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ABSTRACT

We present the clustering measurement of hard X-ray selected AGN in the

local Universe. We used a sample of 199 sources spectroscopically confirmed de-

tected by Swift-BAT in its 15-55 keV all-sky survey. We measured the real space

projected auto-correlation function and detected a signal significant on projected

scales lower than 200 Mpc/h. We measured a correlation length of r0=5.56+0.49
−0.43

Mpc/h and a slope γ=1.64−0.08
−0.07. We also measured the auto-correlation function

of Type I and Type II AGN and found higher correlation length for Type I AGN.

We have a marginal evidence of luminosity dependent clustering of AGN, as we

detected a larger correlation length of luminous AGN than that of low luminos-

ity sources. The corresponding typical host DM halo masses of Swift-BAT are

∼ log(MDMH)∼ 12-14 h−1M/M⊙, depending on the subsample. For the whole

sample we measured log(MDMH)∼ 13.15 h−1M/M⊙ which is the typical mass

of a galaxy group. We estimated that the local AGN population has a typical

lifetime τAGN ∼0.7 Gyr, it is powered by SMBH with mass MBH ∼1-10×108 M⊙

and accreting with very low efficiency, log(ǫ)∼-2.0. We also conclude that local

AGN host galaxies are typically red-massive galaxies with stellar mass of the

order 2-80×1010 h−1M⊙. We compared our results with clustering predictions of

merger-driven AGN triggering models and found a good agreement.
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of universe, X-rays: galaxies, galaxies: active, (cosmology:) diffuse radiation
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1. Introduction

It is now commonly believed that almost all galaxies host a central supermassive Black

Hole (SMBH). Dynamical evidence show that the mass of the central BHs are closely linked

to the mass as well as the stellar velocity dispersion of the bulge component of the host galaxy

(Kormendy & Richstone 1995, Magorrian et al. 1998). This suggests that the formation and

evolution of the spheroidal component of galaxies and their SMBH are closely connected.

It is of upmost importance to understand the mechanism of funneling interstellar gas into

the vicinities of the SMBH, triggering the accretion. Galaxy mergers or tidal interaction

between close pairs may have played a major role (Hopkins et al. 2007), furthermore some

mechanism internal to the galaxy, like galaxy disk instability may be important. Clustering

properties of AGN in various redshifts give an important clue to understand which of these

mechanisms trigger AGN activities in what stage of the evolution of the universe, through,

e.g., the mass of the Dark Matter Halos (DMH) in which they reside which is linked to BH

mass life time and Eddington rate. Measurements of the AGN clustering show that AGN

are typically hosted by DMH with a mass of the order of log(M)∼12.0-13.5 M/M⊙ (Yang

et al. 2006; Miyaji et al. 2007; Gilli et al. 2009; Coil et al. 2009; Hickox et al. 2009;

Krumpe et al. 2010). However, these measurements have been produced by using AGN

samples obtained by optical and soft X-ray (i.e. 0.5-10 keV) surveys. Optical and soft X-ray

selections miss a major part of the SMBH accretion. In the optical band the selection of

AGN is biased by galaxy starlight dilution and by dust absorption. Although luminous soft

X-ray emission is a signature of the presence of an AGN, absorbed sources can be missed

with a soft X-ray selection, either because they are intrinsically less luminous (Hasinger et

al. 2008) or because of the high column density. However, X-ray emission from these sources

leaks out at higher energies (i.e > 5-10 keV) where the efficiency of instruments mounting

X-ray focusing optics is low. For this reason hard X-ray selected samples could provide clean

and unbiased samples of AGN. The Swift-BAT all-sky survey provides a spectroscopically

complete (100 %) sample of local AGN detected in the 15-55 keV energy band, with an

unprecedented depth and characterization of the source properties, from redshifts to column

densities. In this letter we present the first study of clustering of hard X-ray selected AGN

in the local Universe. Throughout this paper we will assume a Λ-CDM cosmology with

Ωm=0.3, ΩΛ=0.7, H0=100h−1 km s−1 Mpc and σ8=0.8. Unless otherwise stated errors are

quoted at the 1σ level.
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2. The Sample of Swift BAT hard X-ray selected AGN

The Burst Alert Telescope (BAT; Barthelmy et al. 2005) on board the Swift satellite

(Gehrels et al. 2004), represents a major improvement in sensitivity for imaging the hard

X-ray sky. BAT is a coded mask telescope with a wide field of view (FOV, 120◦×90◦ partially

coded) aperture sensitive in the 15–200 keV domain. Thanks to its wide FOV and its pointing

strategy, BAT monitors continuously up to 80% of the sky every day achieving, after several

years of survey, deep exposure in the entire sky. Results of the BAT survey (Markwardt et

al. 2005, Ajello et al. 2008, Tueller et al. 2009) show that BAT reaches a sensitivity of

∼1mCrab1 in 1Ms of exposure.

