expected sig-
nal fluctuations with the sensitivity of IceCube. The
two-dimensional (axially symmetric) simulations which
this discussion is based on were performed with the
Prometheus-Vertex Code [13, 14] and the simulations
were already discussed in detail in Ref. [6]. We therefore
repeat only a few essential aspects of both the numerical
treatment and the simulation runs and refer to Refs. [5, 6]
for more complete information.
The hydrodynamic part of the code is based on a

conservative and explicit Eulerian implementation of a
Godunov-type scheme with higher-order spatial and tem-
poral accuracy. It solves the nonrelativistic conservation
equations for the stellar fluid, whose self-gravity is de-
scribed by an “effective relativistic potential” [15]. It
provides a sufficiently accurate approximation of general
relativistic corrections [16].
The neutrino transport solver, which is coupled to the

hydrodynamics module via lepton number, energy and
momentum source terms, is computed with a “ray-by-
ray plus” scheme [14]. It accounts for the full neutrino-
energy dependence in the transport but assumes the neu-
trino flux at every point to be radial (i.e. the neutrino
phase space distribution function is assumed to be axi-
ally symmetric around the radial direction), which is nu-
merically less demanding and more efficient than a full
multi-dimensional version of the transport.
The simulations used here are based on the progeni-

tor model s15s7b2 from Woosley and Weaver [17], and
is representative for the collapse of stars with progeni-
tor masses around 15M⊙. The dense proto-neutron star
matter is described by the equation of state (EoS) of Lat-
timer and Swesty [18], which leads to a radius of 12 km for
a cold neutron star with a gravitational mass of 1.4M⊙.
We also consider briefly an example with the EoS of Hille-
brandt and Wolff that is considerably stiffer [19]. Unless
otherwise noted, our discussion always refers to the Lat-
timer and Swesty case as a benchmark.
The two-dimensional model was computed under the

assumption of axial symmetry and covers the region be-
tween north and south pole with 192 equally spaced an-
gular grid points. The model was evolved in total for
about 600 ms from the onset of the collapse to a time of
about 450 ms after the formation of the SN shock front
and shows in the postbounce evolution a strong SASI
sloshing activity of the SN shock front.
The oscillations of the SN shock front due to SASI

activity and convective overturn cause luminosity fluctu-
ations by modulating the mass accretion on the proto-
neutron star: a strong shock retraction leads to a tran-
sient increase of the gas flow towards the neutron star and
to the compression and enhanced cooling of the matter
(i.e. enhanced neutrino emission) near the neutron star

surface [6]. On the other hand, a shock expansion has
the opposite effect because it causes a deceleration of the
infall or even outward acceleration of material that is ac-
creted through the shock front. Thus shock expansion
stretches the time this matter stays in the gain layer and
less cooling by neutrino emission occurs.
From the 192 angular rays of the models, we used in

the post processing the luminosity for all species νe, ν̄e
and νx and the corresponding 〈E〉rms on every second
angular bin and extracted the information in steps of
about 0.5 ms that were subsequently resampled in ex-
act 1 ms steps. To illustrate the general appearance and
directional differences of the fluctuations, we combined
the angular rays into 5 directional averages: North po-
lar, equatorial, south polar, and an intermediate wedge
between each pole and equator, each of them covering a
zenith-angle range of 36◦. For ν̄e, the luminosity, rms
energy and IceCube detection rate of the 5 wedges are
shown in Fig. 3. Of course, these plots have no direct
observational significance and merely serve to illustrate
the angular variation of the SN output. We clearly see
that fluctuations in the energy and luminosity are larger
along the polar directions than at the equator. In Fig. 4
we show the same information for the run with the EoS of
Hillebrandt and Wolff, on which we will comment later.

B. Fourier transform and spectral power

In order to assess the detectability of such fluctuations
we calculate the Fourier transform of the detection rate,
at first for the run with the Lattimer and Swesty EoS. To
simplify this process we have resampled the data in exact
1 ms intervals over a range of 400 ms, discarding a few ms
of data at the beginning and end of the original sequence
that covered the interval 10.5 ms to 417 ms post bounce.
We take the Fourier transform on the full 400 ms inter-
val, however applying a Hann window function to reduce
edge effects (Appendix A). From Fig. 3 it is apparent
that fast time variations commence in earnest at about
150 ms postbounce and we could have left out the initial
phase of the signal to reduce the number of background
events within the signal region. On the other hand, the
window function anyway suppresses the signal portion at
the edges and so we have kept the full 400 ms range.
The power spectra are in absolute units, not relative to

the average signal. In our normalization the Fourier am-
plitude at f = 0 is Nevents/Nbins, i.e. the average rate per
bin (Appendix A). In this way the average power does
not change if we consider sub–samples of the data for a
shorter duration, keeping the individual bin width fixed.
The power at f = 0 is therefore (Nevents/Nbins)

