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ABSTRACT

One of the aims of the Low Frequency Array (LOFAR) Epoch ofdRé&ation (EoR) project
is to measure the power spectrum of variations in the intges$iredshifted 21-cm radiation
from the EoR. The sensitivity with which this power spectrcan be estimated depends on the
level of thermal noise and sample variance, and also on stersyatic errors arising from the
extraction process, in particular from the subtractiorooé§round contamination. We model
the extraction process using realistic simulations of tenwlogical signal, the foregrounds
and noise, and so estimate the sensitivity of the LOFAR Eqgieement to the redshifted 21-
cm power spectrum. Detection of emission from the EoR shbelpossible within 360 hours
of observation with a single station beam. Integrating érger, and synthesizing multiple
station beams within the primary (tile) beam, then enabte®wextract progressively more
accurate estimates of the power at a greater range of scalagdshifts. We discuss differ-
ent observational strategies which compromise betweethddmbservation, sky coverage
and frequency coverage. A plan in which lower frequenciesive a larger fraction of the
time appears to be promising. We also study the nature ofitigevithich foreground fitting
errors induce on the inferred power spectrum, and discussdoeduce and correct for this
bias. The angular and line-of-sight power spectra havermdifft merits in this respect, and we
suggest considering them separately in the analysis of [FOdta.
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1 INTRODUCTION in the temperature and ionized fraction of the gas, whichneea
that 21-cm studies may provide information on early soufes
ionization and heating, such as stars or mini-QSOs. Theogeri
during which the gas undergoes the transition from beingelsr
neutral to largely ionized is known as the Epoch of Reioizat
(EOR; e.g. Loeb & Barkana 2001; Benson et al. 2006; Furlanett
et al. 2006), while the period beforehand is sometimes knasvn
the cosmic dark ages. While the latter has perhaps the best-po
tial to give clean constraints on cosmology, the instrurméstom-
ing available in the near future are not expected to be semsit
enough at the appropriate frequencies to study this epdein-in

Studying 21-cm radiation from hydrogen at high redshiftel(F
1958, 1959; Hogan & Rees 1979; Scott & Rees 1990; Kumar, Sub-
ramanian & Padmanabhan 1995; Madau, Meiksin & Rees 1997)
promises to be interesting for several reasons. Fluctusiio in-
tensity are sourced partly by density fluctuations, measengs

of which may allow rather tight constraints on cosmologipat
rameters (Mao et al. 2008). They are also sourced by vamsmtio
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ferometrically. Several, though, are hoped to be able tdysthe
EoR (e.g. GMRT, MWA,? LOFAR,? 21CMA,* PAPER® SKA®),

but even so, their sensitivity is not expected to be sufficien
make high signal-to-noise images of the 21-cm emission én th
very near future. We seek, instead, a statistical deteci@ncos-
mological 21-cm signal, with the most widely studied statibe-

ing the power spectrum (e.g. Morales & Hewitt 2004; Barkana
& Loeb 2005; McQuinn et al. 2006; Bowman, Morales & Hewitt
2006, 2007; Pritchard & Furlanetto 2007; Barkana 2009; keical.
2008; Pritchard & Loeb 2008; Sethi & Haiman 2008). Our aim
in this paper is to test how well the 21-cm power spectrum can
be extracted from data collected with the Low Frequency yArra
(LOFAR), which is currently under construction. While thssa
general-purpose observatory, the EoR project, being oreOef
FAR’s Key Science Projects, has helped to drive the desigheof
instrument. We give some details on parameters of the imsnt
which are relevant to EoR observations in Section 2.2.

The quality of extraction is affected by several factors: dh-
servational strategy and the length of observations, whiéct
the volume being studied and the level of thermal noise; the a
ray design and layout; the foregrounds from Galactic andaext
galactic sources, and the methods used to remove their rictue
from the data (presumably by exploiting their assumed shrasts
as a function of frequency; see e.g. Shaver et al. 1999; Diddat
et al. 2002; Oh & Mack 2003; Zaldarriaga, Furlanetto & Heristju
2004); excision of radio-frequency interference (RFI) aadio
recombination lines; and, for example, the quality of pataion
and total intensity calibration for instrumental and igplosric ef-
fects. We will not study RFI or calibration here. We will, hever,
use simulations of the cosmological signal (CS), the faregds,
the instrumental response and the noise to generate Sgndagh
cubes — i.e. the intensity of 21-cm emission as a functionosf p
sition on the sky and observing frequency — and then attempt t
extract the 21-cm power spectrum from these cubes. We genera
data cubes realistic enough so that we can test differeroibg
strategies and methods of subtracting the foregroundsloakdat
the effect on the inferred power spectrum.

We devote the following section to describing the constounct
of the data cubes and giving a brief description of their titurent
parts. Then, in Section 3 we discuss the extraction of ther21-
power spectrum from the cubes, including our method forrsigbt
ing the foregrounds. In Section 4 we present our estimatéiseof
sensitivity of LOFAR to the 21-cm power spectrum, and discus
the character of the statistical and systematic errors esetles-
timates. We conclude in Section 5 by offering some thoughts o
what these results suggest about the merits of differergrotrgy
strategies and extraction techniques.

2 SIMULATIONS
2.1 Cosmological signal and foregrounds

We test the quality and sensitivity of our power spectrum ex-
traction using synthetic LOFAR data cubes, which have wvario

Giant Metrewave Telescope, http://www.gmrt.ncra.&.in/

Murchison Widefield Array, http://www.haystack.mit.edsi/arrays/mwa/
Low Frequency Array, http://www.lofar.org/

21 Centimeter Array, http://web.phys.cmu.edu/"past/

Precision Array to Probe the EoR, http://astro.berkethy-@backer/eor/
Square Kilometre Array, http://www.skatelescope.org/
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components. The first is the redshifted 21-cm signal which is
simulated as described by Thomas et al. (2009). The starting
point for this is a dark matter simulation df12® particles
in a cube with sides of comoving lengtt00 A~' Mpc. The
sides thus have twice the length of the simulations exhibite
by Thomas et al. (2009) and used in our previous work on
LOFAR EoR signal extraction (Harker et al. 2009a,b), alloyvi
us to probe larger scales. The assumed cosmological panaaet
(Qm, Qa, b, h, 05, n)=(0.238, 0.762, 0.0418, 0.73, 0.74, 0.951),
where all the symbols have their usual meaning. This leads to
a minimum resolved halo mass of aroufidx 10'° A= M.
Dark matter haloes are populated with sources whose prepert
depend on some assumed model. For this paper we assume the
‘quasar-type’ source model of Thomas et al. (2009), which is
better suited to this simulation than one assuming stedlarces
owing to the relatively low resolution, which raises the miom
resolved halo mass. The topology and morphology of reidioza
is different compared to a simulation with a stellar sourazla,
and the power spectrum is also slightly different. We might
expect quasar reionization to allow an easier detectiom stellar
reionization, since the regions where the sources are fewed
larger and more highly clustered, producing larger fludtunest
in the signal. This paper is concerned with the extractiohef
power in general, however, and the precise source propetie
not expected to affect our conclusions since the fitting appe
to be relatively unaffected by the difference in the souraaeh
(Harker et al. 2009b).