The sample used in this work consists of 199 non-blazar AGN detected by BAT during

the first three years and precisely between March 2005 and March 2008. This sample is

part of the one used in Ajello et al. (2009) which comprises all sources detected by BAT at

high (|b|>15◦) Galactic latitude and with a signal-to-noise ratio (S/N) exceeding 5σ. The

reader is referred to Ajello et al. (2009) for more details about the sample and the detection

procedure. The flux limit at each direction in the sky has been computed, following Ajello

et al. (2008), analyzing the local background around that position. For each source we use

the redshift already provided in Ajello et al. (2009) and the measurement of the absorbing

column density as determined from joint XMM-Newton/XRT–BAT fits (Burlon et al, in

preparation). The redshift distribution of the sample is shown in Fig. 1 together with the

redshift cone diagram of the survey up to 20000 km/s (z∼0.07).

3. The two-point spatial auto-correlation function

The two-point auto-correlation function (ξ(r), ACF) describes the excess probability

over random of finding a pair with an object in the volume dV1 and another in the volume dV2,

separated by a distance r so that dP = n2[1+ξ(r)]dV1dV2, where n is the mean space density.

A known effect when measuring pairs separations is that the peculiar velocities combined with

the Hubble flow may cause a biased estimate of the distance when using the spectroscopic

redshift. To avoid this effect we computed the projected ACF (Davies & Peebles 1983):

w(rp) = 2
∫ πmax

0
ξ(rp, π)dπ. Where rp is the distance component perpendicular to the line of

sight and π parallel to the line of sight (Fisher et al. 1994). It can be demonstrated that, if

the ACF is expressed as ξ(r) = (r/r0)
−γ, then

w(rp) = A(γ)rγ0r
1−γ
p , (1)

11mCrab in the 15–55 keV band corresponds to 1.27×10−11 erg cm−2 s−1
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where A(γ) = Γ(1/2)Γ[(γ − 1)/2]/Γ(γ/2) (Peebles 1980).

The ACF has been estimated by using the minimum variance estimator described by Landy

& Szalay (1993):

ξ(rp, π) =
DD − 2DR +RR

RR
(2)

where DD, DR and RR are the normalized number of data-data, data-random, and random-

random source pairs, respectively. Equation 2 indicates that an accurate estimate of the

distribution function of the random samples is crucial in order to obtain a reliable estimate of

ξ(rp, π). Several observational biases must be taken into account when generating a random

sample of objects in a flux limited survey. In particular, in order to reproduce the selection

function of the survey, one has to carefully reproduce the space and flux distributions of the

sources, since the sensitivity of the survey in not homogeneous on the sky. Simulated AGN

were randomly placed on the survey area. In order to reproduce the flux distribution of the

real sample, we followed the method described in Mullis et al. (2004). The cumulative AGN

logN-logS source count distribution, in the 15-55 keV band, can be described by a power

law, S = kS−α, with α ∼ 1.55 (Ajello et al. 2008) Therefore, the differential probability

scales as S−(α+1). Using a transformation method the random flux above a certain X-ray flux

Slim is distributed as S = Slim(1− p)
−1
α , where p is a random number uniformly distributed

between 0 and 1 and Slim=7.6×10−12 erg cm−2 s−1. All random AGN with a flux lower than

the flux limit map at the source position were excluded. Redshift were randomly drawn

from the smoothing of the real redshift distribution with a gaussian kernel with σz=0.3. An

important choice for obtaining a reliable estimate of w(rp), is to set πmax in the calculation

of the integral above. One should avoid values of πmax too large since they would add noise

to the estimate of w(rp). If, instead, πmax is too small one could not recover all the signal.

We have calculated w(rp) by varying πmax and found that the result converges at πmax ∼60

Mpc/h.

Errors on w(rp) were computed with a bootstrap resampling technique with 100 realizations.

