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The unusual helium-rich (type Ib) supernova SN 2005E is distinguished from any supernova

hitherto observed by its faint and rapidly fading light curve, prominent calcium lines in late-

phase spectra and lack of any mark of recent star formation near the supernova location.

These properties are claimed to be explained by a helium detonation in a thin surface layer

of an accreting white dwarf (ref. 1). Here we report on observations of SN 2005cz appeared

in an elliptical galaxy, whose observed properties resemble those of SN 2005E in that it is
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helium-rich and unusually faint, fades rapidly, shows much weaker oxygen emission lines

than those of calcium in the well-evolved spectrum. We argue that these properties are best

explained by a core-collapse supernova at the low-mass end (8−12M⊙) of the range of massive

stars that explode (ref. 2). Such a low mass progenitor had lost its hydrogen-rich envelope

through binary interaction, having very thin oxygen-rich and silicon-rich layers above the

collapsing core, thus ejecting a very small amount of radioactive 56Ni and oxygen. Although

the host galaxy NGC 4589 is an elliptical, some studies have revealed evidence of recent star-

formation activity (ref. 3), consistent with the core-collapse scenario.

We discovered SN 2005cz on 2005 July 17.5 UT in the ellipticalgalaxy NGC 4589. The

spectrum of SN 2005cz taken on July 28 is well consistent withpost-maximum spectra of type

Ib supernovae (SNe Ib)4. Thus, SN 2005cz would originate from a core-collapse of an envelope-

stripped massive star. We tentatively assume that the epochof our first spectrum is att = +26

days, wheret is time after the maximum brightness (Fig. 1; see SI§1).

The late-time spectrum of SN 2005cz att = +179 days is very unique; unlike most of

other SNe Ibc/IIb SN 2005cz shows much stronger [Ca II]λλ7291, 7323 than [O I]λλ6300, 6364

(Fig. 2; see ref. 12, 13 for other SNe with large Ca/O and SI§3 for comparative discussion.).

Oxygen is ejected mostly from the oxygen layer formed duringthe hydrostatic burning phase; its

mass depends sensitively on the progenitor mass and is smaller for lower-mass progenitors. On the

other hand, Ca is explosively synthesized during the explosion. Theoretical models predict that the

stars having main-sequence masses ofMms = 13M⊙ and18M⊙ produce0.2 and0.8M⊙ of O, and
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0.005 and0.004M⊙ of Ca, respectively (e.g., ref. 14). Therefore, the Ca/O ratio in the SN ejecta

is sensitive to the progenitor mass15,16. To produce the extremely large Ca/O ratio, the mass of

the progenitor star of SN 2005cz should be smaller than of anyother SNe Ib reported to date. For

both SNe 1993J and 1994I that show weaker [Ca II] than [O I] (Fig. 2), the progenitor’s masses

are estimated to be∼ 12− 15M⊙ (ref. 17,18), which are the smallest among well-studied samples

with [Ca II]<[O I] (e.g., ref. 16,19,20; see also Supplementary Fig. 3). Thus, the progenitor mass

of SN 2005cz is likely≤ 12− 15M⊙.

SN 2005cz is intrinsically fainter than the well-studied SNIc 1994I by∆R ∼ 1.5 mag (Fig.

3). In the pseudo bolometric light curve, the decline rate from the intermediate to the late phase

is consistent with(M2
ej,⊙/E51) ≤ 1, and the luminosity requires thatM(56Ni) ≤ 0.005− 0.02M⊙

(Fig. 4). Additionally,(Mej,⊙/E51) ∼ 1 is suggested from the line velocity (Fig. 4 legend). We

thus estimateMej,⊙ ≤ 1 andE51 ≤ 1, indicating a small progenitor mass (≤ 12M⊙; ref. 27, 2).

To explain the above peculiarities, we suggest a star withMms = 10 − 12M⊙ as the most

likely origin of SN 2005cz. If such a star had been single, itsmass (and thus its mass loss rate)

would have been too small to lose most of its H-rich envelope.Thus this star must have been

in a close binary system. Then it became a He star of∼ 2.5M⊙ after undergoing Roche lobe

overflow. This He star formed a C+O core of∼ 1.5M⊙, which marginally exceeded the lower

mass limit to form a Fe core28,29. The overlying He layer had∼ 1M⊙. Eventually, the He star

underwent Fe core-collapse to explode as a SN Ib, leaving a∼ 1.5M⊙ neutron star behind. The

ejecta had∼ 1M⊙, consistent with the observed constraint. The ejecta consists mostly of unburned
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material in the He layer and a small amount of explosively synthesized elements. The explosive

burning products contain some Fe, Ca, S, and Si, but not much oxygen. Also the ejected part

of the unburned oxygen-rich layer is extremely small. This scenario can explain the peculiar

nebular spectrum with large [Ca II]/[O I] ratio, as well as the low luminosity and its relatively

rapid decrease.