Given the source properties, the pattern of ionization ie-co
puted using a one-dimensional radiative transfer code rfiEtso
& Zaroubi 2008), which allows realizations to be generatedyv
rapidly in a large volume. If the spin temperature is suffitie
large, as we assume here, the differential brightness teriyse
between 21-cm emission and the CMB is given by (Madau et al.
1997; Ciardi & Madau 2003)

1
1+2\]2
S

8Ty, Q 0.24
K~ OO+ Oz (—0.042) KQ—) (

where ¢ is the matter density contrastur is the neutral hy-
drogen fraction, and the current value of the Hubble parame-
ter, Hy = 100h km s~* Mpc ™. The series of periodic simulation
snapshots from different times is converted to a continwhser-
vational cube (position on the sky versus redshift or otstémal
frequency) using the scheme described by Thomas et al. Y2009
In brief, the emission in each snapshot is calculated inhiéds
space (i.e. taking into account velocities along the linesight,
which cause redshift-space distortions). Then, at eackroiong
frequency at which an output is required, the signal is dated
by interpolating between the appropriate simulation bo¥és use
frequencies betweel21.5 and200 MHz, so we have a ‘frequency
cube’ of size200 L~ Mpc x 200 h~! Mpc x 78.5 MHz. To ap-
proximate the field of view of a LOFAR station, however, we ase
square observing window 6f x 5°, which corresponds to comov-
ing distances of arouné00 »~' Mpc at the redshifts correspond-
ing to EoR observations. We therefore tile copies of thelezgy
cube in the plane of the sky to fill this observing window, and i
terpolate the resulting data cube onto a grid sl x 256 x 158
points. This simplified treatment of the field of view imptigias-
sumes that the station beam is equal to unity everywherdrwith
a square window of frequency-independent angular size zara
outside. Since we plan to use only the top part of the primaanb
for EOR measurements, the sensitivity will vary relativelgwly
across the field of view. Our simulations of the CS restridiousx-
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Figure 1. The rms fluctuation in differential brightness temperatwa-
culated at the resolution of LOFAR, in our simulation of tlesmological
signal (CS) is shown as a function of redshift (solid line)r Eomparison,
we show the rms noise for an observing time of 600 hours peuéecy
channel, scaled down by a factor of 6 (dotted line). Note thatvertical
axis scale does not start at zero.

amining angular modes much smaller than the size of the bram i
any case, and so the main effect of this simplification is ighgly
decrease the overall level of noise compared to a more decura
beam model. As we progress to using larger simulations o€®e
which let us examine more angular modes, the effects of the pr
mary beam will become more important and will be included in
future work.

The rms variation in differential brightness temperatume i
each slice of this data cube is shown as a function of redshift
Fig. 1. This rms is calculated at the resolution of LOFAR, ethi
will be around4 arcmin for EoR observations, depending on fre-
guency. Note that the rms fluctuation does not drop to zerdby t
lowest redshift in this simulation, indicating that reipafion is not
complete there. This delay in reionization comes aboutusxthe
source properties are the same as for our earlier, higlsetertéon
simulations, which contain more resolved haloes (i.e. themum
resolved halo mass is lower). The larger simulations tloeedfiave
fewer sources per unit volume. Such late reionization ajgpea:
realistic given current observational constraints (e.gn,FCarilli
& Keating 2006, and references therein), and means thaaaxtr
ing the power spectrum at low redshift may be more difficult in
reality than we would predict using these simulations. Thestm
stringent test of our power spectrum extraction occursgitdrired-
shift, however, since this corresponds to lower observiaguen-
cies at which the noise (shown in Fig. 1) and the foregroumds a
larger. The power spectrum evolves less strongly at highhiéigl
and so we expect this simulation to perform reasonably wele
compared to high resolution simulations. It may even behtllig
conservative, since IHregions at high redshift may increase the
strength of fluctuations at some scales.

We use the foreground simulations of Jelic et al. (2008gsEh
incorporate contributions from Galactic diffuse synchoat and
free-free emission, and supernova remnants. They alsodacin-
resolved extragalactic foregrounds from radio galaxied r@uio
clusters. We assume, however, that point sources brightggnto
be distinguished from the background, either within thedfief
view or outside it, have been removed perfectly from the. .data
servations of foregrounds 460 MHz at low latitude (Bernardi
et al. 2009) indicate that these simulations fairly desctite prop-
erties of the diffuse foregrounds.
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Figure 2. Assumeduv coverage afi50 MHz (left panel): black cells are
those containing at least one observation, i.e. those ga¥jm, v) > 0.
The right panel shows the density of points in tneplane, on a linear
greyscale.

2.2 Instrumental response

LOFAR is a radio interferometer which is planned to have faifi
antennas (stations) in several European countries. i&s bowever,
is near the village of Exloo in the Netherlands, and it is tlatiens
in the core area (and perhaps some nearby ‘remote statigh&h
will be used for EoR observations. Each station containstjyes
of antenna: low-band antennas (LBA), optimized 36+30 MHz,
and high-band antennas (HBA) optimized 1&0-240 MHz. The
LBAs will not be sensitive enough for redshifted 21-cm wask,
we will be concerned only with the HBAs. EoR observations are
expected to take place below approximatedy) MHz (abovez =
6.48).

To improve theuv coverage (at the expense of increasing the
workload of the supercomputer which acts as LOFAR's cotoe)a
within each LOFAR core station the HBA antennas are disteithu
into two semi-stations, each of which is then treated is depen-
dent station. The antennas are collected into tiles, eaathiwh is
a grid of4 x 4 dual dipoles. A semi-station consists of 24 such tiles,
arranged in a filled circle. A remote station has all 48 of iR
tiles collected into a single circle. Each pair of stationsvides us
with one baseline.

To include the effects of the instrumental response of LO-
FAR we define a sampling functio$i(u, v) which describes how
densely the interferometer baselines sample Fourier sparehe
course of an observation, such thaty/S is proportional to the
noise on the measurement of the Fourier transform of the sky
in eachuv cell. In general this sampling function is frequency-
dependent, but we examine the effect of this dependencerhy co
paring to a situation in which we assume tinecoverage is the
same at all frequencies. This situation could be approxcthat
practice by not using data av points for which there is no cov-
erage at some frequencies. This would involve discardipgoeqd
mately 20 per cent of the data (from the outer part ofut@lane
at high frequencies, and from the inner part at low frequesjci
increasing the level of noise and reducing the resolutiohigtt
frequencies. Throughout this papS¥u, v) is computed under the
assumption that 24 dual stations in the core and the firstafng
LOFAR are used to observe a window at a declinatiof(5f. We
assume noise levels appropriate to an observation at ththzen
however. The final LOFAR layout is likely to include fewer dua
stations, and EoR observations will use some of the morgalent
remote stations, but we will not investigate different cgufations
in this paper. The sampling function aodcoverage at50 MHz,
at which the frequency-dependent and frequency-indepe:isden-
pling functions match, are shown in Fig. 2. Tisetracks are for a
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Table 1.Parameters of our synthetic observations and assumedayayt.

Total effective area at50 MHz 2.46 x 10* m?
Image noise for a 300 hour observation78 mK
with 1 MHz bandwidth afl50 MHz

Frequency coverage 121.5-200 MHz

Frequency channel width 0.5 MHz
Station beam field of view 5° x 5°
Number of instantaneous baselines 48 x 47

Spatial resolution at50 MHz ~ 4 arcmin

four-hour observation. We summarize some of the paramefers
our simulated observations using this array layout in Table

To simulate our data in thev plane we perform a two-
dimensional Fourier transform on the image of the foregdsuand
signal at each frequency, and multiply by a mask (tiecover-
age) which is unity at grid points in Fourier space ¢ells) where
S(u,v) > 0, and is zero elsewhere. At this point we add uncorre-
lated complex Gaussian noise with an rms proportiona)/tgs to
the cells within the mask. We can then return to the imageeptgn
performing an inverse two-dimensional Fourier transfotneach
frequency. This two-dimensional Fourier relationshipwesn the
uv and image plane only holds approximately for long integragi
with a LOFAR-type array, but we use it here since it allows-con
siderable simplification. The overall normalization of flegel of
noise at each frequency is chosen to match the expected iig®s no
of single-channel images. Part of the aim of this paper iherk
the effect of different levels of noise on power spectrunmaetton.
For reference, we assume that 300 hours of observation di oRe
window with one synthesized beam with LOFAR will give noise
with an rms of78 mK on an image using MHz bandwidth at
150 MHz. Although this is a somewhat conservative choice, it off-
sets the assumption of a uniform primary beam within the féld
view we are considering, since a more realistic model forpttie
mary beam would produce a noise rms that increased towaeds t
edge of the field of view. The level of noise varies with fregoe

being related to the system temperature which we assume to b

Tuys = 140 + 60(r/300 MHz) 2% K.