2. Since a
typical event rate is 1000 ms−1 and our bin width is 1 ms,
the power spectrum at f = 0 is around 106 and much
smaller at other frequencies. Using a 400 ms time inter-
val implies that the natural frequency spacing is 2.5 Hz,
and based on our 1 ms binning the largest frequency that
can be resolved is 500 Hz (Nyquist frequency).
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FIG. 3: Luminosity, rms energy and IceCube event rate based
on the ν̄e fluxes of our model with Lattimer and Swesty
EoS. The 96 angular rays have been combined into five aver-
ages ranging from north (top curve) to south (bottom curve),
where in each panel the curves are offset relative to each other
by 20, 10 and 800 units of the vertical axes, respectively.

Based on the background rate of Eq. (4), a signal du-
ration of τ = 400 ms and a Hann window function, the
shot noise power of the detector dark current is given
in Eq. (A12) and is found to be 10.08 in the described
units where the zero-frequency power is (Nevents/Nbins)

2.
In the subsequent plots this power level is shown as a
horizontal grey line.
The modification of our power spectra plots as a func-
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FIG. 4: Same as Fig. 3 for a run with the EoS of Hillebrandt
and Wolff.

tion of SN distance D is not entirely trivial. If the SN
is further away than 10 kpc, we lose event rate quadrat-
ically with distance. Since we are showing the power
spectrum, another power of 2 arises. Therefore, relative
to the fixed IceCube dark current (the horizontal line),
the power spectra are lowered by a factor (10 kpc/D)4.
The distance distribution of galactic SNe is very broad,
but declines quickly beyond about 20 kpc [20]. At this
pessimistic distance, the signal power spectrum would
be lowered by a factor of 16, whereas the shot noise level
would remain fixed.
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model (EoS of Lattimer and Swesty) in 2.5 Hz increments.
Blue line (upper curve): Average single-ray power spectrum.
Red line (lower curve): northern hemispheric average. Hori-
zontal line: Shot noise from IceCube dark current.

On the other hand, if the SN is closer than 10 kpc,
the IceCube dark current quickly becomes irrelevant.
The shot noise is determined by the number of detected
SN events which increases with decreasing distance as
(10 kpc/D)2 and therefore the shot-noise level increases
with this factor. The signal power spectrum increases
with the fourth power (10 kpc/D)4 as before, so relative
to the shot-noise level the signal power increases quadrat-
ically with decreasing distance as (10 kpc/D)2.

C. Hemispheric averaging

As a first example we show in Fig. 5 as a blue line (up-
per curve) the power spectrum of the event rate based
on a single ray. To this end we have taken an ensem-
ble average of the power spectra of all 96 angular rays
with equal weights, treating each one as if it were re-
sponsible for the full 4π neutrino emission and thus for
the full detector signal. Taking a true single ray instead
of an ensemble average shows the same trend with much
greater noise and of course with directional differences.
(Such a single-ray treatment would correspond to the as-
sumption that all neutrinos are emitted strictly in the
radial direction and the observer receives neutrinos just
from one spot on the stellar surface.) Up to the Nyquist
frequency of 500 Hz the single-ray power stays far above
the background and thus would be clearly detectable.
The true signal is caused by the integrated emission

over the hemisphere facing the detector. In principle,
it could be reconstructed from the detailed angular in-
formation of the neutrino emission as provided by our
numerical solution of the neutrino transport. However,
in view of the approximative nature of 2D models and of
the “ray-by-ray plus” transport treatment (see Sec. III.A)
we preferred to avoid processing the huge amount of cor-
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FIG. 6: Same as Fig. 5 with smoothing by a moving average
with a Gaussian window function of width σ = 4 Hz. Average
power of all 96 single rays (blue), northern hemispheric aver-
age (red), and equatorial hemispheric average (black), from
top to bottom.

