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ABSTRACT

We give a formulation of the radiative transfer equation forLymanα photons which allows us to include the two-photon corrections
for the 3s-1s and 3d-1s decay channels during cosmological hydrogen recombination. We use this equation to compute the corrections
to the Sobolev escape probability for Lymanα photons during hydrogen recombination, which then allow usto calculate the changes
in the free electron fraction and CMB temperature and polarization power spectra. We show that the effective escape probability
changes by∆P/P ∼ +11% atz ∼ 1400 in comparison with the one obtained using the Sobolev approximation. This speeds up of
hydrogen recombination by∆Ne/Ne ∼ −1.6% atz ∼ 1190, implying|∆Cl/Cl| ∼ 1%− 3% atl & 1500 with shifts in the positions of
the maxima and minima in the CMB power spectra. These corrections will be important for the analysis of future CMB data.
The total correction is the result of the superposition of three independent processes, related to (i)time-dependent aspects of the
problem, (ii) corrections due to quantum mechanical deviations in theshape of the emission and absorption profiles in the vicinity
of the Lymanα line from the normal Lorentzian, and (iii) athermodynamic correction factor, which occurs to be very important. All
these corrections are neglected in the Sobolev-approximation, but they are important in the context of future CMB observations. All
three can be naturally obtained in the two-photon formulation of the Lymanα absorption process. However, the corrections (i) and
(iii) can also be deduced in the normal ’1+ 1’ photon language, without necessarily going to the two-photon picture. Therefore only
(ii) is really related to the quantum mechanical aspects of the two-photon process. We show here that (i) and (iii) lead tothe largest
separate contributions to the result, however they partially cancel each other close toz ∼ 1100. Atz ∼ 1100 the modification due to
the shape of the line profile contributes about∆Ne/Ne ∼ −0.4%, while the sum of the other two contributions gives∆Ne/Ne ∼ −0.9%.

Key words. radiative transfer – cosmic microwave background – early Universe — cosmology: theory – atomic processes – cosmo-
logical parameters

1. Introduction

After the seminal works of Zeldovich et al. (1968) and Peebles
(1968) on cosmological recombination, and the improvements
in the theoretical modeling of this epoch introduced later (e.g.
Jones & Wyse 1985; Seager et al. 2000), leading to the widely
used standard recombination code Recfast (Seager et al. 1999),
over the past few years the detailed physics of cosmologicalre-
combination has again been reconsidered by several independent
groups (e.g. Dubrovich & Grachev 2005; Chluba & Sunyaev
2006b; Kholupenko & Ivanchik 2006; Rubiño-Martı́n et al.
2006; Switzer & Hirata 2008; Wong & Scott 2007). It is clear
that understanding the cosmological ionization history atthe
level of ∼ 0.1% (e.g. see Sunyaev & Chluba 2008; Fendt et al.
2008, for a more detailed overview of the different previously
neglected physical processes that are important at this level of
accuracy) will be very important for accurate theoretical predic-
tions of the Cosmic Microwave Background (CMB) temperature
and polarization angular fluctuations (e.g. see Hu et al. 1995;
Seljak et al. 2003) in the context of the Planck Surveyor1, which
will be launched later this year.

Also for a precise calibration of theacoustic horizon at re-
combination and the possibility to constrain dark energy using

Send offprint requests to: J. Chluba,
e-mail:jchluba@cita.utoronto.ca

1 www.rssd.esa.int/Planck

baryonic acoustic oscillation (e.g. Eisenstein 2005), it is crucial
to understand the physics of cosmological recombination ata
high level of accuracy. Ignoring percent-level corrections to the
ionization history at last scattering (z ∼ 1100) may therefore
also result in significant biases to the cosmological parameters
deduced using large catalogs of galaxies (e.g. Eisenstein et al.
2005; Hütsi 2006), as for example recently demonstrated for
more speculative additions to the cosmological recombination
scenario (de Bernardis et al. 2009) related to the possibility of
delayed recombination (Peebles et al. 2000).

Among all the additional physical mechanisms during cos-
mological recombination that have been addressed so far, the
problems connected with theradiative transfer of H i Lymanα
photons, includingpartial frequency redistribution andatomic
recoil due to multiple resonance scattering,electron scattering,
and corrections due totwo-photon processes during Hi recombi-
nation (z ∼ 800− 1600), have still not been solved at full depth.
Here we will focus on the inclusion of two-photon corrections to
the 3s-1s and 3d-1s emission and absorption process.

The potential importance of two-photon transitions from
highly excited levels in hydrogen and helium was first pointed
out by Dubrovich & Grachev (2005). They predicted a∼ 5% de-
crease in the free electron fraction atz ∼ 1200. However, in their
computations of the effective two-photon decay rates for thens
andnd-levels they only included the first non-resonant term (i.e.
due to the dipole matrix element connectingns/nd → np) into

http://arXiv.org/abs/0904.0460v1
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the infinite sum over intermediate states. Also in their approach
they neglected any possible transfer or reabsorption of photons
in the vicinity of the Lymanα resonance, but simply assumed
thatall the photons accounted for by the inferred effective two-
photon decay rate can directly escape.

Using rate coefficients for the vacuum two-photon de-
cays of the 3s and 3d-levels in hydrogen, as computed
by Cresser et al. (1986), Wong & Scott (2007) concluded that
Dubrovich & Grachev (2005) overestimated the impact of two-
photon transitions on the ionization history by about one order of
magnitude. However, the calculation of Cresser et al. (1986) was
incomplete, since in their attempt to separate the ’1+ 1’ photon
contributions to the two-photon formula2 from the ’pure’ two-
photon decay terms, without clear justification they neglected the
first non-resonant term (Chluba & Sunyaev 2008c). Physically
it seems very difficult to separate the ‘pure’ two-photon decay
rate from the ’1+ 1’ resonant contributions (see discussions in
Chluba & Sunyaev 2008c; Hirata 2008; Karshenboim & Ivanov
2008), e.g. because of non-classical interference effects. In a
complete analysis these contributions should be taken intoac-
count. In addition, Wong & Scott (2007) also neglected radiative
transfer aspects of the problem.

Slightly later this problem was reinvestigated in more detail
(Chluba & Sunyaev 2008c), showing that due to two-photon de-
cays during hydrogen recombination a decrease of more than
∼ 0.3− 0.5% in the free electron fraction atz ∼ 1150 can still
be expected. This estimate was obtained by taking into account
departures of the fullns-1s andnd-1s two-photon line profiles
from the Lorentzian shape in the very distant,optically thin part
of the red wing of the Lymanα line. In these regions it can be
assumed thatall released photons can directly escape, and hence
lead to a successful settling of the electron in the ground state.
No radiative transfer formulation is needed to estimate this frac-
tion of transitions, however as mentioned in their work the cor-
rections coming from regions with significant radiative transfer
can still be important. According to their computations, the two-
photon decays from s-states seem to slow hydrogen recombina-
tion down, while those from d-states speed it up. In additionit
was shown that the slight net acceleration of hydrogen recom-
bination seems to be dominated by the 3s and 3d contribution
(Chluba & Sunyaev 2008c).

Another investigation of the two-photon aspects of the re-
combination problem was recently performed by Hirata (2008).
He gave a formulation of the photon transfer problem simultane-
ously includingall two-photon corrections during hydrogen re-
combination related tons-1s,nd-1s, c-1s transitions andRaman
scattering processes, also taking into account stimulated pro-
cesses in the ambient CMB blackbody radiation field. In orderto
solve this complicated problem two approaches were used. Inthe
first the two-photon continuum was discretized and turned into
an effective multilevel-atom with virtual states related to the en-
ergy of the photons. In the second approach the corrections were
analytically modeled as effective modifications of the Lyman
α and Lymanβ decay rates. In addition, in both approaches a
distinction between regions with ’1+ 1’ photon contributions
and those with pure two-photon contributions was introduced
to avoid thedouble-counting problem (see Sec. III.C of Hirata
(2008)) for the decay rates. As pointed out this distinctionis not
unique, but the results were shown to be independent of the cho-
sen parameters (Hirata 2008), in total yielding∆Ne/Ne ∼ +1.3%
at z ∼ 900 and∆Ne/Ne ∼ −1.3% atz ∼ 1300.

2 This expression was first derived by Göppert-Mayer (1931)

Given the delicate complexity of the two-photon transfer
problem it is very important toindependently cross-validate the
results obtained by different groups. In this paper we offer an-
other approach to this problem in which we take into account
the two-photon nature of the 3s-1s and 3d-1s decay channels,
without introducing any criterion distinguishing between’pure’
two-photon decays and ’1+ 1’ resonant contributions. We give
a formulation of modified rate equations for the different hydro-
gen levels and the photon transfer equation, which we then use
to compute the effective Hi Lymanα photon escape probability
including these corrections.

Although it is clear that in particular the atomic recoil
effect speeds up hydrogen recombination up at the percent-
level (Grachev & Dubrovich 2008; Chluba & Sunyaev 2008b)
and also partial frequency redistribution will lead to somead-
ditional modifications3, here like in Hirata (2008) we will ne-
glect the frequency redistribution of photons due to resonance
scattering and work in theno line scattering approximation. As
explained in several previous works (Chluba & Sunyaev 2008b;
Switzer & Hirata 2008; Rubiño-Martı́n et al. 2008; Hirata 2008)
for conditions in our Universe (practically no collisions)this is a
much better description than the assumption ofcomplete redis-
tribution, which is used in the derivation of the Sobolev escape
probability. We also take into account stimulated 3s-1s and3d-
1s two-photon emission, finding this process to be sub-dominant.
However, until now we do not include the effect connected with
Raman scattering in this paper.

Instead of solving the obtained coupled system of equations
simultaneously, we assume that the corrections will be small, so
that each of them can be considered as aperturbation of the nor-
mal ’1 + 1’ photon result. Therefore we can use pre-computed
solutions4 for the populations of the different hydrogen levels
as a function of time to obtain the time-dependent photon emis-
sion rate for the different decay channels. This approach allows
us to solve the Hi Lyman α radiative transfer equationsemi-
analytically also including the 3s-1s and 3d-1s two-photon cor-
rections. Using the obtained solution for the spectral distortion
at different redshifts one can then compute theeffective Lyman
α escape probability as a function of time. This value can be di-
rectly compared to the normal Sobolev escape probability which
then also allows to deduce the expected modification in the cos-
mological ionization history and CMB temperature and polar-
ization power spectra.

Here we show that the effective escape probability changes
by ∆P/P ∼ +11% atz ∼ 1400 in comparison with the value de-
rived in the Sobolev approximation (see Fig. 17). As we explain
in detail, this total correction is the result of the superposition
of three independent processes, related to (i)time-dependent as-
pects of the problem, (ii) corrections due to deviations in the
shape of the emission and absorption profiles in the vicinity of
the Lymanα line from the normal Lorentzian, and (iii) athermo-
dynamic correction factor. All these corrections are neglected in
the cosmological recombination problem, but for the analysis of
future CMB data they should be taken into account.

3 As already mentioned in Chluba & Sunyaev (2008b), our current
version of the code already contains the corrections due to line diffu-
sion on thermal atoms, atomic recoil and electron scattering. In good
agreement with Grachev & Dubrovich (2008) we found that atomic re-
coil is most important, but partial frequency redistribution only leads
to an additional small modification. In Chluba & Sunyaev (2009) we
will present the results of these computations, also takingthe 3d-1s and
3s-1d two-photon corrections into account.

4 We used the output of the latest version of our multilevel code
(Rubiño-Martı́n et al. 2006; Chluba et al. 2007).
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In the ’1 + 1’ photon picture thepurely time-dependent
correction was already discussed earlier (Chluba & Sunyaev
2008b), showing that changes in the state of the medium (e.g.
number densities and Hubble expansion rate) cannot be ne-
glected in the computation of the Lymanα escape probability.
This is because only a very small fraction (∼ 10−4 − 10−3) of
all interactions with the Lymanα resonance lead to acomplete
redistribution of photons over the whole line profile. As a conse-
quence only the region inside the Doppler core reaches full equi-
librium with the photon occupation number at the line centerand
can be considered usingquasi-stationary conditions. However,
outside the Doppler core time-dependent aspects of the problem
have to be taken into account (Chluba & Sunyaev 2008b).

The second correction is related toquantum mechanical
modifications in theshape of the line profiles describing thens-
1s andnd-1s two-photon decay channels. As we explain here,
this is the only correction that can only be obtained when us-
ing the two-photon picture. As already discussed earlier (e.g.
Chluba & Sunyaev 2008c), this leads to deviations of the corre-
sponding profiles from the normal Lorentzian. One consequence
of this is that, depending on the considered process,more (for
nd-1s transitions) orfewer (for ns-1s transitions) photons will
directly reach the very distant red wing (xD . −1000 Doppler
width), where they can immediately escape. This correctionwas
already estimated earlier (Chluba & Sunyaev 2008c), but here it
will now be possible to refine these computations, also extend-
ing to regions closer to the line center, where radiative transfer
effects are important. Similarly, modifications in the blue wing
emission can be taken into account using the approach presented
here. Most importantly, because of the correct inclusion ofen-
ergy conservation, the two-photon profiles will not extend to ar-
bitrarily high frequencies. This will avoid the low redshift self-
feedback that was recently seen in a time-dependent formulation
of the Lymanα escape problem (Chluba & Sunyaev 2008b), and
which here can be modeled more consistently.

The last and also most important correction discussed in this
paper is related to afrequency-dependent asymmetry between
the line emission and absorption process, that is normally ne-
glected in the derivation of the Sobolev escape probability. As
pointed out earlier (Chluba & Sunyaev 2008b), within the nor-
mal ’1+1’ photon formulation for the line emission and absorp-
tion process especially in the damping wings of the Lymanα line
a blackbody spectrum isnot exactly conserved in full thermody-
namic equilibrium. This leads to the requirement of an additional
factor, fν, inside the absorption coefficient, which in the ’1+ 1’
photon picture can be deduced using the detailed balance prin-
ciple (see Appendix B). However, within the two-photon formu-
lation this correctionnaturally appears in connection with the
two-photon absorption process, where one photon is taken from
close to the Lymanα resonance and the other is drawn from
the ambient CMB blackbody photon field at frequency follow-
ing from energy conservation5 (see Sect. 2.1.1 and in particular
Sect. 3.3.2).

We will henceforth refer tofν as thethermodynamic cor-
rection factor. It results in asuppression of the line absorption
probability in the red, and anenhancement in the blue wing of
the Lymanα resonance. This asymmetry becomesexponentially
strong at large distances from the resonance. In most astrophys-
ical applications one is not interested in the photon distribution

5 For the 1s-3d two-photon absorption this will beν′ = ν31−ν, where
ν31 is the corresponding 1s-3d transition frequency andν denotes the
frequency of the photon that is absorbed in the vicinity of the Lymanα
resonance.

very far away from the Lymanα line center, so that this correc-
tion usually can be neglected. However, for the cosmological re-
combination problem even details at distances of∼ 103 − 104

Doppler width do matter (Chluba & Sunyaev 2008b), so that
such an inconsistency in the formulation of the transfer problem
has to be resolved. As we will show here the associated correc-
tion is very important, leading to a significant speed-up of Hi
recombination.

We also demonstrate that including all three modifications
to the escape probability, the number density of free electrons
is expected to change by∆Ne/Ne ∼ −1.3% (see Fig. 18).
close to the maximum of the Thomson visibility function
(Sunyaev & Zeldovich 1970) atz ∼ 1100, which matters most
in connection with the CMB power spectra. The 3s-1s and 3d-
1s two-photon corrections (related to the shape of the profiles
and the thermodynamic factor alone) yield∆Ne/Ne ∼ −2.4% at
z ∼ 1110. A large part (∼ 1.1% atz = 1100) of this correction
is canceled by the contributions from the time-dependent aspect
of the problem (see Fig. 18 for details). Our results seem to be
rather similar to those of Hirata (2008) for the contributions from
high level two-photon decays alone6.

We also compute the final changes in the CMB temperature
and polarization power spectra when simultaneously including
all processes under discussion here (see Fig. 19). The correc-
tions in the E-mode power spectrum are particularly impressive,
reaching a peak to peak amplitude of∼ 2%− 3% atl & 1500,
and significant shifts in the positions of the maxima in the CMB
power spectra. Taking these corrections into account will be im-
portant for the future analysis of CMB data.

The paper is structured as follows: in Sect. 2 we give the
equation for the modified Lymanα transfer problem. There we
infer the equations by generalizing the normal ’1+ 1’ photon
transfer equation in order to account for the mentioned pro-
cesses. In the Appendix A we give a more rigorous derivation
using the two-photon formulae, also generalizing the rate equa-
tions for the different hydrogen levels. We then give the solution
of the transfer equation in Sect. 2.2 and show how to use it to
compute the effective Lymanα escape probability (Sect. 2.3).
We explain the main physical differences and expectations for
the corrections in comparison with the ’1+ 1’ photon formu-
lation in Sect. 3. Then we include ’step by step’ the different
correction terms and explain the changes in the results for the
spectral distortion around the Lymanα line (Sect. 4) and the ef-
fective escape probability (Sect. 5). In Sect. 6 we then givethe
results for the ionization history and the CMB temperature and
polarization power spectra. We conclude in Sect. 7.

2. Two-Photon corrections to the Lyman α emission
and absorption process

The aim of this Section is to write down the line-emission and
absorption terms describing the evolution of the photon field
in the vicinity of the Lymanα resonance including the 3s-1s
and 3d-1s two-photon corrections. Here we will try to motivate
the form of this equation in terms of the additional physicalas-
pects of the problem that should be incorporated. We refer the
interested reader to Appendix A in which we provide the ac-
tual derivation of this equation using a two-photon formulation.
There the central ingredient is that the photon distribution around
the Balmerα line is given by the CMB blackbody. This fact

6 Note that this is only part of the total correction which was pre-
sented in Hirata (2008).
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makes it possible to rewrite the two-photon transfer equation as
effective equation for one photon, as presented here.

In this Section we also give the solution of the modified
transfer equation (Sect. 2.2) and explain how one can use it to
compute the effective escape probability for the Lymanα pho-
tons (Sect. 2.3).