A much more detailed account of the calculation of noise lev-
els and the effects of instrumental corruption for the LOFAGR
project may be found in Labropoulos et al. (2009).

3 EXTRACTION
3.1 The problem of extraction

In this paper, the main limitation on the quality of power cjpem
extraction which we will consider is the subtraction of aptrys-
ical foregrounds. One difficulty encountered in this suttfom is
simply that the fluctuations in the foregrounds are muchelatigan
those in the CS: a subtraction algorithm must ensure thaires
due to the signal are not mistaken for relatively tiny featuin the
foregrounds. A second difficulty is the presence of noiseickvh
limits the accuracy and precision with which we are able t@ame

€.

direction. Any small-scale features are put down to noissigr
nal. Large-scale features due to the CS are more difficuitdover,
since they can easily be confused with foreground feattitesdif-
ficulty of recovering the large-scale power is exacerbaechbse
the fluctuations in the foregrounds become larger comparéiciet
noise and the signal, making the problem of overfitting mare s
vere.

At small scales, the noise is more of an issue: its power spec-
trum becomes much larger compared to the foregrounds and sig
nal, making the latter impossible to pick out. The scaleetelence
of the contaminants means that there is a ‘sweet spot’: serahg
scales at which both the foregrounds and the noise are snualja
relative to the CS for the prospects for signal extractiobe@ood.

This fact has implications for choosing an observationaitst
egy for the LOFAR EoR experiment, because we must trade off
the depth of observation against sky and frequency coverage
deep observation of a small area allows foreground fits dfidrig
quality, and is especially beneficial for the recovery of Brseale
power. It limits the size and number of modes which we can $amp
however, which is especially damaging for the errors on ¢oev-
ered large-scale power. Conversely, increasing the sitieecérea
surveyed beats down sample variance and may allow us to probe
larger scales, though note that in the case of radio intarfetry
the length of the shortest baselines sets an upper limitosife of
the available modes. This increase in area is only usefuleher,
if the noise levels are low enough to allow foreground fittiogake
place.

Examining this trade-off is one of the aims of this work. Be-
fore doing so, we first outline the procedures we have usetlttefi
foregrounds.

3.2 Fitting procedure

As we mentioned in Section 2, we consider both the case inhwhic
the uv coverage of the observations depends on observing fre-

h guency, and the idealized case in which it does not. For titer|a

we always fit the foregrounds in the image-space frequenbg cu
using the Wp smoothing method (Machler 1993, 1995) desdrib
in detail in Harker et al. (2009b) and summarized in Secti@l13
This method requires the specification of a parametemvhich
governs the level of regularization: larger values imposmaother
solution. We use\ = 0.5 for our image-space fitting, since we
found this to work well for extracting the rms (Harker et 2002b).
Before fitting, we reduce the resolution of the images, comigi
blocks of4 x 4 pixels together to generat&ax 64 x 158 data cube.
Since the unbinned pixels are smaller than a resolutionexéif
LOFAR (the binned pixels are slightly larger), and since Itbla-
tive contribution of the noise increases at small scalésdifes not
discard spatial scales at which we can usefully extractinéion,
but does increase the quality of the fit, reducing bias.

When theuv coverage is frequency-dependent, however, fit-
ting in image space becomes problematic, since spatialifitions
are converted to fluctuations in the frequency directionillas-
trated by, for example, Bowman, Morales & Hewitt (2009) anmd L
etal. (2009). Instead, we leave the data cube in Fourieegpado
be more preciseu, v, v)-space, since we do not transform along

sure the foregrounds, and hence the accuracy with which we ca the frequency direction], and fit the foregrounds as a fonctf

subtract them. The relative importance of these two effdwanges
with scale, since the power spectra of the foregrounds akigmd
noise do not have the same shape.

frequency at eaclv point before subtracting them and generat-
ing images. The real and imaginary parts are fit separatsiggu
inverse-variance weights to take account of the fact thantbise

Our foreground subtraction relies on the foregrounds being properties change as a function of frequency. This imphesif a

spectrally smooth, i.e. lacking small-scale features éftbquency

point in theuvplane is not sampled at a particular frequency, then it
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has zero weight and does not contribute to the fit. This ietoes and appropriate boundary conditions such that the solusiadhe
similar to the method proposed by Liu et al. (2009). We didcar function f which we require. We solve it by discretizing it to give
‘lines of sight’ in Fourier space in which the weight is noera an algebraic system which we solve using standard methbis. |
for fewer than ten points, since the foregrounds are not eait possible to perform a further minimization over the numbed a
strained here and we would merely introduce noise into thidual position of the inflection points, but we have found that sohs
images. with no inflection points fit the EoR foregrounds well, so wern

This leaves the problem of which method to use to perform require this extra step.
the fitting in Fourier space. Choosing a method is more awttwar
than inimage space, since the mean contribution from foregts,
noise and signal varies across teplane. It may be optimal to 3.3 Power spectrum estimation
vary the parameters of a fitting method according to the joosii
theuvplane. None the less, we obtain reasonable results simply us
ing a third-order polynomial in frequency to fit the real anthi-
nary parts at each point in the plane. We have also used Wptkmoo
ing to fit the foregrounds in thev plane. This gives us the freedom
to vary the smoothing parametey, across the plane. Near the ori-
gin (i.e. corresponding to large spatial scales) littlaitagzation is
required, since the contribution from the foregrounds isimarger then averaging it in spherical annuli to give band-poweinestes.
than that from the signal or the noise and so they are wellamreds 5.1, cell contributes only to the annulus in which its celigs,
Toward the edges of the plane we need to make stronger assump; o e ignore the fact that the cells have non-zero size. ahe
tions about the smoothness of the foregrounds to avoid @i nuli are logarithmically spaced, but because we plot theguow
and so we make the value dlarger. Finding a ‘natural choice’ for 5 q5ingt the mean value ffor cell centres lying within an annu-
A is somewhat awkward (see Harker et al. 2009b for further dis- ;5. the points in figures may not be exactly logarithmicafigced.
cussion), so at present we choose a mean valuewlich gives Rather than showing the raw power, in our figures we plot tkgu
reasonable results, and vary it between lines of sight byimgak tity A2(k) = Vk*P(k)/(2r2) (or the analogous one- or two-
inversely pr_oportio_nal tothe _njea‘ﬂ,of the fitting weights of points dimensional quantity: see e.g. Kaiser & Peacock 1991), ebier
along that line of sight. Specifically, we us¢u, v) = 280/¢(u, v), is the volume. This is usually called the dimensionless p@pec-
wherec(u, v, vi) = \/S(u, v, vi)/0"" (vi) ando™ (vi) isthe rms ;1 \when dealing with the spectrum of overdensities, thoing
image noise at frequenay, expressed in kelvin. Since the noise g case it has the dimensions of temperature squaxd(k) is
is typically a few tenths of a kelvin, anfl has values ranging Up  then, the contribution to the temperature fluctuations frooaes in
to around2.5 x 10°, we end up with\ ~ 15 at the edge of thav a logarithmic bin around the wavenumber
plane and\ = 0.03 near the centre, for an integration of 300 hours. Different systematic effects are important for modes akamg
The results are not sensitive to the precise normalization o across the line of sight, however. For this reason we alsutzie
the two-dimensional power spectrum perpendicular to the &f
sight (i.e. the angular power spectrum, but expressed asctidn
of cosmological wavenumbet) and the one-dimensional power
Wp smoothing is a non-parametric fitting method which appear spectrum along the line of sight. We estimate the two-diroeras
to be very suitable for fitting the spectrally smooth foragrds in power spectrum at a particular frequency by averaging theepo
EoR data sets. It was developed for general cases by Mg@dbie3, in annuli. Estimates calculated from one frequency band ten
1995), and we have described an algorithm for using it fongtt be rather noisy, so we usually average the power spectruosscr
EoR foregrounds in a previous paper (Harker et al. 2009b)wilVe several frequency bands to give a less noisy estimate. |oribe