An alternative candidate of the progenitor is a star withMms ∼ 8 − 10M⊙ in a close binary

system. Such a star forms an electron-degenerate ONeMg coreand undergo electron-capture-

induced collapse29. The most likely scenario to realize a SN Ib would be the merging of an ONeMg

white dwarf and a He white dwarf. The delay time between the star formation and the merging

could be long enough to explain the origin of both SN 2005cz and recently reported 2005E1 with

this scenario.

As for the host galaxy problem, the∼ 10M⊙ star model is found to be consistent with the

properties recently-inferred for the host galaxy of SN 2005cz. It is still a genuine E2 galaxy30, but

has a relatively young stellar population with life times of∼ 107− 108 years3 and SN Ib 2005cz is

likely the end product of one of these young stars (See SI§2).

The mass range of 10-12M⊙ has not been theoretically investigated in much detail so far,

but, as SN 2005cz suggests, the SNe resulting from these stars may have a very special abundance

pattern in the ejecta and play an important role in the chemical evolution of galaxies (see SI§3).

4



1. Perets, H. B. et al., A new type of stellar explosion,Nature, submitted, arXiv:0906.2003

(2009).

2. Smartt, S. J., Progenitors of core-collapse supernovae,Ann. Rev. Astron. Astrophys., 47, 63-

106 (2009).

3. Zhang, Y., Gu, Q.-S. & Ho, L. C., Stellar and dust properties of local elliptical galaxies: clues

to the onset of nuclear activity,Astron. Astrophys. 487, 177-183 (2008).

4. Leonard, D. C., Supernova 2005cz in NGC 4589,IAU Circ. 8579 (2005).

5. Branch, D. et al., Direct Analysis of Spectra of Type Ib Supernovae,Astrophys. J. 566, 1005-

1017 (2002).

6. Barbon, R. et al., SN 1993J in M81: One year of observationsat Asiago,⁀Astron. Astrophys.

Suppl.110, 513-519 (1995).

7. Filippenko, A. V. et al., The Type Ic supernova 1994I in M51: Detection of helium and spectral

evolution,Astrophys. J. 450, L11-L15 (1995).

8. Sauer, D. N. et al., The properties of the ‘standard’ Type Ic supernova 1994I from spectral

models,Mon. Not. R. Astron. Soc. 369, 1939-1948 (2006).

9. Maeda, K. et al., Asphericity in Supernova Explosions from Late-Time Spectroscopy,Science

319, 1220-1223 (2008).

10. Phillips, M. M. et al., The peculiar SN 2005hk: Do some type Ia supernovae explode as

deflagrations?,Publ. Astron. Soc. Pacif. 119, 360-387 (2007).

5

http://arxiv.org/abs/0906.2003


11. Valenti, S. et al., A low energy core-collapse supernovawithout a hydrogen envelope,Nature

459, 674-677 (2009).

12. Filippenko, A. V. et al., Supernovae 2001co, 2003H, 2003dg, and 2003dr,IAU Circ. 8159, 2

(2003).

13. Foley, R. J. et al., SN 2008ha: An extremely low luminosity and exceptionally low energy

supernova,Astron. J. 138, 376-391 (2009).

14. Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C. & Maeda, K., Nucleosynthesis yields

of core-collapse and hypernovae, and galactic chemical evolution,Nucl. Phys. A, 777, 424-458

(2006).

15. Fransson, C. & Chevalier, R. A., Late emission from supernovae: A window on stellar nucle-

osynthesis,Astrophys. J. 343, 323-342 (1989).

16. Maeda, K. et al., SN 2006aj Associated with XRF 060218 at Late Phases: Nucleosynthesis

signature of a neutron-driven explosion,Astrophys. J. 658, L5-L8 (2007).

17. Shigeyama, T. et al., Theoretical light curves of type IIb Supernova 1993J,Astrophys. J. 420,

341-347 (1994).

18. Nomoto, K. et al., A carbon-oxygen star as progenitor of the type-Ic supernova 1994I,Nature

371, 227-229 (1994).