2.1. Modified equation describing the emission and death of
Lyman α photons

Within the semi-classical formulation of the Lymanα transfer
equation every relevant physical process is envisioned as asin-
gle step process involving one photon of the photon field. This
leads to the introduction of photondeath andscattering proba-
bilities thatonly depend on redshift (e.g. see Chluba & Sunyaev
2008b). Also in the single photon picture the line profiles for
the different Lymanα emission and absorption channels under
the assumption ofcomplete redistribution are all identical. For
example, it will not make difference if the electron reaches the
2p-state and then goes to the 3s, 3d or continuum. In all three
cases the absorption profile will be given by the usual Voigt-
profile. As explained earlier (Chluba & Sunyaev 2008b), in the
normal ’1+ 1’ photon language the Lymanα line-emission and
absorption terms can be cast into the form

1
c

dNν
dt

∣

∣

∣

∣

∣

1γ

Ly−α
=
φV(ν)

4π∆νD
×
[

p1γ
emR+2p − p1γ

d hν21 B12 N1s Nν
]

. (1)

HereφV(ν) is the usual Voigt-profile (see Appendix D for def-
inition), with normalization

∫ ∞
0

φ(ν)
4π∆νD

dνdΩ ≡ 1, where∆νD is

the Doppler-width of the Lymanα line. Furthermore,p1γ
em is the

Lymanα emission probability in the ’1+ 1’ photon picture7, as
given by Eq. (A.7), andp1γ

d = 1− p1γ
em the corresponding death

probability.R+2p describes the rate at which fresh electrons are
added to the 2p-state, and is defined by Eq. (A.9b).

2.1.1. Introducing the thermodynamic correction factor

As mentioned in the introduction, in this form Eq. (1) doesnot
exactly conserve a blackbody spectrum in the case of full ther-
modynamic equilibrium. Knowing the ’1+ 1’ photon line emis-
sion term and using the detailed balance principle one can obtain
thethermodynamic correction factor8

fν(z) =
ν221

ν2
eh[ν−ν21]/kTγ(z) (2)

which is necessary to avoid this problem. This factor was in-
troduced in Chluba & Sunyaev (2008b) already. Inserting it into
Eq. (1) we then have

1
c

dNν
dt

∣

∣

∣

∣

∣

1γ

Ly−α
=
φV(ν)

4π∆νD

[

p1γ
emR+2p − p1γ

d hν21 B12 N1s fν Nν
]

. (3)

In the standard ’1+ 1’ photon formulationfν has no direct phys-
ical interpretation. It is simply a consequence of thermodynamic
requirements on the form of the equations. However, as shownin
Appendix A the same factorfν naturally appears in a two-photon
formulation of the problem. It is actually related to the shape of

7 For formal consistency we included the factors 1+ npl(ν21) due to
stimulated emission in the ambient CMB blackbody field in thedefini-
tion of p1γ

em although during recombinationnpl(ν21) ≪ 1.
8 We added a short derivation forfν in Appendix B.

the photon distribution in the vicinity of the second photonthat
is involved in the Lymanα absorption process (Sect. 3.3.2). This
is due to the fact that the photon which enables the 2p-electron
to reach the 3s, 3d, or continuum is drawn from the ambient ra-
diation field, which in the cosmological recombination problem
is given by the CMB blackbody.

2.1.2. Including the corrections due to the profiles of the
different decay channels

As a next step we want to take the differences between the line
profiles of the different absorption and emission channels into
account. One can see that in Eq. (3) there isno distinction made
between the different routes the electron took before or after en-
tering the 1s↔ 2p transition. However, as mentioned in the
introduction, the line-emission profiles depend on how the fresh
electron reached the 2p-state via channels other than the Lyman
α transition.

In order to distinguish between the different possibilities
(e.g. 1s↔ 2p↔ 3s/3d/c), one should allow for profiles,φi(ν),
that depend on the channeli. Also the partial rate at which elec-
trons enter the 2p-state will depend oni, leading to the replace-
mentR+2p→ Ri,+

2p with R+2p =
∑

i Ri,+
2p, where the sum runs over all

possible ’1+1’ photon channels via which the number of Lyman
α photons can be affected. Furthermore, the probability with
which electrons are absorbed will become channel-dependent,
so thatp1γ

d → pi
d with p1γ

d =
∑

i pi
d.

Here it is important thatRi,+
2p andpi

d both will only depend on
time but not on frequency. This is because microscopically it is
assumed that the absorption process leads to a complete redistri-
bution over the profileφi(ν). With this comment it is also clear
that the factorfν should be independent of the channel, since
otherwise detailed balance for each process cannot be achieved.

With this in mind it is clear that the more general form of
Eq. (3) should read

1
c

dNν
dt

∣

∣

∣

∣

∣

Ly
=
∑

i

φi(ν)
4π∆νD

[

p1γ
emRi,+

2p − pi
d hν21B12 N1s fν Nν

]

. (4)

In Appendix A we argue that bothRi,+
2p andpi

d can be given using
the normal ’1+ 1’ photon values for the different rates. We also
specify how to compute the profiles,φi(ν), including stimulated
two-photon emission (Sect. C). However, in what follows it is
only important that non of these depends on the solution of the
problem for the photon field. This is because we assume that the
readjustments in the populations of the different level or number
density of free electrons is small and hence can be neglectedto
lowest order. Numerically one can include the correction tothe
correction iteratively, but we leave this for a future paper.

It is important to mention that because for two-photon tran-
sitions ns/d → 1s from n > 3 also photons connected with
the other Lyman series are emitted, Eq. (4) in principle can be
used to describe the simultaneous evolution of all Lyman se-
ries photons. Similarly, one can account for the two-photoncor-
rections due to transitions from the continuum c→ 1s, simul-
taneously including the Lyman continuum and all other con-
tinuua. However, in this case one can no longer clearly dis-
tinguish between the different Lyman series. Also the equa-
tion will simultaneously describe the process of Ly-n feedback
(Chluba & Sunyaev 2007), in addition accounting for its exact
time-dependence. To avoid these complications, below we will
first only take into account the two-photon corrections for the
3s-1s and 3d-1s channel, but leave the others unchanged. In this
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case it is possible to directly compare the results with the Lyman
α problem. In Sect. 7 we briefly discuss the expected effect of
this approximation, but leave a detailed analysis for another pa-
per.

2.2. Solution of the transfer equation

For a given ionization history, the solution of Eq. (4) in theex-
panding Unverse can be readily found, using the proceedure de-
scribed in Chluba & Sunyaev (2008b). If we introduce the effec-
tive absorption optical depth as

τabs(ν, z′, z) =
∫ z′

z
p1γ

d

cσr N1s

H(1+ z̃)
φabs(x[1 + z̃], z̃) dz̃ (5a)

φabs(ν, z) = fν(z)
∑

i

pi
d

p1γ
d

φi(ν, z) = fν(z) φ∗abs(ν, z) (5b)

with p1γ
d = 1 − p1γ

em, σr =
hν21
4π

B12
∆νD

and the dimensionless fre-
quencyx = ν/(1+ z), and define the effective emission profile

φem(ν, z) =
∑

i

Ri,+
2p

R+2p

φi(ν, z) (6)

then Eq. (4) takes the simple form

1
c

dNν
dt

∣

∣

∣

∣

∣

Ly
= p1γ

d σr N1sφabs(ν, z)
{

Nem
ν − Nν

}

(7a)

Nem
ν =

2ν221

c2

g1s

g2p

R+2p

R−2pN1s
× φem(ν, z)
φabs(ν, z)

≡ Nem
φem(ν, z)
φabs(ν, z)

, (7b)

whereNem is only redshift dependent.
The solution of this equation in the expanding Universe can

be directly given (see Chluba & Sunyaev 2008b)

∆Nasym
ν (z) = [Nem(z) − Npl

ν21
] × F(ν, z). (8a)

Here the functionFν represents the frequency dependent part of
the solution for the spectral distortion, which is defined by

F(ν, z) =
∫ z

zs

Θa(z, z′) ∂z′e
−τabs(ν,z′,z) dz′ (8b)

Θa(z, z′) =
Ñem(z′) × φem(ν′ ,z′)

φabs(ν′,z′)
− Ñpl

x

Ñem(z) − Ñpl
x21

(8c)

≡ 1
fν′

Ñem(z′) × φem(ν′ ,z′)
φ∗abs(ν

′,z′) − Ñpl
x′21

Ñem(z) − Ñpl
x21

, (8d)

where∆Nν = Nν − Npl
ν , ν′ = x[1 + z′] and atz > zs the CMB

spectrum is assumed to be given by a pure blackbody spectrum
Npl
ν . Furthermore,Ñem(z) = Nem(z)/[1 + z]2, x21 = ν21/[1 + z],

x′21 = ν21/[1+ z′], andÑpl
x =

2
c2

x2

ehx/kT0−1
, with T0 = 2.725 K. Note

that Ñpl
x does not explicitly depend on redshift. Also we have

used thatfν′ (z′)Ñ
pl
x ≡ Ñpl

x′21
.

2.3. Number of absorbed photons and the effective Lyman α
escape probability

With the solution (8) one can directly compute the number of
absorbed photons. For this we define the mean ofNν = Iν/hν

over the absorption profile

N̄abs(z) =
∫

φabs(ν, z)
4π∆νD

Nν dνdΩ =
∫

φ∗abs(ν, z)

4π∆νD
fν Nν dνdΩ

= Npl
ν21
ϕ̄∗abs+

∫

ϕ∗abs(ν, z) fν(z)∆Nν dν. (9)

where we have setϕ∗abs(ν, z) = φ
∗
abs(ν, z)/∆νD and introduced the

norm ofϕ∗abs asϕ̄∗abs=
∫

ϕ∗abs(ν, z) dν. If we now insert the solu-
tion (8) into this expression we can write

∆N̄asym
abs (z) = [Nem(z) − Npl

ν21
][1 − P] (10a)

P = 1−
∫

ϕ∗abs(ν) fν(z) Fν dν. (10b)

HereP will later be interpreted as the main part of the effective
escape probability (see Sects. 2.3.2 and 5).

Similar to N̄abs(z) one can also define

N̄em(z) =
∫

φabs(ν, z)
4π∆νD

Nem
ν dν dΩ

!≡
∫

φem(ν, z)
4π∆νD

Nem(z) dνdΩ

= Nem ϕ̄em, (11)

so that with the transfer equation (7) it follows

dNγ
dt

∣

∣

∣

∣

∣

∣

Ly

=
1
c

∫

dNν
dt

∣

∣

∣

∣

∣

Ly
dνdΩ

= p1γ
d hν21B12 N1s

{

Nem ϕ̄em− Npl
ν21
ϕ̄∗abs

−[Nem− Npl
ν21

][1 − P]
}

= p1γ
d hν21B12 N1s

{

Peff [Nem− Npl
ν21

]
}

, (12a)

with

Peff = P + ∆Pind (12b)

∆Pind =
Nem∆ϕ̄em− Npl

ν21
∆ϕ̄∗abs

Nem− Npl
ν21

(12c)

where∆ϕ̄em = ϕ̄em−1 and∆ϕ̄∗abs= ϕ̄
∗
abs−1. As we explain below,

with these definitions the effective escape probability,Peff , can
now be directly compared with the value in the normal ’1+ 1’
photon formulation and the Sobolev escape probability.

2.3.1. Range of integration over the profiles

In the above derivation we have not specified the range of inte-
gration. Since the 3s and 3d two-photon profile include both the
Balmerα and Lymanα photons, by carrying out the integrals
over the frequency interval (0,∞), one would count 2γ per tran-
sition. In order to avoid this problem, we can simply restrict the
range of integration toν ≥ ν31/2, but leave all the other defini-
tions unaltered. Sinceν31/2 is far away from the Lymanα res-
onance this does not lead to any significant problem regarding
the normalization of the normal Voigt-function9. In addition, for
the quasi-stationary approximation the contribution to the value
of the escape probability from this region are completely negli-
gible. Therefore this restriction does not lead to any bias in the
result, but does simplify the numerical integration significantly.

9 ν31/2 corresponds toxD ≈ −1.7 × 104
[

1+z
1100

]−1/2
Doppler width, so

that the absolute error in the normalization ofφV is∼ 1.6× 10−8.
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2.3.2. Relating the corrections in the spectral distortion to the
corrections in the effective escape probability

We now want to understand how differences inFν and dNγ
dt relate

to corrections in the effective escape probability. For this we first
want to emphasize that in the normal ’1+1’ photon picture, under
the assumption of quasi-stationarity and in the no line scattering
approximation, following the derivation of the previous Section
one would find (Chluba & Sunyaev 2008b)

dNd
γ

dt

∣

∣

∣

∣

∣

∣

∣

Ly

= p1γ
d hν21B12 N1s Pd [Nem− Npl

ν21
] (13)

with Pd =
1−e−τd
τd

andτd = p1γ
d τS.

It is clear that
dNd
γ

dt ∆t represents the effective change in the
total number density of photons involved in the Lymanα evolu-
tion over a short time interval∆t, and hence is directly related
to the change in the total number of electrons that settle in the
ground state via the Lymanα channel. By comparingPd with
Peff, as defined by Eq. (12b), one can therefore deduce the re-
quired effective correction to the Sobolev escape probability, that
is normally used in the formulation of the recombination prob-
lem. Following the arguments of Chluba & Sunyaev (2008b) this
correction should be given by

∆PS =
p1γ

d Peff

1− p1γ
emPeff

− PS, (14)

wherePS =
1−e−τS
τS

is the standard Sobolev escape probability,
with the usual Sobolev optical depth,τS.

3. Main sources of corrections to the Lyman α

spectral distortion

Using the solution (8) one can already identify the main sources
for the corrections to the photon distribution in comparison with
the quasi-stationary approximation. These can be split up into
those acting as a time and frequency dependentemissivity, which
is characterized byΘa, and those just affecting theabsorption
optical depth, τabs. Below we explain how the two-photon as-
pect of the problem enters here, and which effects are expected.
In Sect. 4 and 5 we discuss the corrections to the Lymanα spec-
tral distortion and the effective escape probability in comparison
with the standard ’1+ 1’ photon formulation in more detail.

3.1. Relative importance of the different Lyman α absorption
channels

Before looking at the solution of the transfer equation in more
detail it is important to understand, which channels on average
contribute most to the absorption of Lymanα photons. In Fig. 1
we present the partial death probabilities for different channels,
as defined in the Appendix A. At all considered redshifts more
than∼ 90% of the absorbed Lymanα photons disappear from
the photon distribution in 1s-3d two-photons transition. In con-
trast to this, only about 2% of all transitions end in the 3s-state.
This is because the ratio of the 2p-3s and 2p-3d transition rates is
aboutg3sA3s2p/g3dA3s2p∼ 1/50. One can also see that in general
the 1s-nd channels are more important than the 1s-ns channels,
and that the contributions of 1s-3s and 1s-4d two-photon chan-
nels are comparable, where at high redshifts the 1s-4d channels
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Fig. 1. The death probabilities for different Lymanα absorp-
tion channels. We used a 10-shell hydrogen atom. The thick
solid line shows the total death probability,pd (for definition see
Appendix A).

contributes slightly more (∼ 2% versus∼ 7%). However, less
than∼ 0.5% of photons are directly absorbed to the continuum.

Assuming that the final modification in the ionization history
is∆Ne/Ne ∼ 1% whenonly including the two-photon aspects for
the 3d-1s channel, then the above numbers suggest that: (i) the
additional correction is expected to be similar to∆Ne/Ne ∼ 0.1%
when also taking the two-photon character of the 1s-3s, 1s-4d,
and 1s-5d channels into account; (ii) neglecting the two-photon
character for the transition to the continuum should lead toan
uncertainty of∆Ne/Ne . 0.1%. These simple conclusions seem
to be in good agreement with the computations of Hirata (2008).
This also justifies the fact that here as a first step we only con-
sider the two-photon corrections to the 3s-1s and 3d-1s channel.
However, we plan to take the other two-photon corrections into
account in a future paper.

3.2. Effective Lyman α emission and absorption profile

As we have seen in the previous section, the main channel
for Lyman α absorption is due to the 1s-3d two-photon tran-
sition. This implies that the effective absorption profile,φ∗abs,
will be very close to the one following from the 3d-1s chan-
nel alone. In Fig. 2 we give the spectral dependence of different
line profiles in the vicinity of the Lymanα resonance at red-
shift z = 1300. For comparison we also show the Voigt profile,
φV (see Appendix D). One can clearly see the asymmetry of the
two-photon profiles around the Lymanα line center and the de-
viations from the Lorentzian shape in the distant damping wings.

In the right panel we also show the effective emission profile,
φem, for the 3 shell atom, as defined by Eq (6). In the computa-
tions we only included the 3s and 3d two-photon profiles, but as-
sumed that in the continuum channel (1s↔ 2p↔ c) photons are
emitted according to the normal Voigt profile. As one can see the
effective emission profile indeed is very close to the 3d-1s two-
photon profile, including stimulated emission. Only atν ≥ ν31
one can see the small Lorentzian contribution from the contin-
uum channel. Close theν31 one can also see the small admixture
of the 3s-1s two-photon profile. As can be deduced from the left
panel in Fig. 2, atν ∼ ν31 the stimulated 3s-1s two-photon pro-
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Fig. 2. Different line profiles in the vicinity of the Lymanα resonance at redshiftz = 1300. The left panel shows the 3s and 3d
emission profiles in comparison with the normal Voigt profile. In the right panel we show the effective emission profile for a 3
shell hydrogen atom, as defined by Eq. (6), in comparison withthe 3d emission profile and the Voigt profile. The curves labeled
’induced’ include the effect of stimulated two-photon emission due to enhancement connected with the second photon released at
low frequencies. This process is only important close toν ∼ ν31 and eventually leads to a sub-dominant correction of∆Ne/Ne . 0.1%
in the ionization history. On the other hand, the overall asymmetry in the effective emission profile (red wing stronger that blue wing)
has important implications for the hydrogen recombinationproblem (see Chluba & Sunyaev 2008c).

file is about∼ 40 times larger than the 3d-1s two-photon profile.
With appropriate renormalization one can also obtain this fac-
tor using the approximation (C.3). AlthoughR3s,+

2p ∼ R3d,+
2p /50,

due to this factor atν ∼ ν31 the 3s channel adds about4
5 φ3d, or

∼ 44% to the effective emission profile.