Once we have fit the foregrounds, we subtract the fit to leave a
residual data cube which has as its components the cosmolog-
ical signal, the noise and any fitting errors. We will mainlg b
concerned with the spherically averaged three-dimenkpmaer
spectra of the residuals and their components. These ara-cal
lated within some sub-volume of the full data cube (for exam-
ple, a slice8 MHz thick) by computing the power in cells and

3.2.1 Wp smoothing

briefly outline its principles here. dimensional case we simply calculate the one-dimensionakp
The aim is to fit a functiorf (x) to a series of point§(z;, i) } spectrum for each line of sight with no additional binningogtuc-
subject to a constraint on the number of inflection pointshie t  ing points linearly spaced ik), then average these spectra across
function, and on the integrated change of curvature away fre all 642 lines of sight P56 lines of sight in the case of the cubes fit
inflection points. More precisely, define the functibp(z) by in (u,v,v) space] to give an estimate for the whole volume. Typ-
. hr(2) ically we consider a volume only 8 MHz deep, so that the CS
[ (@) =sp(e —wi)(z—w2)...(x —wn,)e" ", (2) does not evolve too much within the volume.

To see more clearly the contribution to the power spectrum of
the residuals from its different components, we write thredweals
in Fourier space as

Z pi(yi — f(z:)) + A /zn R (t)*dt, (3) r(k) = s(k) + n(k) + (k) , (4)

wheres; = £1 andws, ..., wy, are the inflection points. The
function f we wish to find is that which minimizes

z1
wheres is the cosmological signat, is the noise and s the fitting

where the functiorp;, which takes as its argument the difference ..o Then the power spectrum is given by

0 = y; — f(z;) between the fitting function and the data points,

penalizes the fitting function if it strays too far from thetalawe P"(k) = (r(k)r(k)") k= (5)

opt to use a least-squares fit, with(§) = c¢;/(26%) wherec; is a = P*(k) + P™(k) + P(k)

weight. Our choice for; is given above. The parametgicontrols * *

the relative importance of the least-squares term and theéaeza- +{e(k)[s(k) + (k)" + [s(k) + nlk)]e(k) >‘k‘:k(6)

tion term, with larger values giving heavier smoothing.
Machler (1993, 1995) derives an ordinary differential a&tipn where the subscript indicates that the averaging takes maer
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a shell ink-space, and the superscripts label the power spectra of the analytic estimate is reasonable, it tends to underastirihe

the different components. The equality on the second litlevis
because the signal and noise are uncorrelated so theirteross
average to zero. We cannot assume, however, that the fittiogse
are uncorrelated with the signal or noise, which gives risthe
final term in angle brackets, which may be either positive ex-n
ative. We may usually expect it to be negative, since we fityawa
some of the signal and noise, reducing the size of the rdsidifia

it is large enough, the power spectrum of the residuals may ev
fall below the power spectrum of the input CS, especiallycates
where the noise power is small.

If we ignore the fitting errors, we may estimate the power
spectrum of the CS by computing the power spectrum of thel+esi
uals, then subtracting the expected power spectrum of tise.na
this case, we can make a relatively straightforward eséroathe
error on the extracted power spectrum, as we see in Secfidh 3.

errors at large scales and overestimate them at small scales

The power spectrum of our simulation of the CS is calculated
similarly to the power spectrum of the noise. In this case gfror
(P5(k))/\/my represents the error on our final estimate of the
power spectrum due to sample variance, and can only be rdduce
by sampling more modes (increasing,). Unlike the noise, the
fluctuations in the CS are not Gaussian, and so an analyinast
of the error is likely to be less accurate. This should notendabo
much at small scales where in any case the error on our extract
power spectrum is dominated by noise, but on larger scatesatim-
ple variance becomes important. At present we do not havegéno
different realizations of the CS to simulate the errors neggisti-
cally: as noted in Section 2 we must already tile copies ohglsi
simulation to fill a LOFAR field of view, which limits the range
scales we can realistically study. These estimates shbatéfore

We have assumed here that the expected power spectrum of théve considered an illustration of how we expect the errorbhiémge

noise is known to reasonable accuracy. In fact, we will nolble
compute it accurately enoughpriori for real LOFAR data: it must
instead be estimated through observation. It should bealpess

do so by differencing adjacent, narrow frequency chanmalsch
narrower than those in the simulations used here, wheredtse d
have been binned int@5 MHz channels: the estimate would have
to be carried out before this level of binning, using chasrdl
perhaps10 kHz). Studying this in more detail in the context of
the LOFAR EoR experiment must be the subject of future work,
though note that this approach has already been appliedate ch
acterize the noise in low frequency foreground observatioade
with the Westerbork telescope (Bernardi et al. 2010), theREM
(Ali, Bharadwaj & Chengalur 2008) and PAPER (Parsons et al.
2009).

3.3.1 Statistical errors

The statistical errors on the extracted power spectrunudecton-
tributions from the noise and from sample variance. Comside
first the noise, in thé'™™ Fourier cell the real and imaginary parts
of the contribution to the gridded visibility from the nojdé”, are
Gaussian-distributed, with mean zero and variaricésay), which

is known. ThenV;"|? is exponentially distributed with meaw?

and variancets?. We may estimate the power spectrum at some
wavenumbek by computing

mi

Pr() =~ O

i=1

@)

where the sum is over all cells within an annulus nkaif the
number of cells in the annulus is sufficiently large, the eorthis
estimate is approximately Gaussian-distributed, and wWmate it

as (P"(k))/+/mzx, assuming that the different cells are indepen-
dent and using the fact that the variancdgf'|? is the square of
its mean. This error translates into an error on the finalaektd
power spectrum, and can be reduced either by integratingeton
on the same patch of sky (to redueg ~ 1/7 wherer is the ob-
serving time) or by spending the time observing a wider acea t
increase the number of accessible modes, increasingn the lat-
ter case, the error only decreased Ag/7.

as we vary our observational strategy, rather than a de@rétlcu-
lation, which is reasonable given the other simplificatiareshave
made (e.g. adopting a square field of view rather than a tiealis
primary beam shape). Error bars on our extracted power rgpect
are computed by adding the noise and sample variance errors i
quadrature.