responding data. As a simplification we assumed that
each surface element radiates isotropically with an en-
ergy spectrum according to the local conditions. In other
words, we added the computed local fluxes, weighted by
the projected area of the surface elements as seen by the
observer. Taking the northern hemispheric average in
this sense leads to the red (lower) curve in Fig. 5.
The spectral power declines much faster with increas-

ing frequency than in the single-ray case. This is ex-
pected because high-frequency luminosity variations are
due to small spatial scales of the “boiling” medium
whereas the lowest frequencies are due to the largest-scale
convective overturns and SASI activity. The variations
on small spatial scales are not strongly correlated and
therefore reduced when taking an average over the en-
tire hemisphere whereas the large-scale motions are cor-
related and not averaged away.
The hemispheric power spectrum is quite noisy and the

overall trend is better seen in a smoothed version shown
in Fig. 6. Here we show the same information based on
a moving average with a Gaussian window function with
σ = 4 Hz. In addition we show the equatorial average as
a black curve. It is the lowest curve and has significantly
less power than the northern case (which is similar to the
southern one). In this simulation the large-scale motion
is essentially along the symmetry axis of the simulation,
explaining much larger luminosity variations in the polar
directions than the equatorial one. Indeed, the luminos-
ity and temperature variations in the north and south are
anti-correlated because of the dipole nature of the SASI
oscillation, so in the equatorial view the variations largely
cancel. In a realistic 3-D situation, the dipole direction
is not necessarily fixed in space, so over several hundred
ms the average view from different directions probably
would not differ as dramatically as in this axisymmetric
simulation.
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FIG. 7: Comparison between fluctuating and smooth signal
for the model with Lattimer and Swesty EoS. Blue: Power
spectrum of equatorial hemispheric average signal. Red:
Same for smoothed SN signal.

D. Comparison with spherically symmetric case

An important issue is how well one can distinguish the
signal from a spherically symmetric model from a con-
vecting one. To this end we have produced an equivalent
spherically symmetric model by smoothing the output
from our model by a moving average. An example for
the corresponding smooth luminosity is shown in Fig. 1.
We compare the signal power spectrum for the equatorial
hemispheric average in Fig. 7 with that from a smoothed
version of this average. We see that the smooth signal
plummets below the IceCube background noise level at
around 20 Hz. In other words, for the case studied here
the power spectrum roughly above 20 Hz is a clear indi-
cation for fast time fluctuations of the neutrino source.

E. Directional and flavor dependence

For a more detailed appreciation we next show in
Fig. 8, upper panel, the smoothed power spectrum for
the northern, southern and equatorial average signals.
We first observe that from ∼20 Hz to ∼175 Hz for ν̄e the
power spectrum for all three hemispheric averages are
comfortably above the noise level in IceCube. We fur-
thermore see that the first peak for both polar directions
are roughly coinciding, and although the specific pattern
differs at larger frequencies the levels are comparable.
The pronounced peak at 50 Hz corresponds to variations
with a 20 ms period. This period is easily seen in Fig. 5
of Ref. [6] where the dipole motion of the shock-wave
surface is plotted.
In the lower panel we show the same signal under the

assumption that complete flavor transformations have
taken place and what reaches IceCube are ν̄e that at the
SN were born as ν̄x. The qualitative features are similar
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corresponding to (Nevents/Nbins)

2.

as before. In other words, full or partial flavor transfor-
mations would not change the picture substantially. The
overall power spectrum is now slightly lower. However,
this effect is due to the reduced ν̄x luminosity during the
accretion phase relative to the ν̄e luminosity. In the fig-
ure panels we give the DC (“direct current”) values of the
power spectrum, i.e. the power at zero frequency which
is significantly larger in the ν̄e case (upper panel). In
other words, the relative fluctuation amplitude is similar
for both species.

The same information is given in Fig. 9 where we show
the equatorial average (top panel) and northern average
(bottom) and each time compare the ν̄e signal with the
case of complete flavor swap. Especially the northern
case (very similar to the southern one) shows that flavor
transformations have little impact on the interpretation
of fast signal variations.
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FIG. 9: Comparing no oscillations (red) with complete flavor
swap (blue) for the model with Lattimer and Swesty EoS.
Top: equatorial. Bottom: northern.

IV. LUMINOSITY VS. ENERGY

FLUCTUATIONS

Thus far we have focussed on the counting-rate fluc-
tuations in IceCube because among existing detectors
it provides by far the largest event rate. With a fu-
ture megaton-class water Cherenkov detector the picture
would change because the event rate would be compara-
ble to IceCube and in addition one would obtain event-
by-event energy information. In this case spectral fluc-
tuations would become important as well.