3.3. Time and frequency dependence of the absorption
optical depth

In the definition ofF(ν, z), Eq. (8b), the functionΘa accounts
for the frequency and time dependence of the emission process.
ForΘa = 1 the shape of the solution for the spectral distortion
depends only on the absorption optical depth,τabs, as defined by
Eq. (5a). In this case one can directly write

F0(ν, z) = 1− e−τabs(ν,zs,z). (15)

Separating this part of the solution turns out the be very useful
for numerical purposes. However, as we will see in Sect. 3.4.2
F0 doesnot describe the main behavior of the spectral distortion
when including the thermodynamic correction factorfν.

3.3.1. Pure time-dependent correction to τabs

If we neglect the two-photon corrections to the 3s and 3d pro-
files (φi = φV) and set fν ≡ 1 then we can look at the
pure time-dependent correction toτabs. As explained earlier
(Chluba & Sunyaev 2008b), the dependencies ofpd, N1s, andH
on redshift lead to deviations of the solution for the spectral dis-
tortion from the quasi-stationary case. Here the most important
aspects are that, depending on the emission redshift, the total
absorption optical depth until the time of observation (herez), is
effectively lower (forzem & 1400), or greater (forzem . 1400)
than in the quasi-stationary case. In addition the deviation from

the quasi-stationary case depends on the initial frequencyof the
considered photon, since close to the line center photons travel
a much shorter distance before getting absorbed than in the very
distant wings, implying that time-dependent corrections are only
important for photons that are emitted outside the Doppler core
(for more details see Chluba & Sunyaev 2008b).

In Fig. 3 we illustrate these effects onτabs for emission red-
shift z = 1100. We show the optical depth as a function of the
initial frequency for different∆z. In the upper panel we show the
results for the case under discussion here (solid line). Forcom-
parison we show the values of the optical depth using the normal
quasi-stationary optical depth (dashed lines) for which one has

τ
qs
d (ν, z, z′) ≈ τd(z)

∫ ν

ν′
φV(ν̃)

dν̃
∆νD
, (16)

with τd(z) = p1γ
d τS, whereτS is the normal Sobolev optical

depth,ν′ = ν 1+z′

1+z andz′ = z − ∆z.
For very small∆z/z one expects no significant difference be-

tween the full numerical result forτabs and this approximation.
However, looking at the cases∆z/z = 10−5, 10−4 and 10−3 one
can see that even then there is a small difference in the distant
red and blue wings of the line. This is not due to time-dependent
corrections but due to the fact that, as usual, in Eq. (16) we ne-
glected the factorν21/ν which appears in the definition ofτabs,
leading toτabs/τ

qs
d ∼ ν21/ν & 1 on the red, andτabs/τ

qs
d . 1 on

the blue side of the resonance.
For the cases∆z/z = 0.01 and 0.1 we start to see the cor-

rections due to the time-dependence. Here most interestingly for
∆z/z = 0.1 in both wingsτabs . τ

qs
d , is because the photons

were released atz . 1400, so thatτd(z) decreases while the pho-
tons travel (Chluba & Sunyaev 2008b). This means that the in-
tegral over different redshiftsτd(ν, z, z′) ≈

∫ ν

ν′
τd(z̃)φV(ν̃) dν̃

∆νD
can-

not reach the value forτqs
d (z). Note that comparing with the value
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Fig. 3. Modifications in the absorption optical depth
τabs(xD, z, z − ∆z) for z = 1100. HerexD = [ν − ν21]/∆νD,
where∆νD is the Doppler width of the Lymanα resonance. In
each plot we show a sequence (lower to upper set of curves) of
∆z/z = 10−5, 10−4, 10−3, 10−2 and 0.1. For detailed explanation
see Sect. 3.

τ
qs
d (z′) . τqs

d (z) at the absorption redshiftz′ = z−∆z < z one finds
τd(ν, z, z′) & τqs

d (z′) following a similar argument. Usually this is
the comparison which is made when talking about the escape
probability at redshiftz, so that the role ofz and z′ is simply
interchanged.

The difference due to the time-dependence is not yet very
visible for∆z/z = 0.01 (the changes should be|∆τ/τ| ∼ |∆z/z|),
but one can see it in the region 0. xD . xc

D ∼ 500. There
it is clear that the emitted photons will reach the Doppler core
over a period that is shorter than the chosen∆z/z. For the case
∆z/z = 0.1 this region is 0. xD . xc

D ∼ 4800. Depending on
how far the photon initially was emitted from the Doppler core
the time it will travel before reachingxD ∼ 0 will grow with
increasingxD. This implies that at the redshiftzc < z . 1400 of
Doppler core crossingτd(zc) . τd(z), leading to the slope seen
in the regions 0. xD . xc

D.
Note that in the final result the time-dependent correction

to τabs is not so important, only leading to modifications in the
escape probability by|∆P/P| ∼ 1%− 3%. The time-dependence
of Θt is much more relevant (see Sect. 5 for more details).

3.3.2. Effect of Thermodynamic correction factor on τabs

If we now include thethermodynamic correction factorfν, as
given by Eq. (2), in the computation ofτabs, then it is clear
that for photons appearing at a given time on thered side of
the Lymanα resonance, the total absorption optical depth over
a fixed redshift interval will belower than in the standard ap-
proach, independent of the emission redshift. Sincehν21/kTγ ∼
40
[

1+z
1100

]−1
one hash[ν − ν21]/kTγ ∼ xD

103

[

1+z
1100

]−1/2
. Due to the

exponential dependence offν on the distance to the line center

this implies that atxD . −103
[

1+z
1100

]1/2
photons even directly

escape, without any further reabsorption. This is in stark con-
trast to the standard approximation (fν = 1) for which even at
distances∼ −104 some small fraction of photons (comparable to
10−3 at z ∼ 1100) still disappears. We illustrate this behavior in
the central panel of Fig. 3, where at large distances on the red
side of the resonance the value ofτabs is many orders of magni-
tude smaller than in the quasi-stationary approximation. As we
will see below (e.g. Sect. 5.1), the thermodynamic factor leads
to the largest correction discussed in this paper, and in fact it
is thisred wing suppression of the absorption cross section that
contributes most.

As mentioned in Sect. 2.1.1, physically this behavior re-
flects the fact that the photon which enables the 2p-electronto
reach the 3s and 3d is drawn from the ambient CMB radia-
tion field. For photons on the red side of the Lymanα reso-
nance (ν < ν21) a photon withν′ > ν32 is necessary for a 1s
electron to reach the third shell. Since during Hi recombination
the Balmerα line already is in the Wien tail of the CMB, this
means the that relative to the Balmerα line center the amount
of photons atν′ > ν32 is exponentially smaller, depending on
how large the detuning is. Denoting the frequency of the sec-
ond photon (absorbed close to the Balmerα resonance) with
ν′ = ν31 − ν, by taking the ratio of the photon occupation num-
bersn′/npl(ν32) ≈ npl(ν31 − ν)/npl(ν32) ≈ eh[ν−ν21]/kTγ we again
can confirm the exponential behavior offν. Note that the same
factor will appear even when thinking about two-photon transi-
tions towards higher levels withn > 3 or the continuum. It is
a result of thermodynamic requirements, which should be inde-
pendent of the considered process, as long as the second photon
is drawn from the CMB blackbody.
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On the other hand, for photons that are released on theblue
side of the Lymanα line the the total absorption optical depth
is larger than in the standard approximation (see Fig. 3 central
panel for illustration). Due to the exponential dependenceof fν
on frequency forφ∗abs= φV this even leads to anarbitrarily large
absorption optical depth in the very distant blue wing. Again
this behavior can be understood when thinking about the second
photon as drawn from the CMB blackbody. However, now there
are exponentially more photons available than at the Balmerα
line center.

This very strong increase in the absorption optical
depth implies that photons are basically reabsorbedquasi-
instantaneously, so that the usual quasi-stationary approxima-
tion for the computation ofτabs should be possible, like inside
the Doppler core. In this case one therefore has

τ
qs
abs(ν, zs, z) ≈ τd(z)

∫ νs

ν

φabs(ν′)
ν21 dν′

∆νD ν′

≈ τd(z) fν(z)
∫ νs

ν

φ∗abs(ν
′)

dν′

∆νD
, (17)

with τd(z) = p1γ
d τS, whereτS is the normal Sobolev optical

depth, andνs = ν
1+zs
1+z . This approximation forτabs will also be

very accurate close to the line center, but is very crude in the
red wing. Note that forfν = 1 andφ∗abs = φV , τqs

abs recovers
the approximation for the normal absorption optical depth in the
quasi-stationary approximation, Eq. (16).

For zs→ ∞, ν≫ ν21 and assuming thatφ∗abs= φV one has

τblue
abs (ν, zs, z) ≈ τd(z) fν(z)

a
π xD
. (18)

With this equation it is possible to estimate the position onthe
blue side of the Lymanα resonance at whichτabs ∼ 1. Above
that pointF0 → 1, however this does not represent the main
behavior ofFν for the given assumptions, since also the factor
1/ fν′ in Θa becomes important, so thatFν instead actually scales
like 1/ fν at largexD (see Sect. 3.4.2).

3.3.3. Effect of line absorption profile on τabs

It is clear that also theshape of the absorption profile has an
effect on the frequency dependence of the the absorption op-
tical depth. As we explained in Sect. 3.2 the effective absorp-
tion profile, φ∗abs is very close the two-photon emission pro-
file of the 3d-level (see Fig. 2). For simplicity assuming that
φ∗abs ≡ φ3d→1s, it is clear that atν ≥ ν31 no photons can be ab-
sorbed in the Lymanα transition, since thereφ3d→1s = 0. This is
in stark contrast to the case of a normal Voigt profile, for which
in principle some photons can be absorbed at arbitrarily large
frequencies. Considering photons that reach the frequencyinter-
val ν21 ≤ ν ≤ ν31, the fact that thereφ3d→1s . φV (see Fig. 2)
implies that the contribution to the total absorption optical depth
coming from this region issmaller than in the standard ’1+ 1’
photon formulation. Similarly, atν ≤ ν21 the contribution to the
total absorption optical depth becomeslarger than in the stan-
dard case, because thereφ3d→1s & φV .

In Fig. 3, lower panel, we illustrate these effects onτabs for
the 3 shell hydrogen atom. However, here we used the full ab-
sorption profile ,φ∗abs, which atν & ν31 has a small contribution
from the Voigt profile that is used to model the continuum chan-
nel (1s↔ 2p↔ c). Therefore the optical depths does not vanish
atν ≫ ν31. The additional differences in the values of the optical
depth seen in Fig. 3 confirm the above statements. Comparing

with the case for the thermodynamic factor (central panel) it is
clear that the correction toτabsdue to the shape of the absorption
profile is not as important.

One should also mention that settingΘa = 1 and fν = 1 we
obtain the solutionFφ0 as given by Eq. (15). With the comments
made above, one therefore expects a strong drop in the value of
Fφ0 for ν → ν31, since thereτabs → 0. Numerically we indeed
find this behavior (see Sect.4).

3.4. Time and frequency dependence of the effective
emissivity

If we look at the definition ofΘa, Eq. (8c), and rewrite it like

Θa(z, z′) =
1
fν′

[

Θt + Θφ
]

(19a)

Θt(z, z′) =
Ñem(z′) − Ñpl

x′21

Ñem(z) − Ñpl
x21

(19b)

Θφ(z, z′) =
Ñem(z′)

Ñem(z) − Ñpl
x21

×
[

φem(ν′, z′)
φ∗abs(ν

′, z′)
− 1

]

, (19c)

we can clearly see that there are also three sources for the cor-
rections to the effective emissivity. The first is due to thepurely
time-dependent correction (Θa = Θt), the second due to thether-
modynamic correction factor (Θa = 1/ fν′), and the last due to
thequantum mechanical asymmetry10 between the emission and
absorption profile (Θa = Θφ). Below we now shortly discuss the
expected consequences of each of these.

3.4.1. Pure time-dependent correction to Θa

For Θa = Θt we are looking at the pure time-dependent cor-
rection to the emission coefficient. This correction was already
discussed in detail earlier (Chluba & Sunyaev 2008b). For quasi-
stationary conditions one would haveΘt = 1. However, in the
cosmological recombination problemΘt

, 1 most of the time.
This fact leads to significant changes in the shape of the spec-
tral distortion at different redshifts, where at frequenciesxD . 0
only Θt

, 1 is able to affect the distortion (Chluba & Sunyaev
2008b).

3.4.2. Effect of Thermodynamic correction factor in Θa

If we only include the correction due to the thermodynamic fac-
tor fν then we haveΘa = 1/ fν′ . Since forν′ = ν 1+z′

1+z , ν21 one
has fν′ , 1, so that due tofν one expects similar effect on the
shape of the distortion like fromΘt. However, sincefν′ ≫ 1 at
large detuning blue-ward of the line center, it turns out that this
correction can be very large. As mentioned in Sect. 3.3, from
Eq. (15), one naively expectsF0 → 1, but when including the
factor 1/ fν′ in Θa instead we findFν ∼ 1/ fν at largexD.

To show this, it is illustrative to look at the solution forF(ν, z)
in this case, assuming that the quasi-stationary approximation
(∆z/z ≪ 1 and∆ν/ν ≪ 1 between the emission and absorption
redshift of the photons) is possible. Introducing the new variable
χ(ν) =

∫ ν

0
φ∗abs(ν

′) dν′, and usingτqs
abs≈ τd(z) fν(z) [χ′−χ], where

10 More clearly here one should refer to the mixture of quantum me-
chanical processes important for the emission and absorption profile.
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χ′ = χ(ν′), one has

Fqs
f (ν, z) =

∫ zs

z

cσr(z′) N1s(z′)
H(z′)(1+ z′)

φ∗abs(ν
′, z′) e−τabs(ν,z′,z) dz′ (20a)

≈ τd(z)
∫ χs

0
dχ′ e−τd fν [χ′−χ] =

1− e−τd fν[χs−χ]

fν(z)
(20b)

Sinceτd fν[χs − χ] → ∞ for xD ≫ 1, there one hasF(ν, z) →
1/ fν(z). In addition one expectsF(ν, z) ∼ 1/ fν(z) for xD . 1. As
we will show below, for the correction due to the thermodynamic
factor the scalingF(ν, z) ∼ 1/ fν(z) indeed is correct atxD ≫ 1
andxD ∼ 1. However, atxD → −∞ one findsF(ν, z) ∼ 1 instead.

3.4.3. Correction due to the quantum-mechanical asymmetry
between emission and absorption profile

Since in general the admixture the different transition channels
to the emission and absorption profile isnot identical one does
expectφ∗abs , φem. For this we can also look at the difference
betweenφ∗absandφem, which will be given by

∆φ(ν) = φ∗abs− φem =
∑

i

















Ri,−
2p

R−2p

−
Ri,+

2p

R+2p

















φi(ν). (21)

Since in full thermodynamic equilibrium (Ri,+
2p)eq ≡ (Ri,−

2p N2p)eq,

it is clear that (Ri,−
2p/R

−
2p)

eq ≡ (Ri,+
2p/R

+
2p)

eq, so that∆φ ≡ 0. On
the other hand it is known (e.g. see Chluba et al. 2007) that in
the cosmological recombination problemRi,−

2p andRi,+
2p should al-

ways be very close to their equilibrium values, so that one ex-
pects∆φ/φ ≪ 1. Only at low redshifts (z . 800) this condition
may not be fulfilled. However, as we will see below in the con-
text of CMB power spectrum computations this aspect of the
problem never becomes significant (see Sect. 4).

4. Changes in the Lyman α spectral distortion

In this Section we show the detailed dependence of the resulting
Lymanα spectral distortion on the different corrections that are
taken into account. As explained above there are three typesof
corrections that are considered here: (i) the time-dependent cor-
rection, (ii) the thermodynamic correction factorfν, and (iii) the
dependence on the detailed shape of the effective line emission
and absorption profile. We start our discussion by first only in-
cluding these corrections in the computation ofτabs but setting
Θt = 1 andΘφ = 0 (Sect. 4.1). In Sect. 4.2 we then also allow
for Θt

, 1, but still setΘφ = 0. Finally, we also include the
correction due toΘφ , 0 (Sect. 4.3), but this aspect of the prob-
lem turns out to be not very important. It should be possible to
deduce all the other combinations from these cases.

4.1. Corrections related to τabs for Θt = 1 and Θφ = 0

As a first case we study the effect of different corrections to the
absorption optical depth. For this we setΘt = 1 andΘφ = 0,
meaning that in the emission coefficientΘa we ignore the pure
time-dependent correction and the one related to the shape of the
profile. However, depending on the considered case we do allow
for these corrections in the computation ofτabs. In addition, we
also discuss the effect of the thermodynamic correction factor,
fν. but here we include it in bothτabs andΘa at the same time.
As explained Sect. 3.4.2, if one would only includefν for τabsor
Θa separately, the corresponding spectral distortion is physically
not very meaningful. Therefore we omit this case here.

4.1.1. Behavior very close to the line center

In Fig. 4 as an example we show the Lymanα spectral distortion
at z = 1100 in the close vicinity of the line center. We com-
pare the results with the normal quasi-stationary solution(see
Chluba & Sunyaev 2008b, for details)

Fqs(ν, z) = 1− e−τd eτd χ, (22)

with χ =
∫ ν

0
ϕV(ν′) dν′. We show the result obtained for the

pure time-dependent correction toτabs (dashed curve), which
was already discussed earlier (Chluba & Sunyaev 2008b). At
xD . 4 the distortion is practically identical with the result in
the quasi-stationary case, while atxD & 4 the time-dependent
corrections toτabs start to be important. One can see that there
Fν = 1 − e−τabs & Fqs

ν , which as explained in Sect. 3.3.1 is re-
lated to the fact that including the time-dependent correction, at
this redshift the value ofτabs is slightly larger than in the quasi-
stationary approximation, leading to11 τtabs& τ

qs
abs.

