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ABSTRACT

Context. Global magnetohydrodynamic simulations show the growtKeltin-Helmholtz instabilities at the contact surface wbt
merging neutron stars. That region has been identified asitthef dficient amplification of magnetic fields. However, these globa
simulations, due to numerical limitations, were unable étednine the saturation level of the field strength, and thaspossible
back-reaction of the magnetic field onto the flow.

Aims. We investigate the amplification of initially weak magnefields in Kelvin-Helmholtz unstable shear flows, and the back
reaction of the field onto the flow.

Methods. We use a high-resolution finite-volume ideal MHD code to perf 2D and 3D local simulations of hydromagnetic shear
flows, both for idealized systems and simplified models ofgaeflows.

Resuits. In 2D, the magnetic field is amplified on time scales of lesa th@1 ms until it reaches locally equipartition with the kirgeti
energy. Subsequently, it saturates due to resistive iisebthat disrupt the Kelvin-Helmholtz unstable vortard decelerate the
shear flow on a secular time scale. We determine scaling lawedield amplification with the initial field strength andetlgrid
resolution. In 3D, the hydromagnetic mechanism seen in 2P lmeadominated by purely hydrodynamic instabilities legdio less
filed amplification. We find maximum magnetic fields10' G locally, and r.m.s. maxima within the bex 10'°G. However, due
to the fast decay of the shear flow such strong fields exist famlg short period € 0.1 ms). In the saturated state of most models,
the magnetic field is mainly oriented parallel to the sheaw fior rather strong initial fields, while weaker initial fieddend to lead
to a more balanced distribution of the field energy among treponents. In all models the flow shows small-scale featlres
magnetic field is at most in energetic equipartition with deeaying shear flow.

Conclusions. The magnetic field may be amplifie¢heiently to very high field strengths, the maximum field enaerggching values
of the order of the kinetic energy associated with the véjamdmponents transverse to the interface between the twinamestars.
However, the dynamic impact of the field onto the flow is lirdite the shear layer, and it may not be adequate to producewsifl
because the time during which the magnetic field stays cto&ge maximum value is short compared to the time scale fardaing

an outflow (i.e., a few milliseconds).
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1. Introduction the dynamics of the instability described above, eithezaaly

i ) during its linear growth phase or, for weak fields, in the satu
The merger of two neutron stars is considered the most promjiieq state. Exerting stresses and performing work on tie flu
ing scenario for the generation of short gamma-ray bur§if, magnetic field does lose part of its energy. Thus, the max-

(GRBs). After a phase of inspiral due to the loss of angulghm attainable field strength is limited by the non-linegr d
momentum and orbital energy by gravitational radiatiorg th,smics.

merging neutron stars are distorted by their mutual tideddse. ] ) ) )
Finally, they touch each other at a contact surface. Due tma c ___In their merger simulations, Price & Rosswog (2006), and
bination of the orbital motion and the rotation of the nentrcR0SSW0g.(2007) observed fields exceeding by fdf @0 Their
stars, the gas streams along that surface, the flow direction numerical resolution, however, did not allow them to folltve

either side of the surface being anti-parallel with respeetach detailed evolution of the KH instability in the non-lineanase.
Thus, they could not draw any definite conclusions on the max-

other.
imum strength of the field nor its back-reaction onto the fluid

As a consequence of this jump in the tangential velocit ) \ . :
the contact surface is Kelvin-Helmholtz (KH) unstable. Girg ey observed that the maximum field strength is a function of

within a few milliseconds, the KH instability leads to therfo the numerical _resolutlon: the better the resolution, thenster
mation of typical KH vortices between the neutron stars.sehePecomes the field.
vortices can modify the merger dynamics via the dissipation Performing numerical convergence tests, these authors did
of kinetic into thermal energy. The generation of KH vornot find an upper bound for the field strength attainable in the
tices is observed in actual merger numerical simulatiorg,(e magnetized KH instability. Thus, Price & Rosswaog (2006) dis
Oechslin et al. 2007). cussed, based on energetic arguments, but not supportéd-by s
The exponential amplification of seed perturbations cath lealation results, two dferent saturation levels: the field growth
to very strong magnetic fields as shown |by Price & Rosswagturates when the magnetic energy density equals eiteer th
(2006), and Rosswo@ (2007). These fields, in turn, can modHKinetic (kinetic equipartition or the internal energy of the gas
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(thermal equipatrtitiof, corresponding to fields of the order ofcode is based on Eulerian high-resolution methods instéad o
109G and~ 10%G, respectively. From their simulations theySPH as in Price & Rosswbg (2006), our results are complemen-
were not able to identify the saturation mechanism applying tary to theirs, serving as an independent check.

the KH instability in neutron-star mergers. Thus, we adsiths Since we are unable to simulate the entire merger event us-
guestion here again using highly resolved simulations add-i ing fine resolution, we focus on the evolution of a small, eepr
pendent numerical methods. sentative volume around the contact surface. Tddal simula-

Most simulations of neutron-star mergers, including thigon allows us to concentrate on the dynamics of the magneto-
ones by | Price & Rosswog| (2006), and Rosswog (200Hydrodynamic KH instability. However, as our simulatioask
are performed using smoothed-particle hydrodynamics JSPtHe feedback from the dynamics occurring on scales larger th
(Monaghamn 1992). This free Lagrangian method is highly adajne simulated volume, its influence has to be mimicked by suit
tive in space, and allows on to follow large density consasably chosen boundary conditions. We neglect neutrino tiadia
without “wasting” computational resources in areas of vemnd the gas obeys either an ideal-gas or a hybrid (barotamgic
low density. This property of SPH makes it highly advantadeal-gas) equation of state (EOS), the latter serving asighr
geous for the problem of mergers. On the other hand, its retaedel for nuclear matter.
tively high numerical viscosity renders SPH inferior comgzh This paper is organized as follows. We describe the physics
to Eulerian grid-based schemes for the treatment of (magnetf the magnetohydrodynamic KH instability in Sédt. 2, and ou
)hydrodynamic instabilities and turbulence (Agertz eP807). numerical code in Seéil 3. We discuss the simulations asidiges
Moreover, the spatial resolution of most merger simulai@n generic properties of the KH instability in two and threetiga
rather low, i.e., the reliability of their results concergithe de- dimensions in Sedil 4 and Sédt. 5, respectively. The reapks
tails of the KH instability is limited. plying to neutron-star mergers are given in 9éct. 6. Finally

A grid-based code such as ours is well suited for presenta summary and conclusions of our work in §éct. 7.
study of flow instabilities and turbulence. Using it to sim-
ulate the entire merger event, however, is cumbersome due ) ) -
to the large computational costs required to cover the ent#- The magnetohydrodynamic KH instability
system with an appropriate computational grid. In spite t?:lh
this fact, Giacomazzo etal. (2009) (see also Liu etial. (200
Anderson et al. (2008)) have performed full general-reistic

e KH instability leads to exponential growth of pertuibas
a non-magnetized shear layer of a fluid of background tensi

, shorter modes growing faster. After a phase af-exp
fential growth, a stable KH vortex forms.

If the shear layer is threaded by a magnetic field of field
engthp, parallel to the shear flow (thedirection in our mod-
réls), magnetic tension stabilizes all modes, if &én number
%t the shear flow

show below, even their (presently world-best) grid resohut
(h ~ 350 m) is still too crude to properly capture the disruptivg,[r
dynamics after the KH amplification of the field. For compa
ison, we note here that our merger models employ a grid r
olution of h ~ 0.1 m in 2D (Sec{.6]2) anth ~ 0.8m in 3D
(Sect[6.8), respectively. A=Up/Ca <2, 1)
We performed a set of nhumerical simulations of the KH in-

stability to understand the dynamics of magnetized sheassflowhereU, andca = +/b?/p are the velocity dference across the
and to draw conclusions on the evolution of merging neutr@mear layer, and the Alfvén velocity, respectively. If fiedd is
stars. The main issues we address in our study are motiviitedazaker, the instability can develop similarly to the nongmetic
two different, albeit related, intentions: case, but its growth and its non-linear saturated state fare a

_ . . fected significantly (e.gl, Frank et al. 1996; Jones et a@719
We strive for a better understanding of the magnetjeong et 21, 2000: Ryu et/al. 2000).

hydrodynamic (MHD) KH instability. This includes the in- A magnetic fieldperpendicularto the shear flow and the

fluence of numerical parameters such as the grid resolution ”* "% L ; )
on the dynamics, and generic properties of the saturation%\‘ea”ng interface (& field in our models) is sheared into a

the instability. We address these questions by a serie of parallelby field. Thus, the resulting flow dynamics is similar. A

mensionlesgodels that use scale-free parameters as m - d ort_hogonal to the shear ﬂQW but parallel to the i_nte&'f@
previous studies focusing on the generic properties of the K2z fi€ld in our models) acts mainly by adding magnetic pressure

instability instead of a particular astrophysical appica. o the thermal one, thus modifying the dynamics of the KHanst

— We further want to verify the results of Price & Rosswo llity only if its strength approaches or exceeds the eqilpan

(2006) and reassess their estimates of the saturation fi -ﬁédﬂzt;/eg%ﬁ?/' Hence, we focus here on fields in the direation

strength. Hence, we consider the growth time of the insta- ; ) . e
bility ?hat has to compete with the ?jynamical time scale Depending on.the field Strength’ the abovg authors |_dent|f|_ed
the merger event (a few milliseconds), the saturation mej@_ree diferent regimes concerning the dynamics of the instabil-

anism, the saturation field strength, and generic dynamidst

features of supersonic shear flows. Our results should klso a Rather strong fields with an Alfvén number slightly below 2

low us to reassess the findings of global simulations exter}.‘agd tonon-linear stabilization Too weak for stabilization ini-

ing the ones performed by Price & Rosswog (2006), e.g., t glly, the field is amplified by tht_a i_nstability, and aftestethan
simulations by Anderson etlal. (2008) and Liu et al. (2008)One turnover of the KH vortex, It s strong en_ough to suppress
’ ) ) further winding. The field, concentrated in thin sheets,ilainn

To this end we utilize a newly developed multidimensiondtes in localized reconnection and, mediating the comnve i
MHD code (Obergaulinger etal. 2009) that employs variodgnetic via magnetic into internal energy, destroys thetesxr
explicit finite-volume algorithms, and that is particuladell The late phases of the evolution consist of a very broaditrans
suited for simulating instabilities and turbulent systers the tion layer between those parts of the fluid moving in opposite
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directions. The flow is almost entirely parallel to the iaitthear
layer, and no vortex is retained. The magnetic field has dseck
strongly due to reconnection, and is still concentratechizes-

like patterns.

Weaker fields give rise tdisruptive dynamicsThe ampli-
fication process takes longer to produce strong fields,the.,
vortex survives several turnover times. The field is woundhup
increasingly thin sheets, that eventually reconnect du@te
merical) resistivity. Afterwards the dynamics is similar the
previous case: the vortex is disrupted, leading to a braadhiar
transition region threaded by filamentary magnetic fields.

For even weaker fields one encounters the flow regime of
dissipative dynamic€ven after a long phase of amplification,
the field is still too weak toféect the flow. Reconnection occurs,
but due to the weakness of the involved fields, it leads only to

— Piecewise-lineareconstruction usintptal-variation dimin-

ishing (TVD)methods! (Hartén 1983). While formally%or-

der accurate in smooth parts of the flow and away from lo-
cal extrema, these methods achieve a stable represerdhtion
discontinuities by reverting toStorder accurate piecewise-
constant reconstruction. The accuracy of the scheme depend
on its slope limiter for which dferent choices are possible,
e.g., the Minmod, the van Leer, or the MC (monotonized
central) limiters.

— The class ofweighted essentially non-oscillatory (WENQO)

algorithms |(Liu et al| 1994) ffer a way of constructing
schemes of arbitrarily high order of accuracy. In these meth
ods, an interpolant for a variable at a given point in space
(e.g., a zone interface) is constructed from a number of can-
didate polynomials by maximizing a measure of the smooth-

a gradual conversion of kinetic into internal energy. Thebgl ness of these polynomials. In our scheme, based on the
topology of the flow does not change as in the previous cases, one described by Levy etlal. (2002), we use three candidate
and the vortex exists throughout the evolution. Its vejodi- parabolas, leading to a nominal order of accuracy of 4.
creases slowly as kinetic energy is extracted from the xorte  — ISuresh & Huynh (1997) use a generalization of the TVD cri-

We note that the transition between these three dynamic terion to construct high-ordenonotonicity-preserving (MP)
regimes is not sharp. In particular, it is not possible tordefi ~ Schemes. The new MP stability and accuracy constraints do
a threshold Alfvén number separating disruptive and plaie not lead to the clipping of extrema in smooth regions of the
dynamics. flow that is innate to the TVD criteria. Thus, they allow for

Further complications arise in three spatial dimensions. @ higher accuracy in smooth flows while retaining stability
Here, the KH vortex can be disrupted even without the pres- €lose to dISCOhtIHUItlteS;. ?uresh & Huynh (1997) give MP
ence of a magnetic field by purely hydrodynamic instabgitie ~ Schemes of formally '8, 7, and 9" order that we imple-
(Ryu et al[ 2000), and thefects of a magnetic field overlay with ~ mented in our code.

those of the non-magnetic instabilities. )
We compute the fluxes of the MHD equations from the re-

constructed interface states using approximate Riemdnearso
Titarev & Toro (2005) and_Toro & Titarevi (2006) developed
multi-stage (MUSTARiemann solvers that are built on a combi-
We use a newly developed high-resolution code to solve thation of predictor and corrector steps using simple apgprate
equations of ideal (Newtonian) MHD (Einstein’s summatioRiemann solvers. These solvers do not require a computation
convention applies), ally expensive decomposition of the MHD state into characte
istic variables, yet they achieve an accuracy comparaldedot
solvers.

