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ABSTRACT
One of the aims of the Low Frequency Array (LOFAR) Epoch of Reionization (EoR) project
is to measure the power spectrum of variations in the intensity of redshifted 21-cm radiation
from the EoR. The sensitivity with which this power spectrumcan be estimated depends on the
level of thermal noise and sample variance, and also on the systematic errors arising from the
extraction process, in particular from the subtraction of foreground contamination. We model
the extraction process using realistic simulations of the cosmological signal, the foregrounds
and noise, and so estimate the sensitivity of the LOFAR EoR experiment to the redshifted 21-
cm power spectrum. Detection of emission from the EoR shouldbe possible within 360 hours
of observation with a single station beam. Integrating for longer, and synthesizing multiple
station beams within the primary (tile) beam, then enables us to extract progressively more
accurate estimates of the power at a greater range of scales and redshifts. We discuss differ-
ent observational strategies which compromise between depth of observation, sky coverage
and frequency coverage. A plan in which lower frequencies receive a larger fraction of the
time appears to be promising. We also study the nature of the bias which foreground fitting
errors induce on the inferred power spectrum, and discuss how to reduce and correct for this
bias. The angular and line-of-sight power spectra have different merits in this respect, and we
suggest considering them separately in the analysis of LOFAR data.

Key words: cosmology: theory – diffuse radiation – methods: statistical – radio lines: general

1 INTRODUCTION

Studying 21-cm radiation from hydrogen at high redshifts (Field
1958, 1959; Hogan & Rees 1979; Scott & Rees 1990; Kumar, Sub-
ramanian & Padmanabhan 1995; Madau, Meiksin & Rees 1997)
promises to be interesting for several reasons. Fluctuations in in-
tensity are sourced partly by density fluctuations, measurements
of which may allow rather tight constraints on cosmologicalpa-
rameters (Mao et al. 2008). They are also sourced by variations

⋆ E-mail: geraint.harker@colorado.edu

in the temperature and ionized fraction of the gas, which means
that 21-cm studies may provide information on early sourcesof
ionization and heating, such as stars or mini-QSOs. The period
during which the gas undergoes the transition from being largely
neutral to largely ionized is known as the Epoch of Reionization
(EoR; e.g. Loeb & Barkana 2001; Benson et al. 2006; Furlanetto
et al. 2006), while the period beforehand is sometimes knownas
the cosmic dark ages. While the latter has perhaps the best poten-
tial to give clean constraints on cosmology, the instruments becom-
ing available in the near future are not expected to be sensitive
enough at the appropriate frequencies to study this epoch inter-
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ferometrically. Several, though, are hoped to be able to study the
EoR (e.g. GMRT,1 MWA,2 LOFAR,3 21CMA,4 PAPER,5 SKA6),
but even so, their sensitivity is not expected to be sufficient to
make high signal-to-noise images of the 21-cm emission in the
very near future. We seek, instead, a statistical detectionof a cos-
mological 21-cm signal, with the most widely studied statistic be-
ing the power spectrum (e.g. Morales & Hewitt 2004; Barkana
& Loeb 2005; McQuinn et al. 2006; Bowman, Morales & Hewitt
2006, 2007; Pritchard & Furlanetto 2007; Barkana 2009; Lidzet al.
2008; Pritchard & Loeb 2008; Sethi & Haiman 2008). Our aim
in this paper is to test how well the 21-cm power spectrum can
be extracted from data collected with the Low Frequency Array
(LOFAR), which is currently under construction. While thisis a
general-purpose observatory, the EoR project, being one ofLO-
FAR’s Key Science Projects, has helped to drive the design ofthe
instrument. We give some details on parameters of the instrument
which are relevant to EoR observations in Section 2.2.

The quality of extraction is affected by several factors: the ob-
servational strategy and the length of observations, whichaffect
the volume being studied and the level of thermal noise; the ar-
ray design and layout; the foregrounds from Galactic and extra-
galactic sources, and the methods used to remove their influence
from the data (presumably by exploiting their assumed smoothness
as a function of frequency; see e.g. Shaver et al. 1999; Di Matteo
et al. 2002; Oh & Mack 2003; Zaldarriaga, Furlanetto & Hernquist
2004); excision of radio-frequency interference (RFI) andradio
recombination lines; and, for example, the quality of polarization
and total intensity calibration for instrumental and ionospheric ef-
fects. We will not study RFI or calibration here. We will, however,
use simulations of the cosmological signal (CS), the foregrounds,
the instrumental response and the noise to generate synthetic data
cubes – i.e. the intensity of 21-cm emission as a function of po-
sition on the sky and observing frequency – and then attempt to
extract the 21-cm power spectrum from these cubes. We generate
data cubes realistic enough so that we can test different observing
strategies and methods of subtracting the foregrounds, andlook at
the effect on the inferred power spectrum.

We devote the following section to describing the construction
of the data cubes and giving a brief description of their constituent
parts. Then, in Section 3 we discuss the extraction of the 21-cm
power spectrum from the cubes, including our method for subtract-
ing the foregrounds. In Section 4 we present our estimates ofthe
sensitivity of LOFAR to the 21-cm power spectrum, and discuss
the character of the statistical and systematic errors on these es-
timates. We conclude in Section 5 by offering some thoughts on
what these results suggest about the merits of different observing
strategies and extraction techniques.

2 SIMULATIONS

2.1 Cosmological signal and foregrounds

We test the quality and sensitivity of our power spectrum ex-
traction using synthetic LOFAR data cubes, which have various

1 Giant Metrewave Telescope, http://www.gmrt.ncra.tifr.res.in/
2 Murchison Widefield Array, http://www.haystack.mit.edu/ast/arrays/mwa/
3 Low Frequency Array, http://www.lofar.org/
4 21 Centimeter Array, http://web.phys.cmu.edu/˜past/
5 Precision Array to Probe the EoR, http://astro.berkeley.edu/˜dbacker/eor/
6 Square Kilometre Array, http://www.skatelescope.org/

components. The first is the redshifted 21-cm signal which is
simulated as described by Thomas et al. (2009). The starting
point for this is a dark matter simulation of5123 particles
in a cube with sides of comoving length200 h−1 Mpc. The
sides thus have twice the length of the simulations exhibited
by Thomas et al. (2009) and used in our previous work on
LOFAR EoR signal extraction (Harker et al. 2009a,b), allowing
us to probe larger scales. The assumed cosmological parameters are
(Ωm, ΩΛ, Ωb, h, σ8, n)=(0.238, 0.762, 0.0418, 0.73, 0.74, 0.951),
where all the symbols have their usual meaning. This leads to
a minimum resolved halo mass of around3 × 1010 h−1 M⊙.
Dark matter haloes are populated with sources whose properties
depend on some assumed model. For this paper we assume the
‘quasar-type’ source model of Thomas et al. (2009), which is
better suited to this simulation than one assuming stellar sources
owing to the relatively low resolution, which raises the minimum
resolved halo mass. The topology and morphology of reionization
is different compared to a simulation with a stellar source model,
and the power spectrum is also slightly different. We might
expect quasar reionization to allow an easier detection than stellar
reionization, since the regions where the sources are foundare
larger and more highly clustered, producing larger fluctuations
in the signal. This paper is concerned with the extraction ofthe
power in general, however, and the precise source properties are
not expected to affect our conclusions since the fitting appears
to be relatively unaffected by the difference in the source model
(Harker et al. 2009b).