If we also include the correction due to the shape of the ab-
sorption profile in the computation ofτabs(dashed-dotted curve),
then we see that atxD . 0 again the solution is practically iden-
tical with the solution in the quasi-stationary case. Although one
does expect some corrections to the exact value ofτabs at dif-
ferent frequencies below the line center12, sinceτabs ≫ 1 the
effect on the shape ofFν ∼ 1− e−τabs will be exponentially small.
However, looking atxD & 4 we can see thatFν . Fqs

ν , imply-
ing thatτt,φabs. τ

qs
abs. Since blue-ward of the resonanceφ∗abs. φV

(see right panel of Fig. 2) it is already expected that the curve
lies below the one for the pure time-dependent correction (i.e.
τ

t,φ
abs . τ

t
abs). But it even turns out that the correction due to the

shape ofφ∗abs overcompensates the pure time-dependent effect,
which alone leads toτtabs & τ

qs
abs. This shows that at the consid-

ered redshift the correction due to the profile is slightly more
important than due to time-dependence.

If we now only include the time-dependent correction and
the effect of the thermodynamic correction factor (in bothτabs
and Θa) then we obtain the dotted line. As expected from
Eq. (20), very close to the Doppler core (|xD| . 4) one has
Fν(z) ∼ 1/ fν(z). We also found this scaling at other redshifts
(marginally visible in Fig. 5), as long as the optical depth across
the Doppler core is much larger that unity, implying that the
quasi-stationary approximation is valid. However, outside this
region the distortion differs significantly from the previous cases.
In particular one findsFν & Fqs

ν at xD . −4, which is the result
of Θa = 1/ fν. If we include the thermodynamic correction factor
only in the computation ofτabs, i.e. settingΘa = 1, then we find
Fν ∼ 1 instead.

It also turns out thatFν . 1/ fν at xD . −4. This is in contrast
to the resultFqs

f (ν, z), as given by Eq. (20), for which we assume
quasi-stationary conditions. This implies that in the red damping
wing deviations from the quasi-stationary assumption become
important.

If we in addition include the correction due to the shape of
the absorption profile, then we can see that atxD . 4 the curve
basically coincides with the one from the previous case. This
again is expected since the tiny corrections to the value of avery
large optical will not lead to visible changes inFν. In addition,
at xD & 4 one can see that the difference to the previous case

11 The upper indices will henceforth indicate which correction was
included. ’t’ will stand for the time-dependent correction, ’f’ for the
thermodynamic factor, and ’φ’ for the profile correction. When all cor-
rections are included simultaneously we will use ’a’.

12 Since in the red wingφ∗abs& φV (cf. Fig. 2) one expectsτφabs& τ
qs
abs.
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Fig. 4. Difference in the Lymanα spectral distortion with respect to the quasi-stationary solution in the no redistribution approx-
imation, Fqs(ν, z) as given by Eq. (22), atz = 1100 close to the line center. For all computations shown in the left panel we set
Θt = 1 andΘφ = 0, while in the right we only setΘφ = 0. The cases labeled withf are computed usingΘa = 1/ fν′ (left panel)
andΘa = Θt/ fν′ (right panel), while for the others we setfν = 1. In addition the quoted correction factors were included in the
computation ofτabs(ν, zs, z′). We assumed a 3 shell hydrogen atom.

are about the same as for the difference between the first two
cases, owing to the fact that the corrections are small and hence
additive.

4.1.2. Behavior at intermediate and large distances from the
line center

We now look at the corrections in a slightly wider range around
the line center. In Fig. 5 we show the same cases as above, but
now also varying the redshift. As before one can see that differ-
ences due to the shape of the absorption profile are negligible
at xD . 0. Furthermore, on the blue side of the resonance the
correction due to the shape of the absorption profile is always
negative, as also seen in the previous paragraph.

Taking the differences between the curves forΘa = 1 (first
two lines) and those forΘa = 1/ fν′ (last two lines) one can also
see that atz = 1200 these are practically the same. However for
z = 1000 andz = 800 higher order terms already start to become
important. For example, atxD = 100 the difference of the curves
for Θa = 1 is∼ 2×10−3, while it is about 8×10−4 for those with
Θa = 1/ fν′ .

If we consider the distortion in an even wider range of fre-
quencies (Fig. 6), then we can make several important observa-
tion. First, as expected from the discussion related to Eq. (20) in
the limit xD → ∞ for Θa = 1/ fν′ one findsFν ∼ 1/ fν, regardless
if the normal Voigt profile was used or the effective absorption
profile, as given by Eq. (5b). However, forφ∗abs = φV the limit
Fν ∼ 1/ fν is reached closer to the line center than for the ef-
fective absorption profile. This is expected, since for the 3shell
atom the effective absorption profile only has a small admixture
of the Voigt profile (due to the description of routes connecting
to the continuum). Ifφ∗abs= φ3d then the limitFν ∼ 1/ fν would
never be reached, simply because atν & ν31 the contribution
to τabswould be zero. Reducing the admixture of the pure Voigt
profile therefore moves the transition toFν ∼ 1/ fν towards larger
frequencies.

The second important observation is that in the frequency
rangeν21 . ν . ν31 on the blue side of the resonance the cor-
rection due to the shape of the absorption profile is much more
important than both the pure time-dependent correction toτabs
and the correction due to the 1/ fν′ factor inΘa. And finally, in
the red wing the correction to the spectral distortion is domi-
nated by the 1/ fν′ scaling ofΘa, however, the correction is very
small, in particular in comparison with the one coming fromΘt

(see Sect. 4.2).

4.2. Corrections related to both τabs and Θt but for Θφ = 0

We now want to understand the effect of changes in the ioniza-
tion history and death probability on the effective emission rate.
We therefore allowΘt

, 1 but still setΘφ = 0. We then again
discuss different combinations of corrections, like in the previ-
ous section. As we will see the corrections due toΘt

, 1 domi-
nate at large distances on the red side of the resonance, while the
shape of the profile is most important for the spectral distortion
on the blue side of the resonance (see Fig. 6). In the vicinityof
the resonance basicallyall the correction factors are important.

4.2.1. Behavior very close to the line center

In Fig. 4 we show the Lymanα spectral distortion atz = 1100
in the very close vicinity of the line center, now also including
Θt
, 1. If we first look at the curves forfν = 1 (dashed and

dashed-dotted), then we can see that very close to the resonance
(|xD| . 4) the solution is not affected by the inclusion ofΘt

, 1.
Due to the huge optical depth across the Doppler core (corre-
sponding to∆z/z ∼ 10−5) there practically any time-dependent
variation of the effective emission coefficient is erased. However,
moving towards the wings time-dependent aspects become im-
portant and in particular now alsoFν , Fqs

ν at xD < 0.
Also one can see that at the considered redshift the difference

in comparison to the caseΘt = 1 (see Fig. 4) is very small at
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Fig. 5. Difference in the Lymanα spectral distortion with respect to the quasi-stationary solution in the no redistribution approxi-
mation,Fqs(ν, z), as given by Eq. (22), at several redshift close to the line center. For the all computations shown in the left column
we setΘt = 1 andΘφ = 0, while in the right we only setΘφ = 0. The cases labeled withf are computed usingΘa = 1/ fν′ (left
column) andΘa = Θt/ fν′ (right column), while for the others we setfν = 1. In addition the quoted correction factors were included
for τabs(ν, zs, z′). We assumed a 3 shell hydrogen atom.
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Fig. 6. The Lymanα spectral distortion at different redshifts and in a wide range of frequencies around theline center. For the all
computations shown in the left column we setΘt = 1 andΘφ = 0, while in the right we only setΘφ = 0. The cases labeled with
f are computed usingΘa = 1/ fν′ (left column) andΘa = Θt/ fν′ (right column), while for the others we setfν = 1. In addition the
quoted correction factors were included forτabs(ν, zs, z′). We assumed a 3 shell hydrogen atom.
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xD . −4. There clearly the correction due to the thermodynamic
factor fν (dotted and solid lines) is dominant. However, atxD & 4
the time-dependent changes in the effective emission coefficient
lead to a correction that is similarly important as the one due to
fν. One can also see that all the corrections add roughly linearly.
Note that atxD < 4 the curves are not affected when accounting
for the corrections to the shape of the line profile.

4.2.2. Behavior at intermediate and large distances from the
line center

Looking at the right column of Fig. 5 we can see that atxD . 0
the correction due to the inclusion offν dominates at high red-
shifts, while atz ∼ 1000 the correction due toΘt is already com-
parable, and clearly dominates at low redshifts. In addition, at
xD & 0 one can see that at high redshift all the corrections practi-
cally add linearly, while forz = 1000 andz = 800 the correction
due to the inclusion ofΘt practically disappears when including
the correct shape of the effective absorption profile. Also when
including the thermodynamic correction factor the large excess
of photons seen for the casefν = 1 andφabs = φV practically
vanishes. This implies that theself-feedback effect at low red-
shifts that was reported elsewhere (Chluba & Sunyaev 2007) is
expected to disappear. As explained there, this unphysicalaspect
of the solution in the ’1+1’ photon pictures is due to the fact that
the Voigt profile in principle extends up to arbitrarily large fre-
quencies, so that photon emitted atz ∼ 1400 in the very distant
blue damping wing will still be able to reach the line center at
low redshift, strongly enhancing the photon occupation number.
However, when including the thermodynamic correction factor,
due to the exponential enhancement of the absorption optical
depth at large distances blue-ward of the resonance, such pho-
tons disappear much before this. Similarly, when includingthe
shape of the effective emission profile such excess of photons
will never be produced in the first place, so that from this region
the residual correction due toΘt

, 1 is much smaller.
Looking at the spectral distortion in a very large range of

frequencies around the line center (Fig. 6) it is clear that at all
redshift the shape of the distortion is dominated by the correction
due toΘt

, 1 for xD . 0. Both the thermodynamic factor and the
shape of the absorption and emission profile only lead to small
additional modifications there. The largest correction is due to
the fact that the 3d two-photon emission profile is larger than
the Voigt profile atν → ν31/2, explaining the small addition of
photons in comparison to the caseφ∗abs = φV seen close to the
lowest frequencies shown in the figures. On the other hand, at
frequencies above the line center clearly the correction due to
the shape of the line profile is most important. In the line center
all sources of correction contribute to changes of the Lymanα
spectral distortion with respect to the quasi-stationary solution.

4.3. Corrections related to τabs and Θt including Θφ , 0

We also ran cases forΘφ , 0. However, the correction was al-
ways extremely small. Therefore we decided to omit the corre-
sponding plots forFν. As mentioned in Sect. 3.2, this is expected
since the deviations ofRi,−

2p/R
−
2p andRi,+

2p/R
+
2p from their equilib-

rium values is always very small in the relevant redshift range, so
thatRi,+

2p/R
+
2p ≈ Ri,−

2p/R
−
2p, and henceφ∗abs≈ φem. In Fig. 7 we ex-

plicitly show this fact. As an example, for the 3d-channel one can
see that atz ∼ 1100 one hasR3d,−

2p /R
−
2p−R3d,+

2p /R
+
2p ∼ 10−6−10−5.

Therefore one would expect corrections to the effective escape
probability at the level of∼ 10−4 − 10−3%, which is clearly neg-
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Fig. 7. Source of the asymmetry between the absorption and
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solution for the 10 shell hydrogen atom.

ligible in the context of the CMB anisotropies. We confirmed
this statement numerically.

One should also mention that although at low redshifts the
expected difference between emission and absorption profile in-
creases, there the value of the effective escape probability is
dominated by the contribution from the Doppler core, where de-
tails of the profiles will not matter very much. In addition correc-
tions to the escape probability will not propagate very muchinto
the ionization history, so that here we do not discuss this point
any further.

5. Changes in the effective escape probability

5.1. Effect of the thermodynamic correction factor

First we consider the normal Lymanα transfer equation (1), but
including the thermodynamic correction factorfν, in order to
correct for the small imbalance in the emission and absorption
process in the line wings coming from the normal ’1+1’ photon
formulation (see Sect. 2.1.1). In this case one hasφi(ν) = φV(ν)
and henceφem ≡ φ∗abs≡ φV(ν), so that from (8b) one can find

F f
ν =

∫ z

zs

Θf (z, z′) ∂z′e
−τabs(ν,z′,z) dz′ (23a)

Θf (z, z′) =
1

fν′ (z′)

Ñem(z′) − Ñpl
x′21

Ñem(z) − Ñpl
x21

=
Θt(z, z′)

fν′ (z′)
, (23b)

with τabsas given by Eq. (5a) but forφ∗abs(ν)→ φV(ν).
If here one drops the factors due tofν in the definition of

Θf and alsoτabs, one obtains the purely time-dependent case,
F t
ν, that has been addressed earlier (Chluba & Sunyaev 2008b).

However, here the termΘt naturally is given by the line center
values ofÑem(z′) − Ñpl

x , which in the previous work had to be
enforced for consistency with the standard approximations(see
comments in Sect. 3.4.1 of Chluba & Sunyaev 2008b).
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φ∗abs, φV (see Sect. 5.2.2). We assumed a 3 shell hydrogen atom.

To understand the role offν in the final correction toPeff ,
Eq. (12b), we first look at the term∆Pind, Eq. (12c). It is clear
that forφem = φ

∗
abs = φV one has∆Pind ≡ 0, since in this case

∆ϕ̄em≡∆ϕ̄∗abs=0. As we will show below (Sect. 5.2.1),∆Pind , 0
when taking into account the effect of stimulated emission in the
blackbody radiation field, however, the contribution to thefinal
correction turns out to be negligible.

If we now look at the definition ofP, Eq. (10b), then for the
considered case we can rewrite it as

Pf =

∫

ϕV(ν) [1 − F f
ν ] dν (24)

where we introduced the function

F f
ν = fν(z) F f

ν. (25)

This representation allows to directly reveal the expecteddiffer-
ences in comparison with the standard quasi-stationary case, for
which one has (ϕem = ϕ

∗
abs≡ ϕV and fν ≡ 1)

F qs
ν ≡ Fqs

ν = 1− e−τd eτd χ. (26)

If instead ofF f
ν we insert this into Eq. (24), we directly obtain

Pd =
1−e−τd
τd

. Therefore we can write the correction with respect
to the quasi-stationary solution as

∆Pf
d = Pf − Pd = −

∫

φV(ν) [F f
ν − F

qs
ν ] dν. (27)

This expression shows that for the correction to the effective es-
cape probability it in fact is not important howF f

ν behaves, but
how F f

ν looks. Sincefν is a very strong function of frequency
this makes a big difference in the conclusions, as we explain be-
low. Furthermore, any difference to the value ofF qs

ν will lead
to a contribution to∆Pf

d with opposite sign. Also, it is possible
to compute thepartial contributions to the total correction in the
escape probability by only integrating∆Pf

d as defined by Eq. (27)
over a given range of frequencies.

5.1.1. Behavior of F f
ν and the expected corrections to Peff

In Fig. 8, as an example we showF f
ν at redshiftz = 1000 (dotted

lines). For comparison we also show the pure time-dependentso-
lution (dashed curves) for whichF t

ν ≡ F t
ν. Note that we include

the correction terms in bothτabsandΘa.
If we focus on the behavior at−100 ≤ xD . −4, then we

can see that although in the considered casesF f
ν > F t

ν > Fqs
ν

(compare with Fig. 5, right column, casez = 1000), forF f
ν

one hasF t
ν > F

qs
ν > F f

ν . This change in the sequence is only
due to the factorfν < 1 in the definition ofF f

ν , which appears
due toφabs = fνφ∗abs in the escape integral, Eq. (10b). Instead
of an additionalnegative contribution to the escape probabil-
ity (∆Pf < ∆Pt < 0), as it would follow from the differences
seen inFν, when including the thermodynamic correction factor
fν one therefore expects apositive contribution from the con-
sidered spectral region. This effect becomes even more appar-
ent when looking at the very distant red wing, where clearly
F t
ν > F

qs
ν ≫ F f

ν , owing to the exponential cutoff introduced
by fν. The behavior shows that in the very distant red wing the
excess Lymanα photons no longer supports the flow of electrons
toward higher levels and the continuum. These photons only un-
dergo line scattering events, with tiny shifts in the frequency due
to the Doppler motion of the atom, but do not die anymore, and
therefore have effectively already escaped. As we will demon-
strate below (Sect. 5.1.4 and 5.1.5) in fact the main correction
due to fν is coming from the change in the absorption cross sec-
tion in the red wing of the line profile. The real modificationsof
the spectral distortion due tofν are not so important.

If we now look at the behavior in the range 4≤ xD . 100
we can see that the sequenceF t

ν > F f
ν > Fqs

ν does not change
when consideringF t

ν > F f
ν > F

qs
ν , butF f

ν becomes more sim-
ilar to F t

ν . From the behavior at−100 . xD . −4 and the
strength of the changes seen there one might have expected that
at 4 ≤ xD . 100 alsoF t

ν ≥ F f
ν , since|∆ fν/ fν | in fact is sim-
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Fig. 9. Relative difference in the effective escape probability with
respect to the Sobolev escape probability: effect of the thermo-
dynamic correction factor.

ilar in both regions. However, at 4. xD . 100 the spectral
distortion Fν is very steep, so that small changes∆ fν/ fν can-
not affect the shape ofF f

ν so much in comparison toF f
ν. Only

when going to much larger distances on the blue side of the
resonance, wherefν again behaves exponentially, one can see
F f
ν ≫ F t

ν > F
qs
ν although thereF t

ν ≫ F f
ν (compare with Fig. 6,

right column, casez = 1000). In comparison to the pure time-
dependent correction from the range 4≤ xD . 100 one therefore
expects a slightly smaller (negative) correction to the total value
of P, while the contributions from very large distances in the
blue wing should be significantly larger than in the pure time-
dependent case. However, here it is important to mention that
these very distant wing contributions will always be very minor,
since the Voigt profile drops like∝ 1/x2

D (see Sect. 5.1.3).
Finally, looking at the central region−4 . xD . 4 we can see

that there nowF t
ν ≈ F f

ν ≈ F
qs
ν . This is becauseF f

ν ≈ 1/ fν in that
regions (see Sect. 4.1.1), so thatF f

ν ≈ 1 with very high accuracy.
This implies that although the Lymanα spectral distortions in the
caseF f

ν andFqs
ν look rather different the correction factorfν does

not lead to any real correction in the escape probability from in-
side the Doppler core. There everything is well described within
the quasi-stationary assumption, for which the whole Doppler
core reaches thermodynamic equilibrium with the ambient radi-
ation field, but now also including the small additional variation
of the photon distribution overν.