3.3.2 Systematic errors

The terms involving fitting errors on the right-hand side qtia-
tion (6) will bias our estimate of the power spectrum of the CS
unless they can be accurately corrected for, and so coteriiou
a systematic error. When analysing LOFAR data it may be possi
ble to estimate the size of these terms using simulationgasito
the ones used in this paper. Bowman et al. (2009) have estimat
them for simulations of MWA data through a ‘subtraction war
terization factor’fs (k) = (P°(k))/P?(k). By fitting cubes which
include different realizations of the CS and noise, it sHalso be
possible to reflect the statistical error introduced by mglduch a
correction in the error bars. In this paper we do not makedbis
rection, however: it would be accurate by construction agck
quite uninformative. Instead we ploP°(k)) = P"(k) — (P"(k))
to illustrate the level of bias we may expect to see if no aiioa is
made. Our error bars will then reflect errors due only to tmepa
variance and the noise. If the estimated power falls bel@trine
power, we use the estimate of sample variance from the twerpo
since this gives a more realistic view of what the estimaténef
sample variance would be if we made a correction for the dttin
bias.

We expect any estimate of the bias, or of the statisticalrerro
introduced by correcting for the bias, to be rather uncertsince
it may depend strongly on the shape of the foregrounds, wikich
unknown to the required level of accuraaypriori, and on the de-
tails of the fitting procedure used. It is none the less sttfagward
to estimate them for a specific foreground model and fittirmg e
dure.

3.3.3 Cross-correlation

Though this estimate of the error is useful as a guide for how As an alternative to calculating a residual power spectradithen

the errors behave as the observational parameters changzea

subtracting a thermal noise power spectrum, we could olikein

accurate error bar can be computed in a Monte Carlo fashion by extracted power spectrum through cross-correlation. Té)atve

looking at the dispersion between independent realizatidrthe
noise, and this is how we compute the errors in practice.obigh

could split an observing period into two sub-epochs, sebtttze
foregrounds from each and then cross-correlate the twénvolg
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the approach taken to derive Equation (6), we can write tsidual
in each of the two epochs as

ri(k) = s(k) + ni(k) + ei(k) , ®)

where the signa(k) is the same for the two cases and {1, 2}
labels the epoch. Then

(rirs) = P® + (se3) + (e15™) + {e1€3) , (9)

where thek-dependence is implicit, the angle brackets again in-
dicate an average over a shellkrspace, and cross-terms involv-
ing the noise vanish. If the fitting errors are sufficientlyadinthis
cross-correlation immediately provides us with an estinwdtthe
desired power spectrum.

This estimator has some apparent advantages. Firstly, we do

not have to know the thermal noise power spectrum to cakulat
it (though an estimate of the thermal noise is required topdm
error bars). Secondly, we do not expect it to yield negatisie e
mates of the power, as may happen when using Equation (6 Mor
generally, at scales where the noise is larger than thelsigriae
fitting errors, we would expect the bias of this estimatorearhuch
smaller than for the one involving autocorrelations, sitieecross-
terms involvingn ande on the right-hand side of Equation (6) do
not appear.

It is not without disadvantages, however. If we split theesbs
vation into two epochs, the lower signal-to-noise in eaatcbwill
degrade the foreground fitting, increasing the size ot tieems. If,
instead, the foreground fitting is done on the full datasétreedi-
viding it into different epochs, then the cross-terms imiry » and
€ can no longer be assumed to vanish.

We have conducted preliminary tests of the cross-coroglati
method and found that it gives comparable results to thecaute-
lation method at scales where the fitting bias is small endoigki-
ther estimate to be useful. We reiterate, however, thatisssimed
here that the thermal noise power spectrum is known acdyrate
which unfairly favours using the autocorrelation. We detether
comparison of the two methods until we have looked furth& in
how well the noise power spectrum can be estimated from ebser
vations. In this paper, all our extracted power spectra angpeited
by subtracting the noise power spectrum from the residuakpo
spectrum. We would not expect our broad conclusions to ahédng
we were to use cross-correlation instead.

4 SENSITIVITY ESTIMATES
4.1 Comparison of fitting methods

Examples of extracted power spectra at three differenthiftds
for slices8 MHz thick, are given in Fig. 3 (points with error bars).
From top to bottom, the central redshift of the slice usedaaohe
panel is 9.96, 8.49 and 7.37, while the mean neutral fraatigrn
each slice is 0.998, 0.942 and 0.614, respectively.

For comparison, we also show the power spectrum of the
noiseless CS cube (solid line), the noise (dashed line)rmksid-
uals after fitting (dotted line). The extracted power speutis the
difference between the residual and noise power spectlayanid
be equal to the noiseless CS power spectrum if there wererao fo
grounds. For this figure we use a frequency-independertov-
erage, so the foreground fitting is carried out in the lowehatson
image cube. A noise level consistent with 300 hours of olagEn
per frequency bin of a singlé{ x 5°) window using a single sta-
tion beam is assumed. It may not be possible to observe tire ent
frequency range simultaneously, and it may have to be gpiitwo
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Figure 3. Power spectra of the input CS (solid line), the noise (dashejl
the residuals (dotted line) and the extracted signal (poirith error bars)
at three different redshifts. Here we assumeuheoverage is frequency-
independent, so the foreground fitting is done using Wp shiogtin the
image plane. The noise level is consistent with 300 hoursbsknvation
per frequency bin on a single window, using one station b&dra.redshift
shown in each panel is the central redshift of&atviHz slice from the
frequency cube. This frequency interval correspondato= 0.63, 0.48
and 0.37 for the top, middle and bottom panel respectively. From top t
bottom, the mean neutral fraction in each slieg;, is 0.9976, 0.9416 and
0.6140. The missing points in the top panel corresporil bins at which
the power spectrum of the residuals falls below the powectsp® of the
noise, so that we would infer an unphysical, negative sigoeler.

or three segments (e.g. 82 MHz width) only one of which can
be observed at once. If we have to use two such segmentshghen t
300 hours of observation per frequency bin translates tohe@s
of total observing time. This is a somewhat pessimistic aden
for the quality of data we may collect after one year of EoRenbs
vations with LOFAR, since it is hoped that several statioarbe
can be correlated simultaneously to cover the top of the gagm
(tile) beam, allowing a larger field of view to be mapped outeno
quickly. It may also be possible to trade off the number ofrhea
against the width of the frequency window, or to spend difier
amounts of time on different parts of the frequency rangeneNo
the less, the assumptions of Fig. 3 provide a useful basatjamst
which we can compare results for deeper observations or éoe m
realistic (frequency-dependeniy coverage. It also illustrates the
main features we see in many of our extracted spectra.

For the lowest-redshift slice (bottom panel), the recowsy
pears to be good: at most scales, the recovery is accurateasnd
small errors. At large scales the error bars increase int&zause
of sample variance, and it appears that the recovered pqveer s
trum lies systematically below the input spectrum. Thisgeas
because at large scales, we fit away some of the signal power du
ing the foreground fitting. If the points at large scales do a@
pear to jump around as one would expect given the size of the er
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ror bars, this is because the error bars here are dominatsany
ple variance, and so show our uncertainty as to how reprasent
this volume is of the whole Universe. If, instead, we showed e
ror bars showing only the uncertainty on our determinatibthe
power spectrunwithin this volumethey would be much smaller
and would be visually consistent with the scatter displaygdhe
points. The error bars grow at small scales because the ponger
becomes larger compared to the signal power, limiting onsise
tivity. We caution that, as noted in Section 2, the simulatiee
use represents a rather optimistic scenario for low-rédsignal
extraction, since reionization occurs very late.