In Fig. 1 it is apparent that the IceCube signal vari-
ations are much larger than the luminosity variations.
The fluctuations of Erms must be responsible for the dif-
ference. Moreover, one expects that the spectral fluctu-
ations are correlated with the luminosity fluctuations so
that both effects interfere constructively.

To quantify these arguments we consider as a specific
example the northern hemispheric average of the lumi-
nosity L(t) and the rms energy Erms(t) and their corre-
lation. Since we are here concerned with the IceCube
signal, that is proportional to E2

rms, we consider the two
functions L(t) and W (t) = E2

rms(t). For convenience
we normalize them somewhat arbitrarily to their aver-

age values over the 274–400 ms interval since now we are
primarily interested in relative fluctuations. (Our conclu-
sions do not change much if we normalize to the average
values over the entire 400 ms interval.) We next calculate

the Fourier transforms L̃ and W̃ of these dimensionless
functions. In the upper panel of Fig. 10 we show the
power spectra. The spectral power of W is significantly
larger than that of L, i.e. the IceCube signal variations
are dominated by E2

rms variations.

To quantify correlations between spectral and luminos-
ity variations we show in the lower panel of Fig. 10 the
quantities |W̃ | |L̃| and 1

2
(W̃ ∗L̃ + W̃ L̃∗). The two quan-

tities are similar and the correlation function is positive
almost everywhere, so indeed W (t) and L(t) are strongly
correlated.

These results suggest that energy- and event-rate fluc-
tuations and their correlation, that could be measured
in a megaton water Cherenkov detector, would provide
additional signatures for convection and SASI activity.
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spectral energy (W = E2

rms) fluctuations for the model with
Lattimer and Swesty EoS. L and W were normalized to their
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curve). Bottom: |L̃| |W̃ | as a red line and correlation function
1

2
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FIG. 11: Power spectra of the IceCube rate without flavor os-
cillations for the northern hemispheric averages, taken for the
274–400 ms post bounce interval. Because of the reduced inte-
gration time, the shot noise level of the IceCube dark current
is now at 30.26. Top: Lattimer and Swesty EoS in analogy to
Fig. 8. Bottom: Hillebrandt and Wolff EoS.

V. STIFF EQUATION OF STATE

Finally we briefly address the dependence of our re-
sults on the EoS used in the SN simulation. To this
end we consider the run of Ref. [6] with the EoS of Hille-
brandt and Wolff [19]. The ν̄e luminosity, rms energy and
IceCube rate corresponding to our five angular wedges
was shown in Fig. 4 in juxtaposition to the run with the
Lattimer and Swesty EoS. In Fig. 2 we showed the ν̄e
luminosity, rms energy and IceCube signal rate for the
northern hemispheric average with the Hillebrandt and
Wolff EoS in analogy to Fig. 1.

The figures reveal that strong fluctuations begin in
earnest only at around 300 ms postbounce as already
noted in Ref. [6]. Therefore, it makes little sense to com-
pare the power spectrum over the first 400 ms of this
run with the Lattimer and Swesty case. Instead we com-
pare in Fig. 11 the power spectra of the IceCube rate
for the northern hemispheric averages, taken over the

274–400 ms interval post bounce for the Lattimer and
Swesty case (top panel) and the Hillebrandt and Wolff
case (bottom). In other words, our signal duration is now
τ = 126 ms, implying a frequency spacing of 8 Hz and an
increase of the shot-noise level by a factor 400/126 = 3.2
(Appendix A).
Both cases show strong power with a frequency of

around 70 Hz which is also visible to the naked eye in
the time evolution (lower panel of Fig. 2), although the
power is larger in the Lattimer and Swesty case. The
signal time variations for the stiffer EoS would be plainly
visible with similar significance as for the softer one.
We also note that the 70 Hz peak in the upper panel

of Fig. 11 is much larger than in Fig. 8 (upper panel, red
line). The difference between the two curves is only the
analyzed signal interval. Here it is the final 126 ms of the
run, in Fig. 8 the full 400 ms. If the signal was roughly
stationary, the power of the peak would have to be the
same. However, here we have a strong peak at 70 Hz with
a much larger signal-to-noise than in Fig. 8, where in turn
we have a much stronger peak at 50 Hz. In other words,
the Fourier spectrum varies significantly as a function
of time. The analysis of a realistic signal would involve
studying subsets of the full-length signal where Fourier
components can show up with much larger significance
in spite of the increased shot noise relevant for a shorter
integration time.