Given the source properties, the pattern of ionization is com-
puted using a one-dimensional radiative transfer code (Thomas
& Zaroubi 2008), which allows realizations to be generated very
rapidly in a large volume. If the spin temperature is sufficiently
large, as we assume here, the differential brightness temperature
between 21-cm emission and the CMB is given by (Madau et al.
1997; Ciardi & Madau 2003)

δTb

mK
= 39h(1 + δ)xHI

(

Ωb

0.042

)[(

0.24

Ωm

)(

1 + z

10

)] 1

2

, (1)

where δ is the matter density contrast,xHI is the neutral hy-
drogen fraction, and the current value of the Hubble parame-
ter,H0 = 100h km s−1 Mpc−1. The series of periodic simulation
snapshots from different times is converted to a continuousobser-
vational cube (position on the sky versus redshift or observational
frequency) using the scheme described by Thomas et al. (2009).
In brief, the emission in each snapshot is calculated in redshift
space (i.e. taking into account velocities along the line ofsight,
which cause redshift-space distortions). Then, at each observing
frequency at which an output is required, the signal is calculated
by interpolating between the appropriate simulation boxes. We use
frequencies between121.5 and200 MHz, so we have a ‘frequency
cube’ of size200 h−1 Mpc × 200 h−1 Mpc × 78.5 MHz. To ap-
proximate the field of view of a LOFAR station, however, we usea
square observing window of5◦×5◦, which corresponds to comov-
ing distances of around600 h−1 Mpc at the redshifts correspond-
ing to EoR observations. We therefore tile copies of the frequency
cube in the plane of the sky to fill this observing window, and in-
terpolate the resulting data cube onto a grid with256× 256× 158
points. This simplified treatment of the field of view implicitly as-
sumes that the station beam is equal to unity everywhere within
a square window of frequency-independent angular size, andzero
outside. Since we plan to use only the top part of the primary beam
for EoR measurements, the sensitivity will vary relativelyslowly
across the field of view. Our simulations of the CS restrict usto ex-
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Figure 1. The rms fluctuation in differential brightness temperature, cal-
culated at the resolution of LOFAR, in our simulation of the cosmological
signal (CS) is shown as a function of redshift (solid line). For comparison,
we show the rms noise for an observing time of 600 hours per frequency
channel, scaled down by a factor of 6 (dotted line). Note thatthe vertical
axis scale does not start at zero.

amining angular modes much smaller than the size of the beam in
any case, and so the main effect of this simplification is to slightly
decrease the overall level of noise compared to a more accurate
beam model. As we progress to using larger simulations of theCS,
which let us examine more angular modes, the effects of the pri-
mary beam will become more important and will be included in
future work.

The rms variation in differential brightness temperature in
each slice of this data cube is shown as a function of redshiftin
Fig. 1. This rms is calculated at the resolution of LOFAR, which
will be around4 arcmin for EoR observations, depending on fre-
quency. Note that the rms fluctuation does not drop to zero by the
lowest redshift in this simulation, indicating that reionization is not
complete there. This delay in reionization comes about because the
source properties are the same as for our earlier, higher-resolution
simulations, which contain more resolved haloes (i.e. the minimum
resolved halo mass is lower). The larger simulations therefore have
fewer sources per unit volume. Such late reionization appears un-
realistic given current observational constraints (e.g. Fan, Carilli
& Keating 2006, and references therein), and means that extract-
ing the power spectrum at low redshift may be more difficult in
reality than we would predict using these simulations. The most
stringent test of our power spectrum extraction occurs at higher red-
shift, however, since this corresponds to lower observing frequen-
cies at which the noise (shown in Fig. 1) and the foregrounds are
larger. The power spectrum evolves less strongly at high redshift,
and so we expect this simulation to perform reasonably well there
compared to high resolution simulations. It may even be slightly
conservative, since HII regions at high redshift may increase the
strength of fluctuations at some scales.

We use the foreground simulations of Jelić et al. (2008). These
incorporate contributions from Galactic diffuse synchrotron and
free-free emission, and supernova remnants. They also include un-
resolved extragalactic foregrounds from radio galaxies and radio
clusters. We assume, however, that point sources bright enough to
be distinguished from the background, either within the field of
view or outside it, have been removed perfectly from the data. Ob-
servations of foregrounds at150 MHz at low latitude (Bernardi
et al. 2009) indicate that these simulations fairly describe the prop-
erties of the diffuse foregrounds.
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Figure 2. Assumeduv coverage at150 MHz (left panel): black cells are
those containing at least one observation, i.e. those having S(u, v) > 0.
The right panel shows the density of points in theuv plane, on a linear
greyscale.

2.2 Instrumental response

LOFAR is a radio interferometer which is planned to have fields of
antennas (stations) in several European countries. Its core, however,
is near the village of Exloo in the Netherlands, and it is the stations
in the core area (and perhaps some nearby ‘remote stations’)which
will be used for EoR observations. Each station contains twotypes
of antenna: low-band antennas (LBA), optimized for30–80 MHz,
and high-band antennas (HBA) optimized for120–240 MHz. The
LBAs will not be sensitive enough for redshifted 21-cm work,so
we will be concerned only with the HBAs. EoR observations are
expected to take place below approximately190 MHz (abovez =
6.48).

To improve theuv coverage (at the expense of increasing the
workload of the supercomputer which acts as LOFAR’s correlator),
within each LOFAR core station the HBA antennas are distributed
into two semi-stations, each of which is then treated is an indepen-
dent station. The antennas are collected into tiles, each ofwhich is
a grid of4×4 dual dipoles. A semi-station consists of 24 such tiles,
arranged in a filled circle. A remote station has all 48 of its HBA
tiles collected into a single circle. Each pair of stations provides us
with one baseline.

To include the effects of the instrumental response of LO-
FAR we define a sampling functionS(u, v) which describes how
densely the interferometer baselines sample Fourier spaceover the
course of an observation, such that1/

√
S is proportional to the

noise on the measurement of the Fourier transform of the sky
in eachuv cell. In general this sampling function is frequency-
dependent, but we examine the effect of this dependence by com-
paring to a situation in which we assume theuv coverage is the
same at all frequencies. This situation could be approximated in
practice by not using data atuv points for which there is no cov-
erage at some frequencies. This would involve discarding approxi-
mately 20 per cent of the data (from the outer part of theuv plane
at high frequencies, and from the inner part at low frequencies),
increasing the level of noise and reducing the resolution athigh
frequencies. Throughout this paper,S(u, v) is computed under the
assumption that 24 dual stations in the core and the first ringof
LOFAR are used to observe a window at a declination of90◦. We
assume noise levels appropriate to an observation at the zenith,
however. The final LOFAR layout is likely to include fewer dual
stations, and EoR observations will use some of the more central
remote stations, but we will not investigate different configurations
in this paper. The sampling function anduv coverage at150 MHz,
at which the frequency-dependent and frequency-independent sam-
pling functions match, are shown in Fig. 2. Theuv tracks are for a
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Table 1.Parameters of our synthetic observations and assumed arraylayout.

Total effective area at150 MHz 2.46× 104 m2

Image noise for a 300 hour observation78 mK
with 1 MHz bandwidth at150 MHz
Frequency coverage 121.5–200 MHz
Frequency channel width 0.5 MHz
Station beam field of view 5◦ × 5◦

Number of instantaneous baselines 48× 47
Spatial resolution at150 MHz ≈ 4 arcmin

four-hour observation. We summarize some of the parametersof
our simulated observations using this array layout in Table1.