5.1.2. Correction to the escape probability

In Fig. 9 we show the result for the effective escape probability
and the effect of fν. For comparison we also show the result for
the pure time-dependent correction (dotted line) which wasal-
ready discussed elsewhere (Chluba & Sunyaev 2008b). At low
redshifts we indicate the rise in the amplitude of the correction,
which was attributed to the late self feedback of Lymanα pho-
tons for this case. For the other cases we also point towards the
difference which arises due to the no scattering approximation.
It is due to the differences inPd and PS itself which close to
the maximum of the Thomson visibility function atz ∼ 1100

are negligible, but become notable both at very low and very
high redshifts (Chluba & Sunyaev 2008b). However, there the
changes have no effect on the free electron fraction.

When now including the thermodynamic correction factor in
the computation of the absorption optical depth and the effective
emission rateΘa, but settingΘt = 1 (dashed line), one can see
that the correction to the escape probability becomes positive at
all redshifts, with a maximum of∆P/P ∼ 11% atz ∼ 1350. As
we will see in Sect. 5.1.4 and 5.1.5 bulk of this total correction
is coming from changes in the absorption process on the red side
of the resonance, where in this caseFν ≈ Fqs

ν ≈ 1 (cf. Fig. 5 and
6, left column).

When also including the variation ofΘt
, 1 over time (solid

line) the result changes significantly, shifting the maximum of
the correction∆P/P ∼ 10% to z ∼ 1450, but still leading to
∆P/P > 0 everywhere. However, especially the low redshift part
is strongly modified, reducing the total correction by a factor∼ 2
atz ∼ 1100. We also show the infered correction due toΘt alone,
which was obtained by taking the difference between the curves
labeled (I) and (II). The result shows that the final correction
close to the maximum of the Thomson visibility function has im-
portant contributions from bothfν , 1 and the time-dependence
of the problem.

5.1.3. Effect at large distances blue-ward of the line center
and the Lyman α self feedback

The thermodynamic factor clearly strongly changes the behavior
of the correction to the effective escape probability. The purely
time-dependent correction is no longer dominant, and in partic-
ular the thermodynamic factor removes theself feedback prob-
lem of Lymanα at low redshifts, which was already realized
to be an artifact of the standard ’1+ 1’ photon formulation
(Chluba & Sunyaev 2008b). This is due to the fact that when
taking fν into account, exponentially fewer photons remain in
the photon distribution at large distances on the blue side of the
resonance (cf. Fig. 6 whereFν ∼ 1/ fν at largexD). As explained
in Sect. 3 every photon emitted atxD ≫ 1 will be re-absorbed
quasi-instantaneously. This is due to the exponentially larger
amount of CMB photons red-ward of the the Balmerα line, than
close to the line center, so that line absorption is more effective.
The main process for the death here is the 1s→ 2p→ 3d, where
the last step is considered to lead to a complete redistribution,
so that the absorbed Lymanα photon (1s→ 2p) will most likely
reappear close to the line center. Note that in this Section we still
have not included the two-photon corrections to the shape ofthe
absorption profile, but already now the two-photon character of
the process leads to this conclusion.

However, one has to mention that basically all the photons
present at these large distances contribute to the escape integral.
This is becauseF f

ν ∼ 1 whileF qs
ν ≪ 1, so thatF f

ν − F
qs
ν ∼ 1

(see Sect. 5.1.1 and Fig. 8). Therefore in this case the very distant
blue wing contribution to the value of∆Pf

bw behaves like

∆Pf
bw

Pd
≈ −
∫ ∞

νbw

φV dν′ ≈ −a
π

τd

xbw
D

, (28)

at z ∼ 1100 implying an additional. 0.1% correction from
xbw

D & 104, showing that the absolute contribution becomes
negligible far beyond that point. In numerical computations we
therefore typically integrated the profile up toxD ∼ 1.5×104, in-
troducing a very small error for cases withfν , 1 and practically
no error when also including the correct shape of the emission
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, 1.

profile, since then naturally very few photons appear at larger
distances blue-ward of the resonance (e.g. see Fig. 8, solidline).

5.1.4. Contributions from the blue and red wing

Returning to the correction at higher redshifts (z & 800−900), it
was already shown earlier, that there the Lymanα self feedback
is not important (Chluba & Sunyaev 2008b). From Fig. 9, it is
clear that both considered cases for the effect of fν imply that
at a given redshift effectively fewer photons support the flow of
electrons towards higher levels and the continuum than in the
quasi-stationary case, albeit the fact the more photons arepro-
duced. The latter statement can also be confirmed by looking at
Fig. 6 and the amplitude of the Lymanα distortion in the dis-

tant red wing around its maximum. Note that these photons have
already been emitted atz ∼ 1400.

However, where does the main correction to the escape prob-
ability come from at these redshifts? Looking at Fig. 8, we can
see that at 0. xD . 100 the functionF f

ν is very similar to
F t
ν , which results in the pure time-dependent correction. Alsoat

slightly larger distances (100. xD . 103) one still hasF f
ν ∼ F t

ν .
Therefore, one does not expect very dramatic changes in the con-
tribution to the effective escape from this part of the Lymanα
distortion in comparison to the purely time-dependent case.

On the other hand, in the red wing one findsF f
ν . F t

ν , and
at very large distances one even hasF f

ν ≪ F t
ν . Physically this

reflects the fact that due tofν the re-absorption process in the
distant red wing is exponentially suppressed, so that therepho-
tons can escape more directly, than in the normal ’1+ 1’ pho-
ton formulation. This is now related to the exponentially smaller
amount of CMB photons blue-ward of the Balmerα line, so that
the main absorption channel 1s→ 2p→ 3d becomes practically
inactive atxD . −103. It therefore is the modifications in the
red wing absorption process from which one expects the largest
effect in connection withfν at high redshifts, before the appear-
ance of the self feedback problem.

Numerically we studied this statement by simply assuming
that atxD ≤ 0 the solution is given by the quasi-stationary result
(implying F f

ν ≡ F
qs
ν ≈ 1), while at 0≤ xD we used the real so-

lution forFν in the considered case. In this way it is possible to
separate the ’blue wing’ contribution to the total correction in the
effective escape probability, and similarly one can obtain the’red
wing’ contribution. In Fig. 10 we show the comparison of these
computations for the casesΘt = 1 andΘφ = 0 (upper panel; only
the corrections toτ are included andΘa = 1/ fν′), andΘt

, 1
andΘφ = 0 (lower panel;Θa = Θt/ fν′ ). For comparison we also
show the results obtained for the purely time-dependent correc-
tion in the considered cases (cf. Chluba & Sunyaev 2008b).

In the first case (upper panel), one can clearly see that the
blue wing contribution fromF f

ν is very close to the purely time-
dependent result (dotted curve), which itself in fact has nosig-
nificant contribution from the red wing in the first place (dia-
monds). This shows that for this case the effect of fν is not im-
portant atxD ≥ 0. One can see that indeed the main correction
due to the effect of fν arises from the red wing, and that this
correction is significantly larger than the time-dependentcase
alone.

If we look at the comparison in the full time-dependent
case (lower panel), one can see that when including the cor-
rection factor fν, at high redshifts the blue wing contribution
(dashed curve) is about 50% of the total result presented in
Chluba & Sunyaev (2008b). At high redshifts the blue-wing
contribution in the pure time-dependent case (stars) practically
coincides with the one that includesfν, implying again that the
blue wing contribution is not affected much by the thermody-
namic correction factor. However, one can see that at low red-
shifts fν is very important for avoiding the self feedback prob-
lem, as explained in Sect. 5.1.3. Note that in contrast to the
curve quoted ’∆Pt (only blue)’ in Fig. 8 of Chluba & Sunyaev
(2008b), here the blue wing contribution takes into accountthe
time-dependent correction onτ andΘt simultaneously.

Looking at the red wing contributions for this case one can
see that forfν = 1 (diamonds) now the contribution is non zero.
This was also already seen earlier (Chluba & Sunyaev 2008b)
and is due to the fact thatF t

ν , 1. However, the contribution
from the red wing is much larger when includingfν , 1, and
in particular it is only positive due to the fact thatF f

ν . 1 at all
frequencies, so that∆P > 0. The conclusion clearly is that the
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Fig. 11. Relative difference in the effective escape probability
with respect to the Sobolev escape probability: effect of the ther-
modynamic correction factor at different distances to the line
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lower panel was computed also includingΘt

, 1.

dominant correction due to the inclusion offν is coming from
the red wing of the Lymanα resonance.

5.1.5. Simple estimate for the red wing correction

We can also perform another rough estimate for the expected
correction, assuming that in the red wingF f

ν ∼ fν as suggested
by Fig. 8. This will overestimate the result, since with the inclu-
sion of fν alone one already obtainsF f

ν & fν. In comparison with
the quasi-stationary case (F qs

ν ≈ 1) we then have

∆Pf
rw

Pd
≈−τd

∫ νcore

0
[ fν − 1]φV dν′≈τd

a
π

∫ −4

−∞

1− e
h∆νD
kTγ

xD

x2
D

dxD. (29)

Sinceh∆νD
kTγ
∼ 10−3

[

1+z
1100

]−1/2
≪ 1 one can show

∆Pf
rw

Pd
≈ 1.6× 10−6 τd

[

1+ z
1100

]−1

(30)

At redshiftz ∼ 1100 one hasτd ∼ 6.8×104, so that only from the

red wing correction one expects∆Pf
rw

Pd
∼ 11%, while at redshift

z ∼ 1350 one finds∆Pf
rw

Pd
∼ 16%. Looking at the upper panel in

Fig. 10 shows that this is the right order of magnitude, although
the final correction is about 1.5 times smaller than given by this
simple estimate.

5.1.6. Dependence on the distance to the line center

Finally we want to look at the dependence of the correction on
the distance to the line center. For this we computed the results
including the deviation for the quasi-stationary case in a given
range around the line center. The results of these computations
are shown in Fig. 11. Clearly a large fraction of the total correc-
tion is coming from large distances (10. |xD| . 100− 1000)
from the line center, while the contributions from within the
Doppler core (|xD| . 4) are very small. The latter result again
reflects the fact that there neitherfν deviates very strongly from
unity, nor does any time-dependent effect become important.
The Doppler core can be considered quasi-stationary (for more
explanation see Chluba & Sunyaev 2008b) and in full equilib-
rium with the line center value.

5.2. Dependence on the shape of the absorption profile

As a next step we want to understand how the two-photon cor-
rections to the shape of the effective line profile affect the escape
probability. For this we ran computations only including the fact
thatφ∗abs , φV , but for the moment we shall neglect the correc-
tion due tofν and also assumeφ∗abs= φem insideΘa. As explained
in Sect. 4.3 the latter correction for our purpose is negligible dur-
ing cosmological recombination, but the inclusion offν , 1 is
still expected to be very important, as we will discuss in Sect. 5.3
for the combined effect.

5.2.1. Correction due to ∆Pind

Looking at Eq. (12c), it is clear that the contribution∆Pind to
Peff is purely due to induced effects, since in vacuum one would
find ∆ϕ̄em ≡ ∆ϕ̄∗abs = 0, and hence∆Pind ≡ 0. In Fig. 12 we
present the deviation in the normalization of the emission and
absorption profile from unity, which have been computed using
Eq. (6) and (5b). First one can see that at basically all redshifts of
interest in the recombination problem∆ϕ̄em ≈ ∆ϕ̄∗abs, implying
that∆Pind ≈ ∆ϕ̄em. Since∆ϕ̄em . 6×10−9 at all shown redshifts,
comparing∆Pind with Pd implies that the associated correction
∆PS should never exceed the level of 0.1%. In a more detailed
computation we find a maximal correction of∆PS/PS ∼ 0.06%
at z ∼ 1300. In addition, this correction is practically canceled
by another contribution,∆Pind,norm = −∆ϕ̄∗abs, which appears as a
result of stimulated emission on the overall normalizationof the
effective absorption profile (see Sect. 5.2.2). We therefore can
neglect this term in the following.

We would like to mention that the main contribution to
ϕ̄em , 1 is coming from the regionν ∼ ν31. This can be seen
in Fig. 2, where only there the effective two-photon emission
profile differs significantly from the vacuum profile,ϕ∗em,vac. At
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this large distance from the line center the overall profile already
dropped by a factor of 1011− 1012 relative to the line center (the
value there is∼ 1/

√
π ∼ 0.56). From Fig. 2 one can see that

thereϕ∗em− ϕ∗em,vac ∼ 10−12 over a region∆xD ∼ 103, so that one
expects∆Pind ∼ 10−9 at z ∼ 1300, which is in good agreement
with the full numerical result.

5.2.2. Expression for Peff and its connection to Fν.

In order to understand the corrections in the effective escape
probability and its relation to the differences in the spectral dis-
tortion we again look at the definition ofP, Eq. (10b), with
fν ≡ 1 and rewrite it as

Pt,φ =

∫

[ϕV − ϕ∗abs] dν +
∫

ϕ∗abs[1 − F t,φ
ν ] dν. (31)

The first integral is given by

∆Pind,norm =

∫

[ϕV − ϕ∗abs,vac] dν +
∫

[ϕ∗abs,vac− ϕ∗abs] dν

= −∆ϕ̄∗abs. (32)

Note that
∫

[ϕV−ϕ∗abs,vac] dν ≡ 0 even though the partial contribu-
tions from the red and blue wing are non zero. As mentioned in
Sect. 5.2.1,∆Pind,norm cancels with the correction due to∆Pind,
so that we finally have

Pt,φ
eff ≈

∫

ϕ∗abs[1 − F t,φ
ν ] dν (33)

This expression now allows to compute the correction to the es-
cape probability.

In order to find out how the shape of the profile enters into
the problem, it is illustrative to look at the result forPt,φ

eff when as-
suming quasi-stationary conditions, but including the correction
due to the profile. In this case one hasτφ,qs

abs = τd(z)
∫ ∞
ν
ϕ∗absdν

′

600 800 1000 1200 1400 1600 1800
z

-12

-10

-8

-6

-4

-2

0

2

4

6

R
el

at
iv

e 
C

ha
ng

e 
in

 th
e 

E
sc

ap
e 

P
ro

ba
bi

lit
y 

in
 %

time-dependent τ (CS09)
time-dependent τ & φ 
time-dependent τ & Θ

t
 (CS09)

time-dependent τ & Θ
t
 & φ

3 shell Hydrogen atom

no-scattering 
approximation

Lyα self-feedback

Fig. 13. Relative difference in the effective escape probability
with respect to the Sobolev escape probability: effect of the line
profile. For the curves labeled with ’CS09’ (Chluba & Sunyaev
2008b) we used the standard Voigt profile, while for the others
we included the two-photon corrections for the 3s and 3d chan-
nels.

and withFφ,qs
ν (ν) ≡ 1− e−τ

φ,qs
abs resulting from Eq. (15) one finds

Pφ,qs
eff =

∫

ϕ∗abse−τ
φ,qs
abs dν =

∫ χ∗a,∞

0
e−τd[χ∗a,∞−χ∗a] dχ∗a ≈ Pd. (34)

Here we have introduced the variableχ∗a(ν) =
∫ ν

0
ϕ∗absdν

′ and
χ∗a,∞ = χ

∗
a(∞). This expression shows that in the quasi-stationary

case the shape of the profile does not matter. The result will still
be extremely close to13 Pd. This also implies that the shape of
the profile is only entering as correction to correction, i.e. com-
bination of time-dependence and profile. Therefore the changes
due to the exact shape of the profile are expected to be smaller
than the corrections due tofν and the time-dependence alone. As
we will see below they still are not negligible, in particular when
taking all corrections into account simultaneously (Sect.5.3).

For the correction to the effective escape probability we can
therefore finally write

∆Pt,φ
d = Pt,φ

eff − Pd ≈ −
∫

ϕ∗abs[F
t,φ
ν − Fφ,qs

ν ] dν. (35)

Now it is clear that for the contributions of the total correction it
is important howF t,φ

ν deviates fromFφ,qs
ν . For F t,φ

ν < Fφ,qs
ν one

will have apositive contribution and forF t,φ
ν > Fφ,qs

ν a negative.
In addition due to the appearance ofφ∗absin the outer integral, the
red wing contribution (φ∗abs& φV) will be slightly overweighted,
while the blue wing (φ∗abs. φV) will be underweighted.

We would like to mention thatFφ,qs
ν (ν) behaves very similar

to Fqs
ν (ν). In particular at frequenciesxD . 4 it also becomes

very close to unity, so that thereFφ,qs
ν (ν) ≈ Fqs

ν (ν). The main
difference appears in the blue wing of the line, whereFφ,qs

ν (ν)
depends strongly on the differences betweenφ∗abs andφV . Both
aspects can be seen in the right panel of Fig. 8.

13 There is a tiny difference due to the fact thatχ∗a,∞ & χ∞.
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Fig. 14. Relative difference in the effective escape probability
with respect to the Sobolev escape probability: correctiondue to
the shape of the absorption profile in the blue and red wing of the
resonance. For the upper panel we setΘt = 1 andΘφ = 0. The
lower panel was computed also includingΘt

, 1. In all cases
we usedfν = 1. Those curves labeled withφ were computed
including the 3s and 3d two-photon corrections.

5.2.3. Total corrections and the blue and red wing
contributions

In Fig. 13 we show the results for the total correction to the effec-
tive escape probability when including the modifications inthe
shape of the absorption profile. We used the expression Eq. (33)
to compute the different curves. Again for comparison we also
give the results for the time-dependent corrections only. As one
can see the main effect of the profile is the removal of the self
feedback at low redshift. Other than that in the considered cases
the modifications in comparison with the time-dependent result
are rather small (less than∼ 10% of∆P/P for the cases with
Θt = 1 and less than∼ 1% of∆P/P for those withΘt

, 1).