VI. IMPLICATIONS OF DETECTION

Hydrodynamical instabilities, in particular convective
and SASI activity, and multi-dimensional processes are
thought to be crucial ingredients of the mechanism that
causes the explosion of core-collapse SNe [21, 22]. The
nonradial asymmetries during the very early stages of the
explosion can manifest themselves in large-scale aspheric-
ity and mixing of the SN blast (for recent 3-D models see
Ref. [23]). A measurement of neutrino signal modula-
tions and gravitational waves would provide direct evi-
dence for these theoretical ideas and could yield much
deeper insight into the strength, evolution, and role of
nonradial hydrodynamic flows on the path to successful
explosions. While the main focus of this paper is the
experimental detectability of SASI and convective varia-
tions of the neutrino emission—at least as predicted by
2-D simulations—we briefly address possible interpreta-
tions of such a measurement.
A thorough discussion is hampered by the small num-

ber of SN models that are available for an analysis of the
signal characteristics and dependence on the progenitor
and core microphysics. Moreover, a conclusive theoreti-
cal assessment will require 3-D models. The present 2-D
calculations can serve only for preliminary indications of
what might be expected, provided 3-D models roughly
confirm the 2-D results. The prominence of strong dipo-
lar asymmetries as obtained by the lowest (ℓ = 1 in terms
of an expansion in spherical harmonics) SASI modes in
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2-D has indeed been questioned on the basis of recent
3-D simulations [24]. However, these models do not in-
clude neutrino transport in a self-consistent way and only
a small set of non-rotating models for special conditions
was computed. Therefore, it is premature to judge the
role of low-mode asymmetries in 3-D.

The peaks of the power spectrum of the neutrino signal
reflect the mode pattern of the SN core activity. They are
connected with temporal changes of the mass accretion
rate onto the neutron star, which are either caused by
SASI or by convective modulations of the infalling mass
flow between shock and neutron star surface [5, 6]. Since
the accretion downflows can be channeled more strongly
to the northern or southern hemisphere, the hemispheric
symmetry can easily be broken, and even long-lasting
hemispheric asymmetries of the accretion structures and
shock-expansion strength can emerge. Therefore there is
no reason to expect exactly equal power spectra for both
hemispheres. Even the dipolar SASI sloshing mode can
develop different strengths in both hemispheres.

A causal connection of the peaks in the neutrino power
spectra with global deformation modes of the shock sur-
face and thus of the accretion flow between shock and
proto-neutron star is supported by results presented in
Ref. [6]. The Fourier spectra of the time-variable spher-
ical harmonics dipole and quadrupole amplitudes of the
shock position in that paper (Fig. 5, right column) ex-
hibit maxima whose positions agree well with the lowest
characteristic frequencies of the neutrino power spectra.

The corresponding 50Hz peak of our model with
Lattimer and Swesty EoS is actually a broad feature
with high power (half-width) roughly between 30Hz and
60Hz. This feature is present in the northern, southern,
and equatorial signals. In the equatorial case we identify
it with the first two-hump maximum visible to the right
of the low-frequency spike (Fig. 8, upper panel). This
peak around 50Hz is caused by the ℓ = 1 SASI slosh-
ing mode, which leads to quasi-periodic modulations of
the mass accretion rate and associated neutrino emission
in both hemispheres (see Ref. [6], page 485). The peak
width is explained by the time-variations of the SASI fre-
quency, its north-south differences by the lack of perfect
hemispheric symmetry (cf. Fig. 3 in Ref. [6]).

The frequency of the ℓ = 1 SASI mode depends on the
sound-travel and mass-inflow times between neutron star
surface and shock (see Eq. (32) in [2] and Eq. (18) in [4])
and thus mainly on the time-variable shock radius and
to a lesser extent also on the continuously contracting
NS radius. Roughly, when the average shock radius is
large, the SASI frequency is lower, when the shock radius
shrinks, the SASI frequency tends to be higher. Since
the shock radius shows sizable time evolution (Fig. 4,
left panel, in [6]), it is natural that the SASI peak of the
time-integrated neutrino signal becomes fairly broad.