In MHD simulations, it is important to use a numerical
scheme that keeps the magnetic field divergence-free. $o thi
end we employ in our code tleenstraint-transport (CT3cheme
of (Evans & Hawley 1988) that uses a spatial discretizatibn o
the magnetic field consistent with the curl operator in ttiin:
tion equation, leading to a staggering of the collocatiomizo
of b with respect to those of the hydrodynamic varialjlep,

3. Numerical methods

O + Vj [pvj] =0, (2)

o' + Vi [PV + Ps - bibl] = ', 3)

e, + V| (e + PV = bivibl] = ;] (4)

db=-cVxE, ®) and e,. According to the definition ob the electric field,E,
_ is defined as the average over the zone edges. The staggering
Vib' =0, (6) of b requires interpolations between the staggered grids @o ob

tain, e.g., the Maxwell stressb’; see Eqn[{83)), and special care
where the mass density, momentum density, velocity, ardtothas to be taken in the computation of the electric field from
energy density of the gas are denotegbyp, v, ande,, respec- the (zone-centered) velocity and the (zone-interface)metg
tively; b is the magnetic field. The total-energy density and tHeeld. Various implementations of the CT scheme have been de-
total pressureP,, are composed of fluid and magnetic contrivised that difer mainly in the way the magnetic stress and elec-
butions:e, = £+ pv?/2 + b?/2, andP, = P + b?/2, where tric field are calculated. Of these, our implementation mese
gandP = P(p,¢,...) are the internal energy density and théles most closely the recently developed upwind-CT schemes
gas pressure, respectively. The electric fidlg,is given by (Londrillo & del Zannal 2004| Gardiner & Stane 2005, 2008).
E = —(v/c) x b with c being the speed of light in vacuum. ThéWe obtainE from the zone interface values of the velocity and
external force, arises from gravity, i.e,= fg = —pV®, where the magnetic field that are both computed by the (MUSTA)
@ is the gravitational potential. Riemann solver. This guarantees that the electric field is co

The above equations are implemented into our code in theigtent with the solution of the Riemann problem.

finite-volume form. We use Eulerian high-resolution shock- Our code is written in FORTRAN 90 and parallelized for
capturing methods for their solution (see, €.g., LeVequ#z?l9 shared or distributed memory computers using the OpenMP
To reconstruct the zone interface values of variables difse or MPI programming paradigm, respectively. The code suc-
volume averages over grid zones, we use high-order algasithcessfully passed various standard tests including MHD lshoc
of one of the following types: tube problems (e.g., the ones published by Ryu & Jones 1995),
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the propagation of MHD waves, and some multi-dimensionalith random perturbations which do not selagbriori a single
flow problems such as the Orszag-Tang vortex (Orszag & Tasigusoidal unstable mode (see below).
1979). These tests demonstrate the stability and accuricy o Finally, we introduce thevolume-averaged kinetic energy
the code in handling flows involving discontinuities andoww  densities
lent structures. According to the results of the wave-pgajpian 1 1
tests, the order of accuracy of the code is 2, 3.3, and 4.1 @51 = — fd(v —,DViZ, (10)
piecewise-linear, MP, and WENO reconstruction, respebtiv v 2
(Obergaulinger 2008). The code has also been used to st
the magneto-rotational instability (MRI) in core collapseper-
novae [(Obergaulinger etlal. 2009). ; 1 1,
The simulations reported in this paper were performed wiffmag = Vv fd(v Qbi ’ (11)
MP reconstruction based or"®rder polynomials (theMP5
method), and the MUSTA solver derived from the HLL Riemanwith i € x,y, z These quantities will be useful for the following
solver. This reconstruction method represents a good-wfdediscussion.
between accuracy and computational costs. Methods based on
higher-order polynomials increase the accuracy of the dmate
at the expense of a larger stencil, reducing tfieiency of the
parallel code, since the number of ghost zones that have todér code reproduces the growth rate of the KH instability
communicated among fiierent processors is larger. The samgery accurately. To demonstrate this we recalculated sdime o
adverse fiect on the computationalffeciency can be observedthe models studied by Keppens et al. (1999) (models -
when comparing our WENO reconstruction to MP5. Tab[Ad). The growth rates for these models are either given
in [Keppens et al. (1999), or can be obtained from the figures of
: e . Miura & Pritchett (1982).
4. The KH instability in 2D planar magnetized shear The models have a uniform background dengify- 1, and
flows a uniform background pressuRy. We impose open boundary

We performed a set of two dimensional simulations to study t§Onditions in the transversg)(direction, periodic ones ix-
properties of the KH instability in 2D planar magnetizedahe direction, and vary the value of the shear velocity, the hvioft
flows. These simulations allow us to validate our numerigal t "€ shear layer, and the grid resolution. .
and to assess the significance of results obtained in siioogat Ve derive growth rated;num, from the exponential growth
aiming at an understanding of the KH instability in neutstar Of €. and compare these to the valudgp, given by
mergers. Miura & Pritchett (1982) and Keppens et al. (1999), respec-
As we shall show below we reproduce, but also exteritYely. We note in this respect thaf, (t) o« v « (expIt)” (see
the results obtained Hy Frank et al. (1996), Jonesl et al. 7)1 9950 [10) grows at twice the rate of the KH instability. The agre
Baty et al. [2003), and Keppens et al. (1999) which are sumnient between the theoretical predictions and our numengeal
rized in SeclR. sults is, in general, very good (see TahbJA.1 and[Eig. 1).
We consider both subsonic and supersonic 2D planar shearAfter the initial phase of exponential growth, a roughly-cir
flows in thex — y plane inx-direction with an initial velocity cular vortex develops in the perturbed non-magnetizedrshea

profile given by (note that all numerical values are giveniin dlayer which should be eventually dissipated by (numerieah)

la\ﬁjl}ﬂvolume-averaged magnetic energy densities

4.1. Linear growth

mensionless code units in the following!) cosity. However, this process is very slow for our models (we
. see no sign of dissipation until the end of our simulatioas),
T_ y the numerical viscosity of our code is very low.
(VX’ Vy) - (VO tanha’ 0) ’ (7) The formation of asingle KH vortex rather than of a mul-

titude of small vortices is not an artifact of the form of thma-i

whereUg = 2vp is the shear velocity, and is a length scale . : . X
characterizing the width of the shear flow. The background detIaI perturbation (EqL19)). To demonsrate this, we sirtadaa

sity and pressure are uniform, and the thermodynamic p,riaﬁernon-magnenc model with random rather than sinusoidabjpert

X . ! : : tions of the transverse velocity with an amplitude of®16f
ic::dtgiljlu'd are described by an ideal-gas EOS with an adlabape shear velocity (see FIgd.2 for two snapshots of the model

simulated with 1024 zones at = 16 andt = 25,5 (panels (a)
P=(T-1s, (8) and (b), respectively). Initially, three small KH vorticdevelop
(panel (a)), but after two subsequent mergers of thesecestti
wheree = e, — 2pv2 — 1b? is the internal energy density of theonly one large vortex remains (panel (b)), resembling ¢jose
fluid. Initially, a uniform magnetic field(t = 0) = (bo .bO)T the flow field of a model with sinusoidal perturbation. Due to
' X this evolution towards a single large-scale vortex, we $ocn

threads the shear layer. Egnodels; with sinusoidal perturbations in the followthg

To trigger the KH instability we perturb the shear flow by
transverse velocity

Vy(t = 0) = v f(y) sinke) , 9)

) . ) ) We simulated a set of non-magnetic models (summarized in
wheref (with f(y) € [0,1]) is a function localized at the shear-tap[A2) to study the influence of the box size and boundary
ing interface, i.e., it vanishes beyond a distaaldeom the inter-  -gnditions on the evolution of transonic and supersonfc=(

facc—_z. We _sea’ = 4a here. Tge maximum perturbation veloclityuo/cS > 1.8) shear flows. As noted by Miura & Pritchett (1982),
VS, is typically a factor 16-® smaller than the shear velocity.

To test the influence of the form of the perturbations, we alsd without elaborating in more detail, we note that a similasute
simulated some models (both magnetic and non-magneti¢ onesds for magnetized models.

4.2. Non-magnetic models
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Fig. 1.Linear growth phase of the KH instability in model grw-3.

The solid black line shows the volume-averaged kinetic gner

densitye’. , as a function of tim¢. The dashed line gives the log IV x vl
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there is no growing mode forld > 2 shear flow, but in models
with closed boundaries we find nevertheless a growing iilstab
ity whose growth mechanism is, howeverfdient (see below).

We first consider models witM = 1.8. For these models
the instability grows faster when the vertical domain sien-
larged, and open boundaries yield larger growth rates than r
flecting ones. The reason for this behavior is that the inlstab
ity affects a larger region of the flow than in the case of slow
shear flows. To demonstrate this we compare models HD20-1
and HD2o0-1-s that dlier only in the size of the computational
domain iny-direction:y € [-1;1] andy € [-0.25;025] for
models HD20-1 and HD20-1-s, respectively. According ta[Big _ o
the V0|ume-averaged kinetic energy deng%&n, grows faster Flg 2 ngarlthm of the modulus of the flow VOfthlty and the
and leads to much larger values in model HD20-1 than in modéglocity field (vectors) of a non-magnetic model with= 1 and
HD20-1-s. Furthermore, in model HD20-1-s the growtrehf @ random perturbation &t= 16 (panel (a)), and = 25.5 (panel
shows superimposed oscillations. In both models wavesrare db)), respectively.
ated at the shear layer which travel outwardgdirection carry-
ing (transverse) kinetic energy. If the waves are allowedzeel
over a stficiently long distancéy (which is the case for model [-0.25; 0.25] (a version of model grw-3 simulated on a smaller
HD20-1), they steepen into shock waves when the fluid velogrid of 200x 100 zones covering a domain 0fQ.5; 0.5] x
ity exceeds the sound speed. The shocks propagate mainly-i0.25; 025] does not show oscillation c%n)_ For the same
x-direction, advected by the shear flow. Kinetic energy isidis reason the evolution does not depend on whether one imposes
pated into internal one in these shocks, and the flow developseflecting or open boundary conditions (compare models HD2r
vortex-like structure. If the boundaries of the computagicdo- 0 in Tab[A.2 and grw-3 in Tab. Al 1). Thus, to encounter a rigpid
main are too close to the shear layer, the waves leave theidomgrowing instability in a fast shear flow, one has to simulatafa
before they canféect the flow, i.e., the growth rate is reducedficiently large domain, or alternatively to use reflectingubd-
Each time a wave leaves the computational domain, it carrigses iny-direction. ForM = 1.8, open and closed models (i.e.,
away kinetic energy giving rise to the oscillations.%f1 visible models where open or reflecting boundaries are imposedg agre
in Fig.[3. in their growth rates if simulated on affgiently large domain.

For an intermediate domain size pfe [-0.5;0.5] (model However, when the extent of the computational domain iskmal
HD2o0-1-s), we find despite the absence of oscillations alsmalin the transverse directioh,(= 0.5), we observe a destabiliza-
growth rate than for models HD20-% € [-1;1]) and HD2o0- tion of closed models: the growth rate of the closed model HD2
1-1 (y € [-2;2]), respectively. The boundaries ardisiiently 1-s exceeds that of the corresponding open model HD20-1-s by
close to the shear layer tdfect the growth of the instability. a factor of~ 3.5. Furthermore, closed models exhibit a phase of
Saturation occurs by the same mechanism as in case of a lamgronential and oscillatory growth ef. (t) even wherM > 2,
domain, namely by the development of shock waves. whereas open models are stable.

The distance the waves travel in transverse direction in- Inthe KH saturated state the flow consists of a dominant vor-
creases with increasing Mach number of the shear flow. Rex for shear flows of moderate Mach numbers. At large Mach
M = 1 the waves are contained essentially in the region numbers and when the growth of the instability is mediated
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other and the shear layer developing only smgatbmponents.
After the end of linear growth a broad shear layer develogigé

N\ which the magnetic field has a sheet-like structure.

/ 1 If the magnetic field strength is reduced furthar<£ 5), we

-4 HD2o0-1 observe a linear growth of the KH instability, and the forimat

of a KH vortex. The overturning vortex continues to amplifigt
field until it becomes eventually so strong that it resistshier
bending, i.e. the instability saturates in the non-lindsage. The

porte 1 magnetic energy, which grows exponentially during thedime
-8 / I phase, reaches a maximum, and then gradually declines dback t

log €},
4
\

"':HD’ e almost its initial value.
~10 " 40 4 Itis important to note that although we are evolving the equa
| / | tions of ideal (i.e., non-resistive) MHD numerical resigii is

- present and acts similar as a physical resistivity. Herexmn-
-12 J _____ nection of field lines and dissipation of magnetic energy int
= T internal energy occurs. Though being a purely numerittatg

20 40 60 80 100 this dissipation mimics a physical process: in ideal MHDf¢or
exceedingly large magnetic Reynolds numBef,), energy is
transferred to ever smaller length scales by a turbulemackes
When the cascade reaches the scale set by the grid respthton
physics is no longer appropriately represented by the elized
magnetic field. Instead, the unresolved (sub-grid) magresti
ergy is assigned to the internal energy. Hence, numerisi-re
tivity (like numerical viscosity) acts as an unspecific gyrig
) ) ) ] model for unresolved dynamics.
mainly by shock waves, the flow is characterized by aratherth  ag 3 result of numerical resistivity, our models show the dy-
and clearly delimited transition layer oriented along th#ial amics discussed by Jones etlal. (1997): the emergenceat.coh
discontinuity (aty = 0). This layer is surrounded by two regiongnt flow and field structures, and their subsequent dismijitio
of anti-parallel flows. ) ___intense reconnection events whereby kinetic energffiisiently

The shocks created at the supersonic shear layer areljnitiglonyerted into internal energy. As a consequence, theikieet
oblique, but eventually become planar shocks paralleléo/th ergy decreases more strongly than in the non-magneticaase,
direction. This process happens earlier closg400. The verti-  the flow barely resembles a KH vortex at the end of the simula-
cal extent of the planar shock structures varies from aibactf  tjon. |nstead, we find a broad transition layer that is embedd
the vertical domain size to almost the whole computational b jnto two anti-parallel flows and that contains thin magnétig
When the propagation of the shocks is restricteg-ttirection, sheets. The flow is rather laminar than turbulent, with etged

the fluid tries to avoid these by sliding along the verticaédi  streaks of gas and field stretching across the computatitimal
tion. Thus, the planar shocks verffieiently convertx- into y-  main.

kinetic energy.