19. Mazzali, P. A., Nomoto, K., Patat, F. & Maeda, K., The nebular spectra of the hypernova SN

1998bw and evidence for asymmetry,Astrophys. J. 559, 1047-1053 (2001).

6



20. Mazzali, P. A. et al., The aspherical properties of the energetic type Ic SN 2002ap as inferred

from its nebular spectra,Astrophys. J. 670, 592-599 (2007).

21. Richmond, M. W. et al.,UBV RI photometry of the type Ic SN 1994I in M51,Astrophys. J.

111, 327-339 (1996).

22. Stritzinger, M. et al., The He-rich Core-collapse Supernova 2007Y: Observation from X-ray

to Radio Wavelengths,Astrophys. J. 696, 713-728 (2009).

23. Botticella, M. T. et al., SN 2008S: an electron capture SNfrom a super-AGB progenitor?,

Mon. Not. R. Astron. Soc., accepted, arXiv: 0903.1286 (2009).

24. Iwamoto, K. et al., Theoretical light curves for the TypeIc Supernova SN 1994I,Astrophys. J.

437, L115-L118 (1994).

25. Patat, F. et al., The Metamorphosis of SN 1998bw,Astrophys. J. 555, 900-917 (2001).

26. Yoshii, Y. et al., The optical/near-infrared light curves of SN 2002ap for the first 140 days after

discovery,Astrophys. J. 592, 467-474 (2003).

27. Tanaka, M. et al., Nebular phase observations of the TypeIb Supernova 2008D/X-ray transient

080109: Side-viewed bipolar explosion,Astrophys J. 700, 1680-1685 (2009).

28. Nomoto, K. & Hashimoto, M., Presupernova evolution of massive stars,Phys. Rep. 163, 13-36

(1988).

29. Nomoto, K., Evolution of 8-10 solar mass stars toward electron capture supernovae. I - For-

mation of electron-degenerate O + Ne + Mg cores,Astrophys. J. 277, 791-805 (1984).

7



30. Hakobyan, A. A. et al. 2008, Early-type galaxies with core collapse supernovae,Astron. As-

trophys. 488, 523-531 (2008).

Acknowledgements We would like to thank D. Leonard for permission to publish his early-time spectrum

of SN 2005cz. We also thank S. Valenti for permission to use their spectra of SN 2008ha. We gratefully

acknowledge advice and help from P. A. Mazzali through a series of this study. This work is based on

observations collected at the 2.2-m Telescope at the Calar Alto Observatory (Sierra de Los Filabres, Spain),

at the Keck Telescope, and at Subaru Telescope (operated by the National Astronomical Observatory of

Japan). We are grateful to the staff members at the observatories for their excellent assistance, especially to

T. Sasaki, K. Aoki, G. Kosugi, T. Takata and M. Iye. This research is supported by World Premier Inter-

national Research Center Initiative (WPI Initiative), MEXT, Japan, and by the Grant-in-Aid for Scientific

Research of the JSPS and MEXT. M.T. is supported through the JSPS (Japan Society for the Promotion of

Science) Research Fellowship for Young Scientists. J.D. issupported by the NSFC and by the 973 Program

of China.

Author Contributions K.S.K., K.M., K.N., J.D. and E.P. organized the observations and discussion.

K.M., K.N and K.S.K. have written the manuscript. K.S.K., S.T., and K.I. are responsible for data acquisi-

tion and reduction; J.D. and E.P. were the PIs of the relevantSubaru programs, S05B-132 and S05B-054,

respectively. M.T., S.T. contributed to discussions. T.H.provided expertise on data acquisition at Subaru

Telescope.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence Correspondence and requests for materials should be addressed to K.S.K. (email:

8



kawabtkj@hiroshima-u.ac.jp).

4,000 5,000 6,000 7,000 8,000 9,000 10,000

0.00E+000

2.00E-016

4.00E-016

6.00E-016

8.00E-016

1.00E-015

1.20E-015

1993J +24

1994I +26

2000H +29

HeI

2005cz

1994I (Ic) +7

1993J (IIb) +8

2000H (Ib) +8

 

 
R

el
at

iv
e 

Fl
ux

 +
 C

on
st

.