This shows that there is a cancelation of corrections from the
red and the blue wing, since it is clear that already the modula-
tion of these partial contributions due to the presence ofφ∗abs in
the outer integral of Eq. (33) should have some effect, even if it
is of higher order in the correction. To understand the results we
therefore look at the differential contribution from the red and
blue wing separately. For Fig. 14 we ran computations includ-
ing the corrections to the quasi-stationary result either on the red
or blue side of the resonance. We compare the total and partial
corrections in both the pure time-dependent case and when also
including the shape of the absorption profile.

Corrections in the case of Θt = 1

When only including the profile corrections toτabs(upper panel,
Θt = 1 andΘφ = 0), we can see that the effect ofφ∗abs is not lead-
ing to any important correction from the red wing. Looking at
Fig. 5 and 6 (left column), it is clear that in thereF t,φ

ν ≈ Fqs
ν ≈ 1.

Since alsoFqs
ν ≈ Fφ,qs

ν (see Sect. 5.2.2) one hasF t,φ
ν − Fφ,qs

ν ≈ 0
and hence with Eq. (35) one expects a partial contribution of
∆Pt,φ

d ≈ 0, confirming the above behavior. The small positive
bump seen atz ∼ 1400 is mainly due to the fact that we started
our computation of the spectral distortion at some particular time
in the past (zs = 2000), so that in the considered case the nu-
merical solution for the spectral distortion, as computed using
Eq. (8b), drops towards zero below some distancexD . −104 in-
stead of staying close to unity. Therefore we haveF t,φ

ν − Fφ,qs
ν ≈

−1 and hence∆Pφd(xD < −104) ≈
∫

φ∗absdxD ∼ few× 10−3 from
that region, explaining this small excess with respect toPd. We
also checked this statement numerically by increasingzs as ex-
pected finding that the bump became smaller. When also includ-
ing the time-dependence of the emission coefficient (Θt

, 1) this
small inconsistency of our computation is no longer important,
since the spectral distortion by itself drops very fast toward zero
(cf. Fig. 5 and 6, right column).

Again looking at the upper panel in Fig. 14 we can also
see that the largest contribution to the total correction iscoming
from the blue wing, and that the difference to the time-dependent
case is rather small, with∆Pt,φ

d being slightly smaller. This can

be understood when writingτt,φabs= τ
φ,qs
abs + ∆τ

t,φ with

∆τt,φ ≈
∫ ∞

ν

∆τd(z′) ϕ∗abs(ν
′, z′) dν′

=

∫ ∞

ν

∆τd(z′) ϕV(ν′, z) dν′ +
∫ ∞

ν

∆τd(z′)∆ϕ∗abs(ν
′, z′) dν′.

(36)

with the abbreviations 1+ z′ = ν
′

ν
(1+ z),∆τd(z′) = τd(z′)− τd(z),

and∆ϕ∗abs(ν
′, z′) = ϕ∗abs(ν

′, z′) − ϕV(ν′, z). This approximation
shows that one has∆τt,φ ≈

∫ ∞
ν
∆τd(z′) ϕV(ν′, z) dν′ ≡ ∆τt, since

the profile correction with respect toτφ,qs
abs is already of higher

order. ForΘa = 1 one therefore expects

∆Pt,φ
d ≈
∫

ϕ∗abse−τ
φ,qs
abs [e−∆τ

t,φ − 1] dν

≈
∫

ϕV e−τ
qs
d [e−∆τ

t − 1] dν = ∆Pt
d, (37)

confirming the result seen in Fig. 14 in lowest order.
The remaining difference is mainly due to the second order

term in Eq. (36)∆τt,φ − ∆τt =
∫ ∞
ν
∆τd(z′)∆ϕ∗abs(ν

′, z′) dν′, which

we neglected in Eq. (37). The factorϕ∗abse−τ
φ,qs
abs plays a minor
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role, since the functione−∆τ
t,φ − 1 is varying much faster. We

confirmed these statements numerically, finding that for thecon-
sidered case the modulation of the blue wing correction due to
φ∗abs in the outer integral can be neglected.

Corrections in the case of Θt
, 1

To understand the result in the case when also including the
change in the effective emission coefficientΘt

, 1, we again
look at the red and blue wing contribution separately. Sincein
the red wingFφ,qs

ν ≈ 1 and because we already saw in Sect. 4.2
that there the solution for the spectral distortion is dominated by
the correction due toΘt

, 1 only (cf. Fig. 5 and 6 right column),
we expect that the partial contribution form the red wing will be
very close to

∆Pφrw ≈
∫

φ∗abs[1 − F t
ν] dν, (38)

whereF t
ν is the spectral distortion for the purely time-dependent

case. Therefore to lowest order again one will have∆Pφrw ≈
∆Pt

rw, but in next order this correction will in addition be slightly
larger in amplitude due to the fact that forxD ≤ 0 one has
φ∗abs& φV . We can see that this indeed is true comparing the dia-
monds with the dash-dotted curve in the lower panel of Fig. 14.

For the blue wing one can argue in a very similar way as
above. We know that forΘt = 1 the correction to the escape
probability is basically given by the time-dependent correction
in the value ofτabs, but only to higher order due toφ∗abs , φV .
If now includingΘt , 1 the lowest order correction will still be
given by the purely time-dependent case. The additional mod-
ulation of the resulting spectral distortion byφ∗abs . φV will in
addition lead to a small decrease in the total amplitude of the
contribution to the correction. Again this can be seen in Fig. 14
when comparing the stars with the short-dashed curve. Only at
low redshifts the shape of the profile determines the amplitude
of the correction, removing the self-feedback problem. This is
because unlike in the case ofφV photons are emitted only in a
limited range of frequencies. This avoids that photons which are
released atz ∼ 1400 andxD ≫ 104 will redshift into the Lyman
α line atz . 1000, as seen in the normal ’1+ 1’ formulation of
the problem (Chluba & Sunyaev 2008b).

Furthermore, it is clear that the sum of both the red and blue
wing contribution should again be very close to the purely time-
dependent case, since the modulation of the contributions form
the red (enhancement) and blue wing (suppression) in lowestor-
der will cancel, due to the symmetry around the line center.

5.3. Combined effect of fν and φ∗abs, φV

With the derivations in the previous Sections it is now straight-
forward to understand the results for the combined effect of all
corrections. Following the same line of thoughts we obtain

∆Pa
d = −

∫

φ∗abs[ fνF
a
ν − Fφ,qs

ν ] dν. (39)

where inFa
ν we include all the corrections simultaneously.

As in the previous Section it is now clear that on the red side
of the resonance the profile will enter the computation mainly
due to its presence in the outer integral. ForFa

ν andxD ≤ 0 it only
leads to a very small correction (cf. Fig. 5 and 6 right column).
However, on the blue side of the resonance the profile correction
again can be neglected in the outer integral, but should be taken
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Fig. 15. Relative difference in the effective escape probability
with respect to the Sobolev escape probability: combined effect
of the thermodynamic correction factor and the shape of the line
profile.

into account when computing the difference∆ν = fνFa
ν − Fφ,qs

ν .
Also one can conclude that the shape of the profile plays the key
role in removing the low redshift self-feedback problem. The
latter statement can be confirmed when looking at the shape of
the Lymanα distortion at intermediate to high frequencies blue-
ward of the resonance (cf. Fig. 5 and 6 right column), which is
clearly dominated by the profile rather thanfν.

Therefore in lowest order one expects the total correction to
be the superposition of the time-dependent correction and the
one from the thermodynamic correction factor, where on the red
side of the resonance each of them is modulated by the shape
of the profile in the outer integral of Eq. (39) in addition, while
on the blue side the contribution is slightly suppressed duethe
profile corrections to∆ν. Here it is important that becausefν
strongly changes the symmetry of the problem (the main correc-
tion is coming from the red wing as shown in Sect. 5.1), it is
clear that the main effect ofφ∗abs, φV will be an enhancement of
the final correction.

In Fig. 15 we present the results from our numerical calcula-
tion for different cases. Indeed we find that when including the
shape of the profile the corresponding correction is slightly in-
creased as explained above.

5.3.1. Dependence on the included number of shells

For the purely time-dependent correction it has been shown that
in particular at low redshifts the result depends strongly on the
total number of shells that were included in the computation.
Since there the correction was very strongly dominated by the
self-feedback of Lymanα photons, here we do expect this de-
pendence on the number of shells to be more mild.

In Fig. 16 we show the results of our computations for 3, 5
and 10 shells. The changes between the 3 and 5 shell cases is still
rather significant, but the difference between the 5 and 10 shell
case is already very minor. This show that in our descriptionthe
total correction is already converged when including∼ 5 shells
into the computation.



22 Chluba and Sunyaev: Lyα escape during cosmological hydrogen recombination

600 800 1000 1200 1400 1600 1800
z

0

1

2

3

4

5

6

7

8

9

10

11

12
R

el
at

iv
e 

C
ha

ng
e 

in
 th

e 
E

sc
ap

e 
P

ro
ba

bi
lit

y 
in

 % 3 shells, time-dependent τ & Θ
t
 & f  & φ

5 shells, time-dependent τ & Θ
t
 & f  & φ

10 shells, time-dependent τ & Θ
t
 & f  & φ

no-scattering 
approximation

Fig. 16. Total relative difference in the effective escape probabil-
ity with respect to the Sobolev escape probability: dependence
on the total number of shells. Note that the curves for the 5 shell
and 10 shell cases practically coincide.
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Fig. 17. Relative difference in the effective escape probability
with respect to the Sobolev escape probability: separate con-
tributions due to the time-dependent correction, the thermody-
namic factor and the shape of the profile.

6. Effect on the ionization history and the CMB
power spectra

In this Section we now give the expected correction to the ioniza-
tion history when including the processes discussed in thispaper.
For this we modified the Recfast code (Seager et al. 1999), so
that we can load the pre-computed change in the Sobolev escape
probability studied here.

In Fig. 17 we present the final curves for∆P/P as obtained
for the different processes discussed in this paper. In Fig. 18
we show the corresponding correction in the free electron frac-
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Fig. 18. Changes in the free electron fraction: separate contribu-
tions due to the time-dependent correction, the thermodynamic
factor and the shape of the profile.

tion computed with the modified version of Recfast. One can
clearly see that the dominant correction is due to the thermo-
dynamic factor, resulting in∆P/P ∼ +10% atz ∼ 1280 and
∆Ne/Ne ∼ −1.9% at z ∼ 1120. The next largest correction is
due to the time-dependent aspects of the problem, leading to
∆P/P ∼ −5.6% atz ∼ 1120 and∆P/P ∼ +5.9% atz ∼ 1490.
The associated correction in the free electron fraction hasa max-
imum of ∆Ne/Ne ∼ +1.2% at z ∼ 1020. The smallest correc-
tion is due to the exact shape of the effective line profile, re-
sulting in∆P/P ∼ +2.0% atz ∼ 1200 and∆Ne/Ne ∼ −0.4% at
z ∼ 1080. The total correction then is∆P/P ∼ +11% atz ∼ 1420
and∆Ne/Ne ∼ −1.6% atz ∼ 1190. This is an important speed
up of hydrogen recombination, although atz ∼ 1100 a large
part of the correction due tofν alone is canceled by the time-
dependent correction. At the maximum of the Thomson visibil-
ity function z ∼ 1100 we find∆Ne/Ne ∼ −1.3%, where about
∆Ne/Ne ∼ −0.4% is coming from the shape of the profile alone.

For completeness we also show the correction that is due to
the two-photon formulation alone, i.e. where we subtractedthe
time-dependent contribution from the total correction. Itleads to
∆Ne/Ne ∼ −2.4% atz ∼ 1110.

In Fig. 19 we finally show the changes in the CMB tem-
perature and polarization power spectra coming from the total
correction∆Ne/Ne as given by the solid line in Fig. 18. In partic-
ular the changes in the EE power spectrum are impressive, with
peak to peak amplitude∼ 2%− 3% at l & 1500. One can also
see that the modifications in theCl’s correspond more to a shift
in the positions of the peaks rather than changes in the absolute
amplitude. This is connected to the fact that the correctionin
the free electron fraction leads to a small shift in the maximum
of the Thomson visibility, but does not affect the Silk damping
length (Silk 1968) as much. It will be very important to take
these changes into account in the analysis of future CMB data.

7. Discussion and conclusions

In this paper we gave a formulation of the Lymanα transfer
equation which allows us to include the two-photon corrections
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Fig. 19. Changes in the CMB temperature and polarization
power spectra. We included effect of the time-dependent correc-
tion, the thermodynamic correction factor and the profile correc-
tion, simultaneously. We used the result for the 10 shell hydro-
gen atom.

for the 3s-1s and 3d-1s channels. We then solved this transfer
equation and presented the results for the Lymanα distortion at
different redshifts (Sect. 4). From this we computed the effec-
tive Lymanα escape probability and derived the corresponding
corrections to the Sobolev escape probability (Sect. 5). Weused
these results to compute the corrections in the free electron frac-
tion during hydrogen recombination and the associated changes
in the CMB power spectra (Sect. 6). Below we now shortly sum-
marize the results of each of these Sections and also give a short
discussion for future work and improvements.

7.1. The resulting Lyman α spectral distortion

In Sect. 4 we discussed the influence of the different processes
on the Lymanα distortion at different redshifts. Including all
the corrections considered here simultaneously one can conclude
that atxD . 0 the shape of the distortion is mainly determined
by the time-dependence of the effective emission rate (cf. Fig. 5
and 6, right column). In the close vicinity of the resonanceall
sources of corrections under discussion here are importantfor
the exact shape of the Lymanα spectral distortion at difference
redshifts (cf. Fig. 4). In particular inside the Doppler core the
spectral distortion will be very close the value at the line center
multiplied by 1/ fν. On the blue wing the distortion is mainly
determined by the shape of the line profile.

With the method given here we can in principle also com-
pute the Lymanα distortion, as it would be observable today.
Since all the processes discussed here affect the exact shape of
this distortion, one could in principle probe our understanding
of the recombination dynamics by observing it. As mentioned
earlier (Chluba & Sunyaev 2008b), similarly one expects addi-
tional changes in the detailed shape of the Lymanα distortion
due to partial frequency redistribution and electron scattering.
All these processes therefore not only affect the dynamics of cos-
mological hydrogen recombination, but in principle shouldleave
observable traces in cosmological recombination spectrum(e.g.
see Sunyaev & Chluba 2007, and references therein) until today.
Measuring the exact shape of the Lymanα distortion and the
other recombinational lines would in principle allow us to reveal

these differences, and therefore directly probe our understanding
of the recombination problem. Also if something non-standard
happens (e.g. due to early energy release by decaying or anni-
hilating dark matter), this will affect the exact shape of the cos-
mological recombination radiation (Chluba & Sunyaev 2008a).
Therefore, by observing the recombinational radiation onein
principle can directly uncover potential unknowns in the cosmo-
logical recombination problem, a task that may not be completed
otherwise.

7.2. Corrections to the escape probability

We have discussed the corrections to the effective Lymanα es-
cape probability, showing that the largest contribution iscoming
from the thermodynamic factorfν (see Fig. 17). The next largest
correction is due to the time-dependent aspects of the recom-
bination problem, where in the formulation given here the self-
feedback problem (Chluba & Sunyaev 2008b) appearing at low
redshifts when using the ’1+ 1’ photon picture disappears (cf.
Fig. 17). Furthermore the time-dependent correction partially
cancels the correction for the thermodynamic factor at low red-
shift (z . 1300− 1400), leaving a significanly smaller change in
the escape probability atz ∼ 1100. As we explained here, these
two corrections can be also obtained in the normal ’1+1’ photon
picture, but for the thermodynamic correction factor a natural in-
terpretation can only be given within the two-photon picture (see
Sect. 2.1.1). Here the crucial ingredient is that the spectrum in
the vicinity of the second, low frequency photonγ′ is given by
the CMB blackbody photon field, which then allows us to write
the radiative transfer equation for the Lymanα photon as equa-
tion for one photon only. A very similar formulation should be
applicable in the case of expanding envelopes of planetary neb-
ulae and stars, where the photon field in the vicinity ofγ′ will be
given by a weakly diluted blackbody spectrum. However, when
the photon distribution in the vicinity ofboth photons involved
in the absorption process are far from their equilibrium values
the derived formulation does not work.

We also showed that the correction coming from the exact
shape of the line profile in the vicinity of the Lymanα reso-
nance leads to the smallest separate correction under discussion
here. Only this part of the correction is really related to quan-
tum mechanical modification of the transfer problem. Still the
final contribution related to this modification is significant at the
required level of accuracy (cf. Fig. 17).

7.3. Implications for the ionization history and the CMB
power spectra and critical remarks

The results for the changes in the free electron fraction andCMB
power spectra are shown in Fig. 18 and 19, respectively. The
main effect onNe due to the processes discussed here is a net
speed up of hydrogen recombination by∆Ne/Ne ∼ −1.3% at
z ∼ 1100. About∆Ne/Ne ∼ −0.4% of this correction is coming
from the shape of the line profile alone, while the rest is due to
the thermodynamic factor and the time-dependent aspects ofthe
recombination problem. Here we would like to emphasis again,
that the latter two corrections can actually also be obtained in the
standard ’1+1’ photon picture, when introducing the thermody-
namic correction factor using the detailed balance principle.

We would also like to mention that our results for the
changes in the free electron fraction seem to be rather similar
to those of Hirata (2008) for the contributions from high level
two-photon decays alone. However, we obtained these with a



24 Chluba and Sunyaev: Lyα escape during cosmological hydrogen recombination

completely independent method. For the future it will be very
important to perform a more detailed comparison once all rele-
vant additions are identified.

Regarding the CMB power spectra, in particular the associ-
ated changes in the EE power spectrum are impressive, reaching
peak to peak amplitude∼ 2%− 3% atl & 1500 (see Fig. 19). It
will be important to take these corrections into account forthe
analysis of future CMB data.

However, it is also clear that several steps still have to be
taken: (i) one still has to study more processes; and (ii) onehas
to device a sufficiently fast method to simultaneously incorpo-
rate all the corrections discussed in the literature so far into the
computations of the CMB power spectra, in order to be ready for
real parameter estimations using the CMB data.