It is worth noting that in the literature, several methods are adopted for errors estimates in

two-point statistics, and no one has been proved to be the most precise. However, it is known

that Poisson estimators generally underestimate the variance because they do consider that

points in ACF are not statistically independent. Jackknife resmpling method, where one

divides the survey area in many sub fields and iteratively re-computes correlation functions

by excluding one sub-field at a time, generally gives a good estimates of errors. But it

requires that sufficient number of almost statistically independent sub-fields. This is not the

case for our small sample. For these reasons we used the bootstrap resampling for the error

estimate which, in our case, are comparable with the Poisson errors.
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4. Results

We show in Fig. 2 the projected ACF measured on the whole AGN sample of the

survey. The ACF has been evaluated in the projected separation range ∼0.2 Mpc/h < rp <

200 Mpc/h and has been plotted in form of w(rp)/rp in order to reproduce the slope of

ξ(r) (see above). The bin size for computing w(rp) has been set to ∆log(rp, π)=0.15. We

obtained an estimate of w(rp)/rp with a significance of the order 4σ-5σ. In order to evaluate

the power of the clustering signal we fitted w(rp) with χ2 minimization technique by using

Eq.1 as a model with r0 and γ as free parameters. The correction due to the integral

constraint (Peebles 1980) is estimated to be much smaller than the statistical uncertainties

in our sample, and thus has not been made. As a result we obtained r0=5.56+0.49
−0.43 Mpc/h and

γ=1.64+0.07
0.08 . The confidence contours of the fit are presented in Fig. 2. We also measured

the ACF for different data subsamples. We first divided the sample according to the column

density: we defined as Type II AGN (or absorbed) sources with log(NH) ≥22 cm−2 and as

Type I AGN (or unabsorbed) sources if log(NH) <22 cm−2. As a result we constructed a

sample of 96 Type I AGN and one of 103 Type II AGN. For both samples we computed

the ACF with the technique described above. We also split the sample into high and low

luminosity subsamples. All the sources with L15−55 >43.2 erg/s (i.e. the median luminosity

of the whole sample, HL sources) were classified as high luminous, while the sources with

L15−55 <43.2 erg/s (LL sources) as low luminosity sources. The results of the measurement

of the ACF as a function of the source type and luminosity class are presented in Fig. 2

together with the fit confidence contours. Note that for the HL sample the fit parameters are

poorly constrained because of the lack of close pairs in the sample. We also repeated the fit

by freezing γ to 1.7, and obtained consistent results (Table 1). A summary of the fit results

of all the samples used here is given in Table 1. Type I AGN show a larger correlation with

respect to that of type II AGN, the significance of this difference is of the order ∼ 2.7σ−3.3σ.

HL AGN show a 1.7-4.6σ higher correlation length with respect to LL AGN. We also checked

the correlation between r0 and < LX > of all the subsamples and found a linear correlation

coefficient R=0.95, which corresponds to a ∼ 2σ significant correlation. We can use the

weighted mean dispersion of the results on the measurement of r0 in our subsamples to

estimate the impact of sample variance on our results under the assumption that this is the

main reason of the fluctuations. Our estimates suggest that overall our results are affected

by this effect at ∼10% level. It is worth to note that our results are more significant than

those obtained by e.g. Mullis et al. (2004), with a similar number of sources. This is because

our sources are distributed in a much smaller volume than that sampled by the NEP survey

and, by being on average less luminous, have an intrinsic higher space density resulting in a

larger number of close source pairs.
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In the linear theory of structure formation, the bias factor defines the relation between

the autocorrelation function of large scale structure tracers and the underlying overall mat-

ter distribution. In the case of X-ray selected AGN, we can define the following relation:

ξX(r, z) = bX(r, z)
2ξm(r, z), where ξX , ξm and bX are the autocorrelation function of AGN,

of DM and the AGN bias factor, respectively. In order to compute the bX , we estimated the

amplitude of the fluctuations of the AGN distribution in a sphere of 8 Mpc/h (also know as

σ8), by using Eq. 12 and 13 of Miyaji et al. (2007) and all the combinations of r0 and γ are

reported in Tab. 1. In order to derive the bias factor of the AGN in our samples we used

bAGN = σ8,AGN(z)/σ8D(z), where D(z) is the growth factor. This quantity allows us to com-

pare the observed AGN clustering to the underlying mass distribution from linear growth

theory (Hamilton 2001). As a result we obtain for the whole sample bAGN(z∼0.04)=1.21+0.06
−0.07.