Fig. 3. Volume averaged kinetic energy densdy of models
HD2o0-1 (solid line}ly = 2) and HD20-1-s (dashed link;= 0.5)
as a function of time illustrating the influence of the sizehs
vertical extent of the computational domajn

4.3.2. Weak fields
4.3. Intermediate and weak fields . . o
Overview: Models with a weak initial magnetic field show

Suficiently strong magnetic fields (Alfvén numbar< 2; see (disruptiveor dissipativedynamics [(Jones et/al. 1997). In both
Eq[l) stabilize the flow according to linear stability ars®y regimes, a KH vortex develops. The magnetic field forms thin
We indeed observe this stabilization in simulations of tmth-  flux sheets while it is wound up by the vortex. If two flux sheets
sonic and supersonic strongly magnetized shear flows. In #feopposite polarity come to lie close to each other, theffesu
following, we thus focus on the more interesting case ofrintethe resistivetearing-mode instabilityvhich leads to the recon-
mediate and weak initial fields, which according to Franket aection of field lines of dferent orientation and the conversion
(1996) can give rise tdisruptiveanddissipativedynamics, re- of magnetic into thermal energy. Since the magnetic enesgy w
spect|vel_y. The r_nodgels we describe in this section were cofyeviously amplified at the cost of the kinetic energy, thar-te
puted using a grid withy x |y = 2 x 2 and reflecting boundary ing modes act essentially as a catalyst facilitating thsipion
conditions iny-direction. We simulated shear flows withy = 1, of kinetic into internal energy. This behavior charactesizhe
and varied the Mach number of the flow by setting the pressiygsipation regime, while in the disruption regime anotfect
either toPy = 0.6 or Py = 0.0375 corresponding to Mach num-comes into play: the magnetic field eventually becomes-su
bers ofM = 1 andM = 4, respectively. The adiabatic index ofciently strong to disrupt the vortex leaving behind a broadsi-

the gas wa$ = 4/3. tion layer where turbulent flow and magnetic fields decay slow
The dynamics of the flow and the magnetic field are highly cou-
pled since the field is dominated by flux sheets where the veloc
ity and the magnetic field are strongly aligned, reminiscéitie
ForA = 2.5, we find, in agreement with Frank et al. (1996), norAlfvén gfectin MHD turbulence |(Iroshnikov 1964; Kraichnan
linear stabilization. The magnetic field is amplified durihg 1965). Accordingly, we also find near equipartition betwten
linear phase, and the magnetic tension becomes eventufilly stransverse magnetic and kinetic energy densities (sedghgped
ciently strong to prevent further bending of the field lin€sus, tion models below).

the formation of a KH vortex is suppressed. Instead, thecvelo  The evolution of the simulated weak-field models (summa-
ity and the magnetic fields remain essentially aligned witbhe rized in Tab A.B) consists of three distinct phases:

4.3.1. Intermediate fields
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Fig. 4. Volume averaged transverse kinetic (solid) and magnefay. 5. Growth of the volume-averaged turbulent (transverse)
(dashed) energy densiti%n and e}’nag versus time for mod- magnetic energy densil@}’mlg (see Eql{Il1)) with time for two
els with an initial Mach numbek = 1, and Alfvén numbers different models simulated at fivefidirent grid resolutions. At
A = 125 (green, diamond) andl = 5000 (black, asterisk), re- time zero the ratio oiel‘ﬁin and the volume-averaged total mag-
spectively. Both models were computed using a grid of 2048etic energy density is maximal, i.e. this moment corregigon
zones. The blue vertical lines indicate the end of the KH phago txy. The solid and dashed lines refer to a model with initial
tkn, and of the kinematic phase, respectively. Alfvén numbersA = 5000 and 125, respectively. Note that the
values of the former model are scaled by the factor (3026Y.
Orange, red, green, blue, and black lines refer to simulatio

_ - _ with 256, 512, 1024, 2048, and 4096 zones, respectively.
— Linear KH growth phaseinitial perturbations of both veloc- The insert shows a magnified view of the late evolution.
ity and magnetic field grow exponentially until a KH vortex

forms.
— Kinematic field amplification phaseagnetic field is wound i i
up by the secularly evolving KH vortex. M
— Dissipationdisruption phaseKH vortex looses its energy 052

due to magnetic stresses and resistieats. i uis s -
1 5

€, [0.001]

We discuss these three phases and the transitions between th
in more detail in the following. The phases can be distingeds 0.50
best on the basis of the evolution of the transverse kinetic

and magnetic energy densitieﬁ,n and e’,;ag, respectively (see

Eq.(Z0) and Eq[(11); Figl4). For this purpose, we consider a s
pair of prototype models, with initial Mach numbir= 1, and

Alfvén numbersA = 125 andA = 5000, respectively, computed

on a grid of 2048 zones.

KH growth phase: Early on during the evolution the seed per- @

turbations imposed on the initial shearing profile are afiegli

exponentially, but the magnetic field remains too weakfleca Fig. 6. Snapshot of a model with initial Mach numbir = 1

the evolution. When the exponential growth of the KH indtabiand Alfvén numbeA = 125 computed on a grid of 204&ones

ity terminates, the total magnetic energy has grown by aboushortly after the end of the KH growth phase. The hue gives the

factor 14 in all models, the contribution of the transverse fieldound speeds, and the brightness of the colors the Alfvéen ve-

component’ amounting to about 10%. Due to the persistingpcity, ca, respectively. Magnetic field lines and flow velocity

weakness of the magnetic field the growth rate of the instabil vectors are shown, too. The latter are color-coded accgtdin

and the flow structure after the end of the KH growth phase atee size of thex-component of/, reddish and bluish colors cor-

the same as those without any field. responding to matter flowing to the left and right, respetgiv
When the KH instability saturates with the formation of a

KH vortex (see Fid.J6 for a model with = 125), the growth of

the transverse kinetic energy ceases, 00 [Fig. 4). Dems#8- he curves) is independent of the grid resolution and tHelni

sure, sound speed, and magnetic field strength possess-a ”ﬁ%\'d strength fott — tyy < O.

mum at the center of the vortex, and the magnetic field is woun

up into a long thin sheet surrounding the vortex. These fglin

hold for the models wittA = 125 andA = 5000, respectively. Kinematic amplification phase:  After saturation of the es-

Fig.[3 shows that the growth rate of the instability (the sl@p sentially hydrodynamic KH instabilitﬁin(t) exhibits small os-

-1 -0.50 0 0.50 1
X
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cillations about a constant value. The initial shearingiifatce, Siag
wound up several times by the overturning vortex, has become
a thin fluid layer separating flow regions of opposite veiesit
Fig.[8). The magnetic sheet is being stretched by the overtur
ing vortex giving rise to an exponential amplification of the -
field (instead of a linear one by winding), as the growth rate 0.50|
due to stretching depends on the field strength itself. lte i i ]
the growing magnetic field the flow structure as well as the ki- - ;
netic and internal energies of the fluid show only minor cleang - 0F
throughout the entire kinematic amplification phase. i
To understand the amplification of the magnetic field in de- e
tail we consider the sources and sinks of magnetic energyn Fr —0.50 |-
the scalar product af;:b (given by the induction equation) and i
the magnetic fieldb - 4;b, one can derive the equation for the i
evolution of the total energy density of the magnetic fielghg AR

which has the form of an advection equation with source terms -l —0-50 2 0-50 !

-0.14 0.0173 0.18 0.33

Fig. 7. Snapshot of the source term of the total magnetic energy
density (Eq_IB) for the model shown in Hig. 6 taken during the
kinematic amplification phase. Reddish (blueish) colorswsh
regions where the total magnetic energy density increates (

Smag = —€magV - V + DY (9v* - 0,0Y) (13) creases).

0t€mag+ V (emagV) = Smag (12)

The source term,

consists of a compression term proportional to the diverge To quantify the amount of amplification of the magnetic field

the velocity field, and a shear term proportional to the ctithe occurring during the kinematic amplification phase we idtree
velocity field. The sum of both terms (i.e., the source tersn) {he fieldamplification factor

negative, when the magnetic field does work on the fluid. ‘

The evolution ofemag is exemplified in Figd7 for a model fuin = Myy(t = tkin)/Mxy(t = tcn) = M';';/Mg' (14)
with A = 125. As the fluid is nearly incompressible in our mod-, .. . . .
els, the first term on the r.h.s. of EQ.113) is small, and field a defined as the ratio of the flediagonal volurr_1e-|ntegrated
plification (blueish areas) occurs predominantly by shietg. MaXWell stress componeM, at the end of the kinematic am-
As there is no back-reaction onto the flow, the volume-awertagP!fication phase and at the end of the KH growth phase.

transverse magnetic energy density grows exponentiallly wj. Whep plotting i as a function of grid resolution and ini-
time. Stretching mainly happens in the thin flux sheet passi al Alfvén number we find that our models populate the lower

through the origin of the grid, and to a lesser extent in the fIJ!9Nt region (shaded in gray) in both diagrams (Elg. 8). Blot
sheets located closer to the center of the vortex. There avef} 9'V€" grid res_olutlon and |n|_t|al _Alfven F‘“m.bFme converges
small reduction ofmag Can be observed (see Fiiy. 7). The volum wards a maximum value with increasing initial Alfvén num

integral of the source term over the entire computationaiaia riSLt(I;Er%I’) l(?lfaiFs)a::A)\}e?ggnicneCEgaz;?og ogbr\i/?oLessglcl)th;Otrﬁgglérap
is positive, i.e., the magnetic energy of the models is iasirgg. 8f fin (M) for A = const (Fig B, left panel): note that for large

Because field amplification is mediated by a well resolve | A finest the arid ; t veisient
rather smooth flow, the growth rate of the turbulent magnet}fél ues ol even ourtinest € grd spacing was not yelisten
0 show the flattening ofyin (mx).

enerdy denS|tye,‘41ag Is independent of the grid resolution dur- The panels further show that the weaker (larger) the initial

ing the kinematic amplification phase @ t — txqy < 5; see . , o Ne _
Fig.[5). Models withM = 0.5, but otherwise identical initial con- f|eld_ (the value_ oR), thg h|gher IS the.a}mp_llflcanon factdin
chievable during the kinematic amplification phase. Theeup

ditions and grid resolution, show a slower growth of the fiel : . : .
(see TalAR). Ai‘\ﬁin (monitoring the turnover velocity of the gorder of the gray shaded regions is approximately givernby t

vortex) shows small variations with time during the kineimat POWer Iawsrr_ﬁ/s andA®*, respectively. _
amplification phase (see Fig. 4), the growth rate variesislig To explain these results and to quantify tifieets of the grid
too (note the variation of the slope in Hig. 5 fos2 — txy < 4). resolution, we define a characteristic length scale of tiaria of
The evolution of the turbulent magnetic energy densityrafté® magnetic field
the end of the kinematic amplification phase depends styongl Ib]
on the grid resolution and the initial field strength (Fig.5)b = Vb’
Comparing the results for the models with= 125 andA = IVxbl
5000 we conclude that the growth of the turbulent magnetic ewhere the denominator is proportional to the current dgnsit
ergy density is less for models with a stronger initial ficddrt Initially infinite (the initial magnetic field is curl free), de-
for those with a weaker initial field at the same grid resoluti  creases during the KH growth and the kinematic amplification
For the model withA = 125 the magnetic field eventuallyphases.
reaches locally (within a factor of a few) equipartitionestgth, Due to flux conservation, the amplification of the field occur-
i.e., magnetic stresses start to change the flow. In the mattel ring mainly in flux sheets goes along with a decrease of théhwid
the lower initial Alfvén velocity (i.e., larger Alfvén maber), the of the sheets orthogonal to the magnetic field, which is rugh
magnetic field remains, in spite of a larger amplificatiorg togiven byly. In simulations, the decreaselgtan properly be fol-
weak to cause such affect. lowed only as long alg, 2 Ay, whereAq is the finite grid spacing.

(15)
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Fig. 8. Amplification of the magnetic field during the kinematic aifiphtion phase: the amplification factdiy, (see EJ.IM4), is
shown for the models with an initial Mach numbdr= 1 as a function of the number of grid zones, (left panel), and of the
initial Alfvén number A (right panel). In the left panel, models with= 25, 50, 125, 250, 500, 1250, and 5000 correspond to black
circles, dark blue asterisks, light blue plus signs, grdamdnds, yellow triangles, orange squares, andsiyns, respectively.

In the right panel, models with a grid size wf = 256, 512, 1024, 2048, and 4096 zones are displayed by bléeksks, dark
blue+ signs, light blue diamonds, green triangles, and orangarsgurespectively. The upper border of the gray shadedneig
approximately given by the power laws/® andA¥4, respectively.

When this limit is reached the exponential amplification foe t A second important issue for understanding our resultsis th
field strength and field energy ceases. Further growth only effect of numerical resistivity. Although we integrate the aqu
gards the magnetic energy, which can increase at most ljnedions ofideal MHD, the numerical scheme employed in our code
with time due to the increasing length of the sheet (at a emistmimics to some degree théects ofphysicalresistivity due to
width!). This point in the evolution marks the end of the phasts inherentnumericalresistivity. Thus, the numerical scheme
of kinematic amplification. smooths sharp features in the magnetic field and causeswiole
Consequently, there exists an upper limit for the ampliff€Sistive instabilities of, e.g., tearing-mode type. Tatéer efect
cation of the magnetic field strength attainable by flux-shel§ MOSt pronounced at length scales close to the grid spaging
stretching that depends on the grid resolution. Howevés, th  When the typical length scales of the magnetic field — given
limit set by the ratio of the grid spacing and the initial #ness approximately byl, — are comparable to the grid spacing,
of the flux sheet can only be reached, if the field strength resnawe expect numerical resistivity to be important. For the elod
dynamically negligible (i.e. below equipartition strengtluring with M = 1, A = 125, andmy, = 2048 zoned, ~ A inside
the kinematic amplification phase. This applies to modets withe flux sheet near the end of the kinematic amplification @has
weak initial magnetic fieldsA = 1000), which are located near(Fig.[8, upper panel). The magnetic field is dominated by a-com
the upper border of the gray shaded region in the left panel@gx pattern of sheets partially arranged in pairs or eviptets
Fig.[8. with anti-parallel fields. An example is the triple sheetisture
?assing roughly diagonally through the origin from dowrn tef

If the magnetic field reaches — within a factor of order unit . : 2 o
_ P ; ; ; by op right (Fig[®, upper panel). This triplet consisting afemtral
local equipartition strength during the kinematic amgiifion Q%et withb* > 0 and two parallel "wing” sheets witb” < 0 is

hase, the flow dynamics and as a consequence the termin ; .
gf that phase shgw distinct features. Thisqis the case for- m% € result of the advection of magnetic flux towards the @ntr
sheet by the flow.

els with strong initial magnetic field#\(< 500) and sfficiently ) ] o
fine resolution, which are located near the upper borderef th As the advection continues the strength of the magnetic field
gray shaded region in the right panel of Fig. 8. For these mda__the side sheets increases, while their W|d_th_de<_:reaaq§1_@

els fin o« A¥4, i.e., the amplification is larger for weaker initialto mtgnse currents. Eventually < Ag, and resistive mstz_iblhtles
fields. One factor contributing to this trend is the backstiem (tearing modes) start to grow, which curl up the two wing shee

of the field onto the flow. When locally the Alfven number apand eventually disruptthem leaving behind only the ceistrakt
proaches the order of unity (see, e.g., the lower panel oB§ig (Fig.[3, upper panel). This procesSexts the entire triple sheet
magnetic stresses start to decelerate the fluid in the fluatshestructure (Fid. B, lower panel).

and as the flux sheets partially thread the KH vortex its iaaf Shortly afterwards, the central sheet of the former trjplet
velocity decreases, too. Consequently, the amplificatéamof  still intact, is disrupted. From the interior of the vortaxther

will be smaller in this case than for an initially less strgng sheets of magnetic flux are expelled creating new strongntsr
magnetized model. Finally, note that for models with weak inthat again stier strong resistive instabilities. This cycle of pro-
tial magnetic fields4 = 1000) we do not observdfects due to cesses repeats every time strong currents build up by agiproa
back-reaction, as this requires larger field amplificatiactdrs ing flux sheets. As a consequence, the large coherent flux shee
than reached in our simulations due to ifiglient grid resolu- structures are disrupted, and reconnection of magnetitliieds

tion (see discussion above). leads to numerous small-scale field structures includingea
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field loops, similarly to those reported in previous simiglas tion phase), the formation of unstable multiple sheets ssiide