Rest Wavelength (Å)

9



4,000 5,000 6,000 7,000 8,000 9,000

0.00E+000

4.00E-017

8.00E-017

1.20E-016

1.60E-016

2.00E-016

SN I(?) 2008ha, +65

SN Ia-pec 2005hk, +232

[Ca II]
[O I]

SN Ic 1994I, +147

SN IIb 1993J, +203

SN Ib 2005cz, +179

SN Ib 2004dk, +392*

 

 

R
el

at
iv

e 
Fl

ux
 +

 C
on

st
.

Rest Wavelength (Å)

10



0 60 120 180 240 300 360
-8

-10

-12

-14

-16

-18

-20

0 20 40 60
-13

-14

-15

-16

-17

 

 

 

 

2008ha (I?)

2005cz (Ib)

2007Y (Ib)

2008S (IIn)
1994I + 1.5 (Ic)

1993J (IIb)

1994I (Ic)

 

 

A
bs

ol
ut

e 
R

-b
an

d 
M

ag
.

Days since the Explosion

11



8

8

8

12



Figure 1 Early-time spectrum of SN Ib 2005cz compared with other envelope-stripped

SNe at similar phases. The spectrum of SN 2005cz (red) is taken on 2005 Jul 28. Also

shown are the spectra of SN Ib 2000H at t = +8 (black) and t = +29 days (gray)5, SN

IIb 1993J at t = +8 days (blue) and t = +24 days (cyan)6, and SN Ic 1994I at t = +7

days (magenta) and t = +26 days (green)7,8. The SN Ib is characterized by strong helium

lines and weak silicon lines, while in the SN Ic both helium and silicon lines are weak.

The SN IIb shows a SN II-like spectrum characterized by the strong hydrogen features at

early times, and becomes SN Ib/c-like at late times. All these SNe are thought to have

partly or fully stripped off their outer layers of hydrogen and helium before the explosions.

The overall appearance of spectral features in SN 2005cz is quite similar to those of the

SN Ib 2000H at t = +29 days, the SN IIb 1993J at t = +24 days (despite its stronger H

lines), and also the typical SN Ic 1994I at t = +26 days (despite its lack of the strong He

lines). The spectra are corrected for the host redshift and the reddening. We adopted a

total (Milky Way + host) reddening of E(B−V ) = 0.13 (0.03+0.1) mag in SN 2005cz, 0.23

(0.23 + 0.0) mag in SN 2000H, 0.45 mag in SN 1994I, and 0.3 mag in SN 1993J. The flux

is on an absolute scale for SN 2005cz, calibrated with the Calar Alto photometry obtained

four nights later. For the comparison SNe, the fluxes are on an arbitrary scale and con-

stants are added for presentation. The positions of the prominent He I lines are shown by

the dotted lines. The spectrum of SN 2005cz is well consistent with the post-maximum

spectra of SNe Ib.

Figure 2 Calcium-rich late-time spectrum of SN Ib 2005cz. It is taken on 2006 Dec
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27 (t = +179 days). Also shown are SN Ib 2004dk at t ∼ 390 days9, SN IIb 1993J at

t = +203 days6, SN Ic 1994I at t = +147 days8, peculiar SN Ia 2005hk at t = +232 days10,

and peculiar SN I(?) 2008ha at t = +65 days11. As time goes by, the ejecta become trans-

parent to optical light, following the expansion and density decrease. Late-time spectra of

SNe Ib/c are thus characterized by various emission lines, mostly of forbidden transitions.

The spectrum of SN 2004dk is typical for SNe Ib/c at late times (e.g., see fig.2 of ref.

9). The spectra are corrected for the host redshift, but not for reddening. The flux is on

an approximate absolute scale for SN 2005cz, calibrated with the spectroscopic standard

star (but not with photometry), while it is on an arbitrary scale for the comparison SNe.

The asterisk of SN 2004dk denotes the days since its discovery (not maximum light). It is

very unique that SN 2005cz shows only weak [O I] λλ6300, 6364 and much stronger [Ca

II] λλ7291, 7323 than [O I]. The relatively weak Ca II IR triplet compared with other SNe

might suggest a lower density ejecta of SN 2005cz. It is interesting that the [Ca II] line

is considerably narrow (half-width at half-maximum 0.005c) compared with the blueshift of

the absorption in Ca II IR triplet in the early-time spectrum (∼ 0.04c).

Figure 3 Absolute R-band light curve of rapidly-fading SN Ib 2005cz. It is shown by

filled red circles and compared with those of SN IIb 1993J (cyan triangles), SN Ic 1994I

(blue stars), SN Ib 2007Y (green squares), SN IIn 2008S (black open circles), and SN I (?)