We have repeated this calculation for all the samples listed in Table 1 and we report the

corresponding values of the bias factor in Table 2, for all the possible best fit results.

It is widely accepted that the clustering amplitude of DMH depends primarily on their mass

(see e.g. Sheth et al. 2001). In this way, we can estimate the typical mass of the DMH

in which the population of AGN reside, under the assumption that the typical mass of the

host halo is the only variable that causes AGN biasing. We have then computed the ex-

pected large-scale bias factor for different dark matter halo masses by using the prescription

of Tinker et al. (2005). The required ratio of the critical overdensity to the rms fluctuation

on a given size and mass is calculated by ν = δcr/σ(M, z), for our purposes we assumed

δcr ≈ 1.69 and compute σ8(M, z) and therefore b(M, z) using Eq. A8, A9, and A10 in van

den Bosch (2002). The typical DMH mass that hosts an AGN has been estimated to be

log(MDMH)=13.15+0.09
−0.13 h

−1M/M⊙. This is consistent with similar measurements in the local

Universe of Krumpe et al. (2010), Grazian et al. (2004) and Akilas et al. (2000). We have

computed the typical mass of the DMH for all the subsamples listed in Table 1 and reported

for simplicity in Table 2. Following Martini & Weinberg(2001), by knowing the AGN and

DMH halo space density at a given luminosity and mass (nAGN , nDMH), one can estimate

Table 1: Summary of the results.
Sample Na < z > < log(LX) > r0 γ rb0γ=1.7

erg/s Mpc/h Mpc/h

All 199 0.045 43.2 5.56
+0.49
−0.43

1.64
+0.07
−0.08

5.54
+0.1
−0.1

Type I 96 0.046 43.37 7.93+1.14
−0.79

2.1+0.20
−0.25

8.12+1.57
−1.00

Type II 103 0.024 42.87 4.72+0.60
−0.70

1.78+0.24
−0.17

4.90−0.70
+0.20

HL 99 0.054 43.67 13.92+5.48
−6.69

1.41+0.15
−0.19

15.63+1.57
−2.57

LL 100 0.023 42.55 3.37+0.51
−0.68

1.86+0.25
−0.17

3.56+0.15
−0.66

aNumber of sources in the Sample.
br0 obtained by freezing γ=1.7 in the fit.
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Table 2: Bias factor and Mass of the Dark matter halos hosts of the AGN in the samples.
Sample ba

X Mb
DM τc

AGN log(MBH )d) log(ǫ)e M∗f

log(M/ h−1M⊙) Gyr log(M/M⊙) 1010/M⊙

All 1.21+0.06
−0.07

13.15+0.09
−0.13

0.68 8.51 -1.96 18.2

Type I 2.01+0.15
−0.13

13.94+0.15
−0.21

4.99 8.79 -2.02 31.6

Type II 1.08+0.26
−0.29

12.92+0.11
−0.38

1.32 7.96 -1.85 6.38

HL 2.28+0.95
−0.90

14.08+0.37
−0.70

3.91 9.28 -2.12 80.5

LL 0.80
+0.06
−0.16

11.89
+0.34
−∞

0.24 7.43 -1.68 2.28

aAGN bias factor
bMass of the typical Dark matter halo hosting an AGN
cAGN duty ciycle in Gyr
dBlack hole mass
eEddington ratio
fStellar mass of the bulge

the duty cycle of the AGN, τAGN(z) = nAGN (L,z)
nDMH(M,z)

τH(z). Where τH(z) is the Hubble time

at a given redshift2. For the whole sample at z∼0, nDMH ∼6.7×10−4 Mpc−3 (Hamana et

al. 2002) and nAGN ∼3.4×10−5 Mpc−3 (Sazonov et al. 2007) which leads to an estimate of

τAGN(z = 0) ∼0.68 Gyr. To fully characterize our sample, we derived the average properties

of the active BHs and their host galaxies. By using the bolometric correction prescribed

by Hopkins et al. (2007) we estimated from < LX >, < LBol > and < LB > (B band

luminosity). LB is related to the black holes mass and the stellar mass of the host galaxy

via scaling relations (Marconi & Hunt 2003). From < MBH > we derived < LEdd > and the

Eddington rate ǫ=< LBol > / < LEdd > (see Table 2 for a summary). We point out that the

estimates obtained above have several limitations which mostly arise from the uncertainties

on scaling relations and from the broad range of luminosities sampled here. We therefore

consider these values as estimate for the “average” local AGN population.