The peak with the next higher frequency of around
70Hz is most easily explained by ℓ = 2 (quadrupolar)
SASI activity, although a strict discrimination of global
shock oscillation modes from convective mass motions

in the postshock layer is very difficult in the nonlinear
phases of the two hydrodynamic instabilities. Both insta-
bilities can trigger each other and therefore occur mostly
simultaneously [4]. A possible connection of the ∼70Hz
power maximum with the quadrupolar SASI mode is sug-
gested by three facts: (1) Analytic analysis and numerical
experiments in the linear regime show that the frequency
of the ℓ = 2 mode is slightly higher than that of the ℓ = 1
mode (cf. Fig. 5 in [2], Fig. 13 in [4]), but the exact fre-
quency ratio depends strongly on the size of the SASI
region (see Fig. 4 in [25]). (2) The appearance of the
∼70Hz peak in the upper panel of Fig. 11 and relative
weakness of power at lower frequencies at late times (274–
400ms) in our model with the Lattimer and Swesty EoS
can be explained by the increasing power of the ℓ = 2
shock oscillation mode, whose amplitude at these times
becomes larger than that of the ℓ = 1 mode (see the left
panels of Fig. 5 in [6]). (3) The presence of the peak
in the northern power spectrum but relative weakness
or absence in the southern hemisphere may correspond
to the hemispheric asymmetry of the quadrupolar shock
deformation as visible in the panels of Fig. 4 in Ref. [6].

Local convective overturn motions in the accretion flow
on smaller angular scales (corresponding to higher spher-
ical harmonics modes) take place on shorter timescales
than the global dipolar and quadrupolar mass shifts.
Therefore they are the most probable explanation for the
power peaks at frequences above 90–100Hz. In partic-
ular such short-wavelength structures may exhibit con-
siderable differences in the two hemispheres and also in
the equatorial region, where long-lasting, non-stationary
downdrafts develop at later post-bounce times. Differ-
ences between these directions in the neutrino power
spectra at high frequencies are therefore not astonishing.

Moreover, the layer between shock and neutron star
surface is generally more compact for the SN model with
the Hillebrandt and Wolff EoS (cf. Fig. 4, left panel,
of [6]). Therefore, the global shock-motion and accre-
tion modes of this model have a lower amplitude and
higher frequency than in the simulation with the Lat-
timer and Swesty EoS. It is possible that the very broad
peak roughly between 60Hz and 85Hz in the former case
(lower panel of Fig. 11) and simultaneous lack of a second
strong peak at somewhat higher frequency is the result
of a superposition of ℓ = 1 and ℓ = 2 activity. This in-
terpretation is suggested by the presence of both modes
with comparable amplitudes (Fig. 5 in [6]) and by the
fact that for a compact postshock layer the character-
istic frequencies of both modes become very similar as
shown in Fig. 4 of Ref. [25].

SASI activity can therefore be reflected by different
peaks in the neutrino power spectra, depending on the
presence of different modes, the fastest growing ones and
typically strongest in 2-D being those of ℓ = 1 and ℓ = 2.
The exact frequencies of the peaks depend on the time-
evolving structure of the postshock layer. The strongest
SASI activity and thus most easily measurable signal fea-
tures must be expected to occur in a time window of
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some 100ms just before the explosion sets in. The peaks
in the power spectra of the integrated signal over this
shorter period are significantly enhanced relative to the
shot-noise level (compare upper panels of Figs. 8 and 11),
favoring easier detection of these features.
The measurement of the neutrino luminosity modula-

tions could thus confirm the existence of large non-radial
hydrodynamical instabilities (SASI and convective over-
turn) around the beginning of the explosion, which would
have to be strong enough to affect the neutrino emission
from the accreting neutron star. Such a measurement
would reveal an important component of SN physics,
whose potential relevance is presently suggested only by
numerical models, theoretical analysis, and indirect ar-
guments based on the presence of ejecta asymmetries at
much later stages of the evolution.
A detection of the SASI would definitely exclude the