(e.g.,Keppens et al. 1999). even on coarse grids. Nevertheless, we do not observe sgeng
The amplification of the magnetic field terminates due to thséstive instabilities during this phase for these models.
development of these resistive instabilities, becaugbéi) con- We showed above that the growth rate of resistive instabil-

vert magnetic energy into thermal energy, and becausehéi) fties during the kinematic amplification phase dependsrtapa
resulting small-scale field and flow is lesfigient in amplifying from the resistivity, on the width of the flux sheet and thedfiel
the magnetic field than a more coherent flow. strength, and that this phase ends when the tearing modes gro
The mechanism just described is responsible for the termiriaster than the field is kinematically amplified by the vetgci
tion of the kinematic amplification phase in well resolveddno field. To match this condition, skiciently strong fields are re-
els. All models withA = 50, m, > 256 andA = 125,m, > 1024 quired during close encounters of flux sheets. This factaéngl
undergo this evolution. For even finer grids the results sse® why we do not find resistive instabilities in models with toeak
tially converged in terms of the amplification factfyy, (Fig.[8). initial fields or too coarse resolution. In these cases timéd-
Finding convergence for a flow whose behavior depends dirontjon of the maximum field strength of a flux sheet imposed by
on numerical resistivity is a remarkable result that desesome its minimum (resolvable) width leads to a reduced growtle rat
explanation. Naturally, one would expect that with finedgds- of resistive instabilities even wheds = Ay, i.e., the distance be-
olution (i.e., decreasing numerical resistivity) tearingdes are tween two flux sheets is reduced to the grid spacing. Thusethe
better suppressed, thus enabling the field to grow stronger. instabilities cannot terminate the kinematic field ampdifion
However, this reasoning does only apply, if the maiieet process the same way as they do it in the case of stronge initi
of numerical resistivity is the disruption of isolated fluxeets. fields or finer grids.
In such a situation, the magnetic field in the flux sheet will be The field strength required for resistive instabilities ¢o-t
amplified until tearing modes grow faster than the field gjten minate the kinematic amplification phase depends on the flow
increases. As soon as the stretching of the flux sheet leaals field: faster shear flows require stronger fields. Empincall
combination of a sfliciently strong field and a sficiently thin we find that the maximum field strength at termination corre-
sheet (both conditions as well as an increasing resisiivipty ~ sponds roughly to an Alfvén number of order unity, i.e., i
higher growth rates of resistive instabilities; see e¢.gskBmp strengths similar to those required for dynamic feedback.
(2000)) tearing modes would start to disrupt the sheet. The To summarize, we find that there exist twdtdirent mecha-
amount of stretching necessary to reach this state dependsiisms to terminate the kinematic amplification phase.
the resistivity, i.e., in our case on the grid resolutionefigrids
require stronger fields and thinner sheets for disruptiamde,
the maximum field strength achievable at disruption shordaig
with increasing grid resolution, but the situation in ourdats
described above is crucially fiérent. Instead of operating on —
an isolated current sheet in a static background, the esigt
stabilities terminating the growth of the magnetic energyia
our models on a multitude of flux sheets approaching each othe
closely due to a dynamic background flow. Their growth rates
can become faster than the kinematic amplification of thd fiel
once thedistance Dg, between two sheets rather than the Widt{}\,
of the sheetsl,, becomes diiciently small, i.e,Ds S Ay, but
lpb > Ag. Contrary to the sheet widtl, the distances is not
related to the magnetic energy stored in the sheets, butlé-is
termined mainly by the flow field. Hence, there exists a refati
between the velocity field and the instance of growth termin

tion. The velocity field, in turn, depends mainly on the hyio i, jnitial field strength, because the volume filling factbithe

_namics of the KH vortex, and only weakly on the.gr_id resolnfio magnetic field increases with the initial field strength.
i.e., the moment when the flux sheets break up is indepenélent o

resolution. The latter also holds for the energy contaimeithé

sheets. Converged results for the amplification factor baret Total amplification: ~ The total amplification of the magnetic
fore be obtained despite the presence of a grid spacing depenfield is given by its growth during both the KH and the kineroati
numerical resistivity. amplification phases.

As we saw above, the tearing modes of our models are trig- According to our results the field amplification factty,
gered first after the formation of multiple sheet structursts (EqLI4) scales with the initial Alfvén numbey, approximately
this point the central flux sheet of the triplet passing tiglothe  asA¥“ (see FiglB). Consequently, theaximum Maxwell stress
origin is still well resolved by several zondg & afew x A4), obtainable at the end of the kinematic amplification precsdes
but the distanc®s between the side sheets and the central shaéth the initial magnetic fieldy o« A~ approximately as
approacheagy as the former are advected towards the latter one. &4

Some of our model sequences show no convergence beH¥y « By~ (16)
ior (Fig.[8, left panel), as the grid resolution necessanttiat ,
increases with the initial Alfvén number. For very wegfqihdi sinceM™ = fii, My (see EJ_IH), anty! o b (i.e., the
fields (A > 250) even our finest grid with 408@ones does not 9rowth of the Maxwell stress during the KH growth phase is
yield a resolution-independent amplification factor. Hoareas Practically independent of the field). Note that this maxmu
the advection of the flux sheets does not depend on resolutue is only reached for a Siciently fine grid resolution. If
and only weakly on the strength of the initial field (except foth€ model is under-resolvedfi™ is reduced by a factor ap-

the sheets feedback is very limited in the kinematic amplificproximatelyoc m?® | i.e., the maximum obtainable magnetic

— Passive terminationthe magnetic field strength reaches a
maximum when the decreasing thickness of the flux sheets
approaches the grid spacing, i.e., wigr Aq.
Resisto-dynamic terminatiorthe magnetic field reaches
equipartition strength with the flow field when a combination
of dynamic and resistive processes terminate further field
growth. Lorentz forces reduce the rotational velocity & th
KH vortex, while resistive instabilities develop as flux ste
merge.

hereas passive termination is a numerical artifact duantte fi
grid resolution, resisto-dynamic termination can be elgukto
occur in nature. The latter process leads to Alfvén velesihat
are locally comparable with the shear velocity, and it i©eat
independent of the initial field strength. The volume averafy
fhe magnetic energy, on the other hand, increases withdscre
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Fig. 9. Snapshots of the structure of the model with an initial MagimberM = 1 and an Alfvén numbek = 125 taken close to the
termination of the kinematic amplification phase (pane), @hd shortly afterwards (panel (b)). The top half of eachgbahows
the logarithm of the characteristic length scale of the nesigrfield, |b|/|V x b| in units of the zone size; reddish colors indicate
regions where magnetic structures are larger than one datignal zone, and blueish colors where they are smallez.biditom
half of each panel shows the logarithm of the ratio of the &ifwelocity and the modulus of the fluid velocity, blueisid aeddish
colors denoting strongly and weakly magnetized regiorspeetively.

field strength depends on the strength of the initial magnetver, in a complex way on the initial state. For fixed sheagday
field. Furthermore, as weak initial fields imply weak terminawidth, slower shear flows lead to lesSieient field amplifica-
tion fields, which modify the dynamics of the flow only weaklytion. The amplification factor of the magnetic enerify on the
there exists a hydrodynamic limit of the magnetic KH ingtighi  other hand, is practically independent of the shear laydthyi

The total amplification factors for the magnetic enertfy, While f® decreases for narrower initial shear layers. However,
and the magnetic field strengtf?, are listed for various models Since the volume where amplification takes place is largen th
in Tab[A3 and displayed in Fig.1L0. The trends described@bdhat given by the initial shear layer width, overall the toteag-
also hold here. The amplification factors increase with fgrat Netic energy grows as in the case of a narrower transiticerlay

resolution and eventually converge, the resolution reglfor To summarize, the maximum magnetic field achieved is
convergence being higher for weaker fields. The converged aainly a function of the overturning velocity of the KH voxte
plification factors are larger for weaker magnetic fieldslisg corresponding to the transverse kinetic energy, while thg-m
as f¢ « b62/3 and f° « bal, respectively. Note that the latternetic energy at the termination of the growth depends omrike i
scaling implies a maximum field strength that is independénttial Mach number, on the width of the shear profile and on the
the initial field strength, consistent with the fact thatrthexists initial magnetic field.

a hydrodynamic limit of the magnetic KH instability for weak

fields (see above).

For models diering by their initial hydrodynamic state (i_e,Saturation, q_issipation and disrupti_on:_ After termination
initial Mach numbemM, and initial shear layer width; see sec- Of the amplification of the magnetic field, the shear flow esiter
tiond) both amplification factors scale very similarly withe the saturation phase. We will discuss in the following mainl
initial field strength (Fig—0). In models with a smallertinl Models encountering a resisto-dynamic termination rattiem
Mach number but the same initial shear layer width£ 0.5, @& passive one, but also.bn(.efly mention the behavior of models
a = 0.05; filled green circles), and with the same initial Maci§ufering a passive termination of the field growth.
number but an initially wider shear layeM(= 1, a = 0.15; As a typical example, we illustrate the evolution of the jadrt
red diamonds) the KH mstablllt_y grows slower than in starenergies of the model witkl = 1 andA = 125 in Fig[11. After
dard model 1 = 1, a = 0.05) discussed above. It also satuthe end of the kinematic amplification phases both the lineti
rates at smaller transverse kinetic energies3(3 x 10°3 and energy V2 (shear component) amdvf, (transverse component)
~ 4.2 x 1073, respectively, instead of 9.5 x 10°%), which im-  decrease, while the internal energy increases. The magreti
plies a slower kinematic amplification of the field. Hen&gjs ergy remains roughly at the level it has reached at the ertueof t
smaller, but its scaling: b,* is similar to that of the referencekinematic amplification phase. In the final state, the transw
models. Independent of the properties of the initial sheaw,fl kinetic energy is less than the total magnetic energy, andleq
we find f€ « baz/s, the proportionality constant depending, howto the transverse magnetic energy.
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Fig. 10. The total amplification factors for the magnetic energlig. 11. Panel (a) Evolution of the model withM = 1 and
f€ (top panel) and the magnetic field strength(bottom panel) A = 125, computed on a grid of 204&ones. The top panel
as a function of the initial magnetic fields, for models with dif- shows the internal energy density as a function of time. Tdte b
ferentinitial shear flows: empty black diamonds, filled gre@- tom panel shows the logarithms of the volume-averagedikinet
cles, and filled red diamonds correspond to models Wita 1  energy densitieg, (dark red line,x signs) andel‘iin (orange
anda = 0.05,M = 0.5anda = 0.05, andV = 1 anda = 0.15,re- line, squares), and of the volume-averaged magnetic edleirgy
spectively. The spread in vertical direction reflectdatent grid = sitiesel,, (dark blue line, triangles) arm{]ag (light blue line, di-
resolutions. To indicate the scaling of the amplificatioctdas amonds), respectively. The two vertical lines indicateghd of
with the initial field strength, the figure also gives powerda the KH growth (left) and kinematic amplification (right) pe
o by?’® (top panel), andk b* (bottom panel). respectively. _ _
Panel (b) Same as panel (a), but for a supersonic model with
M = 4.4 andA = 5000. Because of the model’s completely

To understand these results, we compare the model strdlifferent dynamics, the lines indicating the end of the growth
ture at the beginning of the saturation phase with that rfear hases are omitted.
end of the simulation. According to FIg.112 the model exlsibit
clear signs of disruptive dynamics (see Jonesletal.|199%8. T
KH vortex is still visible as a coherent patterntat 34.4, i.e., flux sheet pattern is imprinted onto the flow field and the gas
shortly after the end of the kinematic amplification phas@ pressure distribution. Although the gas pressure is redliree
(a)). Att = 815 the vortex is disrupted, the flow field is domi-side the sheets there isfBaient magnetic pressure to keep the
nated by a broad transition region separating oppositesctid flux sheets in pressure equilibrium with their surroundifigsat
shear flows, and thg-component of the velocity shows small-explains why the distribution of the total pressure is rafea-
scale structures (see patchy colors in upper part of Eigpdi2el tureless.
b). The magnetic field is concentrated into a multitude ofithi  As visible in Fig[® (panel b) and Fig. 112 (panel a), the re-
flux sheets with a typical length scdlg~ Ay. Due to magnetic sistive instabilities responsible for the termination loé tkine-
reconnection the sheets possess a complex topology. $everatic amplification phase spread along the flux sheets lgadin
closed field loops have formed that are stabilized by a comidda complex field topology and inhibiting further growth bt
nation magnetic loop tension and total pressi#e (?/2). The field not only locally but in the entire volume.
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matic amplifictaion phase. This level decreases with dearga
initial field strength, i.e. the weaker the initial field tHewer is
the resistive disruption of the KH vortex. To quantify thieet,
we define a disruption timéy;s, as the time whee}:in falls below
€hag and a deceleration rateyec = d; I0gEY,, = 1/tgecH. Both
guantities are listed in Tab.A.4, atg, andtgec are also shown
as a function of the initial Alfvén number in FIg.J13. For nedsl
with very weak deceleration, the evolution of the kinetieeyy

is dominated by large oscillations. Thus, the determimeticthe
value ofogecis uncertain to some degree in these cases, and the
numerical values quoted in Tab.A.4 should be taken with.care

Depending on the initial field strength, the models require a
certain minimum resolution to obtain converged valuestfgr
andtyec, respectively. If the resolution is too low, the disruption
of the vortex and the deceleration of the shear flow procead to
slow due to an indiicient amount of field amplification. In the
0 0.23 047 0.70 folllowing, we will focus on converged or nearly convergeddno
els.

The disruption and deceleration time scale with the initial
field strength roughly als;®’. Comparing these times for mod-
els with diferent initial shear profiles, we find that the disruption
time depends sensitively on bolh and the initial shear layer
width a. The larger the amplification factor of the magnetic en-
ergy f¢ is for a given shear profile (see Higl10), the faster is
the disruption of the vortex. The deceleration time, on tteo
hand, shows a weaker dependenc&aamda. Even fora = 0.2,
which implies a much slower KH growth and a very low satura-
tion level ofe}im ~ 1073, the deceleration time is very similar to
that of the models discussed above, although the magnétic fie
strength is much smaller.

For weaker fields, whose growth ends due to passive instead
. of resisto-dynamic termination (i.e., non-converged nig)léhe
-6 05 0.0 0.5 10 kinetic energy decreases much more slowly. Resistivebiista

Ibl [G] ties grow much slower in such models, because of the growth of
their field strength is restricted by numerical resolutidience,
the dfective viscosity is much lower in these models than in well
resolved ones.

0 0.23 047 0,70

Fig.12. Structure of the model wittM = 1 andA = 125
computed on a grid of 204&ones near the beginning of the

saturation phase dt = 34.4 (upper panel), and dt = 815 4.4. Supersonic shear flows
(lower panel), respectively. The top and bottom half of ea
panel shows thg-component of the velocity and the modulu
of the magnetic field, respectively. The flow field is illusé&e
by the black arrows.

?\1/9 simulated supersonic shear flows with a Mach number
4.4 using the same velocity profile as for the model viith- 1,
but a reduced gas pressurePE 0.0375. In the following, we
compare models with very largé (= 5000) and small4 =
25,50) Alfvén numbers. For the simulations we used grids with
a resolution between 12&nd 2048 zones. As the main result
Ve find that the growth rate of the magnetic field is lower in
supersonic shear flows than in sonic and subsonic shear flows.
For A = 5000, none of the simulations shows dfeet of
the magnetic field on the flow. For all grid resolutions thdyear
evolution of the magnetic model (shock formation and intera
tion) is similar to that of the non-magnetic one. Unti 70 the
transverse kinetic energy increases roughly exponentiefore
leveling df (Fig.[11, panel b). The magnetic field yadirection
is amplified at a similar rate as the kinetic energy unsl 100,
when the amplification rate increases strongly. This ph&sé o

; . ficient field growth, lasting untit ~ 130, corresponds to the
the transverse velocity reflects the turbulence resultiogfthe formation of large regions of subsonic flow where most of the

rgsistive instabilities,-i.e.e}gn is a measure (like the magneticﬁeld amplification occurs. The magnetic field is concentiate
field strength) of the intensity of turbulence. Consequesl],  thin sheets. While dominated by a multitude of shock waves du

remains constant at saturati_on, and the disruption of thevétH ing early phases, the model shows a subsonic vortical flohen t
tex can be identified by the instance w@m x e}’nag.