To simulate our data in theuv plane we perform a two-
dimensional Fourier transform on the image of the foregrounds and
signal at each frequency, and multiply by a mask (theuv cover-
age) which is unity at grid points in Fourier space (uv cells) where
S(u, v) > 0, and is zero elsewhere. At this point we add uncorre-
lated complex Gaussian noise with an rms proportional to1/

√
S to

the cells within the mask. We can then return to the image plane by
performing an inverse two-dimensional Fourier transform at each
frequency. This two-dimensional Fourier relationship between the
uv and image plane only holds approximately for long integrations
with a LOFAR-type array, but we use it here since it allows con-
siderable simplification. The overall normalization of thelevel of
noise at each frequency is chosen to match the expected rms noise
of single-channel images. Part of the aim of this paper is to check
the effect of different levels of noise on power spectrum extraction.
For reference, we assume that 300 hours of observation of oneEoR
window with one synthesized beam with LOFAR will give noise
with an rms of78 mK on an image using1 MHz bandwidth at
150 MHz. Although this is a somewhat conservative choice, it off-
sets the assumption of a uniform primary beam within the fieldof
view we are considering, since a more realistic model for thepri-
mary beam would produce a noise rms that increased towards the
edge of the field of view. The level of noise varies with frequency,
being related to the system temperature which we assume to be
Tsys = 140 + 60(ν/300 MHz)−2.55 K.

A much more detailed account of the calculation of noise lev-
els and the effects of instrumental corruption for the LOFAREoR
project may be found in Labropoulos et al. (2009).

3 EXTRACTION

3.1 The problem of extraction

In this paper, the main limitation on the quality of power spectrum
extraction which we will consider is the subtraction of astrophys-
ical foregrounds. One difficulty encountered in this subtraction is
simply that the fluctuations in the foregrounds are much larger than
those in the CS: a subtraction algorithm must ensure that features
due to the signal are not mistaken for relatively tiny features in the
foregrounds. A second difficulty is the presence of noise, which
limits the accuracy and precision with which we are able to mea-
sure the foregrounds, and hence the accuracy with which we can
subtract them. The relative importance of these two effectschanges
with scale, since the power spectra of the foregrounds, signal and
noise do not have the same shape.

Our foreground subtraction relies on the foregrounds being
spectrally smooth, i.e. lacking small-scale features in the frequency

direction. Any small-scale features are put down to noise orsig-
nal. Large-scale features due to the CS are more difficult to recover,
since they can easily be confused with foreground features.The dif-
ficulty of recovering the large-scale power is exacerbated because
the fluctuations in the foregrounds become larger compared to the
noise and the signal, making the problem of overfitting more se-
vere.

At small scales, the noise is more of an issue: its power spec-
trum becomes much larger compared to the foregrounds and sig-
nal, making the latter impossible to pick out. The scale-dependence
of the contaminants means that there is a ‘sweet spot’: a range of
scales at which both the foregrounds and the noise are small enough
relative to the CS for the prospects for signal extraction tobe good.

This fact has implications for choosing an observational strat-
egy for the LOFAR EoR experiment, because we must trade off
the depth of observation against sky and frequency coverage. A
deep observation of a small area allows foreground fits of higher
quality, and is especially beneficial for the recovery of small-scale
power. It limits the size and number of modes which we can sample,
however, which is especially damaging for the errors on the recov-
ered large-scale power. Conversely, increasing the size ofthe area
surveyed beats down sample variance and may allow us to probe
larger scales, though note that in the case of radio interferometry
the length of the shortest baselines sets an upper limit on the size of
the available modes. This increase in area is only useful, however,
if the noise levels are low enough to allow foreground fittingto take
place.

Examining this trade-off is one of the aims of this work. Be-
fore doing so, we first outline the procedures we have used to fit the
foregrounds.

3.2 Fitting procedure

As we mentioned in Section 2, we consider both the case in which
the uv coverage of the observations depends on observing fre-
quency, and the idealized case in which it does not. For the latter,
we always fit the foregrounds in the image-space frequency cube
using the Wp smoothing method (Mächler 1993, 1995) described
in detail in Harker et al. (2009b) and summarized in Section 3.2.1.
This method requires the specification of a parameter,λ, which
governs the level of regularization: larger values impose asmoother
solution. We useλ = 0.5 for our image-space fitting, since we
found this to work well for extracting the rms (Harker et al. 2009b).
Before fitting, we reduce the resolution of the images, combining
blocks of4×4 pixels together to generate a64×64×158 data cube.
Since the unbinned pixels are smaller than a resolution element of
LOFAR (the binned pixels are slightly larger), and since therela-
tive contribution of the noise increases at small scales, this does not
discard spatial scales at which we can usefully extract information,
but does increase the quality of the fit, reducing bias.

When theuv coverage is frequency-dependent, however, fit-
ting in image space becomes problematic, since spatial fluctuations
are converted to fluctuations in the frequency direction, asillus-
trated by, for example, Bowman, Morales & Hewitt (2009) and Liu
et al. (2009). Instead, we leave the data cube in Fourier space [or, to
be more precise,(u, v, ν)-space, since we do not transform along
the frequency direction], and fit the foregrounds as a function of
frequency at eachuv point before subtracting them and generat-
ing images. The real and imaginary parts are fit separately, using
inverse-variance weights to take account of the fact that the noise
properties change as a function of frequency. This implies that if a
point in theuvplane is not sampled at a particular frequency, then it
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has zero weight and does not contribute to the fit. This is therefore
similar to the method proposed by Liu et al. (2009). We discard
‘lines of sight’ in Fourier space in which the weight is non-zero
for fewer than ten points, since the foregrounds are not wellcon-
strained here and we would merely introduce noise into the residual
images.

This leaves the problem of which method to use to perform
the fitting in Fourier space. Choosing a method is more awkward
than in image space, since the mean contribution from foregrounds,
noise and signal varies across theuv plane. It may be optimal to
vary the parameters of a fitting method according to the position in
theuvplane. None the less, we obtain reasonable results simply us-
ing a third-order polynomial in frequency to fit the real and imagi-
nary parts at each point in the plane. We have also used Wp smooth-
ing to fit the foregrounds in theuvplane. This gives us the freedom
to vary the smoothing parameter,λ, across the plane. Near the ori-
gin (i.e. corresponding to large spatial scales) little regularization is
required, since the contribution from the foregrounds is much larger
than that from the signal or the noise and so they are well measured.
Toward the edges of the plane we need to make stronger assump-
tions about the smoothness of the foregrounds to avoid overfitting,
and so we make the value ofλ larger. Finding a ‘natural choice’ for
λ is somewhat awkward (see Harker et al. 2009b for further dis-
cussion), so at present we choose a mean value ofλ which gives
reasonable results, and vary it between lines of sight by making it
inversely proportional to the mean,c̄, of the fitting weights of points
along that line of sight. Specifically, we useλ(u, v) = 280/c̄(u, v),
wherec(u, v, νi) =

√

S(u, v, νi)/σ
im(νi) andσim(νi) is the rms

image noise at frequencyνi expressed in kelvin. Since the noise
is typically a few tenths of a kelvin, andS has values ranging up
to around2.5 × 105, we end up withλ ≈ 15 at the edge of theuv
plane andλ ≈ 0.03 near the centre, for an integration of 300 hours.
The results are not sensitive to the precise normalization of λ.

3.2.1 Wp smoothing

Wp smoothing is a non-parametric fitting method which appears
to be very suitable for fitting the spectrally smooth foregrounds in
EoR data sets. It was developed for general cases by Mächler(1993,
1995), and we have described an algorithm for using it for fitting
EoR foregrounds in a previous paper (Harker et al. 2009b). Wewill
briefly outline its principles here.