Regarding the first point, for example, the correction due to
Raman processes (as explained in Hirata (2008) mostly due to
2s-1s Raman scattering) leads to an additional delay of recombi-
nation at low redshifts with a maximum of∆Ne/Ne ∼ +0.94% at
z ∼ 920. We did not include this process here, but it certainly is
very important for accurate predictions of the CMB power spec-
tra and should be cross-validated in the future. It is clear that one
should also include the effect of higher level two-photon decays
(e.g. from the 4d-level), since they are expected to speed uphy-
drogen recombination in addition, likely affecting the result ob-
tained here by another∼ 10%−20% (i.e.∆Ne/Ne ∼ 0.1−0.3%).
And finally, the effects of partial frequency redistribution, line
recoil and electron scattering should be studied. Here in partic-
ular the effect of line recoil will be important, leading to a sys-
tematic drift of photons towards lower frequencies which again
accelerates hydrogen recombination by∆Ne/Ne ∼ −1.2% at
z ∼ 900 (Grachev & Dubrovich 2008; Chluba & Sunyaev 2009).

Regarding the second point, fairly recently Fendt et al.
(2008) proposed a new approach called Rico14, which uses
multi-dimensional polynomial regression to accurately represent
the dependence of the free electron fraction on redshift andthe
cosmological parameters. Instead of running the full (slow) re-
combination code, one trains Rico with a set of models, so that
the interpolation between them will be very fast afterwards. This
approach should allow to propagate all the corrections in the ion-
ization history that are included in the full recombinationcode
to the CMB power spectra, without using any fudging like in
Recfast (Seager et al. 1999; Wong et al. 2008). In the future, we
plan to provide an updated training set for Rico, including the
corrections discussed here. This should also make it easierfor
other groups to cross-validate our results and will allow usto
focus the effort on the physics rather than on approximating it.

Appendix A: Different channels for the emission
and death of Lyman α photon involving a
sequence of two transitions

If we restrict ourselves to the main channels that can lead tothe
emission or absorption of photons in the vicinity of the Lyman
α resonance and involve two photons then we are left with: (i)
ns → 1s two-photon decay and absorption; (ii)nd → 1s two-
photon decay and absorption; (iii) c→ 1s two-photon recombi-
nation and photoionization.

The problem is now to compute the emission and absorp-
tion profiles connected with these processes and describe their
relative contributions or probabilities at a given frequency. This
in principle can be done for all possible routes. However, here

14 http://cosmos.astro.uiuc.edu/rico/

we will focus on formulating the problem for the 3s→ 1s and
3d → 1s two-photon channels, not altering all other channels.
This is a reasonable first approximation, since as we show here
it is already clear from the ’1+ 1’ photon picture that the main
contribution to the death of photons is coming from the 3d chan-
nel (see Fig. 1). We only also add the 3s channel, since it is
conceptually very similar.

A.1. The 3s-1s two-photon channel

In this section we would like to derive the rate equation thatde-
scribes the evolution of the population,N3s, in the 3s level, but
where we take the two-photon aspect of the 3s-1s transition into
account. In the normal ’1+ 1’ photon picture this transition is
described by the sequence 3s→ 2p→ 1s and its inverse process
1s→ 2p→ 3s. For the 3s rate equation it is therefore clear that
the two-photon correction due to the 3s-1s channel should affect
part of the 3s→ 2p and 2p→ 3s rate. Once this part is known
one can in principle replace it in the rate equations using a more
complete two-photon description.

Here we just give the formulation of this problem, also be-
cause it allows to understand the most important aspects of the
two-photon picture. However, to compute the corrections tothe
escape probability we directly use the (pre-computed) solution
for the populations given in the standard approach, and only
solve for the presumably small correction in the evolution of the
photon field around the Lymanα resonance. Solving the com-
plete set of modified rate equations simultaneously will be the
final goal, for which one will need the results of the derivation
presented here. We leave this problem for a future work.

A.1.1. Isolating the different ’1+ 1’ photon routes

In order to isolate the contribution from the 3s-1s two-photon
channel we start by writing down the 3s rate equation in the ’1+
1’ photon picture, including all possible ways for electrons in
and out of the 3s-level

dN3s

dt
=

dN3s

dt

∣

∣

∣

∣

∣

3s2p
+ R+3s− R−3sN3s. (A.1)

Here we have directly separated the part due to the Balmerα
transition

dN3s

dt

∣

∣

∣

∣

∣

3s2p
= R2p3s− R3s2pN3s

≡ N2p A3s2p
g3s

g2p
npl(ν32) − N3s A3s2p[1 + npl(ν32)]

(A.2)

which below we want to discuss in more detail. HereNi andgi

denote the population and statistical weight of leveli, npl(ν) is
the CMB blackbody occupation number, andAi j andνi j are the
transition rate and frequency between leveli and j. All the other
possible channels in and out of the 3s-level lead to the terms

R−3s = R3sc+
∑

i>3s

gi

g3s
Ai3snpl(νi3s) (A.3)

R+3s = NeNpRc3s+
∑

i>3s

Ni Ai3s [1 + npl(νi3s)], (A.4)

whereNe andNp are the free electron and proton number den-
sities, andRci and Ric are the recombination and photoioniza-
tion rates to the leveli. Note that, since at frequencies below
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the Lymanα line the spectral distortions during recombination
are small (e.g. cf. Chluba & Sunyaev 2006a), above we simply
replacedn(ν)→ npl(ν) everywhere.

Now we are interested in refining the term connected with
the Balmerα channel. Since any two-photon or multi-photon
process only leads to tiny corrections in the total decay rates, it
is possible to use the one photon rates to compute the relative
contributions of different transition sequences. It is clear that the
term N3s A∗3s2p≡ N3s A3s2p[1 + npl(ν32)] describes the total flow
of electrons in the direction of the 2p-state. Once the electron
reached there it can go back to the 3s level with the probability

p2p3s=
A3s2p

g3s

g2p
npl(ν32)

A∗2p1s+ R−2p

. (A.5)

HereA∗2p1s= A2p1s[1+ npl(ν21)] is the stimulated Lymanα emis-
sion rate in the ambient CMB blackbody field, andR−2p is the total
rate at which electrons can leave the 2p-level, but excluding the
Lymanα line. It is given by

R−2p = R2pc+
∑

i>2p

gi

g2p
Ai2p npl(νi2p). (A.6)

Similarly, the electron can take the route 2p→ 1s with the prob-
ability

p2p1s=
A∗2p1s

A∗2p1s+ R−2p

≡ p1γ
em, (A.7)

or any of the other channels (2p→ ns (n > 2), 2p → nd or
2p → c) with probability p̄2p1s = 1 − p2p1s. Note that here we
have neglected the deviations from a blackbody in the stimulated
Lymanα emission rate, which in any case is tiny. We just wanted
to maintain the structure of the equations.

Then it is clear that the termN3s A∗3s2pcan be interpreted as

N3s A∗3s2p≡ N3s A∗3s2p× [p2p1s+ p̄2p1s], (A.8)

because the total flow of electrons should split up into thoseelec-
trons that go to the 1s-level (probabilityp2p1s) and those that
don’t (probabilityp̄2p1s).

From the physical point of view it is now clear that thepar-
tial flow connected withp2p1sN3s A∗3s2p should be interpreted as
3s-1s two-photon emission in the ’1+ 1’-photon picture, which
we will later replace with the more proper two-photon formulae.
The rest ( ¯p2p1sN3s A∗3s2p) describes the contributions of all the
other possible channels, e.g. also including the Balmerα scatter-
ing transition 3s→ 2p→ 3s. We will continue to describe all
these in the ’1+ 1’ photon picture.

In order to understand the term connected with the total flow
of electrons from the 2p-level towards the 3s-state, given by
N2p A3s2p

g3s

g2p
npl(ν32), we have to think about an electron that is

added to the 2p-state. It will take the route 2p→ 3s with prob-
ability p2p3s as given by Eq. (A.5). If we consider all possible
routes into the 2p-state, and write the corresponding totalrate as
R+,t2p = R+2p + N1s

g2p

g1s
A2p1sn(ν21), then one has the identity

N2p A3s2p
g3s

g2p
npl(ν32) ≡ p2p3s[R

+
2p+ N1s

g2p

g1s
A2p1sn(ν21)]

(A.9a)

where

R+2p = NeNpRc2p+
∑

i>2p

Ni Ai2p [1 + npl(νi2p)]. (A.9b)

Now one can write

dN3s

dt

∣

∣

∣

∣

∣

3s2p
= p2p3sR+2p − p̄2p1sN3s A∗3s2p+

dN3s

dt

∣

∣

∣

∣

∣

1+1

3s2p1s
(A.10a)

where

dN3s

dt

∣

∣

∣

∣

∣

1+1

3s2p1s
= p2p3sN1s

g2p

g1s
A2p1sn(ν21) − p2p1sN3s A∗3s2p.

(A.10b)

The first two terms in Eq. (A.10a) describe the partial flow of
electrons towards the 3s-state, but where it is certain thatthe
electron did not pass through the Lymanα line before. The last
term is the fractional contribution of the 3s↔ 2p↔ 1s-channel
in the 3s rate equation, but described in the ’1+1’ photon picture.
This is the term which in the end we will want to replace with
the two-photon formulae.

If we now identify

A2γ
3s1s=

A3s2pA2p1s

A∗2p1s+ R−2p

, (A.11)

then we can finally rewrite Eq. (A.10b) as

dN3s

dt

∣

∣

∣

∣

∣

1+1

3s2p1s
= A2γ

3s1sN1s
g3s

g1s
n(ν21) npl(ν32)

− A2γ
3s1sN3s[1 + npl(ν21)][1 + npl(ν32)]. (A.12)

Note that in vacuum one would haveA2γ
3s1s≡ A3s2p, as it should

be, since the electron will only have one way to leave the 2p-
state. However, within an intense CMB background field, also
the other channels will become active (e.g. 3s↔ 2p ↔ c), so
that part of the 3s↔ 2p flow will go through them. This reduces
the effective decay rateA2γ

3s1s.

A.1.2. Replacing the 3s-1s channel in the ’1+ 1’ photon
formulation with the two-photon expression

We now want to replace the part due todN3s
dt

∣

∣

∣

1+1

3s2p1s
with the more

proper two-photon terms. For this we have to ask the question
how the 3s-1s two-photon term actually looks like. If one con-
siders an electron that is initially in the 3s-state, then one can use
the vacuum 3s-1s two-photon decay profile in order to derive the
emission profile needed to describe the injection of Lymanα
photons for the escape problem. Simple formulae for the nec-
essary vacuum two-photon decay profiles can be found in the
literature (Chluba & Sunyaev 2008c). We shall normalize these

profiles like
∫ ∞
0

φ
2γ
i (ν)

4π∆νD
dνdΩ ≡ 1, whereφ2γ

i (ν) already includes
the motion of the atoms in the same way as for the normal
Lorentzian lines, usually leading to the Voigt-profiles (e.g. see
Mihalas 1978). For convenience we chose the LymanαDoppler-
width,∆νD, in the normalization.

With this the net change of the number density of electrons
in the 3s level via the 3s-1s two-photon channel is given by

dN3s

dt

∣

∣

∣

∣

∣

2γ

3s1s
= A2γ

3s1sN1s

∫

ϕ
2γ
3s(ν)n(ν) n(ν31− ν) dν

− A2γ
3s1sN3s

∫

ϕ
2γ
3s(ν)[1 + n(ν)][1 + n(ν31− ν)] dν

(A.13a)

≈ A2γ
3s1sN1sn(ν21) npl(ν32)

− A2γ
3s1sN3s[1 + npl(ν21)][1 + npl(ν32)], (A.13b)
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whereA2γ
3s1s is the effective 3s-1s two-photon decay rate, which

in vacuum is15 A2γ
3s1s ≈ A3s2p, but within an ambient black-

body radiation field should take the value given by Eq. (A.11).
Furthermore,ϕ2γ

3s = φ
2γ
3s(ν)/∆νD denotes the 3s-1s two-photon

decay profile, andν31 is the 3s-1s transition frequency.
For the approximation Eq. (A.13b) three comments should

be made: first we have assumed that the main contributions to
the integrals over the two-photon line profiles are coming from
the poles close toν ∼ ν21 andν ∼ ν32. Second, we have used the
fact that the CMB spectral distortion around the Balmerα line
are tiny. Also the stimulated term in the vicinty of the Lyman
α resonance is completely negligable, so that we just can use
1+n(ν21) ≈ 1+npl(ν21) instead, without changing anything. And
finally, we assumed that only for the 1s-3s two-photon absorp-
tion rate the deviations of the CMB spectrum from a blackbody
in the vicinity of the Lymanα resonance will matter.

The result Eq. (A.13b) is identical with the term given by the
’1 + 1’ photon picture, Eq. (A.12). This is not surprising, since
with the above approximations we have simply turned from the
two-photon to the ’1+ 1’ photon picture. In order to include the
effect of two-photon transitions in to the rate equation of the 3s-

level, we should therefore replacedN3s
dt

∣

∣

∣

1+1

3s2p1s
with the full integral

given by Eq. (A.13a).

A.1.3. Term in the Lyman α radiative transfer equation

In order to use the integral (A.13a) in the computations of the
ionization history, we also have to give the solution of the CMB
spectral distortion in the vicinity of the Lymanα resonance. We
therefore have to explicitly write the 3s-1s two-photon emission
and absorption terms for the evolution of the photon field and
solve the corresponding transfer equation. In particular we want
to bring the transfer equation into the form Eq. (4).

From Eq. (A.13a) it directly follows

1
c
∂Nν
∂t

∣

∣

∣

∣

∣

2γ

3s1s
=

2A2γ
3s1s

4π
N3sϕ

2γ
3s(ν)[1 + n(ν)][1 + n(ν31− ν)]

−
2A2γ

3s1s

4π
N1sϕ

2γ
3s(ν) n(ν) n(ν31− ν). (A.14)

Here the factor of 2 is due to the fact that per electron two pho-
tons are involved, and the factor of 4π converts to per steradian,
having in mind that the medium is isotropic. Furthermore in this
form it is assumed that every two-photon interaction in the 3s-1s
channel leads to acomplete redistribution of the photons over
the whole two-photon profile. This also means that we have not
distinguished two-photon emission and absorption from two-
photon scattering events. However, this should be a very good
approximation, since the scattering event involves two photons.
This means that the total energy of the incoming photons willbe
split up such that in most cases the scattered photons will have
energyν ∼ ν21 andν′ ∼ ν32. Note that this does not imply that we
are using a complete redistribution approximation for the Lyman
α resonance scattering itself, since only about∼ 10−4 − 10−3 of
all interactions will lead to the 3s- and 3d-state via two-photon
interactions (Chluba & Sunyaev 2008b).

15 Here the approximate sign is due to the fact that the rate coefficient
in the two-photon formulation should contain some small (∼ 10−6 −
10−5) quantum mechanical correction to the one photon rate. Thiswill
not lead to any significant correction in the escape probability.

Neglecting the deviations from the blackbody spectrum in
the emission term and comparing with Eq. (4) we can identify

φ3s↔1s(ν) = 2φ2γ
3s(ν)

1+ npl(ν)

1+ npl(ν21)

1+ npl(ν31 − ν)
1+ npl(ν32)

(A.15a)

ν&ν31/2

↓≈ 2φ2γ
3s(ν)

1+ npl(ν31− ν)
1+ npl(ν32)

(A.15b)

p1γ
em =

A∗2p1s

A∗2p1s+ R−2p

(A.15c)

R3s,+
2p = A∗3s2pN3s. (A.15d)

This result shows that the effective profile of the process as ex-
pected is given by the two-photon profile for the 3s-1s channel
including the induced terms relative to the values at the Lyman
and Balmerα resonance. Also the emission probability is ex-
actly the Lymanα emission probability including the induced
emission for the central frequency of the Lymanα line. And the
last term simply represents the number density of 3s-electrons
that reach the 2p-state per second in the ’1+ 1’ photon picture,
where again the stimulated emission due to CMB photons close
to the Balmerα frequency was included.

Note thatφ3s↔1s(ν) is no longer normalized to unity. In vac-

uum one would find
∫ ∞

0

φ
2γ
3s↔1s(ν)
4π∆νD

dν dΩ ≡ 2, while within the

CMB blackbody field
∫ ∞
0

φ
2γ
3s↔1s(ν)
4π∆νD

dνdΩ & 2. However the rel-
ative correction to the overall normalization of the profiledue
to stimulated emission is of the order of∼ 10−9 − 10−8 (see
Sect. 5.2.1). Also one should mention that due to the symme-
try of the profile aroundν = ν31/2, by restricting the range of
integration toν31/2 ≤ ν ≤ ν31 one can avoid counting both the
Lymanα and Balmerα photons. We will use this fact to simplify
the numerical integration (see Sect. 2.3.1).

If we now look at the absorption term in Eq. (A.14), using
the definitions (A.15) we can directly write

1
c
∂Nν
∂t

∣

∣

∣

∣

∣

2γ

3s1s,abs
=
φ3s↔1s(ν)
4π∆νD

A2γ
3s1sN1sn(ν) npl(ν31 − ν)

×
1+ npl(ν21)

1+ npl(ν)

1+ npl(ν32)

1+ npl(ν31 − ν)
. (A.16)

Here we have already assumed that the important part for our
problem is the regionν ≥ ν31/2. This implies thatν31 − ν ≤
ν31/2, so that the deviations from the CMB blackbody can be
neglected leading ton(ν) npl(ν31 − ν) instead ofn(ν) n(ν31 − ν).
Since according to Eq. (A.5) and (A.11)A2γ

3s1s ≡ p2p3s
g2p A2p1s

g3snpl(ν32)
,

and because [1+ npl(ν)]/npl(ν) = ehν/kTγ , we finally find

1
c
∂Nν
∂t

∣

∣

∣

∣

∣

2γ

3s1s,abs
=
φ3s↔1s(ν)
4π∆νD

A2p1sp2p3s

g3s/g2p
e

h[ν−ν21]
kTγ

1+ npl(ν21)

1+ npl(ν)
n(ν)N1s

(A.17a)
ν&ν31/2

↓≈ φ3s↔1s(ν)
4π∆νD

g2p

g1s
A2p1sp2p3se

h[ν−ν21]
kTγ n(ν)N1s. (A.17b)

Note thatg3s/g2p ≡ g1s/g2p.
With the Einstein relations it is then easy to show that

g2p

g1s
A2p1sn(ν) = hν21 B12

ν221

ν2
Nν, so that we directly verify the

thermodynamic correction factor16 fν =
ν221

ν2
eh[ν−ν21]/kTγ and find

16 From Eq. (A.17a) bycomparing with Eq. (4) we can see that with
the choice of coefficients and variables we more rigorously inferfν =
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p1s3s
d ≡ p2p3s. We therefore have confirmed the completeness of

the form of the Eq. (4) for the 3s-1s two-photon channel.