The saturation level of the magnetic field, and thus tfiece 2 We also considered alternative definitionsf. that, however, do
tive viscosity, is set by its level at the termination of thaee not change the arguments in the discussion below.

Locally, i.e. inside the flux sheets, the magnetic field is i
equipartition with the velocity field (globally it is stillraorder
of magnitude weaker). In resistive instabilities magnetiergy
is converted into internal one. Since the magnetic field leenb
built up previously at the expense of the kinetic energyirib&a-
bilities actually mediate the transformation of kinetieegy into
internal energy, hence acting akin to a hydrodynamic visgos
Eventually, a steady state (in a statistical sense) deseldgre
the magnetic energy, and thus thiéeetive viscosity, becomes
time-independent, while kinetic energy is converted imiteii-
nal one at a constant rate. After the disruption of the KHexart
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waves form. Interacting with magnetic flux sheets close & th
o S —— ey shearing interface, theses shocks are disrupted. Spceadizy
S & <>§ 1 from the interface in positive and negatiyalirection, a wide
§ | region of subsonic flow forms. Both its geometry and formatio
differ from those of subsonic shear flows. In barely magnetized
models, a subsonic flow possessing a considerable transver-
sal extent results from the interaction of oblique shoclee (s
Sect[4.2), whereas in more strongly magnetized models the
magnetic field enforces a subsonic region elongated alomg th
x-direction. We find convergence with respect to the satomati
: level of the magnetic energy, whose value is in general beiew
Lp N ] value of subsonic models. At late times, we observe eqtifijoart
i : ] between the transverse kinetic energy and the magnetigener
The deceleration times of the flow are fairly similar to thoge
the non-magnetic models.

%

4.5. Anti-parallel initial fields

K R 1 We have recomputed a number of models with anti-parallel ini

: ] tial fields, i.e., an initial field* = bX signfy). Similar simulations
were performed previously by Keppens €t al. (1999), whose re
sults we confirm.

For strong initial fields, corresponding to an initial A¢fu”
numberA = 5, we observe in accordance with Keppens et al.
(1999) a destabilization of the shear layer with respechw t
non-magnetic case.

The qualitative dynamics of initially weakly magnetized
shear flows with is anti-parallel fields is similar to the cakpar-
allel initial fields, evolving through the three phases dibsa in
Sect[4.B. There are, however, quantitativedences concern-
ing, e.g., the saturation value of the magnetic energy odéhe
celeration rate. The KH growth phase is similar for both field
configurations, as is the growth rate of the magnetic field dur
ing the kinematic amplification phase. The termination & th
latter phase depends, however, on the initial field oriémat
for the same initial Alfvén number, a model with anti-p&ehl
initial field experiences less amplification than one withaba

. lel magnetic fields. The modes of termination of the kinemati
per panel) and deceleration of the flaws. (lower panel) as a

. A : amplification phase are the same as in the case of paraltd fiel
function of the initial field strengtlby. The various models are (passive or resisto-dynamic termination), but due to tes@nce

%f oppositely directed flux sheets right from the beginnifig o
the evolution reconnection of field lines is enhanced. Tédsls

to earlier termination, i.e.,lower termination field stgéms. As

a consequence, the magnetic deceleration of the KH vortex is
less dficient in case of initially anti-parallel field. The disrup-
tion times and deceleration timescales are a factor df...3
larger than those measured for parallel-field models.

Iog tdec

Fig. 13.Time scales for the disruption of the KH vorte (up-

monds, and red squares correspond to models Mith 1 and
a = 0.05,M = 0.5 anda = 0.05, andM = 1 anda = 0.15, re-
spectively. The vertical spread of identical symbols redefif-
ferent grid resolutions finer resolution yielding smallatues of
tqis andtyec, respectively . The lines by%’ indicate the approx-
imate scaling of the time scales with.

final state, similarly to the models discussed in the previub- 5. Three-dimensional models
section. The kinetic energy has decreased by a factor offiaur
ing the entire evolution. Most of this deceleration has ocz

during the early saturation phase of the KH instability witen resolution we canféord in 3D is much worse than in our best

magnetic field is amplified most strongly. resolved 2D models. This prevented us from performing aystud

_Comparing the evolution of the magnetic energy for SiMyyg yetajled as in the two-dimensional case. The 3D models we
lations with diferent grid resolution, we find trends similar t0,4.e simulated are listed in TAD.A.5.

those of subsonic models with dynamically negligible fields

Stronger magnetic fields are obtained for finer grids theaexpl

nation for this behavior being the same as that for the x@sisb.1. Subsonic shear flows, parallel magnetic field
dynamic termination for subsonic shear flows: amplificatiog
ceases when the width of a flux sheet becomes comparablée
the grid spacing. In 3D the KH vortex is unstable against (purely) hydrodynami

In models withA = 25 andA = 50 the magnetic field instabilities| Ryu et al.[ (2000): coherent vortex tubes nibar

modifes the dynamics. In early stages, a number of weak shaukin KH vortex exert non-axial stresses on the vortex, and flu

In the following section, we study the evolution of KH insilab
ities in three-dimensional shear flows. Obviously, the nticaé

'tlo'l' Non-magnetic models
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elements are prone to the so-calkdtiptic instability, an insta-
bility caused by time-dependent shear forces, which actuid fl 1

elements while they orbit the vortex on elliptic trajecesi The g T T .
result is isotropic decaying turbulence. w 0.5 d
As in 2D, we seeded the KH instability with small pertur- F —~—]
bations of they-component of the velocity varying sinusoidally O R T
in X — direction(see Ed.DB). To break the translational symmetry r e et R I
in z-direction, we added a small random perturbatigg, to all -2
velocity components, where - ; g
c 4 L 3
Vindm = émdy  With  &mg € [1074,1]. (17) s | |
o B !
In the non-magnetized reference model a KH vortex tube 6 E &
elongated ire-direction forms during the exponential growth of o ZE‘T )
the instability. The vortex tube is clearly visible in theq(fit part 8 ”
of the) lower panel of Fig. 14, which shows the vorticity dist- P ]
tion att = 10 (shortly after the termination of the growth of the '100""' “““ 0" 50 30 20 50

instability), and at = 50 (in the non-linear phase), respectively. t
The temporal behavior of the volume-averaged kinetic en-
ergy densities defined in E§.{10) reflects the evolution ef th
flow (Fig.14). Up tot ~ 7, € is practically constant. Then
it starts to drop by about 20% within two time units when the
forming vortex tube extracts kinetic energy from the sheaw.fl
Afterwardse}, = stays again approximately constant until the el-
liptic instability begins to destroy the vortex tube tatx 20.
The transverse kinetic energy densiti% andef, , show ex-
ponential growth before saturating at the same level. Nudé t
€. saturates about 20 time units later tkﬁm (att ~ 30), be-

cause it starts growing from an initial value that is a factiat0*
smaller. In addition, its growth rate, which is similar teattof
the magnetic energy during the kinematic amplification phais
2D models, decreases after the end of the KH phase 0)
when the elliptic instability developing along the vortaxbé
takes overt( 2 12). The latter saturates when the vortex tube
is disrupted, an@f, ~ e?(’in. Subsequently, turbulence develops _
(see vorticity pattern at= 50 in Fig[14, lower panel), and theFig. 14. Upper panel: Temporal evolution of the volume-
shear flow is strongly decelerated as indicated by the deere@veraged kinetic energy densities defined in Ed. (10) for a 3D
of &, (Fig.I3, upper part of upper panel). The deceleration R@n-magnetized model. The upper part shefys and the lower
considerably faster than in the case of weakly magnetized 2De the logarithm o€’ = (blue),e. (green), ana, (red lines),
models. respectively.

Lower panel:Volume rendering of the modulus of the vortic-

. ity, |V x v|, of the same simulation at two férent times. The
5.1.2. Weak-field models computational box (red, green, and blue arrows point ity

For weak-field models, the 3D KH vortex is subject to twiieti andz-direction, respectively) is divided into two halv_es: ;Inen‘t
entinstabilities competing for its disruption: the purbjydrody- half showgV xvjatt = 10 when the KH vortex tube is still fully
namic one discussed in the previous subsection, and tisivesi intact, and the back half at= 50 after the complete disruption
ones analyzed in SeEE#.3. Which of these instabilities astm Of the vortex tube by secondary instabilities.
efficient depends the importance of 3Beets, which in turn is
determined by the initial amplitude of the random pertuidye.
Independently of the purely hydrodynamic instabilitiéghere
exists a (weak) magnetic field, it may also disrupt the voriiex At t ~ 15 the volume-averaged transverse kinetic energy densi-
the latter case, the post-disruption flow shows a largeregegf tiese}iin ande;,  reach equipartition (see FIg.]15). Magnetic field
organization than a non-magnetized one due to the prevat#ncamplification ceases at that point. The subsequent detielera
flux tubes and flux sheets where the magnetic and flow field arthe shear flow is mediated mainly by the hydrodynamic insta
aligned. bilities active also in non-magnetized models (see pres/gup-
For a model withA = 50 and a strong random perturbationsection). Hence, deceleration occurs with simildicency, but
i.e., comparable to the sinusoidal ogg{ ~ 1; see Eq[(17)), the ceases when the transverse kinetic energy densities dtoyw be
flow field shows considerable variations ardirection already the magnetic ones at- 50 and the magnetic field begins to sup-
during the formation of the KH vortex tube (Fig.]15). Durifgt press the hydrodynamic instabilities. The final state oftioglel
kinematic amplification phase, we observe a pattern of thin v consists of decaying volume filling turbulence. Since decel
ticity tubes arising from magnetic flux tubes wound up arourttbn is incomplete, the model retains a slower, smooth stmar
the dominant 3D vortex tube (located near the edge of the cofire velocity and the magnetic field are dominated by their re-
putational domairx-direction; see Fid.16). The KH vortex tubespectivex-components, leading to considerably anisotropic tur-
is disrupted until the end of the kinematic amplification gha bulent fields.




16 M. Obergaulinger et al.: Local simulations of the magrestiKelvin-Helmholtz instability in neutron-star mergers

1 SN ] 1 -\ ]
ﬁﬁg‘ 0.5/ ’\ y )iﬁg 0.5 1
: — : z
0 e AT e n A RRRE RSN RAARARNN a 07 1
‘/_.v‘ N — 7 r '.-—».v... S — 7
-2 12 LI Bttt S s -2 i y = T
= F // B 2 r! 1 =
g —Al; & —Alted
oL | o L / .
8’ L.y €n 8.) P €n
= B a = -6 ._! W aa a
/ ia ;Em ! //J/ :y;na :Vim
I~ a in b I~ ! mag in b
-8 Enaby hin -8 ‘:' € a4 Ein
i
|- - | / -
=10 b bbb -10l~ / / T L T L
0 10 20 30 40 50 0 20 40 60 80 100

t t

Fig. 15. Temporal evolution of various energy densities of a 3Big. 17. Same as Fif. 15, but for a model with an initial Alfvén
KH model having an initial Mach and Alfvén numberdf=1 numberA = 5000.

andA = 50, respectively. The amplitude of the imposed random

perturbation was comparable to that of the sinusoidal oge, i

éma = 1 (see EqL(I7)). The top panel shows the evolution @frmation of a flux sheet. Indeed, tizevariation of all physi-
&in- The bottom panel illustrates the evolution of the volumeza| quantities is very small, The dynamics of weak-field msde
averaged total magnetic energy density (black solid liaedl of s very similar to that of non-magnetized ones, too. Durimg t
the magnetic energy densities corresponding to the thriee figH growth phase, a vortex tube forms, which is oriented-in
componentse;,, g (blue solid line),ehag (green solid line), and direction.

€hag (red solid line), respectively. The dash-triple-dottetes As in 2D models the initial KH growth phase is followed
show the corresponding kinetic energy densitigs €/, and by a kinematic amplification phase. This phase terminats, a
€, using the same color coding. in 2D, depending o and the grid resolution either passively
or dynamically by the back-reaction onto the flow via Maxwell
stresses and resistive instabilities. The kinematic dioation
factor of the magnetic energfp, is the same as in 2D.

For an initial Alfvén numberA = 5000 we find passive
termination of the kinematic field amplification phase (HEig).
Since the magnetic field remains far too weakfi@et the evo-
lution, the dynamics resembles that of a non-magnetizedcemod
Until t ~ 30, 3D hydrodynamic instabilities disrupt the KH
vortex tube. Indicative for the development of these iniitab
' ties is the rise of, until it reaches equipartition Witl&}iin at
Hie - t ~ 28, growing at a rate comparable to the kinematic growth
rate of the magnetic field. The volume-averaged total magnet
energy density, and bo#,,, and e};ag remain constant during
this phase, onlg,,, increases exponentially. After termination
of the 3D instabilities all volume-averaged magnetic enelen-
sities are equal, growing slowly during the remaining etiolu
Fig. 16. Volume rendered magnetic field strengtb] (blue- Turbulence spreads across the entire computational voaunte
green) and modulus of the vorticitfy x v| (red-yellow) of a decelerates the shear flow with the sarfigiency as in the non-

3D KH model with initial Mach and Alfvén numbefg = 1 and Magnetized model.

A = 50, respectively. The snapshot is taken during the kinemati For stronger initial fields (or finer grid resolution) the ises
amplification phaset(= 9.21). The amplitude of the imposedtive instabilities terminating the kinematic amplificatiphase
random perturbation was comparable to that of the sinuboid@€ accompanied by a rapid growth of theomponent of the
one, i.e.&ng = 1 (see Eq[{A7)). The computational domain igelocity and the magnetic field. For models with= 50 and

given by the thin red box. The red, green, and blue arrows indi = 25, this happens dt~ 15. Despite this rapid growth, the
cate thex, Y, andz coordinate axes, respecti\/e|y_ influence of 3D fects remains moderate. At 15 close to the

end of the strong rise @,,4ande;; , the topology of the veloc-
ity field and magnetic field is still dominated by a large plana
Decreasing the amplitude of the random perturbation sgructure resembling the flux sheet of 2D simulations.