As we move to higher redshift (middle panel) the situation
worsens slightly, with the error bars increasing in sizedose of
the higher noise levels. More worryingly, the recovered @os
lower than the input power at all scales (though it becomesevo
at large scales as before) which seems to indicate thatrfared
subtraction may cause significant bias in our estimate ofitpe
nal power even at intermediate scales. The trend contirsiegea
move to the highest redshift slice (top panel). We do not et
recovered power for a range of scales betwkers 107%° and
107%3 h Mpc~'. This is because we infer an unphysical negative
power here. In the case of such points we plot a statisticaéiup
limit on the power. The bias from the fitting procedure leaals: t
situation where these ‘upper limits’ lie below the true poves are
too small even to show up on the plot. These upper limits shoul
then, be taken merely as an indication of the size of theditiias.
The larger noise at lower frequencies (higher redshiftsjeases
the size of the error bars compared to the other panels. Thbico
nation of this higher noise and the larger foreground powakes
fitting the foregrounds at high redshift more difficult, as have
seen in previous work (Harker et al. 2009a,b), leading toatre
served bias.

The situation is very similar if thev coverage is frequency-
dependent but we do our fitting using Wp smoothing in Fourier
space. This case can be seen in Fig. 4, which is otherwisesirary
ilar to Fig. 3 except that we have changed the vertical axasesc
to accommodate the upturn in noise power at tigtaused by the
varyinguv coverage. The higher small-scale noise coming from the
frequency-dependentv coverage damages the recovery of power
at the smallest scales, but the fitting using Wp smoothingimier
space allows us to recover the power on intermediate ane larg
scales even better than in Fig. 3. The reason that we fit eviéer be
than in the supposedly more ideal case of Fig. 3 is partlyttiet
noise is normalized in image space to the expected levelrfgtes
channel images (see Section 2.2), and so the increase insrakd
noise in the frequency-independent case is compensateddy a
duction in large-scale noise, improving recovery theris éilso the
case that ouuv plane fitting is more adaptive, applying less regu-
larization at scales where the foregrounds dominate anddtse
is low. Unfortunately we do not yet have a well-motivated noet
to choose the regularization parameleautomatically rather than
varying it by hand, but this result suggests that finding sable
method could yield even more improvement in the quality & th
fitting.

If we use a third-order polynomial fit for the foregrounds
rather than using Wp smoothing, however, the result becomes
worse, especially at high redshift. This is illustratedig.’, which
is identical to Fig. 4 apart from the fact that polynomial ftie
used. While at low redshift the quality of recovery is vidyah-
distinguishable, at high redshift the Wp smoothing of Figlldws
us to recover an estimate of the power spectrum to highdihe
bias at lowk also seems to be larger for polynomial fitting, which
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Figure 4. Power spectra of the CS, the noise, the residuals and trectedr
signal for the case when th& coverage is frequency-dependent, we have
300 hours of observation per frequency channel with a sisigliion beam,
and the foreground fitting is done using Wp smoothing in Fenspace. The
redshift slices and the colour coding of the lines are theesasfor Fig. 3,
but note we have changed the scale of the vertical axis tovancalate the
upturn in noise power at small scales.
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Figure 5. As for Fig. 4, except that the foregrounds are fit using a third
order polynomial rather than Wp smoothing.
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seems to produce overestimates of the power of the CS at large
scales. This may be due to the fact that a polynomial is uriable
match the large-scale spectral shape of the foregrounidsyitad
foreground power to leak into the residuals. Unlike Wp srhoag,
polynomial fitting does not allow us to smoothly vary the leske
regularization across theyplane (the only parameter we can tweak

is the polynomial order, which is a somewhat blunt instruthand

this may also contribute to the poorer fit.

We conclude that even though varyimy coverage makes
foreground fitting more awkward, we can mitigate its effegith-
out having to discard a large proportion of our data if we &eoaur
fitting method carefully. At present our scheme for fitting fore-
grounds using Wp smoothing in Fourier space is quite slow-ho
ever, so for the rest of the paper we revert to the case of érexyu
independenuv coverage, for which our image-space fitting works
quickly and reasonably well. Fig. 4 suggests that this shoat af-
fect our comparisons of results using different lengthshsfesving
time or observational strategies. For actual LOFAR datfitting
of the foregrounds should still be much faster than othgrssie
the reprocessing of the data, and so we are likely to use ost mo
accurate scheme (at present, Wp smoothing in Fourier spaeg)
if it is slow compared to other schemes.

4.2 Different depths and strategies

Having compared the characteristics of different fittingtimoels,
we now move on to comparing the quality of extraction for efiff
ent assumptions about the amount of observing time, andffer-d
ent observational strategies. We start by showing the eidrafor
180 hours of observing time per frequency bin, making a total
360 hours of observing time if two frequency ranges are reguin
Fig. 6. This makes it comparable to fig. 12 of Bowman et al. @00
who show a simulated power spectrum for 360 hours of obgervat
with the MWA (though spanning a larger redshift range thaarsgh

of our figure). To make the comparison more illustrative, Wweve
two error bars for each point, the grey one on the left inclgdioth
the noise error and the sample variance, and the black onleeon t
right including only the noise error. For the MWA these wodlt

fer by less then ten per cent and would be almost indistimhgiie

on this log-log scale (J. Bowman, private communicatioriguy
ally, the errors for LOFAR without sample variance appeaaléen
than those for the MWA at most scales at the lower redshifts, a
we may expect from the larger collecting area. A computaitien
cluding the sample variance, however, tends to favour theAMW
at smallk owing to its larger field of view. Hence we explore the
effect of observing multiple independent windows below.

The field of view can also be extended if, as planned, we are
able to synthesize multiple station beams simultaneo&sjyiva-
lently, if we wish from the outset to observe a window lardeart
the ~ 5° x 5° of a single station beam, multiple beams can be
used to achieve observations of greater depth without usioig
observing time. We show the effect of extending the field efwi
in Fig. 7, where we assume that we observe for 300 hours per fre
guency bin (as in Fig. 3), but using six station beams. We inode
the effect of using six beams by reducing the errors due teenoi
and to sample variance by a factor\d6. A realistic primary beam
model, and the incorporation of modes with smaklewould make
the effect of multiple beams more complicated, but we inocate
the effect in a way which is consistent with our simplified lmea
The most obvious effect of using multiple beams is at largdess
since here the increase in the number of available modesesdu
the (large) sample variance errors as well as the noiseseifbe
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Figure 6. As for Fig. 3, but using a noise level consistent with 180 kaafr
observation per frequency bin on a single window, using ¢aios beam.
We also plot two error bars for each point: the grey one onefteshows
the error from both noise and sample variance as in our otipares, while
the black one on the right shows the error only from noise.
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Figure 7. As for Fig. 3, except we assume that six station beams are syn-

thesized, rather than one.
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noise errors at higk are also reduced, however. Since the smallest
scales we probe may be comparable to the size of bubbles ki the
distribution, this improvement may be important for coasting
physical models.

This figure also makes it clear what multiple beamsnad
do. Increasing the field of view in this way does not incredme t
signal to noise along each line of sight, and so the foregtditting
does not improve. The systematic offset at intermediatiesda
the middle redshift bin is still present, and we remain ueabl
extract physically meaningful information at high redshit these
scales with our current methods. Our CS simulations arevofdd
size, so we are unable to demonstrate how the larger fielceaf vi
enables us to recover the power spectrum at Idwdrhe bias we
see at the largest scales in our figures is unlikely to impes/ee
go to yet larger scales, however, and so it may be difficulkdait
the potential afforded by a larger field of view in practice.