The aim is to fit a functionf(x) to a series of points{(xi, yi)}
subject to a constraint on the number of inflection points in the
function, and on the integrated change of curvature away from the
inflection points. More precisely, define the functionhf (x) by

f ′′(x) = sf (x−w1)(x− w2) . . . (x− wnw )ehf (x), (2)

wheresf = ±1 andw1, . . . , wnw are the inflection points. The
functionf we wish to find is that which minimizes

n
∑

i=1

ρi(yi − f(xi)) + λ

∫ xn

x1

h′
f (t)

2dt , (3)

where the functionρi, which takes as its argument the difference
δ = yi − f(xi) between the fitting function and the data points,
penalizes the fitting function if it strays too far from the data. We
opt to use a least-squares fit, withρi(δ) = ci/(2δ

2) whereci is a
weight. Our choice forci is given above. The parameterλ controls
the relative importance of the least-squares term and the regulariza-
tion term, with larger values giving heavier smoothing.

Mächler (1993, 1995) derives an ordinary differential equation

and appropriate boundary conditions such that the solutionis the
functionf which we require. We solve it by discretizing it to give
an algebraic system which we solve using standard methods. It is
possible to perform a further minimization over the number and
position of the inflection points, but we have found that solutions
with no inflection points fit the EoR foregrounds well, so we donot
require this extra step.

3.3 Power spectrum estimation

Once we have fit the foregrounds, we subtract the fit to leave a
residual data cube which has as its components the cosmolog-
ical signal, the noise and any fitting errors. We will mainly be
concerned with the spherically averaged three-dimensional power
spectra of the residuals and their components. These are calcu-
lated within some sub-volume of the full data cube (for exam-
ple, a slice8 MHz thick) by computing the power in cells and
then averaging it in spherical annuli to give band-power estimates.
Each cell contributes only to the annulus in which its centrelies,
i.e. we ignore the fact that the cells have non-zero size. Thean-
nuli are logarithmically spaced, but because we plot the power
against the mean value ofk for cell centres lying within an annu-
lus, the points in figures may not be exactly logarithmicallyspaced.
Rather than showing the raw power, in our figures we plot the quan-
tity ∆2(k) = Vk3P (k)/(2π2) (or the analogous one- or two-
dimensional quantity: see e.g. Kaiser & Peacock 1991), where V
is the volume. This is usually called the dimensionless power spec-
trum when dealing with the spectrum of overdensities, though in
this case it has the dimensions of temperature squared.∆2(k) is
then the contribution to the temperature fluctuations from modes in
a logarithmic bin around the wavenumberk.

Different systematic effects are important for modes alongand
across the line of sight, however. For this reason we also calculate
the two-dimensional power spectrum perpendicular to the line of
sight (i.e. the angular power spectrum, but expressed as a function
of cosmological wavenumberk) and the one-dimensional power
spectrum along the line of sight. We estimate the two-dimensional
power spectrum at a particular frequency by averaging the power
in annuli. Estimates calculated from one frequency band tend to
be rather noisy, so we usually average the power spectrum across
several frequency bands to give a less noisy estimate. In theone-
dimensional case we simply calculate the one-dimensional power
spectrum for each line of sight with no additional binning (produc-
ing points linearly spaced ink), then average these spectra across
all 642 lines of sight [2562 lines of sight in the case of the cubes fit
in (u, v, ν) space] to give an estimate for the whole volume. Typ-
ically we consider a volume only∼ 8 MHz deep, so that the CS
does not evolve too much within the volume.

To see more clearly the contribution to the power spectrum of
the residuals from its different components, we write the residuals
in Fourier space as

r(k) = s(k) + n(k) + ǫ(k) , (4)

wheres is the cosmological signal,n is the noise andǫ is the fitting
error. Then the power spectrum is given by

P r(k) = 〈r(k)r(k)∗〉|k|=k (5)

= P s(k) + Pn(k) + P ǫ(k)

+ 〈ǫ(k)[s(k) + n(k)]∗ + [s(k) + n(k)]ǫ(k)∗〉|k|=k

(6)

where the subscript indicates that the averaging takes place over
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a shell ink-space, and the superscripts label the power spectra of
the different components. The equality on the second line follows
because the signal and noise are uncorrelated so their cross-terms
average to zero. We cannot assume, however, that the fitting errors
are uncorrelated with the signal or noise, which gives rise to the
final term in angle brackets, which may be either positive or neg-
ative. We may usually expect it to be negative, since we fit away
some of the signal and noise, reducing the size of the residuals. If
it is large enough, the power spectrum of the residuals may even
fall below the power spectrum of the input CS, especially at scales
where the noise power is small.

If we ignore the fitting errors, we may estimate the power
spectrum of the CS by computing the power spectrum of the resid-
uals, then subtracting the expected power spectrum of the noise. In
this case, we can make a relatively straightforward estimate of the
error on the extracted power spectrum, as we see in Section 3.3.1.
We have assumed here that the expected power spectrum of the
noise is known to reasonable accuracy. In fact, we will not beable
compute it accurately enougha priori for real LOFAR data: it must
instead be estimated through observation. It should be possible to
do so by differencing adjacent, narrow frequency channels (much
narrower than those in the simulations used here, where the data
have been binned into0.5 MHz channels: the estimate would have
to be carried out before this level of binning, using channels of
perhaps10 kHz). Studying this in more detail in the context of
the LOFAR EoR experiment must be the subject of future work,
though note that this approach has already been applied to char-
acterize the noise in low frequency foreground observations made
with the Westerbork telescope (Bernardi et al. 2010), the GMRT
(Ali, Bharadwaj & Chengalur 2008) and PAPER (Parsons et al.
2009).

3.3.1 Statistical errors

The statistical errors on the extracted power spectrum include con-
tributions from the noise and from sample variance. Considering
first the noise, in theith Fourier cell the real and imaginary parts
of the contribution to the gridded visibility from the noise, V n

i , are
Gaussian-distributed, with mean zero and varianceσ2

i (say), which
is known. Then|V n

i |2 is exponentially distributed with mean2σ2
i

and variance4σ4
i . We may estimate the power spectrum at some

wavenumberk by computing

〈Pn(k)〉 = 1

mk

mk
∑

i=1

|V n
i |2 (7)

where the sum is over all cells within an annulus neark. If the
number of cells in the annulus is sufficiently large, the error on this
estimate is approximately Gaussian-distributed, and we estimate it
as 〈Pn(k)〉/√mk, assuming that the different cells are indepen-
dent and using the fact that the variance of|V n

i |2 is the square of
its mean. This error translates into an error on the final extracted
power spectrum, and can be reduced either by integrating longer
on the same patch of sky (to reduceσ2

i ∼ 1/τ whereτ is the ob-
serving time) or by spending the time observing a wider area to
increase the number of accessible modes, increasingmk. In the lat-
ter case, the error only decreases as1/

√
τ .

Though this estimate of the error is useful as a guide for how
the errors behave as the observational parameters change, amore
accurate error bar can be computed in a Monte Carlo fashion by
looking at the dispersion between independent realizations of the
noise, and this is how we compute the errors in practice. Although

the analytic estimate is reasonable, it tends to underestimate the
errors at large scales and overestimate them at small scales.

The power spectrum of our simulation of the CS is calculated
similarly to the power spectrum of the noise. In this case, the error
〈PCS(k)〉/√mk represents the error on our final estimate of the
power spectrum due to sample variance, and can only be reduced
by sampling more modes (increasingmk). Unlike the noise, the
fluctuations in the CS are not Gaussian, and so an analytic estimate
of the error is likely to be less accurate. This should not matter too
much at small scales where in any case the error on our extracted
power spectrum is dominated by noise, but on larger scales the sam-
ple variance becomes important. At present we do not have enough
different realizations of the CS to simulate the errors morerealisti-
cally: as noted in Section 2 we must already tile copies of a single
simulation to fill a LOFAR field of view, which limits the rangeof
scales we can realistically study. These estimates should therefore
be considered an illustration of how we expect the errors to change
as we vary our observational strategy, rather than a definitive calcu-
lation, which is reasonable given the other simplificationswe have
made (e.g. adopting a square field of view rather than a realistic
primary beam shape). Error bars on our extracted power spectra
are computed by adding the noise and sample variance errors in
quadrature.