&na = 1072 or evenéng = 1074 (see Eql(Q7)) while keeping  This is a pronounced fierence to the case of large random
the initial magnetic field fixed, the shear flows evolves vefy d perturbations (compare Fig.J18 and Fig. 16). Note, howéket,
ferently. For small random perturbations field amplificataond there is already some indication of the decay of the flux sheet
overall dynamics proceed similarly as in 2D models durirg thnto flux tubes in the small random perturbation case, toterAf
KH growth and kinematic amplifictaion phases regarding ttthe dynamic-resistive termination of the kinematic amgdifion
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phase, the-components of the magnetic field and the velocity emag > €, holds, deceleration is initially similar to that in
start growing again although at a smaller rate, whilextend 2D for the same initial field strength, but drops strongly af-
y-components of the velocity are decelerated by the magnetic terwards. Due to the deceleration, thendz-components of
field. The decay of the flux sheet into tubes is almost complete the velocity field reach equipartition.

att = 25 (right panel of Fid. 118) whee{m ~ e ande};ag ~ €, — The dependence on the grid resolution is complementary to
holds. In the subsequent saturation phase, turbulencéogsye  that on the initial Alfvén number. Finer grids allow for a
and the shear flow is decelerated at a rate similar to thateof th more dficient field amplification, and thus favor hydromag-

2D models. netic over hydrodynamic deceleration.
Comparing the properties of the turbulence and the deceler- ) ) ) ) ) )
ation rate of 3D models with ffierent initial field strength, dif-  According to the 2D simulations, a maximum kinematic am-

ferent grid resolution, and fierent initial perturbations, we find plification is obtained for a dficiently fine grid at a given initial
that the intensity of the turbulent magnetic and velocityde field strength, i.e., increasing the grid resolution doesere
and consequently the deceleration of the shear flow, is-deteéance the influence of the magnetic field. Thus, we expect an

mined by the interplay of (3D) hydrodynamic instabilitiesd upper limit for the importance of magnetic vs. hydrodynamic
(2D) magnetic stresses and instabilities: deceleration corresponding to the upper limit of the field am

plification. Even for infinite grid resolution, kinematic aiifi-

Hydrodynamic disruptionf field amplification is too weak to cation of the magnetic field may not lead to afstiently fast

prevent the dominance of hydrodynamic over hydromagnefigld growth to compete with 3D hydrodynamic instabilitiéfs,

instabilities during the early evolution, the KH vortex &iis  the initial field is too weak. Consequently, we anticipatéyan

disrupted and the shear flow is decelerated at a rate similaifeak dependence on the magnetic field for large initial v’

that of the non-magnetic case. The magnetic field is ampliumbers.

fied or sustained in the turbulent velocity field provided by Due to the lack of adequate numerical resolution in 3D, we

the hydrodynamic instabilities. The evolution of this dl@$  do not give any scaling laws for, e.§4;* andtgecas a function

models tends towards isotropic decaying turbulence. of the initial Alfvén number or the grid resolution.
Hydromagnetic disruptionif the magnetic field leads to the

disruption of the KH vortex tube before hydrodynamic in- .

stabilities can set in, the deceleration of the shear flow %2 Supersonic shear flows

driven by magnetic fields. In this case, the deceleration rafee.dimensional supersonic shear flows show pronourited d
is similar to that of 2D flows, but it may also be smaller degyrences with respect to 2D ones, the transverse kinetiggne
pending on the level of hydromagnetic turbulence, which |gnsities growing much faster in 3D (see Fig. 19 for the evolu
determined among other factors by the strength of the iffgn of 4 non-magnetized model). Furthermore, unlike fds-su
tial random perturbations, the grid resolution, etc. The tUggnic models, 3D hydrodynamic instabilities disrupt sspaic
bulent final state of such models is dominated by a larger gheqr flows, i.e., they are not secondary instabilitiesifegalf a
component of the magnetic field, the transverse COmPONERI§ yortex tube. For the model shown in Fig] 19, we find tifat
of both fields being considerably smaller. grows at a rate similar to the 2D one only uritié 20 when it
L%@comes comparableeén. Subsequently, both energy densities

row at the same rate, which is much faster than the correspon
ing 2D one.

The 3D instability prevents the shock-mediated formatibn o

The two classes of hydrodynamic and hydromagnetic disr
tion roughly correspond to the classes of models whgreloes
or does not exceeghag respectively. Ibﬁin exceeds the volume-
averaged total magnetic energy density after reachingativess
tion phase, deceleration enters the mdfeient hydrodynamic & KH vortex (Secf.412). Instead of such a coherent largtesca
regime. Otherwise, deceleration is caused by the magne fi flow, a rather turbulent flow forms at the shearing interface e

A given model can undergo a transition from one class to tR&nding iny-direction. Similarly to the 2D case, shocks develop
other one: for a weak initial field the early evolution may b8t Some distance from the interface, but these dissolve when

dominated by 3D hydrodynamic turbulence, leading to fin e 9ulféd by the turbulent flow. Unlike their 2D counterpartey

cient deceleration of the shear flow and the magnetic field f&y no role in the development of the instability. During th

maining at the same level; but when the kinetic energy of tif@turation phase, the kinetic energy decreases duffitiest

turbulent flow decreases below that of the magnetic fieldgere tUrbulent dissipation. _

celeration rate drops to the hydromagnetic value. _ The interaction of shoc_:ks resulting from the usage of r'eflect
Hence, we can summarize the influence of physical and iig boundaries is essential for the growth of the instapilit

merical parameters on the turbulence and the deceleratiimt-a 20- YWhen open boundaries allow shocks to leave the computa-
lows: tional domain, our 2D models are stable. In three dimensions

on the other hand, the instability does not depend on the pres
— Larger random perturbations favour 3D hydrodynamic instance of these shocks, i.e. the instability also grows whemop
bilities. Comparing forA = 50 a model with¢;,g = 102 boundaries are imposed (jrdirection). Hence, we find a good
andéng = 1074, we find significantly stronger magneticagreement between simulations of supersonic models cauput
fields and transverse velocities for the former model, indwith either type of boundary condition.
cating more vigorous turbulence and a faster decelerafion o A weak initial magnetic field is amplified at the same rate
the shear flow. as the kinetic energy when the instability develops. Theoexp
— In 2D, weaker initial fields lead to slower deceleration, lhi nential amplification ceases when the volume-averaged-ran
3D models exhibit a more complex dependence on the iverse kinetic energy densitie§n ande;, = saturate (see Fig.20).
tial Alfvén number. As discussed above, hydrodynamic irAfterwards (30< t < 80), we find only a very gradual growth of
stabilities of the KH vortex tube dominate in case of verthe magnetic energy. Typically, the volume-averaged tranrse
weak fields, leading to very rapid deceleration (Eig. 17kinetic energy densitys}:izn = e}im + €., is reduced with respect
If the magnetic field is dficiently strong, i.e., as long asto the non-magnetic case, but when adding the volume-agdrag
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Fig. 18.Same as Fif. 16, but for a model where the amplitude of the $eghoandom perturbation was much smaller than that of
the sinusoidal one, i.efhq << 1 (see Eq{17)). The two snapshots are takan=at5 (left) andt = 25 (right), respectively.
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Fig. 19. Same as the top panel of Higl14, but for a model withig. 20.Same as Fi. 15, but for a model with= 4 andA = 50.
M = 4 andbg = 0.

netic energy densitgy,,,, in contrast, has remained at the same

transverse magnetic energy denﬁﬁag = e,‘;ag+ €hagn the total  level with e}, > dﬁag. The dominance of,,, and hence ob*
transverse energy dens'ﬂ%fn + eﬁag is at the same level as theexerts an orc?ering influence on the turbulent magnetic and ve
transverse kinetic energy of a non-magnetized model. chi'gy fields, enforcing an alignment of the ﬂOW with the field

The deceleration rate of the shear flow depends, as in the séiilarly to the Alfvén éfect of hydromagnetic turbulence. As a
sonic case, on the relative importance of hydrodynamic aad Hgsult_, we find prominent coherent structures elongatectld fi
dromagnetic turbulence. There is, however, a physicigrdince direction.
to the subsonic case: the supersonic instability is dorathby
strong 3D hydrodynamic turbulence already early on in the ev;
lution, because it does not result from coherent 2D flows sisch
a KH vortex. Hence, there is ndéfieient kinematic amplification, We have simulated a few of the models discussed above also
and the magnetic field can become important only if it is maimsing anti-parallel initial magnetic fields. With the toféix
tained or slowly amplified by the 3D turbulence responsiate, through surfaceg = const vanishing, thex-component of the
the same time, for a decrease of the kinetic energy. magnetic field can decay to zero. This will particularly happ

At an intermediate stagé,= 60 (left panel of Fig. 2l1), the for weak fields. Stronger fields decay lesgatently because of
instability has not yetfiiected the entire computational volumeresistive instabilities.
in y-direction. Both the velocity and the magnetic field of that For a large initial random perturbation, the evolution isye
model exhibit a pronounced small-scale structure arouadhin  similar to models with parallel initial fields. The shear flasv
tial shearing layer. No preferred direction can be iderdjfend decelerated veryficiently, and kinetically dominated decaying
/' > ehag This has changed at= 200 (right panel), when due turbulence with a very weak degree of anisotropy developseO
to eficient turbulent deceleration the total kinetic energy dethe kinetic energy density approaches the magnetic onelethe
sity has decreased by roughly an order of magnitude, silpilaceleration rate decreases. However, it does not tend tcazdro
to the transverse magnetic eneldggg. The longitudinal mag- the parallel field case. Instead of levelingj at a constant value,

.3. Anti-parallel magnetic field
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Fig. 21.Structure of a model witiv = 4 andA = 50 (the same model as shown in Figl. 20) at60 (left panel) and = 200 (right
panel). The two panels show the same variables as the onis[l8Fi.e., the volume-rendered magnetic field strengtre¢fround,
blue-green) and the modulus of the vorticity (backgroued)r

both the kinetic and magnetic energy densities continuesto @.1.2. Initial conditions
crease at a similar rate. . . . -

Models with a small initial random perturbation show, de!Vith presently available computational resources it is -
pending on the initial field strength, hydrodynamic or hydeg- sible to perform global_ simulations of the (_:Iose encounter o
netic deceleration. The field strength required for hydrgnesic M€rging of two magnetized neutron stars with a grid resofuti
to dominate over hydrodynamic deceleration is higher troan fSuficiently high to resolve also the growth of KH instabilities i
parallel fields. In several models we find at late stages thresaSn€aring magnetized neutron star matter. Neverthelessame

evolution as described above: the kinetic and magnetiaggneftudy some aspects of this phenomenon by means of local simu-
densities decay at a similar rate. ations covering only a small volume around the shear layer.

To this end we consider a quadratic (20jubic (3D) com-
. putational domain in Cartesian coordinates assuming tieat¢-t
6. Merger-motivated models axis is parallel to the direction of the shear flow, fhaxis par-

. . : . : allel to the line connecting the centers of the two neutransst
After having discussed basic properties of magnetizedsirpa aBd thez-axis (in 3D) perpendicular to that line. As the edges of

ers, we now address simulations mimicking the conditions Sy computational domain have a size of 200 m only, i.e., they

shear layers arising in the merger of wo magnetized neutr&% much smaller than the radius of a neutron star, we canside
stars. We assume that the merging neutron stars heat up $o y homogeneous initial states, i.e, initial models witimstant

that any solid crust they may have deve_lopped d_uring th(_eir prdensity and pressure. Besides the shear flow-direction the
merger evolution has melted, and the fluid approximatioalstv initial models are static, too. This approximation is jfist as

in the shear layer. the merging neutron stars move much fastex-lirection than

they approach each otheryrdirection due to the action of grav-
6.1. Physics, initial and boundary conditions ity. Accordingly, we use periodic boundary conditionsxiand
z-direction, and reflecting ones yadirection.

The shear velocityy, corresponding to either a Mach num-
We employed a simple parametrised equation of state toidbescber ofM = 1 orM = 4, has the same tanh-profile as that used
the thermodynamic properties of neutron star maltter (Keille in the simulations of the previous sections, and we alsoidens
[1996). This hybird equation of state assumes that the tatl goth parallel and anti-parallel initial magnetic field copfia-
pressurepP, is given by the sum of a barotropic paR,, and a tions. The shear velocity is supposed to mimic the orbitidae

6.1.1. Equation of state

thermal partPy: ity of the two neutron stars. We trigger the instability by8fing
. similar perturbations as in the previous sections, i.egraliina-
P =P+ Po=(th— Len+xo ", (18) tion of a sinusoidal and a random velocity perturbation.

where the thermal energy density,, is given by the (total) en-

ergy densityg, and the energy density of the polytropic compos.2. Two-dimensional models

nent,e,, according to _ ) )
) A number of models (see Tab.A.6) computed in two dimensions
t

e'=¢eg—¢gp. (19) confirm the basic results discussed in the previous secti@ns
, i , the occurrence of three phases, namely KH growth, kinematic
The sound speed, required for the approximate Riemannrsolyg, yjification, and saturation. This also holds for the deleece

and for the determination of the time step, is given by of the parameters characterizing these phases, e.qg. rthiade
TuPp + [inPin tion values of the field strength and magnetic energ, on thialin
;= . (20) data and the grid resolution.

p We performed simulations with up to 204&ones. The
We used’, = I'yy = 1.333, appropriate for dense matter whoswidth of the shear layer was = 10 m, and the initial velocity
pressure is dominated by relativistically degenerateteas. vy =183 0r72x 10° cmgs, for models withM = 1 orM = 4,
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respectively. Due to theflmrdable grid resolution we employedfor very weak fields. We find 3field amplification up ta.%0 x
rather strong initial fields of the order & ~ 104G, corre- 10" G for the maximum field strength and.2x 10" G for the

sponding to Alfvén numbera ~ 115(1014G/b§)- The initial  volume-averaged r.m.s. value of the fielq;L/(Vfd(V b, ie.,

We start the discussion with models wih= 1. The KHin-  py 5 factor~ 2, with considerably higher values for parallel than
stability developed within less than(b msec, establishing onefgy anti-parallel initial fields.

large KH vortex. Afterwards, the magnetic field is amplified
kinematically by the vortical flow. The physics of KH growth
termination is the same as that described in $edt. 4.3. Hearece
also find a similar dependence for the field amplificationdact
fkin ON the initial field strength and the grid resolution.

Hence, the results and in particular their dependence on the
physical and numerical parameters of the models explored in
Sect[4, are robust with respect to the described variatibtise
initial conditions. Consequently, we can expect them tdyafp
merger systems without too strong modifications.