2008ha (orange open squares). Also shown is the light curve of SN 1994I, but dimmed

by 1.5 magnitudes (magenta open stars). For SN 2005cz, the first three points denote

unfiltered magnitudes which are approximately R-band magnitudes. The two points with
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downward arrows are 3σ upper-limits. The distance moduli and total reddening values

are taken as follows: [µ, E(B-V)] = (32.23 mag, 0.13 mag) for 2005cz (see SI §1), (27.8

mag, 0.3 mag) for 1993J, (29.6 mag, 0.45 mag) for 1994I, (31.43 mag, 0.112 mag) for

2007Y, (31.55 mag, 0.076 mag) for 2008ha, and (28.78 mag, 0.687 mag) for 2008S. We

assume RV = 3.1 to convert the colour excess to the R-band extinction. The data points,

as well as the distance and the reddening, are from the literature 6,11,21,22,23. The putative

explosion date for SN 2005cz is assumed to be 2005 Jun 17, 30 days before the discovery

and 15 days before maximum brightness (SI §1). The LC tail of SN 2005cz is similar to

those of SN IIn 2008S and SN Ic 1994I (dimmed by 1.5 mag). From this, we estimate the

mass of 56Ni as M(56Ni) = 10−1.5/2.5 × 0.07M⊙ ∼ 0.018M⊙ (M(56Ni) = 0.07M⊙ is for SN

1994I24).

Figure 4 Pseudo bolometric light curve of SN Ib 2005cz suggests that the ejecta has

a low mass, low kinetic energy, and a tiny amount of 56Ni. The light curve (filled red circles)

is compared with a simple γ-ray and positron deposition model with M(56Ni) = 0.02M⊙

and M2
ej,⊙/E51 = 1 (red line), where E51 is the kinetic energy EK measured in unit of

1051 ergs. We also plot the bolometric light curve of SN Ic 1994I (open black squares)21

and a simple deposition model with M(56Ni) = 0.07M⊙ (black line) for comparison. Ex-

cept for the last point (upper-limit), we simply assume the bolometric correction BC ≡

MBol −MR = 0.5, derived from SNe 1998bw, 2002ap and 2008D at similar epochs 25,26,27.

As this is a very crude estimate, we adopt an error bar of ±0.5 mag for the bolometric

luminosity. The deposition models adopt the γ-ray opacity for the Compton scattering
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(τγ ∝ M2
ejEK

−1t−2) and assuming the full deposition of positrons. The decline rate from

the intermediate to the late phase is consistent with (M2
ej,⊙/E51) ≤ 1. Combining this

expression with (Mej,⊙/E51) ∼ 1 as indicated by the similarity in the absorption velocity

seen in SN 2005cz and those in SNe 1993J and 1994I (Fig. 1, Supplementary Fig. 1),

we estimate Mej,⊙ ≤ 1 and E51 ≤ 1. The luminosity requires that M(56Ni) ≤ 0.02M⊙. Note

that the estimate for M(56Ni) is sensitively affected by the explosion date. The upper limit

to M(56Ni) is only M(56Ni) ≤ 0.005M⊙, if the explosion date is as late as 2005 Jul 15 (just

a few days before the discovery).
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Supplementary Information

1 Observation

We discovered SN 2005cz on 2005 July 17.5 UT at 13′′ offset from the nucleus of the el-

liptical galaxy NGC 4589. No object brighter than 18.5 mag was visible at the SN position

on 2005 June 20 (ref. 31).

The discovery and subsequent unfiltered images were taken with a 0.6-m reflector

and a CCD (Kodak KAF-1001E) at Itagaki Astronomical Observatory (IAO) in Yamagata,

Japan. The derived magnitudes are approximately consistent with R magnitudes.

Other imaging observations were performed by the Calar Alto 2.2-m telescope (CA2.2)

equipped with the Calar Alto Faint Object Spectrograph (CAFOS) in B, V , R and I bands,

and by the 8.2-m Subaru Telescope equipped with the Faint Object Camera and Spec-

trograph (FOCAS32) in B and R bands. Imaging observations with Subaru were done in

photometric conditions; standard stars around PG 1525-071 in August 2005 and around

PG 0942-029 in December 2005 were observed for photometric calibration.