3.3.2 Systematic errors

The terms involving fitting errors on the right-hand side of equa-
tion (6) will bias our estimate of the power spectrum of the CS
unless they can be accurately corrected for, and so contribute to
a systematic error. When analysing LOFAR data it may be possi-
ble to estimate the size of these terms using simulations similar to
the ones used in this paper. Bowman et al. (2009) have estimated
them for simulations of MWA data through a ‘subtraction charac-
terization factor’fs(k) = 〈P s(k)〉/P s(k). By fitting cubes which
include different realizations of the CS and noise, it should also be
possible to reflect the statistical error introduced by making such a
correction in the error bars. In this paper we do not make thiscor-
rection, however: it would be accurate by construction and hence
quite uninformative. Instead we plot〈P s(k)〉 = P r(k)−〈Pn(k)〉
to illustrate the level of bias we may expect to see if no correction is
made. Our error bars will then reflect errors due only to the sample
variance and the noise. If the estimated power falls below the true
power, we use the estimate of sample variance from the true power,
since this gives a more realistic view of what the estimate ofthe
sample variance would be if we made a correction for the fitting
bias.

We expect any estimate of the bias, or of the statistical error
introduced by correcting for the bias, to be rather uncertain, since
it may depend strongly on the shape of the foregrounds, whichis
unknown to the required level of accuracya priori, and on the de-
tails of the fitting procedure used. It is none the less straightforward
to estimate them for a specific foreground model and fitting proce-
dure.

3.3.3 Cross-correlation

As an alternative to calculating a residual power spectrum and then
subtracting a thermal noise power spectrum, we could obtainthe
extracted power spectrum through cross-correlation. Thatis, we
could split an observing period into two sub-epochs, subtract the
foregrounds from each and then cross-correlate the two. Following
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the approach taken to derive Equation (6), we can write the residual
in each of the two epochs as

ri(k) = s(k) + ni(k) + ǫi(k) , (8)

where the signals(k) is the same for the two cases andi ∈ {1, 2}
labels the epoch. Then

〈r1r∗2〉 = P s + 〈sǫ∗2〉+ 〈ǫ1s∗〉+ 〈ǫ1ǫ∗2〉 , (9)

where thek-dependence is implicit, the angle brackets again in-
dicate an average over a shell ink-space, and cross-terms involv-
ing the noise vanish. If the fitting errors are sufficiently small, this
cross-correlation immediately provides us with an estimate of the
desired power spectrum.

This estimator has some apparent advantages. Firstly, we do
not have to know the thermal noise power spectrum to calculate
it (though an estimate of the thermal noise is required to compute
error bars). Secondly, we do not expect it to yield negative esti-
mates of the power, as may happen when using Equation (6). More
generally, at scales where the noise is larger than the signal or the
fitting errors, we would expect the bias of this estimator to be much
smaller than for the one involving autocorrelations, sincethe cross-
terms involvingn andǫ on the right-hand side of Equation (6) do
not appear.

It is not without disadvantages, however. If we split the obser-
vation into two epochs, the lower signal-to-noise in each epoch will
degrade the foreground fitting, increasing the size of theǫ terms. If,
instead, the foreground fitting is done on the full dataset before di-
viding it into different epochs, then the cross-terms involvingn and
ǫ can no longer be assumed to vanish.

We have conducted preliminary tests of the cross-correlation
method and found that it gives comparable results to the autocorre-
lation method at scales where the fitting bias is small enoughfor ei-
ther estimate to be useful. We reiterate, however, that it isassumed
here that the thermal noise power spectrum is known accurately,
which unfairly favours using the autocorrelation. We deferfurther
comparison of the two methods until we have looked further into
how well the noise power spectrum can be estimated from obser-
vations. In this paper, all our extracted power spectra are computed
by subtracting the noise power spectrum from the residual power
spectrum. We would not expect our broad conclusions to change if
we were to use cross-correlation instead.

4 SENSITIVITY ESTIMATES

4.1 Comparison of fitting methods

Examples of extracted power spectra at three different redshifts,
for slices8 MHz thick, are given in Fig. 3 (points with error bars).
From top to bottom, the central redshift of the slice used in each
panel is 9.96, 8.49 and 7.37, while the mean neutral fractionx̄HI in
each slice is 0.998, 0.942 and 0.614, respectively.

For comparison, we also show the power spectrum of the
noiseless CS cube (solid line), the noise (dashed line) and the resid-
uals after fitting (dotted line). The extracted power spectrum is the
difference between the residual and noise power spectra, and would
be equal to the noiseless CS power spectrum if there were no fore-
grounds. For this figure we use a frequency-independentuv cov-
erage, so the foreground fitting is carried out in the low-resolution
image cube. A noise level consistent with 300 hours of observation
per frequency bin of a single (5◦ × 5◦) window using a single sta-
tion beam is assumed. It may not be possible to observe the entire
frequency range simultaneously, and it may have to be split into two
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Figure 3. Power spectra of the input CS (solid line), the noise (dashedline),
the residuals (dotted line) and the extracted signal (points with error bars)
at three different redshifts. Here we assume theuv coverage is frequency-
independent, so the foreground fitting is done using Wp smoothing in the
image plane. The noise level is consistent with 300 hours of observation
per frequency bin on a single window, using one station beam.The redshift
shown in each panel is the central redshift of an8 MHz slice from the
frequency cube. This frequency interval corresponds to∆z = 0.63, 0.48
and0.37 for the top, middle and bottom panel respectively. From top to
bottom, the mean neutral fraction in each slice,x̄HI, is 0.9976, 0.9416 and
0.6140. The missing points in the top panel correspond tok bins at which
the power spectrum of the residuals falls below the power spectrum of the
noise, so that we would infer an unphysical, negative signalpower.

or three segments (e.g. of32 MHz width) only one of which can
be observed at once. If we have to use two such segments, then the
300 hours of observation per frequency bin translates to 600hours
of total observing time. This is a somewhat pessimistic scenario
for the quality of data we may collect after one year of EoR obser-
vations with LOFAR, since it is hoped that several station beams
can be correlated simultaneously to cover the top of the primary
(tile) beam, allowing a larger field of view to be mapped out more
quickly. It may also be possible to trade off the number of beams
against the width of the frequency window, or to spend different
amounts of time on different parts of the frequency range. None
the less, the assumptions of Fig. 3 provide a useful baselineagainst
which we can compare results for deeper observations or for more
realistic (frequency-dependent)uv coverage. It also illustrates the
main features we see in many of our extracted spectra.

For the lowest-redshift slice (bottom panel), the recoveryap-
pears to be good: at most scales, the recovery is accurate andhas
small errors. At large scales the error bars increase in sizebecause
of sample variance, and it appears that the recovered power spec-
trum lies systematically below the input spectrum. This happens
because at large scales, we fit away some of the signal power dur-
ing the foreground fitting. If the points at large scales do not ap-
pear to jump around as one would expect given the size of the er-
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ror bars, this is because the error bars here are dominated bysam-
ple variance, and so show our uncertainty as to how representative
this volume is of the whole Universe. If, instead, we showed er-
ror bars showing only the uncertainty on our determination of the
power spectrumwithin this volume, they would be much smaller
and would be visually consistent with the scatter displayedby the
points. The error bars grow at small scales because the noisepower
becomes larger compared to the signal power, limiting our sensi-
tivity. We caution that, as noted in Section 2, the simulation we
use represents a rather optimistic scenario for low-redshift signal
extraction, since reionization occurs very late.