— On finer grids one can resolve the increasingly thin struc-
tures of the magnetic field better. Consequently, one findS; Three-dimensional models
more dficient amplification, until for a dticiently fine grid
convergence of the amplification factor is achieved. One of the main questions to be addressed by 3D simulations is
— Weaker initial fields are amplified by a larger amount, i.ewhether the dynamics of these models is dominated by magneti
the maximum value of the field strength at the end of thtux tubes or by 3D hydrodynamic instabilities. As we havensee
KH growth phase depends only weakly on the initial fieléh the previous sections, this has a distinct influence an, the
(assuming numerical convergence). The total magnetic enagnetic field strength achieved at saturation.
ergy increases with increasing initial field strength due to For the 3D simulations we used grids of upiigx m,xm, =
the larger volume filling factor of magnetic flux tubes fopse? zones. The initial field strength was between 5 andk40
stronger initial fields. 1013G. We again applied fferent combinations of sinusoidal

After termination of the kinematic amplification phase, thélnd random velocity perturbations to the shear layer. )
topology of the subsequent turbulent saturation phaseris-do | he models (see Teb.A.7) show the same overall dynamics
nated by a multitude of thin flux sheets. Due to deceleratipn §nd the same evolutionary phases as the corresponding snodel
magnetic stresses, the kinetic energy of the shear flow dgese discussed in Sedfl 4. We find the initial KH growth phase, the
at a rate depending on the initial field strength. Lackingieiny  Kinematic amplification phases, followed by the developnoén
force, the turbulence decays gradually. At late stagesdioini- Parasitic instabilities leading to a non-linear saturatiade. The

nated by the parallel component of the magnetic fig|deading f!ow during.the.first two phases is very simila( to_that in_ 2Ddan
to a strong alignment of the flux sheetsémirection. field amplification follows the same trends with initial fiedthd

Models withbX = 5, x10'3G and 10x 101G reach slightly grid resolution as outlined above. The further evolutiopetels,
o = as discussed above, strongly on the relative amplitudenaliona

. : . 5~ - g
fluctuating maximum field strengths around B0'°G in the sat and sinusoidal perturbations,

urated state. The volume filling factor of the magnetic fiekd, h Il rand bation is i d. field i
the relative volume occupied by intense magnetic flux tuttes, . _hen a small random perturbation is imposed, field ampli-
creases with decreasing initial field strength leading teaker 1cation proceeds through the first two growth phases the field
mean magnetic field and consequently a slower deceleratiors§€N9gth being limited by its back reaction onto the flow. Sehe

the shear flow for weaker initial fields. We find mean fieldEﬂOdels_S‘f_er (if r_e_s_olved well on a sfiiciently f_ine grid) hydro-
of ~ 5x 104G and~ 25 x 104G for bX = 104G and Magnetic instabilities of the flux sheet, leading to the krep

b = 5x 101G, respectively. The time scale for deceleratioOf the KH vortex tube and the deceleration of the shear flow. Fo
0~ » Tesp y. 1he aloY \ye|l-resolved model withX = 2 x 1013G the maximum mag-
of the shear flow is less than 1 millisecond. For a model with an 0

initial field of 2 x 1014 G, the deceleration is ficiently rapid to  Netic field stre4ngth is’ 9x 10'°G, while the r.m.s. maximum is
cause a significant decay (by about an order of magnitudepof 2Ny ~ 9% 104G. ,
turbulent energy within & msec. For models W|th [qrge_ random p_erturbatlons and for mod-
The evolution of the shear layer iected by the choice of €l with very weak initial fields the disruption of the KH vext
the initial field configuration. Parallel initial fields haveimi- tube is predominantly due to hydrodynamic instabilitieslieg
larly to our observations above, a somewhat larger impattien t0 a very dicient deceleration of the shear flow. These instabili-
dynamics of the KH instability. In this case, the non-vaiigh ti€S grow on a very short time scale, causing a strong growth o
magnetic flux threading surfaces= const is conserved due the volume-averaged transverse kinetic energy densffjeand
to the boundary conditions, and gives rise to fieive driv- €, @S Well as of all volume-averaged magnetic energy deasitie
ing force. Apart from lacking this additional driver, aptarallel  (€hag €hag aNdeX ).
magnetic fields are prone to stronger dissipation due tepes The amplification factors are similar for all components of
of stronger currents at the boundaries between regionspwi-opthe field, leading to equipartition among them at peak magnet
site magnetic polarity. energy. The amplification rate is at first very large but dases
The evolution of models with a supersonic shear flMv strongly as the parasitic instabilities saturate. Evdhtuthe
4) is similar to that of their dimensionless conterpartsdésed magnetic energy reaches a maximum, and then starts to decrea
previously. With initial fields between 10 and 4010 G, the again. This maximum depends either on the grid resolution (f
initial Alfvén numbers of the shear flow are betweerd10 and the most weakly magnetized models), or on the dynamic back-
~ 440, i.e., in the range covered in S€ctl4.4. The dynamicsreaction of the field onto the flow. In the latter case, field am-
the same: pressure waves steepen into oblique shocks, andpttiication ceases once the volume-averaged transversgikin
dissipation of kinetic into thermal energy in these shockates energy densities (decaying from their maximum values at-sat
a broad transition layer between the two regions of poséiveé ration of the parasitic instabilities) decrease to roughéylevel
negativevy. The shear flow is decelerated verfigently even of the volume-averaged magnetic energy density.
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The magnetic field is amplified during all three growttihe intermediate development of a KH vortex, and the shear flo
phases: at the KH growth rate during the KH growth phase, iatdecelerated veryfgciently. The maximum magnetic fields we
a (smaller) rate determined by the overturning velocityhef t find are of the order of X 10'® G for the absolute maximum,
KH vortex tube during the kinematic amplification phase, arahd 3x 10*° G for the r.m.s. field, respectively. These values are
during the growth of the parasitic instabilities. Since thag- rather insensitive to the initial field strength and geometr
netic field starts to decrease shortly after saturation @ftra-
sitic instabilities feeding f the shear flow, the maximum field
strength is reached at that moment. The magnetic field enefgyySummary and conclusions
can reach at most equipartition with the (decaying) trarseve i i o
kinetic energy, which typically has a value of10%erg. For a Global sn_nulatlons indicate _that the contact Ia_yer petween
model withb} = 4 x 101 G the corresponding root mean squarBV0 Mmerging neutron stars is a site of verffigent field
saturation field is- 1.6x 10'5G. The weaker the initial field, the 2MPlification. The layer is prone to the Kelvin-Helmholtz
smaller is the maximum magnetic energy, since the achieva Stab'“ty’ a_nd thus, exponential g_rovvth of any weak seed
amplification factor is limited by the duration of the threeldi leld is possible, as observed by Price & Rosswog (2006) (see

amplification phases. The maximum field strength reachesd ara‘g)%giac_l?r:naﬁzqte:. al. (2Cf'0t'r9]);_An_derTotr_1 etal. (2.0?8); Lallet
where in the computational domain depends only weakly on tf‘lc .))' e limitations or their simuiations, mainly cema-
initial field, and has a value between 6 andx.00> G. Ing grid resolution, did not allow these authors to deteerile

The decay of the turbulence (measured by the transverseﬁ%qfura“on level of the instability firmly and accuratehhus,

. : o e implications of magnetic fields for the merger dynamées r
netic and magnetic energy densities) as well as that of t‘mrShmains unclear. On the basis of energetic arguments, thregihst

flow starts at a similar rate for all models, and the magnegld fi ‘%{ might lead to a field in equipartition with the kinetic dra
t

decreases much faster than it does in the corresponding 2B . ielchstti
els. Shortly after4{ 0.05msec) the r.m.s. field strength as Wg}bf ter:(re]?)lr?jr;?fyl(gﬁtgeosrhle(g (fSIO\pg;[()) e”gﬁ/%?; dingto fiel

as the total field strength reach their peak values earlyduhie W d th ts b f local hiah
saturation phase, the kinetic energy densities decay aeiily, Ieti rﬁasi?r?sls?i q es}emarggn:ieznj ﬁ/ rr;elansro inot(\:/\?d Ir? )
and much faster than the magnetic energy density. The de ggeusgatizl dlijrr?er?sif)nos T(??hii er?d vsvee[?erf?%r?l:d more 'frl\an
slows down shortly afteeim +€ has decreased below the valu go simulations focusing on properties of the hydromage

of emag Afterwards, all transverse energy densities decay a e
similar rate. In the more strongly magnetized models thjz ha'nStabIIIty in general as well as on the contact surfa(_:eselgn
g neutron stars. We refer to these two classes of simuats

pens wheref;in (which can undergo a phase qf particularly faé(?imensionIeszamdmerger-motivatetdnodels, respectively.
decay) is still larger tham, + €, whereas it is usually the " employed a recently developed multi-dimensional
other way round for weaker initial fields (a similaffect can be

observed for under-resolved models where flisient grid reso- Eulerian finite-volume ideal MHD code based on high-order
lution limits the field amplification). During the furtherehtion spatial reconstruction techniques and Riemann solverief t

the relative sizes o’ eK ande?, remain unchanged MUSTA-type (Obergaulinger 2008; Obergaulinger et al. 2009
o= an: i in N N We set up a KH-unstable shear flow in Cartesian coordi-

For weak initial fields, If§ = 1,5, and 16 10"*G, the kinetic nates in a quadratic (2D) and cubic (3D) computational domai
energy density dominates the magnetic one by a facff7 in  inposing periodic boundary conditions in the direction foé t
the final state. Concerning the volume-averaged kineticggne shear flow and reflecting or open ones in the transverse direc-
densities we findy;, ~ &, ~ 2.4e};n. This relation also holds tjons. Focussing on theffects of a magnetic field on the insta-
for the volume-averaged magnetic energy densities, ifid@a pjjity, we used a simplified equation of state (ideal gas EO® a
a relatively high degréee of isotropy of the turbulence. Thelfi 5 hyhrid barotropitdeal gas EOS for the dimensionless and the
state forby = 5 x 10*G is shown in the left panel of FIg.22. merger-motivated models, respectively) and neglectetiiadel
Obviously, neither the flow nor the magnetic field show any P8hysics, e.g., such as neutrino transport.
ferred direction. Instead, one recognizes a complex paUer = “ynder these simplifications, the shear flows are character-
tangled small-scale flux tubes. ized by two parameters, the initial Mach numisveand the ini-

For suficiently strong initial fields iy = 20, and 40x tja| Alfven numberA, measuring the magnitude of the jump in
10'3G), the final state is more strongly magnetized. As the tushear velocity in units of the sound speed and the Alfvénarel
bulent energy decays more rapidly than sseomponent of the ity, respectively.
magnetic field,by dominates the dynamics after~ 15msec Analytic considerations and previous simulations of non-
leading to a slower deceleration of the shear flow and a maf@agnetized shear flows show that the growth rate of the KH
pronounced alignment of flow features (flux and vorticitydsp instability as well as its saturation level (i.e., the kine¢n-
in x-direction (see Fig.22, right panel). ergy of the circular KH vortex formed by the instability) in-

Similarly to the 2D models discussed above, a paralleBhiticrease with increasingl for subsonic shear flows . A magnetic
magnetic field has a stronger influence on the dynamics thanfatd is known to reduce the growth rate and potentially, fa.
anti-parallel one: the field strength reaches a higher maxim A < 2, even to suppress the instability (Chandrasekhar/1961;
value, and the influence of hydrodynamic instabilitiesigrely |Miura & Pritchett 1982 Keppens etlal. 1999). However, less i
less. At late stages, such models may exhibit a phase of hydknown about the saturation level and the dynamic back-i@act
magnetic deceleration, in contrast to the roughly constaluie in particular for weak initial fields.
of & in models with strong anti-parallel initial fields. Frank et al. [(1996); Jones et al. (1997); Jeong et al. (2000);

For of supersonic shear flows withl = 4, the evolu- [Ryu et al.|(2000) studied the evolution of the hydromagri€tic
tion is similar to that of the dimensionless models discdsae instability in two and three dimensions. In 2D, models ugder
Sect[5.P. We find a fast growth of 3D hydrodynamic instabiit a transition fronrmon-linear stabilizatiorof the KH vortex to its
disrupting the shear flow before the shock-mediated meshaniviolent disruptionor more graduatlissipationwhen the initial
working in 2D can operate. Turbulence sets in quickly withodield strength is reduced, while in 3D purely hydrodynasmiic
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Fig. 22.3D structure of the final turbulent state of models vidth= 5 x 10*3G (left panel) and} = 20x 10" G (right panel) at =

1 msec, respectively. The panels show the volume-rendeagdetic field strength (front half; blue-green-yellow-cedresponding
to increasing values gb|) and enstrophy (rear half; red-yellow corresponding taeéasing values off x v)?). The red and blue
long arrows mark the andz-direction, respectively.

liptic instabilities of the vortex tube may dominate over MHD
effects.

The study of these non-lineaffects is hampered by high
requirements on the grid resolution that is necessary toviol
the development of increasingly thin magnetic flux sheets an

tubes.
merical convergence can be achieved to rather modest values

This limits the range of Alfvén numbers for which nu-

It also reduces the predictive power for merger systemsyavhe
rather weak initial fields are expected. This limitation da
overcome only when using large grids in combination with a
highly accurate code. We evolved subsonic, transsonicsand
personic shear flows withl € [0.5; 1; 4], while using the maxi-
mum Alfvén numbers for which convergence is achievable Th
resulting broad range of Alfvén numbers covered by our sim-
ulations allows us to establish scaling laws governing téle fi
amplification as a function of the initial field strength.

The main results of our simulations are:

1. In 2D, we confirm the results of analytic work (in the lin-
ear regime) and previous simulations concerning the growth
rate and the saturation of the transverse kinetic energy den

sities for strong initial fields due {o Chandrasekhar (1961)

Miura & Pritchett (1982); Keppens etlal. (1999). This agree-
ment supports the viability of our numerical approach fer th
problem at hand.

2. For subsonic shear flowM(= 0.5,1) we explored a wide
range of initial field strengths covering Alfvén numbers up
to A = 5000 in 2D.

(@)

(b)

For intermediate and weak fields, we distinguish two
phases: the KH growth phase during which the field
grows at the KH growth rate, and after formation of a
KH vortex, a phase of kinematic field amplification by

the overturning vortex. The growth rate during the latter
phase depends on the velocity of the vortex. The field
is highly intermittent and concentrated in flux sheets,
which are stretched by the flow leading to an exponen-
tial growth of the field strength while the sheet width de-
creases.

The termination of the kinematic amplification phase oc-

kinematic field growth and initiate the non-linear satura-
tion phase during which the KH vortex is destroyed by
the ensuing MHD turbulence and the shear flow is grad-
ually decelerated. This scenario is equivalent to that of
thedisruptionmodels of Frank et al. (1996).

We quantified the amount of field amplification during
the kinematic amplification phase by computing the ratio
of the volume-averaged Maxwell stress comporidnt

at the beginning and at the end of that phase. The am-
plification factor scales with the initial Alfvénnumber
as A%¥4, corresponding to a scaling of the maximum
Maxwell stress with the initial field strength &§'*. If

the simulation is under-resolved, the amplification factor
is reduced by a factox m’/® (m being the number of
zones per dimension). The maximum local field strength
corresponds to #ocal equipartition between the mag-
netic energy density of a flux sheet and the kinetic energy
density of the shear flow; it depends only weakly on the
initial field.