The data reduction was performed using the IRAF package DAOPHOT. Since SN

2005cz was close to the bright core of the host galaxy, we subtracted the host galaxy

component prior to the photometry for more reliable photometry. For the unfiltered images

at IAO, we used the pilot survey image taken with the same system on 2005 May 25 as
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the host template.1 For the CA2.2 and Subaru images, we took data of the same field, as

well as the standard stars around PG 0918+029, by CA2.2+CAFOS in a photometric night

on 2009 Feb 19 and used them as the host galaxy template after point-spread-function-

matching.

The derived R (and unfiltered) magnitudes are shown in the Supplementary Table 1.

The other magnitudes are B = 21.18± 0.30 mag, V = 19.69± 0.18 mag, I = 17.72± 0.11

mag on 2005 Aug 1, and B = 21.0 ± 0.2 mag on 2005 Aug 10. On 2005 Jul 27 and Dec

27, the SN was not detected and we just derived 3σ upper-limit for the SN luminosity. For

the Dec 27 data, we derived more reliable upper-limit of the bolometric luminosity (Fig. 4)

as follows; first, we subtracted a continuum from the Subaru spectrum and then scaled it

to the observed upper-limit (R > 22.1). We then integrated the flux at optical wavelengths.

Finally, we assumed that the NIR contribution was 30% of the optical luminosity, a typical

value seen in SNe Ib/c at late phases33.

The early-time spectrum of SN 2005cz was obtained on 2005 Jul 28 UT with the 10-

m Keck I Telescope equipped with the Low-Resolution Imaging Spectrometer (LRIS34).

The total exposure time was 500 s. The seeing was ∼ 1′′.2 and the airmass was relatively

large, ∼ 2.3. The wavelength resolution measured from sky lines was 9 Å. The late-phase

spectrum was obtained with Subaru+FOCAS on 2005 Dec 27 UT. The total exposure

time was 1800 s. The seeing was ∼ 1′′.0 and the airmass was ∼ 1.8. The wavelength

1The discovery magnitude of 16.0 reported in IAUC 8569 included a large bias caused by the steep brightness

distribution of the host galaxy core.
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resolution was 11 Å. These data were reduced with IRAF in a standard manner for long-

slit spectroscopy.

For the extinction within our Galaxy and the host galaxy, we adopted E(B−V ) = 0.03

and 0.1 mag, respectively. The former is inferred from the infrared dust map35, while the

latter is estimated from the equivalent width of Na I D absorption feature in the early-

phase spectrum (EW ≤ 0.34Å) and an empirical formula36. Although the formula allows

for a range of E(B−V ) ≤ 0.044−0.13 mag, the extinction within the inner 3′′ of NGC 4589

has been estimated to be E(B − V ) ∼ 0.1 mag by the spectrum template fitting37. Since

the SN position is reasonably separated from the dusty bar near the nucleus of the host

galaxy, the extinction should not be large there. Therefore, we take E(B − V ) = 0.1 mag

as a reference value for the host extinction.

We assume that t = +26 days as the epoch of the first spectrum (Jul 28) because

of the overall resemblance of the spectral features with SN Ic 1994I at t = +26 days and

with SN Ib 2000H at t = +29 days. This estimate still includes a large uncertainty; e.g.,

the He I line velocities of ∼ 9, 000−12, 000 km s−1 on Jul 28 (Supplementary Fig. 1) would

be more typical for SNe Ib at t = 0 to +10 days. Since the estimation for 56Ni mass is

sensitively affected by the explosion date, we also consider an extreme case in which the

discovery was close to the explosion date, and give the possible range of M(56Ni) (see

Fig. 4 legend). Anyway, the choice here does not affect our main conclusions.
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Supplementary Table 1: Summary of observation of SN 2005cz

Date MJD Epoch Telescope+ Setup R

(UT) (days) Instrument (mag)

2005 May 25.7 53516.7 — IAO 0.6 Imaging(unfiltered) —

2005 Jul 17.5 53568.5 +15.5 IAO 0.6 Imaging(unfiltered) 17.3± 0.1

2005 Jul 19.5 53570.5 +17.5 IAO 0.6 Imaging(unfiltered) 17.4± 0.1

2005 Jul 27.5 53578.5 +25.5 IAO 0.6 Imaging(unfiltered) > 18.3

2005 Jul 28 53579 +26 KeckI+LRIS Spectropolarimetry —

2005 Aug 1.0 53583.0 +30.0 CA2.2+CAFOS Imaging(BVRI) 18.56± 0.12

2005 Aug 10.3 53592.3 +39.3 Subaru+FOCAS Imaging(BR) 18.93± 0.05

2005 Dec 27.6 53731.6 +178.6 Subaru+FOCAS Imaging(BR)/Spectroscopy > 22.1

2009 Feb 19.0 54881.0 — CA2.2+CAFOS Imaging(BVRI) —

2 Stellar population in the elliptical galaxy NGC 4589

It is apparently puzzling that SN Ib 2005cz appears in the elliptical galaxy NGC 4589 if it