As we move to higher redshift (middle panel) the situation
worsens slightly, with the error bars increasing in size because of
the higher noise levels. More worryingly, the recovered power is
lower than the input power at all scales (though it becomes worse
at large scales as before) which seems to indicate that foreground
subtraction may cause significant bias in our estimate of thesig-
nal power even at intermediate scales. The trend continues as we
move to the highest redshift slice (top panel). We do not plotthe
recovered power for a range of scales betweenk ≈ 10−0.9 and
10−0.3 h Mpc−1. This is because we infer an unphysical negative
power here. In the case of such points we plot a statistical upper
limit on the power. The bias from the fitting procedure leads to a
situation where these ‘upper limits’ lie below the true power, or are
too small even to show up on the plot. These upper limits should,
then, be taken merely as an indication of the size of the fitting bias.
The larger noise at lower frequencies (higher redshifts) increases
the size of the error bars compared to the other panels. The combi-
nation of this higher noise and the larger foreground power makes
fitting the foregrounds at high redshift more difficult, as wehave
seen in previous work (Harker et al. 2009a,b), leading to theob-
served bias.

The situation is very similar if theuv coverage is frequency-
dependent but we do our fitting using Wp smoothing in Fourier
space. This case can be seen in Fig. 4, which is otherwise verysim-
ilar to Fig. 3 except that we have changed the vertical axis scale
to accommodate the upturn in noise power at highk caused by the
varyinguvcoverage. The higher small-scale noise coming from the
frequency-dependentuv coverage damages the recovery of power
at the smallest scales, but the fitting using Wp smoothing in Fourier
space allows us to recover the power on intermediate and large
scales even better than in Fig. 3. The reason that we fit even better
than in the supposedly more ideal case of Fig. 3 is partly thatthe
noise is normalized in image space to the expected level for single-
channel images (see Section 2.2), and so the increase in small-scale
noise in the frequency-independent case is compensated by are-
duction in large-scale noise, improving recovery there. Itis also the
case that ouruv plane fitting is more adaptive, applying less regu-
larization at scales where the foregrounds dominate and thenoise
is low. Unfortunately we do not yet have a well-motivated method
to choose the regularization parameterλ automatically rather than
varying it by hand, but this result suggests that finding a suitable
method could yield even more improvement in the quality of the
fitting.

If we use a third-order polynomial fit for the foregrounds
rather than using Wp smoothing, however, the result becomes
worse, especially at high redshift. This is illustrated in Fig. 5, which
is identical to Fig. 4 apart from the fact that polynomial fitsare
used. While at low redshift the quality of recovery is visually in-
distinguishable, at high redshift the Wp smoothing of Fig. 4allows
us to recover an estimate of the power spectrum to higherk. The
bias at lowk also seems to be larger for polynomial fitting, which
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Figure 4. Power spectra of the CS, the noise, the residuals and the extracted
signal for the case when theuv coverage is frequency-dependent, we have
300 hours of observation per frequency channel with a singlestation beam,
and the foreground fitting is done using Wp smoothing in Fourier space. The
redshift slices and the colour coding of the lines are the same as for Fig. 3,
but note we have changed the scale of the vertical axis to accommodate the
upturn in noise power at small scales.
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Figure 5. As for Fig. 4, except that the foregrounds are fit using a third-
order polynomial rather than Wp smoothing.
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seems to produce overestimates of the power of the CS at large
scales. This may be due to the fact that a polynomial is unableto
match the large-scale spectral shape of the foregrounds, allowing
foreground power to leak into the residuals. Unlike Wp smoothing,
polynomial fitting does not allow us to smoothly vary the level of
regularization across theuvplane (the only parameter we can tweak
is the polynomial order, which is a somewhat blunt instrument) and
this may also contribute to the poorer fit.

We conclude that even though varyinguv coverage makes
foreground fitting more awkward, we can mitigate its effectswith-
out having to discard a large proportion of our data if we choose our
fitting method carefully. At present our scheme for fitting the fore-
grounds using Wp smoothing in Fourier space is quite slow, how-
ever, so for the rest of the paper we revert to the case of frequency-
independentuv coverage, for which our image-space fitting works
quickly and reasonably well. Fig. 4 suggests that this should not af-
fect our comparisons of results using different lengths of observing
time or observational strategies. For actual LOFAR data, the fitting
of the foregrounds should still be much faster than other steps in
the reprocessing of the data, and so we are likely to use our most
accurate scheme (at present, Wp smoothing in Fourier space)even
if it is slow compared to other schemes.

4.2 Different depths and strategies

Having compared the characteristics of different fitting methods,
we now move on to comparing the quality of extraction for differ-
ent assumptions about the amount of observing time, and for differ-
ent observational strategies. We start by showing the extraction for
180 hours of observing time per frequency bin, making a totalof
360 hours of observing time if two frequency ranges are required, in
Fig. 6. This makes it comparable to fig. 12 of Bowman et al. (2009),
who show a simulated power spectrum for 360 hours of observation
with the MWA (though spanning a larger redshift range than a panel
of our figure). To make the comparison more illustrative, we show
two error bars for each point, the grey one on the left including both
the noise error and the sample variance, and the black one on the
right including only the noise error. For the MWA these woulddif-
fer by less then ten per cent and would be almost indistinguishable
on this log-log scale (J. Bowman, private communication). Visu-
ally, the errors for LOFAR without sample variance appear smaller
than those for the MWA at most scales at the lower redshifts, as
we may expect from the larger collecting area. A computationin-
cluding the sample variance, however, tends to favour the MWA
at smallk owing to its larger field of view. Hence we explore the
effect of observing multiple independent windows below.

The field of view can also be extended if, as planned, we are
able to synthesize multiple station beams simultaneously.Equiva-
lently, if we wish from the outset to observe a window larger than
the ∼ 5◦ × 5◦ of a single station beam, multiple beams can be
used to achieve observations of greater depth without usingmore
observing time. We show the effect of extending the field of view
in Fig. 7, where we assume that we observe for 300 hours per fre-
quency bin (as in Fig. 3), but using six station beams. We model
the effect of using six beams by reducing the errors due to noise
and to sample variance by a factor of

√
6. A realistic primary beam

model, and the incorporation of modes with smallerk, would make
the effect of multiple beams more complicated, but we incorporate
the effect in a way which is consistent with our simplified beam.
The most obvious effect of using multiple beams is at large scales,
since here the increase in the number of available modes reduces
the (large) sample variance errors as well as the noise errors. The
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Figure 6. As for Fig. 3, but using a noise level consistent with 180 hours of
observation per frequency bin on a single window, using one station beam.
We also plot two error bars for each point: the grey one on the left shows
the error from both noise and sample variance as in our other figures, while
the black one on the right shows the error only from noise.
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Figure 7. As for Fig. 3, except we assume that six station beams are syn-
thesized, rather than one.
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noise errors at highk are also reduced, however. Since the smallest
scales we probe may be comparable to the size of bubbles in theHI
distribution, this improvement may be important for constraining
physical models.

This figure also makes it clear what multiple beams donot
do. Increasing the field of view in this way does not increase the
signal to noise along each line of sight, and so the foreground fitting
does not improve. The systematic offset at intermediate scales in
the middle redshift bin is still present, and we remain unable to
extract physically meaningful information at high redshifts at these
scales with our current methods. Our CS simulations are of limited
size, so we are unable to demonstrate how the larger field of view
enables us to recover the power spectrum at lowerk. The bias we
see at the largest scales in our figures is unlikely to improveas we
go to yet larger scales, however, and so it may be difficult to exploit
the potential afforded by a larger field of view in practice.