prompt explosion mechanism (which already seems to be
ruled out by simulations) as well as all other explosion
mechanisms that work faster than the SASI can develop
in the SN core. The growth of the SASI activity to the
nonlinear regime takes typically 100–200 ms after bounce
[2, 4, 25], so SASI signatures would require a signifi-
cantly delayed explosion as expected for the neutrino-
driven mechanism. Most probably, their measurement
would also exclude the magnetohydrodynamic mecha-
nism, which could take place in rapidly rotating stellar
cores and according to 2-D simulations could lead to rel-
atively rapid explosions [26]. Conversely, a non-detection
of strong SASI features in the neutrino signal is likely to
disfavor the acoustic explosion mechanism [27, 28], which
might initiate the blast wave as late as one second or more
after core bounce. In this case the onset of the explosion
would be preceded by at least a transient phase of strong
SASI and convective overturn activity around the new-
born neutron star. Such a phase is probably important
to excite the compact remnant to the required powerful,
large-amplitude dipole oscillations that yield the acoustic
energy flux for launching the explosion.
Exclusion arguments of this kind can become even

more powerful in the combination with gravitational-
wave measurements as recently pointed out by Ott [29].
Thus gravitational waves and neutrino-emission varia-
tions could help to unravel the still heavily disputed pro-
cesses that cause the explosions of massive stars.

VII. CONCLUSIONS

We have studied the signature of fast SN neutrino time
variations in IceCube, a detector that would produce the
largest event rate of any existing experiment. We have
used the output of axially symmetric SN simulations re-
cently produced by some of us. The SASI sloshing mo-
tion with time- and mode-dependent frequencies of about
50–100 Hz as well as smaller-scale, shorter-period con-
vective overturns provide a strong imprint in the neu-
trino signal. Typically it would be visible even to the

naked eye by simply inspecting the time sequence of reg-
istered Cherenkov photons. A Fourier analysis of the
signal reveals a large signal-to-noise ratio that would be
detectable for a SN throughout our galaxy.

The spectral power of the time-varying SN signal de-
creases with frequency and it depends on distance up to
which frequency time variations can be detected. For
a fiducial distance of 10 kpc the IceCube dark current is
comparable to the SN signal. Based on our simulation, at
this distance signal modulations typically could be seen
up to 100–200 Hz. This conclusion is barely affected by
possible flavor conversions.

The strongly dipolar nature of the SASI mode along
the symmetry axis of the simulations implies that the
observable signal variations strongly depend on the di-
rection of viewing the SN. In particular, in the equato-
rial direction the signal variations caused by neutrinos
emerging from the northern and southern hemispheres
nearly cancel and in our most pessimistic example would
be visible only to a distance of a few kpc. However, such
directional cancelation effects likely would be smaller in
a realistic 3-D situation, although the overall SASI signal
might also be smaller. Moreover, the signal-to-noise for a
given Fourier mode depends on the time window used for
the analysis because the power spectrum varies strongly
with time. It is premature to study these issues in too
much detail because the available 2-D simulations as well
as the approximations used in the neutrino transport pro-
vide only a first glance of what might be expected from
a more realistic treatment.

The event rate fluctuations in IceCube are caused by
fluctuations of the luminosity and of the neutrino ener-
gies, the latter being the more important effect. There-
fore, in a detector with spectral information such as a
water Cherenkov detector additional information can be
extracted. A future megaton-class detector will have a
neutrino event rate comparable to IceCube’s and thus
would offer significant additional capabilities through its
event-by-event spectral sensitivity.

Our main message is that IceCube and future large-
scale detectors can measure intriguing time-dependent
features of the neutrino signal of a future galactic SN,
allowing one to observe the SASI activity with neutrinos
in situ, if our 2-D model is roughly representative for a
more realistic treatment. Such signatures would provide
a crucial test of our theoretical understanding of the core
collapse phenomenon. The secular evolution of the sig-
nal as well as its fast variations may hold information,
for example on the growth time of large-scale non-radial
asymmetries in the SN core, the SN explosion mecha-
nism, and the contraction behavior of the nascent NS
and thus on the nuclear equation of state, but once more
it is premature to forecast generic signatures on the ba-
sis of our 2-D models. Moreover, the spectral range that
can be probed strongly depends on the SN distance—a
fiducial case at 10 kpc may not be representative if the
SN is much closer or much further away.