We now directly examine the trade-off between spending ob-
serving time to go deeper in a small area, and spending itrt@gu
a larger area. Considering first the situation at the lowneshifts,
we see from Figs. 6 and 7 that after 180 hours of observation pe
frequency channel, the fitting bias has reached a level ¢otatces
very little with deeper observation. Moreover, with the station
beams of Fig. 7 the errors at intermediate scales are ratialt. s
The main effect of deeper observation is then to reduce tioeser
only at the very smallest scales. It would clearly be morditadale
to use extra observing time to cover multiple windows, armtlice
the large-scale errors which are dominated by sample \@ian

At high redshift the trade-off between depth and number of
windows is more interesting, as we see in Fig. 8. Here, aliehr
panels show power spectra at the same redshift as the topgfane
our earlier figures{ = 9.9564, with Zg1 = 0.9976). Each point
has two error bars, the one on the right accounting only fisejo
and the one on the left also including the effect of samplawae,
as in Fig. 6. The different panels distinguish between difieways
of allocating a fixed amount (900 hours) of observing timefper
guency band with six station beams. If we use this time tomese
five different windows (bottom panel), as seems to be prbfera
at low redshift, the main effect is to reduce the size of tlaist
tical errors in a region of the power spectrum (I&vwhere there
is in any case a relatively large and uncertain systematieco
tion to be made for the fitting bias. Meanwhile, the large amati
noise per window degrades the fitting at intermediate sca#sng
300 hours of observation per frequency band per window (leidd
panel) reduces the bias somewhat, and enables recovergsuire
able quality across a larger range of scales. Only with 9@0<of
observation of a single window (top panel), however, are e @
recover a physically plausible estimate of the power acatregst
all the accessible scales. Even at those scales at whichhéte s
lower observations allowed some sort of estimate of the pae
increased depth reduces the bias from the fitting, so thatiifnes
comparable to the statistical error bars.

The tension between optimizing low- and high-redshift keco
ery is not the only consideration in deciding how many window
to observe and for how long. Using multiple windows will hédp
control the systematics because we can then compare fields wi
different foregrounds and different positions in the skyvé wish
to observe for a reasonable fraction of the year, we are nedjtd
observe different windows since some may be inaccessiltieoor
low in the sky during some periods. None the less, a hybrat-str
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Figure 8. Power spectra of the original and extracted signal, thelueds
and the noise, using the same line styles as Fig. 3. Each pssgines the
same total observing time (900 hours) using six station lseanan8 MHz
slice centred at = 9.96 (with z; = 0.9976), the same redshift as for the
top panel of Figs. 3—7. The panels differ in the way in whioh tfserving
time is split between windows: in the top panel we devotetwl dabserv-
ing time to a single window, and in the bottom panel we spréadjually
between five different windows. The middle panel shows asrinediate
case. Each point has two error bars, the one on the right atingwonly for
noise, and the one on the left also including the effect ofdamariance,
as in Fig. 6.

to benefit more from longer integration times, is to spendyéon
observing higher redshifts than lower redshifts. Since ineady
split up the frequency range into different chunks which raoe
observed simultaneously, this may be possible without ssice
difficulty. We note, however, that for other reasons (forrepte
improving the calibration), it may be desirable not to sgii fre-
guency range into large contiguous chunks, but into twoledsed
combs. This would enforce a uniform integration time acithes
whole frequency range. A further problem one may envisageis
the noise rms would jump discontinuously across the gapédmtw
the two frequency chunks. Unless the noise is well charaetgr
such a jump could be confused with a change in the signal rms du
to reionization. It may also complicate the foregroundrfgtiand

so we test this in Fig. 9. Here we have assumed that we have spen
1200 hours on the low frequency chunk (bel@d0 MHz), and
only 300 hours on the high frequency chunk. This does notappe
to affect our fitting adversely. Even if we choose to plot tioevpr
spectrum in ar® MHz slice which straddles the crossover between
long and short integration times, the extraction appedps ttable.

egy in which some windows receive more time than others may be If other factors allow us to use such a strategy, then, it appto

possible.
Another possible strategy, since the higher redshift bppear

be a viable way to make the quality of our signal extractionmeno
uniform across the redshift range we probe.
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Figure 9. Power spectra at three different redshifts, using the samee |
styles as before. In this case, however, we assume thatakfmeies above
160 MHz (corresponding ta ~ 7.9) we have used 300 hours of integra-
tion time, while below160 MHz we have used 1200 hours of integration
time, in each case using one station beam.

4.3 Source of the large-scale bias

Even when we achieve small statistical errors, as for theobot
panel of Fig. 7, a bias persists on large scales. We look fer th
origin of this bias by plotting the power spectrum of modeshia
plane of the sky (the angular power spectrum) in Fig. 10, &ed t
one-dimensional power spectrum along the line of sight @ Ei.
For both of these figures we consider a slice at low redstsftqa
the bottom panel Fig. 7), and assume 900 hours of observagion
frequency chunk with one station beam.

The extracted two-dimensional power spectrum appears to

behave similarly to the three-dimensional power spectrain,
beit with slightly larger error bars because we have fewedeso
available. The bias at large scales persists: we undeiastithe
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Figure 10. Two-dimensional power spectrum in the plane of the sky, for
a slice8 MHz thick centred at: = 7.3717 and withzy; = 0.6140,

for 900 hours of integration with a single station beam. Tihe btyles for
the original signal, noise, residuals and extracted spectire as for the

previous figures.
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Figure 11. One-dimensional power spectrum along the line of sight, for
a slice8 MHz (93.2 h~! Mpc) deep centred at = 7.3717 and with
Zy1 = 0.6140, for 900 hours of integration with a single station beam. The
line styles for the original signal, noise, residuals anttasted spectrum
are as for the previous figures.

the three-dimensional power spectrum (Kaiser & Peacock ;199
Zaroubi et al. 2006).

At first sight it seems somewhat puzzling that although we as-
sume that the foregrounds are smooth in the frequency irect
— we effectively ignore very large-scale power along the lof
sight — the fitting bias manifests itself most clearly in theya:

power because we fit away some of the signal and noise. The one-ar power spectrum. Note, though, that if our estimate offtine-

dimensional power spectrum looks rather different. It igejac-

grounds along a line of sight is offset by some constant, carby

curately determined because we average over so many lines ofamount that is approximately constant within the narrowdiency

sight, and there is no apparent bias in the extraction. Thee on
dimensional power spectrum does not extend to such lardessca
as the two-dimensional power spectrum because we restriet 0
selves to quite a narrow frequency slice (corresponding ¢o-a
moving depth 003.2 h~! Mpc) to avoid evolution effects, but it
does extend to scales at which the two-dimensional powes-spe
trum shows bias. We have experimented with using slicestwhic
are twice as thickl(6 MHz) and these still show no significant bias
at the largest scales. The one-dimensional power specttends

to smaller scales than the two-dimensional one, since thgasp
resolution is better along the frequency direction for @u MHz
channels. This resolution, and the lack of bias, may be Lgefe

are able to invert the one-dimensional power spectrum tovesc

range in which we estimate the power spectrum (the fits arayasiw
computed across the full frequency range to avoid edgetsjfec
this does not change the power spectrum of the residualg &hen
line of sight at all. If this offset is different between difent lines
of sight, though, then this will be apparent in the angulavgro
spectrum of the residuals at each frequency. If the offsetearby
points are correlated, perhaps because the foregrounkis wiime
region have a similar shape and strength, then the anguleerpo
spectrum of the residuals on small scales will hardly becédfi
At scales larger than the correlation length of the fittinges then
these offsets could lead to the bias which we see.