We now directly examine the trade-off between spending ob-
serving time to go deeper in a small area, and spending it to survey
a larger area. Considering first the situation at the lowest redshifts,
we see from Figs. 6 and 7 that after 180 hours of observation per
frequency channel, the fitting bias has reached a level that reduces
very little with deeper observation. Moreover, with the sixstation
beams of Fig. 7 the errors at intermediate scales are rather small.
The main effect of deeper observation is then to reduce the errors
only at the very smallest scales. It would clearly be more profitable
to use extra observing time to cover multiple windows, and reduce
the large-scale errors which are dominated by sample variance.

At high redshift the trade-off between depth and number of
windows is more interesting, as we see in Fig. 8. Here, all three
panels show power spectra at the same redshift as the top panel of
our earlier figures (z = 9.9564, with x̄HI = 0.9976). Each point
has two error bars, the one on the right accounting only for noise,
and the one on the left also including the effect of sample variance,
as in Fig. 6. The different panels distinguish between different ways
of allocating a fixed amount (900 hours) of observing time perfre-
quency band with six station beams. If we use this time to observe
five different windows (bottom panel), as seems to be preferable
at low redshift, the main effect is to reduce the size of the statis-
tical errors in a region of the power spectrum (lowk) where there
is in any case a relatively large and uncertain systematic correc-
tion to be made for the fitting bias. Meanwhile, the large amount of
noise per window degrades the fitting at intermediate scales. Taking
300 hours of observation per frequency band per window (middle
panel) reduces the bias somewhat, and enables recovery of reason-
able quality across a larger range of scales. Only with 900 hours of
observation of a single window (top panel), however, are we able to
recover a physically plausible estimate of the power acrossalmost
all the accessible scales. Even at those scales at which the shal-
lower observations allowed some sort of estimate of the power, the
increased depth reduces the bias from the fitting, so that it becomes
comparable to the statistical error bars.

The tension between optimizing low- and high-redshift recov-
ery is not the only consideration in deciding how many windows
to observe and for how long. Using multiple windows will helpto
control the systematics because we can then compare fields with
different foregrounds and different positions in the sky. If we wish
to observe for a reasonable fraction of the year, we are required to
observe different windows since some may be inaccessible ortoo
low in the sky during some periods. None the less, a hybrid strat-
egy in which some windows receive more time than others may be
possible.

Another possible strategy, since the higher redshift bins appear
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Figure 8. Power spectra of the original and extracted signal, the residuals
and the noise, using the same line styles as Fig. 3. Each panelassumes the
same total observing time (900 hours) using six station beams, in an8MHz
slice centred atz = 9.96 (with x̄HI = 0.9976), the same redshift as for the
top panel of Figs. 3–7. The panels differ in the way in which the observing
time is split between windows: in the top panel we devote all the observ-
ing time to a single window, and in the bottom panel we spread it equally
between five different windows. The middle panel shows an intermediate
case. Each point has two error bars, the one on the right accounting only for
noise, and the one on the left also including the effect of sample variance,
as in Fig. 6.

to benefit more from longer integration times, is to spend longer
observing higher redshifts than lower redshifts. Since we already
split up the frequency range into different chunks which arenot
observed simultaneously, this may be possible without excessive
difficulty. We note, however, that for other reasons (for example
improving the calibration), it may be desirable not to splitthe fre-
quency range into large contiguous chunks, but into two interleaved
combs. This would enforce a uniform integration time acrossthe
whole frequency range. A further problem one may envisage isthat
the noise rms would jump discontinuously across the gap between
the two frequency chunks. Unless the noise is well characterized,
such a jump could be confused with a change in the signal rms due
to reionization. It may also complicate the foreground fitting, and
so we test this in Fig. 9. Here we have assumed that we have spent
1200 hours on the low frequency chunk (below160 MHz), and
only 300 hours on the high frequency chunk. This does not appear
to affect our fitting adversely. Even if we choose to plot the power
spectrum in an8 MHz slice which straddles the crossover between
long and short integration times, the extraction appears tobe stable.
If other factors allow us to use such a strategy, then, it appears to
be a viable way to make the quality of our signal extraction more
uniform across the redshift range we probe.
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Figure 9. Power spectra at three different redshifts, using the same line
styles as before. In this case, however, we assume that at frequencies above
160 MHz (corresponding toz ≈ 7.9) we have used 300 hours of integra-
tion time, while below160 MHz we have used 1200 hours of integration
time, in each case using one station beam.

4.3 Source of the large-scale bias

Even when we achieve small statistical errors, as for the bottom
panel of Fig. 7, a bias persists on large scales. We look for the
origin of this bias by plotting the power spectrum of modes inthe
plane of the sky (the angular power spectrum) in Fig. 10, and the
one-dimensional power spectrum along the line of sight in Fig. 11.
For both of these figures we consider a slice at low redshift (as for
the bottom panel Fig. 7), and assume 900 hours of observationper
frequency chunk with one station beam.

The extracted two-dimensional power spectrum appears to
behave similarly to the three-dimensional power spectrum,al-
beit with slightly larger error bars because we have fewer modes
available. The bias at large scales persists: we underestimate the
power because we fit away some of the signal and noise. The one-
dimensional power spectrum looks rather different. It is quite ac-
curately determined because we average over so many lines of
sight, and there is no apparent bias in the extraction. The one-
dimensional power spectrum does not extend to such large scales
as the two-dimensional power spectrum because we restrict our-
selves to quite a narrow frequency slice (corresponding to aco-
moving depth of93.2 h−1 Mpc) to avoid evolution effects, but it
does extend to scales at which the two-dimensional power spec-
trum shows bias. We have experimented with using slices which
are twice as thick (16 MHz) and these still show no significant bias
at the largest scales. The one-dimensional power spectrum extends
to smaller scales than the two-dimensional one, since the spatial
resolution is better along the frequency direction for our0.5 MHz
channels. This resolution, and the lack of bias, may be useful if we
are able to invert the one-dimensional power spectrum to recover
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Figure 10. Two-dimensional power spectrum in the plane of the sky, for
a slice8 MHz thick centred atz = 7.3717 and with x̄HI = 0.6140,
for 900 hours of integration with a single station beam. The line styles for
the original signal, noise, residuals and extracted spectrum are as for the
previous figures.
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Figure 11. One-dimensional power spectrum along the line of sight, for
a slice8 MHz (93.2 h−1 Mpc) deep centred atz = 7.3717 and with
x̄HI = 0.6140, for 900 hours of integration with a single station beam. The
line styles for the original signal, noise, residuals and extracted spectrum
are as for the previous figures.

the three-dimensional power spectrum (Kaiser & Peacock 1991;
Zaroubi et al. 2006).

At first sight it seems somewhat puzzling that although we as-
sume that the foregrounds are smooth in the frequency direction
– we effectively ignore very large-scale power along the line of
sight – the fitting bias manifests itself most clearly in the angu-
lar power spectrum. Note, though, that if our estimate of thefore-
grounds along a line of sight is offset by some constant, or byan
amount that is approximately constant within the narrow frequency
range in which we estimate the power spectrum (the fits are always
computed across the full frequency range to avoid edge effects),
this does not change the power spectrum of the residuals along the
line of sight at all. If this offset is different between different lines
of sight, though, then this will be apparent in the angular power
spectrum of the residuals at each frequency. If the offsets at nearby
points are correlated, perhaps because the foregrounds within some
region have a similar shape and strength, then the angular power
spectrum of the residuals on small scales will hardly be affected.
At scales larger than the correlation length of the fitting errors then
these offsets could lead to the bias which we see.