The excellent time resolution of IceCube can be used in
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other ways. For example, the signal onset and therefore
bounce time can be pinned down very well, allowing for
correlations with gravitational wave detectors [12]. On
the more exotic side, a possible QCD phase transition
can produce a short ν̄e burst that could be detected with
high significance [30].
In summary, among existing SN detectors IceCube

has unique capabilities to measure fast signal variations.
Identifying such features with additional spectral infor-
mation is a powerful motivation to build a megaton water
Cherenkov detector.
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Appendix A: Shot noise in IceCube and Fourier

Transform of binned data

To estimate the shot noise of the IceCube signal we
consider a signal consisting of a sequence tj of N mea-
sured arrival times. They sample the rate R(t) over the
signal duration τ . The Fourier transform is

g(f) =

∫ τ

0

dt R(t) e−i2πft =

N
∑

j=1

e−i2πftj (A1)

with the spectral power G(f) = |g(f)|2. The detection
rate has units of inverse time, so the Fourier components
are dimensionless and g(0) = N and G(0) = N2. The
finite-time Fourier transform is limited to the discrete
frequencies fk = k∆f = k/τ . It is understood that a
frequency f stands for a member of this discrete set.
If the sequence of events samples a uniform distribu-

tion on the interval 0 ≤ tj ≤ τ , the sum in Eq. (A1)
represents a random walk in the complex plane with unit
step size. One concludes that an ensemble average for
G(f) is independent of frequency for f 6= 0 and follows
the normalized distribution p(G) = N−1 e−G/N [31]. The
average is 〈G〉 = N so that

〈Gf 6=0〉
Gf=0

=
1

N
. (A2)

Usually we will include a window function w(t) on the
interval 0 ≤ t ≤ τ to suppress edge effects on the Fourier
transform. Therefore, we actually use

g(f) =

∫ τ

0

dt w(t)R(t) e−i2πft . (A3)

The average weight must be unity, implying

∫ τ

0

dt

τ
w(t) = 1 . (A4)

Fourier components that vary fast on the scale τ are re-
turned with their original amplitude.
We determine the impact of a window function on the

shot noise by extending the picture of a random walk in
the complex plane to a variable step size. The different
random walks must be combined in quadrature and the
expectation value is modified as

〈G〉 = 〈w2〉N (A5)

where

〈w2〉 =
∫ τ

0

dt

τ
w2(t) . (A6)

We will specifically use the Hann window

w(t) = 1− cos(2π t/τ) , (A7)

implying that the shot-noise power increases by a factor

〈w2〉 = 3

2
. (A8)

Next we translate this result to the appropriate nor-
malization for our Fourier transform. If we have Nbins

bins of equal width ∆ = τ/Nbins, and the signal rate
R(t), the Fourier transform of this rate sampled at times
tj = j∆ with j = 0, . . . , Nbins − 1 is

h(fk) = ∆

Nbins−1
∑

j=0

R(tj) e
i2πtjkδf . (A9)

The frequencies are fk = k/τ = kδf with k = 0, . . . , Nf

and Nf = fmax/δf . Here fmax = 1/2∆ is the Nyquist
frequency. Since δf = 1/τ we have Nf = Nbins/2.
In practice our data are provided for a duration τ =

400 ms so that δf = 2.5 Hz. We use 1 ms sampling
and thus consider ∆ = 1 ms bins, providing a Nyquist
frequency of fmax = 500 Hz as an upper cutoff. For f = 0
and fmax the spectral power is respectively defined as

P (0) =
|h(0)|2
N2

bins

and P (fmax) =
|h(fmax)|2

N2
bins

. (A10)

For all other frequencies we define

P (fk) =
|h(fk)|2 + |h(−fk)|2

N2
bins

= 2
|h(fk)|2
N2

bins

. (A11)
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The second equality applies because the transformed
function is real and therefore |h(−f)|2 = |h(f)|2.
Using a signal duration τ = 400 ms and Eq. (4) for

the background rate we find: Nbkgd = 5.4 × 105 and
h(0) = Nbkgd. The ratio |h(fk)|2/|h(0)|2 was earlier
found to be 1/Nbkgd times a factor 3/2 if we use the
Hann window. Our definition of power for binned data
involves a factor 2/N2

bins. Therefore, we find for the Ice-
Cube shot noise, relevant for a signal duration of 400 ms
and a Hann window,

Pshot =
3

2

N2
bkgd

Nbkgd

2

N2
bins

=
3Nbkgd

N2
bins

= 10.08 . (A12)

We have confirmed this result with a few numerical
Monte Carlo realizations.

If we use a subset of the full data, i.e. a shorter sig-
nal duration τ with correspondingly fewer bins, the fre-
quency spacing is increased, but the power at a given
frequency remains the same except for detailed changes
implied by the reduced data. Both Nbkgd and Nbins get
reduced linearly with τ and therefore Pshot ∝ τ−1. The
signal-to-noise of spectral power in a stationary signal
increases linearly with integration time.
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