The secondary resistive instabilities observed in ouf s
ulations are triggered by numerical resistivity instead of
a physical one. The numerical resistivity, which is a func-
tion of the grid resolutiom, is important only for small

thin structures having a spatial size of the orderAof

or less. In our simulations, it causes current sheets to
become unstable when their width approaches the grid
spacingA. Although only simulations with arbitrarily
high resolution can sustain arbitrarily thin and intense
current sheets, we observe nevertheless convergence: the
field amplification becomes independent of the grid res-
olution, if A is smaller than some threshold which de-
pends on the initial field strength. The reason for this
independence is the fact that the most unstable current
sheets do not consist of individual flux sheets but of pairs
or triples of coalescing flux sheets. Thus, decreasing the
distance between flux sheets does not lead to a stronger
field (which would be the case, if a single flux sheet is
compressed in transverse direction).

curs either numerically, when the flux sheets get too thin (€) The disruption of the vortex and théieient dissipation

to be resolved on a given computational grid, or dynam-
ically by back-reaction of the field onto the flow. The
most important mode of back-reaction is the growth of
secondary resistive instabilities feedinffj the magnetic
energy of the flux sheets. These instabilities terminate the

set theseesisto-dynamienodels apart from the class of
dissipationmodels with even weaker initial fields where
the KH vortex remains intact, and only very slow dis-

sipation is provided by turbulence. In the simulations of
h 1(1996), secondary instabilities do not modify
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the flow field qualitatively. Our simulations indicate thastar mergers. The foremostimplication is that the maximeid fi
this is, partially at least, a resolutioffect. If a simula- strength, independent whether it refers to a single poiatspa-
tion is under-resolved and the field growth is not limitedial average, is not amplified to equipartition with the theit
by dynamic back-reaction but by the resolvable widtbnergy density. We can, hence, exclude saturation fieldiseof t
of flux sheets, no disruption will occur, and the decebrder of 168G in the contact layers of neutron star mergers.
eration time of the shear flow is very long. Converged Instead, local equipartition with the kinetic energy denis
simulations show, on the other hand, the disruption oéached with corresponding maximum field4.0'¢ G, as spec-
the KH vortex by secondary magnetic instabilities wheualated byl Price & Rosswog (2006). Due to the high degree of
the magnetic field strength approaches a local maximuntermittency in the case of weak initial fields, the (r.mau-
close to equipartition with the kinetic energy density oérage of the field strength is smaller, i.e, its direct dyreaimi-
the shear flow. This happens in all converged models, kpact (e.g., disruption of the KH vortex tube or deceleratibn
for weak initial fields, the deceleration time can be verthe shear flow) on the flow is probably rather limited. This is
long. even more the case if the geometry of the system and the per-
() Models with initially anti-parallel and parallel magtie turbations resulting from the merger dynamics enhancenthe i
fields, but otherwise identical, give qualitatively simila portance of purely hydrodynamic instabilities. More iredir ef-
results, the above discussefteets being somewhat lessfects can, however, not be excluded, e.g., whether maghetic
pronounced in case of the former field configuration. tubes created at the shear layer are transported rapiciyizy
3. The contact layer of merging neutron stars resembles &y-large-scale flows. The short period of time during whioh th
personic shear flows. In principle, these are stable. We fimdagnetic field stays close to its maximum value and its fast de
however, that an exponentially growing instability maywcc cay impose severe constraints on the impact that the anaplifie
when closed boundary conditions are imposed in the dirdieelds may have on any hydromagnetic or electromagnetic jet-
tion transverse to the shear flow. The instability is mediatéaunching mechanism in a merger of two neutron stars. We note
by shock waves traveling through the computationl domaithat magnetically driven relativistic outflows may need imuc
The corresponding growth rates are much smaller than fonger time scales~(a few msec) to tap the rotational energy
subsonic shear flows. Thefects of a magnetic field on aof either the black hole or the accretion disk resultingraifte
supersonic shear flow are qualitatively similar to those anerger.
subsonic shear flows. Though these results limit the prospect for magnefiieats
4. In 3D the disruption of the KH vortex tube can be induced by play a dynamic role in neutron star mergers, their proper i
a purely hydrodynamic secondary so-cal@iptic instabil- clusion in current and forthcoming simulations may be neces
ity as discussed, e.g., by Ryu et al. (2000). It leads to a vesgry, because magnetic fields influence the dissipatios mte
rapid growth of the kinetic energy densities correspontling the shear layer, i.e., their neglect may lead to an underattn
all components of the flow velocity once the KH vortex tubef the temperature in the shear layer, and hence in the amtret
forms, and decelerates the shear flow mdfiently than disk. Given the resolution requirements imposed by weak ini
the MHD mechanisms outlined above. Which of the two posial fields, a more sophisticated treatment of the probleatpr
sible disruption mechanisms, elliptic or hydromagnetjs, o ably also has to abandon the assumption of ideal MHD and to
erates depends on the initial field strengdfand the value of consider the formulation of a turbulence model for unresdlv
volume-averaged kinetic energy den?‘. The magnetic magnetic field structures.
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ing dimensionless models. The initial Mach number of th

shear flow was chosen to ¢ = 1 andM = 4 corre- _

sponding to a density of #8g cnT3, and shear velocities Appendix A: Tables of models

of 1.83x 10° cnys, and 72 x 10° cnys, respectively. The ini-

tial magnetic field strength was varied betweer 503G

and 4x 10 G.

(a) The instability grows rapidly: saturation occurs withi Tab[A.1 lists the parameters of models which we computed to
< 0.1 msec, and the disruption and deceleration times are compare the growth rates obtained numerically with theoret
much less than 1 msec. ical predictions, serving as code validation.

(b) The dynamics is the same as that of the dimensionlégzb[A.2 lists 2D hydrodynamic models of transonic and super
models. Field amplification leads to a maximum field sonic shear flows.
strengths 10'°G, and ar.m.s. value of 1.6 x 10°°G. Tab[A3 and Talp.Al4 list the amplification factors of the mag
These values are the same for 3D modelesing hy- netic field and the disruption and deceleration rates of mod-
drodynamic and hydromagnetic disruption. els with weak initial fields, respectively.

Tab[AJ lists the initial data of 3D dimensionless models.

From our results, we may draw a few conclusions concerf@b[A.6 and Talp. Al7 list the initial conditions of 2D and 3D

ing the growth and the influence of magnetic fields in neutron- mMerger-motivated models, respectively.

We provide tables listing the parameters and importantgrop
ties of the models computed:
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Table A.1. Summary of models computed to compare numerical growtts natth theoretical predictions. The colums give the
model name, the size of the domaig, (y), the initial pressurely, the velocity sheatJy, the corresponding Mach numbiér =
Uop/cs, the initial magnetic fieldy, the initial width of the shear flovg, the corresponding wave numbky, the growth ratel'yp,
obtained from Miura & Pritcheti (1982), and an estimate eflumerical growth ratd;,ym.

name [ I, I, | mxm, [ Po Ug M a | bg [ k< [ Twp  Trum
grw-1 1 2| 50x100 1 1.29 1 0.05 (0,0,0) 2r | 1.73 1.64
gw-2 |1 2[100x200| 1 129 1  005| (0,0,0) |2r|173 1.74
grw-3 1 2| 200x400| 1 1.29 1 0.05 (0,0,0) 2r | 1.73 1.75
grw-4 1 2] 400x800| 1 1.29 1 0.05 (0,0,0) 27 | 1.73 1.75
grw-5 1 2] 200x400| 1 1.29 1 0.025 (0,0,0) 2 | 2.4 244
grw-6 1 2| 200x400| 1 1.29 1 0.1 (0,0,0) 27 | 0.66 0.68
grw-7 1 2| 200x400| 1 0.645 0.5 0.05 (0,0,0) 27 | 1.09 1.07
grw-8 1 2] 200x400| 1 1.843 107 0.05 (0,0,0) 20 | .77 1.79
grw-9 1 2| 200x400| 1 0.645 0.5 0.05 (0,0,0) 4r | 1.36 1.35
grw-10 | 1 2 | 200x400 | 1 1.29 1 0.05| (0.1290,0) | 2r | 1.69 1.70
grw-11 | 1 2| 200x400 | 1 1.29 1 0.05| (0.2580,0) | 27 | 1.56 1.54

Table A.2. Summary of 2D hydrodynamic supersonic models. The tabléesmire the same data as TablA.1 with the following
exceptions: the columibyg is skipped, and we do not list a theoretical value of the ghokate. Instead, we give our choice of
boundary conditions in the transverse direction in colufd@™. In the last column, we indicate models for which the atmlity
grows oscillatory by a confirmation mary, Note that model grw-3 of Tab. A.1 corresponds to model HD®iith open boundaries.

name [k Iy [ mxm [P Uo M a [ k| BC [Twm oscillations
HD20-1-I 1 4 200x 800 | 1 2.322 1.8 0.05 2n open 0.97
HD20-1 1 2 200x 400 | 1 2.322 1.8 0.05 2n open 0.96
HD20-1-i 1 1 200x200 | 1 2.322 1.8 0.05 2n open 0.73
HDZ20-1-s 1 05| 200x100| 1 2.322 1.8 0.05 2n open 0.16 vV
HD20-2 1 2 200x 400 | 1 2.451 19 0.05 2n open 0.30 v
HD20-3 1 2 200x400 | 1 25155 195 0.05 2n open 0.26 vV
HD20-4 1 2 200x 400 | 1 2.58 2 0.05| 2r open 0

HD20-5 1 2 200x 400 | 1 5.16 4 0.05| 2r open 0

HD2r-0 1 2 200x400 | 1 1.29 1 0.05| 2r | reflecting | 1.73
HD2r-1 1 2 200x400 | 1 2.322 1.8 0.05 2r | reflecting| 0.96
HD2r-1-i 1 1 200x200| 1 2.322 1.8 0.05 2r | reflecting| 0.56
HD2r-1-s 1 05| 200x100| 1 2.322 1.8 0.05 2r | reflecting| 0.56 v
HD2r-1-S 1 0.25] 200x50 | 1 2.322 1.8 0.05 2r | reflecting| 0.35 vV
HD2r-4 1 2 200x 400 | 1 2.58 2 0.05| 2r | reflecting | 0.46 v
HD2r-4-HR | 1 2 | 400x800 | 1 2.58 2 0.05| 2r | reflecting | 0.44 v
HD2r-5 1 2 200x 400 | 1 5.16 4 0.05| 2r | reflecting | 0.52 v

Table A.3. Parameters of the weak-field models: the columns give thi@liMach numberM, the shear-layer widtta, the initial
magnetic field strengttiy, the corresponding Alfvén numbey, and the amplification factorg (for the magnetic energy) ani
(for the field strength), respectively. The models were &itea on grids ofn = 256 ...,4096 zones per dimension.

M a b A 256 512 1024 2048 4096
[104] fe fb fe fb fe fb fe fb fe fb

0.5 005] 200 25| 20.2 29.4] 22.9 30.6] 250 29.3| 27.7 283

0.5 0.05| 100 50| 24.4 40.4| 335 57.2| 39.8 66.2| 435 64.3| 463 63.3

0.5 0.05 50 100 27.0 50.0| 41.0 75.6| 55.3 102.2| 66.8 123.7| 73.3 1253

0.5 0.05 20 2501 35.0 51.0| 444 95.0| 70.4 146.4| 1053 213.0

1 010| 200 50| 25.2 365| 33.6 50.2| 460 465| 450 492

1 0.10 40 2501 18.2 37.6| 49.3 83.8| 745 132.2| 113.9 201.3

1 015| 200 50| 17.2 29.3| 27.8 39.7| 30.7 40.0| 350 464

1 015| 100 100|l 19.6 34.8| 350 56.3| 549 76.0| 61.2 815

1 015 40 250 21.3 46.6| 40.2 69.5| 653 106.3| 103.9 152.4

1 020 200 50| 5.8 14.2| 80 280| 128 260 225 363

1 020 40 250| 6.4 35.7| 11.8 41.3| 181 62.2| 33.0 106.6

1 005| 400 25| 16.8 23.8| 19.6  2590| 22.0 26.6| 233 254

1 005| 200 50| 19.4 457|275 46.2| 320 486| 361 515 394 536

1 0.5 80 125| 20.2 356|334 70.2| 50.1 96.6| 61.6 117.3| 67.3 118.9

1 0.05 40 250| 209 50.8| 37.0 88.0| 59.9 127.7| 83.6 178.5| 1041 210.9

1 0.5 20 500 21.2 55.1| 39.4 103.1| 63.0 153.1| 101.1 236.4| 145.6 330.8

1 0.05 8 1250 21.2 56.4| 40.1 127.2| 67.7 187.8| 109.8 288.7| 169.0 444.4

1 0.05 2 5000| 21.2 55.2| 40.3 136.4| 68.6 218.5| 112.4 314.7| 182.9 515.2
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Table A.4. Same as Tab.Al3, but instead of the amplification factors e tipe disruption time of the KH vortetyis, and the
absolute value of the deceleration rat@ec.z = |0gec/ 1073, for simulations withm = 256,...,4096 zones per dimension. We
indicate simulations where no disruption is observed by phley in the column foty;s, Simulations where the determination of
O deciS Very inaccurate by a sign preceding the value ofyec.3 and simulations where we found no measurable deceledayian
hyphen in the column fasgec:3

M a bé A 256 512 1024 2048 4096
[10_4] tais O dec;3 tais  Odec:3 this  Odec:3 tais  Odec;3 tais  Odec:3

0.5 0.05 200 25 7.6 19.0] 7.6 23.0| 7.6 18.6 7.6 22.4

0.5 0.05 100 50| 14.4 10.7| 13.7 11.7| 12.7 14.3| 12.6 11.6

0.5 0.05 50 100 || 80.1 41| 45.4 59| 23.4 74| 22.9 10.7| 22.6 10.3

0.5 0.05 20 250 - ~04 - ~09 - 35| 774 4.1

1 0.15 200 50 4.5 19.0] 4.3 16.9| 4.0 16.9| 4.1 24.1

1 0.15 100 100 23.0 6.8| 15.0 13.4| 6.5 17.1 6.7 18.1

1 0.15 40 250 - ~017 — 2.7 | 58.5 4.4 21.9 6.1

1 0.05 400 25 3.8 239 3.8 22.6| 3.8 450 3.8 41.1

1 0.05 200 50| 12.4 16.8| 9.9 14.1| 6.1 27.8 6.0 23.0

1 0.05 80 125 75.6 48| 25.3 8.7| 18.5 11.6| 12.0 15.2| 12.0 12.9

1 0.05 40 250 - ~0.9 - 1.8 | 62.5 4.1| 39.8 5.6| 39.8 5.6

1 0.05 20 500 - - - - - ~08 - 2.4 | 99.5 3.1

1 0.05 8 1250 - - - - - - - ~05 - ~08

1 0.05 2 5000 - - - - - - - - - -

Table A.5. List of 3D models: the columns give the initial shear velpdily, Mach numberM, magnetic field strengthyy, and
Alfvén numberA. The models were simulated on grids of $28 512 zones using parallel { sign) and anti-parallek( sign)
initial field configurations, respectively. Most of the mégleere simulated several times usingfelient initial perturbations.

U M b} A 128 256 512
104

1 1 0 00 +

1 1 400 25| +,+ +, +

1 1 200 50| +,+ +, =+ +

1 1 2 5000 +

1 4 0 00 + +

1 4 400 25 + +

1 4 200 50 + +

1 4 100 100 + +

1 4 20 500 + +

Table A.6.List of 2D merger-motivated models simulated on grids of4fghd 2048 zones, respectively. Each simulated model is
indicated by ay sign. The initial shear profile had a maximum velocitypt= 1.83x 10° cnys (i.e., the Mach number of the shear
flow is M = 1), and a width ok = 20 m. The first column lists the initial field strength, maikimodels with anti-parallel initial
fields by a+ preceding the numerical value. Most models were simulasawjuditerent initial perturbations, and most models were
additionally simulated on coarser grids.

bx [10"G] M=1 M=4
1024 2048 | 1024
+5 v
o v
0 v v | v
20 || v v
20| v N | v
40 vV
+40 v
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