In any case, Figs. 10 and 11 suggest that we should consider
the angular and line-of-sight power spectra separately analysis
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of LOFAR data, though ultimately neither will allow us to &train
models as tightly as a three-dimensional power spectruratwihi
cludes a contribution from all modes. The line-of-sight pospec-
trum appears to be less vulnerable to bias and extends tertiigh
while the angular power spectrum extends to larger scakk:snay
have greater power to distinguish between models of reitioiz.
The more sophisticated version of this separation — expgrithie
three-dimensional power spectruf{k, i) in powers ofu, the co-
sine of the angle between a mode and the line-of-sight (Barka
Loeb 2005) - is, unfortunately, not likely to be useful foe thoise
levels expected for LOFAR, though we have not yet made a guant
tative investigation of this possibility. Pritchard & Lo€008) have
checked this for an MWA-type experiment, using an optiroistt
strumental configuration, and find that it does not have theired
sensitivity. Rather, the separation into powerg afiay have to wait
for SKA or for a futuristic lunar array.

5 SUMMARY AND DISCUSSION

frequency-independentv coverage to explore the different scenar-
ios in this paper.

We have found that a year’s observations (of, say, 600 hours,
of which perhaps 360 could be of a single window) should be suf
ficient to detect cosmological 21-cm emission from towaius t
end of the EoR. We caution, however, that the approximatons
ployed in this paper prevent us from treating these numtsenscae
than rough estimates. If we wish to study the power spectrum a
small or large scales — away from the ‘sweet spot’ at intefated
k — it will be important to be able to synthesize multiple siati
beams. This allows us to reduce the statistical errors frampse
variance and noise. Unfortunately, however, there appedrs no
substitute for extending the integration time, especitilyprobe
high redshifts and very small scales. This is because ordp dé-
servations can improve the quality of the foreground fittiagd
hence reduce the systematic offset between the true sigdaha
recovered signal.

Under the optimistic assumptions that we can synthesize six
beams, and that the useful frequency range can be covenegl usi
just two frequency bands (the instantaneous frequencyrageds
limited), 600 hours of observation of a single window shobi&l

In this paper we have studied the extraction of the 21-cm EoR enough to yield quite precise and accurate power spectrawipt

power spectrum from simulated LOFAR data. The simulatidns a
low us to compute the statistical errors on the power spectiue
to thermal noise and sample variance, and these are smaljleno
to raise the possibility of a significant detection of envssirom
the EoR using only a modest amount of observing time. If wdwis
to estimate the power spectrum accurately, however, thisrhes
more challenging once we take into account the presenceiogfit
errors from the subtraction of astrophysical foregroufdese er-
rors are correlated (positively or negatively) with thensigand the
noise in general, and introduce a scale-dependent biasimtes-
timate of the power spectrum. We anticipate that simulatisuch
as the ones studied here could be used to estimate and domrect
the bias; this would induce a further statistical error viahtan be
straightforwardly computed by using multiple realizasmf a sim-
ulated observation. Making this sort of correction will alyg be
uncertain, though, so it is desirable to minimize its size. Nsve
looked at the extent to which the size of the correction, alt age
the size of the statistical errors, can be reduced by olbsgpifar
longer or using alternative observational strategies.

Before that, though, we tested that extraction is still fadesf
we do not make the assumption that teoverage is independent
of frequency. We find that this necessitates fitting the faregds
in the (u, v, v) cube rather than the image cube, as noted by Liu
et al. (2009). The Wp smoothing method, which we have used pre
viously to fit the foregrounds in the image cube, can be adapte
work in the (u, v, ) cube by fitting the real and imaginary parts
independently for eachv cell and by varying the regularization
parameter), across theiv plane. This yields results comparable to
(in fact, even better than) those we obtain if we assume éecy+
independentiv coverage and then fit in the image cube. We have
also tried using a third-order polynomial to fit the foregnda in
the (u, v, v) cube: this yields results which are acceptable, but not

9, for k between approximately 0.03 afid » Mpc~". Pushing to
the very highest redshifts accessible with the frequenugreme of
LOFAR'’s high band antennas requires somewhat longer: psrha
900 hours per frequency band, which corresponds to 180G todur
observation if there are two frequency bands.

With observations of this depth, the limiting factor in tha-s
tistical errors comes from sample variance on large scalbigh
can only be reduced by observing a larger area of sky. Thisds o
of several reasons why the LOFAR EoR project plans to observe
multiple — perhaps five — independent windows. We have ajread
seen that approximately 600 hours per window is requiredher
thermal noise errors to be small and the bias to be underaiontr
for redshifts less than about 9. For five windows, this cqoesls
to 3000 hours of observation. Comparing the independerdawis
will also allow important cross-checks, in particular tegstemat-
ics are under control.

To really push towards precise constraints on the power-spec
trum towards the start of reionization, the 1800 hours peidaiv
that we find yelds high quality extraction at> 10 corresponds to
9000 total hours for five windows. This figure may be reduced if
a hybrid strategy, in which we integrate for a longer timedwér
frequency bands, turns out to be feasible. From the poiniesf v
of foreground fitting and power spectrum extraction, igngrcon-
straints that may be imposed by calibration etc., a hybriategy
does indeed seem to be feasible. Of course, we have coridere
this strategy only from the point of view of the power spegtru
If deeper observations at all frequencies would allow usushp
beyond the power spectrum, perhaps into a regime where we can
observe individual features in the distribution of 21-cmigsion
towards the end of reionization with reasonable signal teedhen
this would surely be valuable too.

Other hybrid strategies are also possible, for example ones

as good as those obtained using Wp smoothing. The main draw-in which different windows are observed for different amisuof

back of Wp smoothing in this case is its speed, especiallifas

of sight’ near the centre of thevs plane where it is best to choose a
small value for\ (implying little smoothing). Because Wp smooth-
ing in the image cube is faster, because the polynomialditiives
worse results than Wp smoothing in tle, v, ) cube, and be-
cause Wp smoothing produces extraction of similar quatitshie
image and(u, v,v) cubes, we have concentrated on results using

time. We have not studied them here since they do not reappan
the fitting and extraction, which is independent for eachdein
None the less, they may allow us to obtain high redshift cangs
by observing one window deeply, while simultaneously aitaywus
to beat down sample variance errors on large scales at |eshifesi
by observing several other windows at reduced depth.
In any case, our study suggests that as the amount of time
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spent observing the EoR with LOFAR is increased, this allag/s
to make qualitative improvements to the fitting, and to thegea
of scales and redshifts we can probe accurately. Deepe@ratien
does more than simply allow us to shrink our statisticalelbas.

This all depends, however, on the robustness of our fitting
techniques, and more generally on the level of control weahte
to exercise over systematic errors. The Wp smoothing metreod
have introduced previously appears to work well when it cotoe
extracting the power spectrum. This holds whether we apply i
an idealized case in which the coverage of the instrument is con-
stant with frequency, or to a more realistic case in whiclaiies.
We confirm a suspicion we have expressed previously (Hatler e
2009b) that the power spectrum may be easier to extract thap-a
parently simpler statistic such as the rms of the 21-cm &igha
fitting errors are scale-dependent, and a power spectruiysisa
allows us to pick out the scales where our method works beht wi
out being swamped by small-scale noise. Splitting the p@pec-
trum into angular and line-of-sight components may helpuss$t
the robustness of our conclusions, and perhaps extend #tialsp
dynamic range we can probe.

We have assumed here that the power spectrum of the noise

is known to reasonable accuracy, an assumption which wiéxse
amined in future work. We will also study in a future paper how
different strategies alter our ability to constrain thegmaeters of
reionization models.

Finally, we note that foreground fitting and power spectrum
extraction are late steps in the collection and analysis@FAR
EoR data. They depend on earlier and probably more diffitejiss
such as instrumental calibration (including polarizatishich we
have neglected here), correcting for the ionosphere, amasthi-
sion of RFI. The results of this paper only reassure us tlealatter
stages are unlikely to be the limiting ones.
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