5. Summary and discussion

In this letter we report on the measurement of clustering of 199 AGN in the local

Universe using the Swift/BAT all-sky survey sample. This result gives, for the first time,

an unbiased picture of the z=0 DMH-galaxy-AGN coexistence/evolution. We obtained a

correlation length r0=5.56+0.49
−0.43 Mpc/h and γ=1.64+0.07

−0.08. We measured the ACF for Type

2 This is an upper limit obtained by assuming that the lifetime of the DM halo is of the order of τH(z)
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I and Type II AGN and found a significant difference in their correlation lengths. We

have measured a marginally significant higher r0 for high luminosity AGN than for the low

luminosity ones. We propose that the observed difference in Type I vs. Type II clustering

is driven by the intrinsic higher < LX > of Type I AGN as we show a marginal evidence

of a correlation between r0 and LX . We estimated the typical mass of the DMH hosting an

AGN of the order log(MMDH)∼13.15 h−1M/M⊙. In Fig. 3 we show the bias-redshift plane

results from AGN and galaxy surveys (references in the figure). In the same plot we show

the expected evolution of different DMH masses. We compared only bias values of studies

that rely on the real space correlation function ξ(r) (values of σ8,AGN/GAL from Krumpe et

al. 2010). This approach allows us to compare all different clustering studies on a common

basis.

The majority of the X-ray surveys agree with a picture where AGN are typically hosted

in DM halos with mass of the order of 12.5 h−1M/M⊙ < log(MMDH)<13.5 h−1M/M⊙ which

is the mass of moderately poor group. Optically selected AGN instead reside in lower density

environment and of the order of the log(MMDH)∼12.5 h−1M/M⊙. Another interesting aspect

is that X-ray selected AGN samples (including ours) cluster similarly to red galaxies and

that LL AGN or type II AGN are found typically in less massive environments. On the

contrary HL AGN and Type I AGN are hosted in massive galaxies in massive DM halos

(clusters).

We estimated that Swift-BAT AGN are powered by black holes with a typical mass

log(MBH/M⊙) ∼8.5, accreting at very low Eddington ratio (i.e. ∼0.01 LEdd) and that they

are hosted by massive galaxies with mass of the order ∼ 2× 1011 M/M⊙. These properties,

except ǫ, scale with < LX > and Type (HL and Type I are hosted in higher mass DMH in

more massive galaxies with bigger black holes). The upper limits on the duty cycle suggest

that these AGN are shining since at least for 0.2-1.2 Gyr 3.

We then tested the AGN merger-driven triggering paradigm by comparing the theoret-

ical predictions for AGN clustering of the model of Marulli et al. (2008) and Bonoli et al.

(2009) with our results on the whole sample. The theoretical model is based on the assump-

tion that AGN activity is triggered by galaxy mergers and the lightcurve associated to each

accretion event is described by an Eddington-limited phase followed by a quiescent phase

modeled after Hopkins et al. (2005). Applied to the Millennium Simulation (Springel et al.

2005), such model has been shown to be successful in reproducing the main properties of the

black hole and AGN populations (Marulli et al. 2008) and the clustering of optical quasars

(Bonoli et al. 2009). Using this model, we computed the expected correlation length of a

3HL and type I estimate may be wrong because of the relatively young age of 1014 (M/M⊙) DMH
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sample of simulated AGN at z∼0 with intrinsic Lbol luminosities similar to the ones of our

observed AGN. The model predicts a clustering length r0=5.68±0.08 which is in agreement

within 1σ with our measurement.

By merging the observational evidences and the model predictions, a plausible scenario

for the history of local AGN is the following:

• Swift-BAT AGN switched on about 0.7 Gyr Ago after a galaxy merger event.

• They shine in an Eddington-limited regime for the first part of their lives where they

gain most of their mass.

• In the second phase of their lives (i.e. after 0.2-0.5 Gyr) they start to accrete with lower

and lower efficiency. Their luminosity drops because of the decreased gas reservoirs.

• At z∼0 they have grown to∼108−9 M/M⊙ SMBHs, shining as moderately low-luminosity

AGN at low accretion rates.

NC thanks Gigi Guzzo, Roberto Gilli , Angela Bongiorno and Simon White for the

useful comments. Support from NASA NNX07AT02G, CONACyT 83564, PAPIIT IN110209

is aknowledged.
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