is the Fe core-collapse event, because elliptical galaxies generally contain only low-mass,

old population stars. Recently, Hakobyan et al.29 reexamined the morphology of the host

galaxies of 22 core-collapse SNe (i.e., type II/Ibc) which had been previously classified as

Elliptical or S0 galaxies. They concluded that 19 cases were simply misclassifications of

the host galaxy type. NGC 4589 remains a genuine E2 galaxy.

However, from the literature search related to NGC 4589, Hakobyan et al. pointed

out that there is a Low Ionization Nuclear Emission-line Region (LINER) activity (Type

“L2”38), and suggested the host to be a merger remnant. There is also an evidence for
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unusual distribution of interstellar dust from HST and AKARI studies39,40, being consistent

with the merger scenario. Thus, the appearance of the SN Ib in this particular early-type

galaxy may not conflict with the general scenario of stellar evolution and explosion.

According to a population synthesis model for the integrated light from the host

galaxy30, it has been suggested that about 90% of the host flux is contributed by an old

population with life times longer than 1010 years (i.e., Mms ≤ 1M⊙), whereas a relatively

young population with life times ∼ 107 − 108 years (i.e., Mms ≤ 10M⊙) contributes to the

remaining ∼ 10%. Thus, it is likely that SN Ib 2005cz is the end product of one of these

young stars, which were produced by the galaxy merger about ∼ 108 years ago.

3 Progenitors of faint, Ca-rich supernovae

In addition to SN 2005cz, there are examples of a faint, hydrogen deficient, possibly core-

collapse SN which shows the large Ca/O line ratios, e.g., SNe 1997D, 2005E, 2005cs,

2005hk, and 2008ha11,12,10,1. As discussed below, however, they have very different ob-

servational features except for the late-time Ca/O ratio. Thus it may not be the case that

the origin of the large Ca/O ratio and the progenitors are the same for all these SNe.

SN 2005hk belongs to a subclass of peculiar SNe Ia, SN 2002cx-like class9,41, char-

acterized by low luminosities and low expansion velocities (∼ 5, 000 km s−1). The early-

phase spectra of SN 2005hk are dominated by low-velocity permitted lines of Fe, without

any resemblance to SN 2005cz whose velocity and spectral features are those of typical
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SNe Ib (Supplementary Fig. 2). Thus, it is unlikely that the progenitor of SN 2005hk is the

same as SN 2005cz.

The early spectra of SN 2008ha are similar to SN 2005hk, but show even much

lower velocities (∼ 2, 000 km s−1 for most lines, and ∼ 5, 000 km s−1 for Ca II IR)10,12.

No clear detection of He is reported. This is totally different from the early spectrum of

SN 2005cz that shows strong He lines and the expansion velocity of ∼ 10, 000 km s−1

(Supplementary Fig. 1). The low expansion velocity of SN 2008ha is consistent with

the fall-back SN model with a massive, black-hole-forming progenitor rather than the less

massive progenitor model44. It has also been claimed to be an explosion of a white dwarf

like other SNe Ia based on detection of silicon and sulfur features in the early-phase45.

Thus, the origin of SN 2008ha is still controversial.

Adding to this, we should note that the reported “late-time” spectra of SNe 2005hk

and 2008ha are not fully nebular (Fig. 2), which is in contrast to the case of SN 2005cz.

Thus, it is possible that the O/Ca ratio is affected by the attenuation within the ejecta.

This would imply that the weak (or absence of) [O I] in these SNe would not necessarily

indicate the small O-layer. This effect may also appear in SN 2005E to some extent, given

its relatively young age (∼ 2 months) of the reported late-time spectrum1. Our late-time

spectrum of SN 2005cz seems genuinely nebular, and thus the large Ca/O ratio is more

clearly the case than in other examples (except for SNe II; see ref. 2 and below).