A.2. The 3d-1s two-photon channel

After going through the argument for the 3s-1s channel it is easy
to do the same for the 3d-1s channel. For the rate equation analog
to Eq. (A.1), (A.3), and (A.10) one has

dN3d

dt
=

dN3d

dt

∣

∣

∣

∣

∣

3d2p
+ R+3d− R−3dN3d (A.18a)

R−3d = R3dc+
∑

i>3d

gi

g3d
Ai3d npl(νi3d) (A.18b)

R+3d = NeNpRc3d+
∑

i>3d

Ni Ai3s [1 + npl(νi3d)] (A.18c)

where the Balmerα channel is defined by

dN3d

dt

∣

∣

∣

∣

∣

3d2p
= p2p3dR+2p − p̄2p1sN3d A∗3d2p+

dN3d

dt

∣

∣

∣

∣

∣

1+1

3d2p1s
(A.18d)

p2p3d=
A3d2p

g3d

g2p
npl(ν32)

A∗2p1s+ R−2p

(A.18e)

dN3d

dt

∣

∣

∣

∣

∣

1+1

3d2p1s
= A2γ

3d1sN1s
g3d

g1s
n(ν21) npl(ν32)

− A2γ
3d1sN3d[1 + npl(ν21)][1 + npl(ν32)]. (A.18f)

As before one should now replace Eq. (A.18f) with

dN3d

dt

∣

∣

∣

∣

∣

2γ

3d1s
= A2γ

3d1s

g3d

g1s
N1s

∫

ϕ
2γ
3d(ν)n(ν) n(ν31− ν) dν

− A2γ
3d1sN3d

∫

ϕ
2γ
3d(ν)[1 + n(ν)][1 + n(ν31− ν)] dν

(A.19a)

A2γ
3d1s=

A3d2pA2p1s

A∗2p1s+ R−2p

(A.19b)

if one is interested in the 3d-1s two-photon correction to the 3d-
rate equation. Note that here the ratio of the statistical weights is
not unity like in the case of the 3s-1s channel.

The terms for the transfer equation can also be cast into the
form (4) where the important coefficients are given by

φ3d↔1s(ν) = 2φ2γ
3d(ν)

1+ npl(ν)

1+ npl(ν21)

1+ npl(ν31 − ν)
1+ npl(ν32)

(A.20a)

≈ 2φ2γ
3d(ν)

1+ npl(ν31 − ν)
1+ npl(ν32)

(A.20b)

R3s,+
2p = A∗3d2pN3d (A.20c)

p1s3d
d = p2p3d. (A.20d)

A.3. The other channels

For the other channels in and out of the 2p-state we can also
derive the corresponding partial rates in a similar way as for the
3s and 3d state. However, since the main correction is expected

ν221
ν2

e
h[ν−ν21]

kTγ
1+npl(ν21)

1+npl(ν)
≡ ν

2
21
ν2

npl(ν21)

npl(ν)
≈ ν

2
21
ν2

eh[ν−ν21]/kTγ for hν ≫ kTγ, a condi-

tion that is fulfilled during cosmological recombination inthe vicinity
(ν & ν31/2) of the Lymanα resonance.

to come from the 3s and 3d two-photon channels for these we
will simply use the ’1+ 1’ photon picture. This means that we
will not replace the correspondingi ↔ 2p rates with the two-
photon description. For all thens andnd-states withn > 3 the
rate equations therefore will be similar to Eq. (A.18), and for
electrons in the continuum one will have

dNe

dt
=

dNe

dt

∣

∣

∣

∣

∣

c2p
+
∑

i>2

[

RicNi − NeNpRci

]

(A.21a)

with

dNe

dt

∣

∣

∣

∣

∣

c2p
= p2pcR+2p − p̄2p1sNe Np Rc2p+

dNe

dt

∣

∣

∣

∣

∣

1+1

c2p1s
(A.21b)

p2pc =
R2pc

A∗2p1s+ R−2p

(A.21c)

dNe

dt

∣

∣

∣

∣

∣

1+1

c2p1s
= N1s

g2p

g1s
A2p1sn(ν21) p2pc− p2p1sNe Np Rc2p.

(A.21d)

Still there is a small difference to the normal rate equations. In
the formulation given above the population of the 2p-state has
vanished fromall the rate equations, and in particular from those
for the 3s and 3d-state. For the 3s and 3d-state physically this
is expected, since in the two-photon picture on the way to the
1s-level the electron is not really passing through the 2p-state.
In the full two-photon picture the electron reaches the 1s level
via all intermediate p-states, including those in the continuum.
For the other levels the above formulation would have also been
obtained by simply replacing the solution of the 2p-state with the
quasi-stationary value in the ’1+1’ photon approach. In this way
one again has a closed system of rate equations, which avoidsthe
difficulty in attaching a population to the 2p-state.

Appendix B: Derivation of the thermodynamic
factor using the ’ 1+ 1’ photon picture.

As mentioned in the introduction and also earlier
(Chluba & Sunyaev 2008b), in the normal ’1+ 1’ pho-
ton approximation the term describing the emission and
absorption of Lymanα photons in full thermodynamic equi-
librium is not exactly conserving a blackbody spectrum
at all frequencies. This can be directly seen from Eq. (1),
since in full thermodynamic equilibrium one should have
(

p1γ
emR+2p

)eq
≡
(

p1γ
d hν21 B12 N1s Nν

)eq
. Using the defini-

tions of the previous Section, in equilibrium one expects
(

R+2p

)eq
≡
(

R−2pN2p

)eq
, Neq

2p ≡
g2p

g1s
Neq

1s e−
hν21
kTγ , hν21B12 ≡ g2p

g1s

c2A21

2ν221

andp1γ
em ≡ A21 [1 + npl(ν21)] p1γ

d /R
−
2p, so that one finds

















p1γ
d hν21 B12 N1s Nν

p1γ
emR+2p

















eq

≡ c2

2ν221

Npl
ν

1+ npl(ν21)
e

hν21
kTγ (B.1)

HereNpl
ν =

2ν2

c2 npl(ν) defines the blackbody spectrum. With the
identity [1+ npl(ν)]/npl(ν) ≡ ehν/kTγ one therefore has
















p1γ
d hν21 B12 N1s Nν

p1γ
emR+2p

















eq

≡ ν
2

ν221

1+ npl(ν)

1+ npl(ν21)
e

h[ν21−ν]
kTγ ≈ 1/ fν (B.2)

The in the last step we assumed thathν ≫ kTγ andhν21≫ kTγ,
so that the factors [1+ n] could be neglected, an approxima-
tion that is certainly possible during cosmological recombina-
tion. However it in fact is only due to the used definition of
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p1γ
em, in which we evaluated the stimulated emission factors at

the Lymanα line center only and in addition directly assumed
a blackbody spectrum. More consistently one should have used
p1γ

em = p1γ,∗
em [1 + nν], where we have

p1γ,∗
em =

A2p1s

A2p1s[1 + 〈nν〉em] + R−2p

. (B.3)

Here〈nν〉em denotes the average of the photon occupation num-
ber across the Lymanα emission profile. With this definition in
Eq. (B.2) one would have obtained the factor 1/ fν directly, with-
out any additional comment.

We would like to mention another way to obtain the ther-
modynamic factor in the absorption process, which just usesthe
term in the Lymanα rate equation. In the standard textbooks
(e.g. Mihalas 1978) one finds:

dN2p

dt

∣

∣

∣

∣

∣

∣

1+1

2p1s

= N1s
g2p

g1s
A2p1sn(ν21) − N2p A2p1s[1 + n(ν21)]. (B.4)

Here two comments should be made: (i) more rigorously one
should replacen(ν21) with the average occupation number over
the line profile, i.e.n(ν21)→ 〈nν〉 and (ii) in addition one should
distinguish between the emission and absorption process, imply-
ing that [1+ n(ν21)] → [1 + 〈nν〉em], while in the first term one
hasn(ν21) → 〈nν〉abs. In full equilibrium one should then find
(

N1s
g2p

g1s
A2p1s 〈nν〉abs

)eq
=
(

N2p A2p1s[1 + 〈nν〉em]
)eq

, so that

















N1s
g2p

g1s
A2p1s 〈nν〉abs

N2p A2p1s[1 + 〈nν〉em]

















eq

=

〈

npl
ν

〉

abs
ehν21/kTγ

1+
〈

npl
ν

〉

em

≡ 1 (B.5)

It is now easy to show that

〈

npl
ν

〉

abs
ehν21/kTγ ≡

〈

npl
ν

1+ npl
ν

[1 + npl
ν ]

〉

abs

ehν21/kTγ

≡
〈

eh[ν21−ν]/kTγ [1 + npl
ν ]
〉

abs
. (B.6)

Since according to Eq. (B.5)
〈

npl
ν

〉

abs
ehν21/kTγ ≡

〈

1+ npl
ν

〉

em

one should conclude that〈nν〉abs ≡
〈

eh[ν−ν21]/kTγnν
〉

em
, where

nν now is an arbitrary photon occupation number. In terms of

Nν = hν2

c2 nν one therefore has〈Nν〉abs≡
2ν221

c2 〈nν〉abs≡ 〈 fνNν〉em.
With this we obtained the thermodynamic correction factorfν in
the absorption profile forNν = hν2

c2 nν, since〈Nν〉abs ≡ 〈 fνNν〉em
automatically impliesφabs≡ fνφem.

Appendix C: Computation of two-photon profiles

We compute the two-photon decay profiles according to the
work of (Chluba & Sunyaev 2008b). There in particular the in-
finite sum over intermediate states was split up into those states
with principal quantum numbersn > ni andn ≤ ni, whereni is
the initial state principal quantum number. This makes the sum
over the resonances (in the case of 3s and 3d only one) finite and
allows to give fitting formulae for the remaining contribution to
the total matrix element coming from the infinite sum. This pro-
cedure is very convenient for numerical evaluations.

Here we would like to mention that the two-photon decay
profiles behave likeφ ∝ ν (νi1s− ν) in the limitsν → 0 or ν →
νi1s. This is because in this limit the main term in the infinte sum
is coming from the Matrix elementnis/d → nip, which in the

non-relativistic formulation has zero transition frequency. This
implies that forν→ 0 orν→ νi1s

φ
2γ
nis/d→1s ≈ Gnili y (1− y)

∣

∣

∣

∣

〈

R1s | r |Rnip

〉 〈

Rnip | r |RniIi

〉

∣

∣

∣

∣

2

≈ Gnili y (1− y) 26 32 n9
i
(ni − 1)2ni−5

(ni + 1)2ni+5
(n2

i − 1|4). (C.1)

Here 1|4 means 1 for the s-states or 4 for the d-states. Inserting
numbers (for definitions see Chluba & Sunyaev 2008c) one finds

φ
2γ
nis→1s ≈ 1.0598× 104 y (1− y)

(ni − 1)2ni

(ni + 1)2ni

n2
i − 1

ni
s−1 (C.2a)

φ
2γ
nid→1s ≈ 4.2393× 103 y (1− y)

(ni − 1)2ni

(ni + 1)2ni

n2
i − 4

ni
s−1. (C.2b)

For the 3s and 3d profiles one therefore has

φ
2γ
3s→1s(y) ≈ 441.6y (1− y) s−1 (C.3a)

φ
2γ
3d→1s(y) ≈ 110.4y (1− y) s−1 (C.3b)

We will use these simple formulae to compute the two-photon
spectra at 0≤ y ≤ 0.001 and 0.999≤ y ≤ 1.

The most important consequence of this limiting behavior
with frequency is that due to stimulated emission in the ambi-
ent CMB blackbody radiation field the two-photon profiles no
longer vanish aty ∼ 0 andy ∼ 1, sincenpl(ν) ∼ 1/y for ν ∼ 0.
For the 2s-1s two-photon process this behavior was also seen
earlier (Chluba & Sunyaev 2006b). In the case of 3s and 3d two-
photon decays this enhances the emission of photons close to
the Lymanβ resonance (cf. Fig. 2). However, we find that the
corrections due to stimulated two-photon emission are not im-
portant for the cosmological recombination problem.

Appendix D: Small corrections due to the motion of
the atom

To account for the motion of the atoms in the computations of
the emission profile one has to compute the following integral
(see Sect. 9.2 in Mihalas 1978)

φm(ν) =
∫ ∞

−∞
φr(ν′(t)) e−t2 dt (D.1)

over the rest frame emission profile,φr(ν), which for a given
frequencyν due to the Doppler effect has to be evaluated at
ν′(t) = ν[1 − ξ0c t], whereξ0 = c

√

2kT/mH c2. The exponential
factor arises from the Maxwell-Boltzmann velocity distribution
for the neutral hydrogen atoms.

For the Voigt-profile one normally uses the approximation
ν′(t) ≈ ν − ν21

ξ0
c t, so that the emission profile can be written in

terms of the Voigt-function

H(xD, a) =
a
π

∫ ∞

−∞

e−t2 dt
(xD − t)2 + a2

(D.2)

for which simple approximation in terms of the Dawson-integral
exist (see Sect. 9.2 in Mihalas 1978). Herea is the normal Voigt-
parameter, andxD is the frequency distance from the line center
in Doppler units of the Lymanα resonance.

However, due to the steepness of the Lorentzian close to
the line center this approximation leads to a small inaccuracy
(∆φ/φ ∼ 10−4 − 10−3), which actually is not necessary. To avoid
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Fig. D.1. Small correction to the normal Voigt-profile. We show
the relative difference of the standard Voigt profileφ ∝ H(xD, a)
in comparison with the modified expression based onH̃(xD, a)
at z = 1100.

this one should simply replacexD and a in the Voigt-integral
with x̃D = xD/[1 + xD

∆νD
ν21

] and ã = a/[1 + xD
∆νD
ν21

], and in addi-

tion multiply H with 1/[1 + xD
∆νD
ν21

], yielding

H̃(xD, a) =
H(x̃D, ã)

[1 + xD
∆νD
ν21

]
. (D.3)

As one can see that then the Voigt profile,φV = H̃(xD, a)/
√
π,

effectively behaves as

φV(xD) ≈ 1
√
π

e−x̃2
D

[1 + xD
∆νD
ν21

]

≈ 1
√
π

e−x2
D

[

1− xD
∆νD

ν21
(1+ 2x2

D)

]

(D.4)

close to the line center. AtxD ∼ ±1 this implies a relative cor-
rection of∆φ/φ ∼ ∓3∆νD

ν21
≈ ∓6 × 10−5 at z ∼ 1100. However,

at xD ∼ 3 this corrections is expected to reach the 0.1% level. In
Fig. D.1 the frequency dependence of this correction is shown in
more detail, confirming these statements. Note that as expected
the behavior in distant wings (|xD| ≫ 1) is not changed.

D.1. Two-photon profiles for moving atoms

As mentioned above, to include the motion of the atoms in
the computation of the two-photon profiles one can in princi-
ple directly use the expression (D.1). However, the computa-
tion of this integral is rather time-consuming, and in the very
distant wings also is not necessary17. Therefore we use a dif-
ferent approach in which we utilize the fact that the relative
difference,∆φ2γ

r,i (ν)/φΛ(ν), of the restframe two photon profile,

φ
2γ
r,i (ν), and the normal Lorentzian,φΛ(ν), varies very slowly

17 There the motion of the atoms can be neglected since the two-
photon profiles normally vary very slowly with frequency. Although
this is not entirely true for thens two-photon profiles close to the fre-
quencies whereφ2γ vanishes, one expects a negligible additional cor-
rection due to this approximation.
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Fig. D.2. Relative difference of the 3s and 3d two-photon pro-
files with respect to the Lorentzian (thin line) and the Voigtpro-
file (thick lines). In the first case the motion of the atoms was
neglected, while for the comparison with the Voigt profile itwas
included. The boxes show the analytic approximation for thecor-
rection including the motion.

Table D.1. Parameters for the 3s and 3d two photon profiles
around the line center. These were determined in the range
−10. xD . 10. For explanation see Appendix D

αi βi

3s 3.73335× 10−6 +6.5325× 10−4

3d 7.45559× 10−7 −1.5129× 10−4

with frequency, as compared toφΛ(ν). Therefore, to lowest or-
der for moving atoms the two-photon profile will be given by
φ

2γ
m,i(xD, a) ≈ φV(xD, a)

[

1+ ∆φ2γ
r,i (ν)/φΛ(ν)

]

.
However, close to the line center this approximation due

to the steepness of the Lorentzian again becomes inaccurateat
the percent level. The lowest order correction can be computed
approximating the rest frame two-photon profiles close to the
Lymanα line center by

φ
2γ
r,i (ν) ≈ φΛ(ν)[1 + αi + βi xD]. (D.5)

Here is the The coefficientsαi andβi for the 3s and 3d level are
given in Table D.1.

Using the same method as described in Sect. 9.2 of Mihalas
(1978) it is then easy to show that for|xD| ≤ 1000

φ
2γ
m,i(xD, a)≈φV(xD, a)

















1+
∆φ

2γ
r,i (ν)

φΛ(ν)
+
βi

2
∂x̃D H(x̃D, ã)

H̃(x̃D, ã)

















. (D.6)

Close to the line-center we will use this expression for the two-
photon profiles. However, far away from the Lymanα resonance
we will neglect the effect due to the motion of the atoms, and
simply use the rest frame two-photon profiles.

However, we find that the correction in connection with the
motion of the atom are not important for the cosmological re-
combination problem.
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