In any case, Figs. 10 and 11 suggest that we should consider
the angular and line-of-sight power spectra separately in an analysis
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of LOFAR data, though ultimately neither will allow us to constrain
models as tightly as a three-dimensional power spectrum which in-
cludes a contribution from all modes. The line-of-sight power spec-
trum appears to be less vulnerable to bias and extends to higher k,
while the angular power spectrum extends to larger scales and may
have greater power to distinguish between models of reionization.
The more sophisticated version of this separation – expanding the
three-dimensional power spectrumP (k, µ) in powers ofµ, the co-
sine of the angle between a mode and the line-of-sight (Barkana &
Loeb 2005) – is, unfortunately, not likely to be useful for the noise
levels expected for LOFAR, though we have not yet made a quanti-
tative investigation of this possibility. Pritchard & Loeb(2008) have
checked this for an MWA-type experiment, using an optimistic in-
strumental configuration, and find that it does not have the required
sensitivity. Rather, the separation into powers ofµ may have to wait
for SKA or for a futuristic lunar array.

5 SUMMARY AND DISCUSSION

In this paper we have studied the extraction of the 21-cm EoR
power spectrum from simulated LOFAR data. The simulations al-
low us to compute the statistical errors on the power spectrum due
to thermal noise and sample variance, and these are small enough
to raise the possibility of a significant detection of emission from
the EoR using only a modest amount of observing time. If we wish
to estimate the power spectrum accurately, however, this becomes
more challenging once we take into account the presence of fitting
errors from the subtraction of astrophysical foregrounds.These er-
rors are correlated (positively or negatively) with the signal and the
noise in general, and introduce a scale-dependent bias intoour es-
timate of the power spectrum. We anticipate that simulations such
as the ones studied here could be used to estimate and correctfor
the bias; this would induce a further statistical error which can be
straightforwardly computed by using multiple realizations of a sim-
ulated observation. Making this sort of correction will always be
uncertain, though, so it is desirable to minimize its size. We have
looked at the extent to which the size of the correction, as well as
the size of the statistical errors, can be reduced by observing for
longer or using alternative observational strategies.

Before that, though, we tested that extraction is still possible if
we do not make the assumption that theuvcoverage is independent
of frequency. We find that this necessitates fitting the foregrounds
in the (u, v, ν) cube rather than the image cube, as noted by Liu
et al. (2009). The Wp smoothing method, which we have used pre-
viously to fit the foregrounds in the image cube, can be adapted to
work in the (u, v, ν) cube by fitting the real and imaginary parts
independently for eachuv cell and by varying the regularization
parameter,λ, across theuvplane. This yields results comparable to
(in fact, even better than) those we obtain if we assume frequency-
independentuv coverage and then fit in the image cube. We have
also tried using a third-order polynomial to fit the foregrounds in
the(u, v, ν) cube: this yields results which are acceptable, but not
as good as those obtained using Wp smoothing. The main draw-
back of Wp smoothing in this case is its speed, especially for‘lines
of sight’ near the centre of theuv plane where it is best to choose a
small value forλ (implying little smoothing). Because Wp smooth-
ing in the image cube is faster, because the polynomial fitting gives
worse results than Wp smoothing in the(u, v, ν) cube, and be-
cause Wp smoothing produces extraction of similar quality in the
image and(u, v, ν) cubes, we have concentrated on results using

frequency-independentuv coverage to explore the different scenar-
ios in this paper.

We have found that a year’s observations (of, say, 600 hours,
of which perhaps 360 could be of a single window) should be suf-
ficient to detect cosmological 21-cm emission from towards the
end of the EoR. We caution, however, that the approximationsem-
ployed in this paper prevent us from treating these numbers as more
than rough estimates. If we wish to study the power spectrum at
small or large scales – away from the ‘sweet spot’ at intermediate
k – it will be important to be able to synthesize multiple station
beams. This allows us to reduce the statistical errors from sample
variance and noise. Unfortunately, however, there appearsto be no
substitute for extending the integration time, especiallyto probe
high redshifts and very small scales. This is because only deep ob-
servations can improve the quality of the foreground fitting, and
hence reduce the systematic offset between the true signal and the
recovered signal.

Under the optimistic assumptions that we can synthesize six
beams, and that the useful frequency range can be covered using
just two frequency bands (the instantaneous frequency coverage is
limited), 600 hours of observation of a single window shouldbe
enough to yield quite precise and accurate power spectra up to z ≈
9, for k between approximately 0.03 and0.6 hMpc−1. Pushing to
the very highest redshifts accessible with the frequency coverage of
LOFAR’s high band antennas requires somewhat longer: perhaps
900 hours per frequency band, which corresponds to 1800 hours of
observation if there are two frequency bands.

With observations of this depth, the limiting factor in the sta-
tistical errors comes from sample variance on large scales,which
can only be reduced by observing a larger area of sky. This is one
of several reasons why the LOFAR EoR project plans to observe
multiple – perhaps five – independent windows. We have already
seen that approximately 600 hours per window is required forthe
thermal noise errors to be small and the bias to be under control
for redshifts less than about 9. For five windows, this corresponds
to 3000 hours of observation. Comparing the independent windows
will also allow important cross-checks, in particular thatsystemat-
ics are under control.

To really push towards precise constraints on the power spec-
trum towards the start of reionization, the 1800 hours per window
that we find yelds high quality extraction atz > 10 corresponds to
9000 total hours for five windows. This figure may be reduced if
a hybrid strategy, in which we integrate for a longer time in lower
frequency bands, turns out to be feasible. From the point of view
of foreground fitting and power spectrum extraction, ignoring con-
straints that may be imposed by calibration etc., a hybrid strategy
does indeed seem to be feasible. Of course, we have considered
this strategy only from the point of view of the power spectrum.
If deeper observations at all frequencies would allow us to push
beyond the power spectrum, perhaps into a regime where we can
observe individual features in the distribution of 21-cm emission
towards the end of reionization with reasonable signal to noise, then
this would surely be valuable too.

Other hybrid strategies are also possible, for example ones
in which different windows are observed for different amounts of
time. We have not studied them here since they do not really impact
the fitting and extraction, which is independent for each window.
None the less, they may allow us to obtain high redshift constraints
by observing one window deeply, while simultaneously allowing us
to beat down sample variance errors on large scales at low redshifts
by observing several other windows at reduced depth.

In any case, our study suggests that as the amount of time
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spent observing the EoR with LOFAR is increased, this allowsus
to make qualitative improvements to the fitting, and to the range
of scales and redshifts we can probe accurately. Deeper integration
does more than simply allow us to shrink our statistical error bars.

This all depends, however, on the robustness of our fitting
techniques, and more generally on the level of control we areable
to exercise over systematic errors. The Wp smoothing methodwe
have introduced previously appears to work well when it comes to
extracting the power spectrum. This holds whether we apply it to
an idealized case in which theuvcoverage of the instrument is con-
stant with frequency, or to a more realistic case in which it varies.
We confirm a suspicion we have expressed previously (Harker et al.
2009b) that the power spectrum may be easier to extract than an ap-
parently simpler statistic such as the rms of the 21-cm signal: the
fitting errors are scale-dependent, and a power spectrum analysis
allows us to pick out the scales where our method works best with-
out being swamped by small-scale noise. Splitting the powerspec-
trum into angular and line-of-sight components may help us to test
the robustness of our conclusions, and perhaps extend the spatial
dynamic range we can probe.

We have assumed here that the power spectrum of the noise
is known to reasonable accuracy, an assumption which will beex-
amined in future work. We will also study in a future paper how
different strategies alter our ability to constrain the parameters of
reionization models.

Finally, we note that foreground fitting and power spectrum
extraction are late steps in the collection and analysis of LOFAR
EoR data. They depend on earlier and probably more difficult steps,
such as instrumental calibration (including polarization, which we
have neglected here), correcting for the ionosphere, and the exci-
sion of RFI. The results of this paper only reassure us that the later
stages are unlikely to be the limiting ones.
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