For SNe 2005hk and 2008ha, it is also not clear whether the strong Ca lines in
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the late-phases are emitted from the newly-synthesized materials. The velocities of the

“nebular” lines are similar to those in the early-phase spectra12. In contrast, the velocity

of the nebular Ca lines in SN 2005cz (∼ 1, 500 km s−1) is much lower than that in the

early-phase (Supplementary Fig. 1), suggesting that the Ca lines are emitted from the

innermost region of the ejecta where the newly-synthesized Ca dominates the emission.

SNe 1997D and 2005cs are both faint SNe II with the slow expansion velocities

46,47. Although they do show the large Ca/O ratio in the nebular spectra, the comparison

with SN Ib 2005cz should be done carefully. SNe II generally show the Ca/O line ratio

being larger than SNe Ib/c, since Ca in the H-rich envelope can also contribute to [Ca

II] and Ca II IR triplet (e.g., ref. 14). A low mass progenitor is favoured for SN 2005cs,

while the progenitor of SN 1997D is still controversial. These progenitors may or may not

be consistent with the Ca/O line ratio in the nebular phase. Further study including the

emission from the H-rich envelope is necessary to use the Ca/O line ratio as an indicator

of the progenitor mass for SNe II.

Detailed composition structure should be the key to the understanding of the pro-

genitor and explosion mechanism of SN 2005cz. Deriving the detailed abundance from

the nebular spectrum, however, is highly model dependent (e.g., see the above discus-

sion for SNe II). Unfortunately, there is no strong Si or S line in optical wavelengths in the

nebular phase, which could in principal be used to discriminate different scenarios.

The existence of 2005cz-like SNe, which have ejected material with little O and a
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relatively large amount of Ca, may have important implications to the chemical evolution of

galaxies. In our Galaxy, a very Ca-rich, extremely metal-poor (EMP) halo star has recently

been discovered48. Such an EMP star may have formed from the debris of 2005cz-like

SNe. It would also be interesting to note that some dwarf galaxies contain EMP stars

whose abundance ratios between the alpha-elements and Fe are much smaller than the

halo stars49,50. The oxygen-poor 2005cz-like SNe might be related to the formation of

such EMP stars.

Current theoretical models still have lots of uncertainties and further observational

constraints are necessary to fully understand the final stage of the evolution of stripped

stars of different masses (See also Supplementary Fig. 3). The evolutionary scenario

of 10–12 M⊙ we propose in this paper (paragraph 5–6) is indeed similar to those have

applied for ordinary SNe Ibc from more massive than 12 M⊙. However, it is a new the-

oretical argument that 10–12 M⊙ low mass models can have distinct properties of low

M(56Ni) production, low explosion energy, and the large Ca/O (see ref. 2 for the similar

conclusions from observations of SNe II). These are quite different from more massive

models, and consistent with the new observation of SN 2005cz. Also, our suggestion to

connect the explosions in the ONeMg white dwarfs with SNe Ib is quite new (see also ref.

1). We also note that our discovery of SN 2005cz and the faint nature of the 10–12 M⊙

binary SN may solve the puzzle why SNe Ib from 10–12 M⊙ binary stars have not been

observed. Even though such low mass stars should be more abundant in the Universe

than more massive stars (e.g., the progenitor of SN 1994I), they may simply be missed
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because of faintness.
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4 Supplementary Figure 1
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A close-up plot of the He I λ5876 line in the early-phase spectrum of SN 2005cz and

some SNe for comparison. The horizontal axis denotes the line velocity normalized by

the speed of light. The blueshift of the absorption component reaches 0.3 − 0.4c for SN

2005cz.
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5 Supplementary Figure 2
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Early-time spectrum of SN 2005cz in comparison with SNe Ia. From top to bottom,

we show the normal SN Ia 1994D at t = +10 and +26 days (ref. 42), the faint SN Ia

1999by at t = +8 and t = +25 days (ref. 43), the peculiar SN Ia 2005hk at t = +13 and

t = +24 days (ref. 9), and the peculiar SN I? 2008ha at t = +12 and t = +21 days (ref.

10); none of them is similar to SN 2005cz on 2005 July 28 (presumably at t = +26 days).
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6 Supplementary Figure 3

8

8

The relation between progenitor mass and synthesized 56Ni mass7,16,23,51−68. The

three SNe shown by magenta symbols at the upper right of the panel are associated with

γ-ray bursts. These SNe and SN 1997ef are called hypernovae, with the definition that

the kinetic energy of the explosion exceeds 1052 erg. SN 2005cz locates roughly at the

bottom of the sequence from hypernova to normal SNe.
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