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ABSTRACT
We present an analysis of the distribution of structural properties for Milky Way-mass
halos in the Millennium-II Simulation (MS-II). This simulation of structure formation
within the standard ΛCDM cosmology contains thousands of Milky Way-mass halos
and has sufficient resolution to properly resolve many subhalos per host. It thus pro-
vides a major improvement in the statistical power available to explore the distribution
of internal structure for halos of this mass. In addition, the MS-II contains lower res-
olution versions of the Aquarius Project halos, allowing us to compare our results to
simulations of six halos at a much higher resolution. We study the distributions of
mass assembly histories, of subhalo mass functions and accretion times, and of merger
and stripping histories for subhalos capable of impacting disks at the centers of halos.
We show that subhalo abundances are not well-described by Poisson statistics at low
mass, but rather are dominated by intrinsic scatter. Using the masses of subhalos at
infall and the abundance-matching assumption, there is less than a 10% chance that
a Milky Way halo with Mvir = 1012 M� will host two galaxies as bright as the Mag-
ellanic Clouds. This probability rises to ∼ 25% for a halo with Mvir = 2.5 × 1012 M�.
The statistics relevant for disk heating are very sensitive to the mass range that is
considered relevant. Mergers with infall mass : redshift zero virial mass greater than
1:30 could well impact a central galactic disk and are a near inevitability since z = 2,
whereas only half of all halos have had a merger with infall mass : redshift zero virial
mass greater than 1:10 over this same period.

Key words: methods: N -body simulations – cosmology: theory – galaxies: halos

1 INTRODUCTION

Our understanding of galaxy formation is strongly influ-
enced by our own Galaxy. Several of the apparent points
of tension between observations and the predictions of the
now-standard Λ Cold Dark Matter (ΛCDM) structure for-
mation model – for example, the abundance of dark matter
subhalos in comparison to the relative paucity of observed
Local Group satellites and the existence of the thin Galactic
disk in light of the ubiquity of dark matter halo mergers –
are most clearly demonstrated from Milky Way data. While
it is clearly an excellent testing ground for a wide array
of phenomena related to galaxy formation, the Milky Way
(MW) is nonetheless a single object and may not be rep-
resentative in its properties. This is particularly true with
respect to infrequent, stochastic phenomena such as major

? e-mail: mrbk@mpa-garching.mpg.de

mergers: while ΛCDM robustly predicts the mean number of
mergers onto halos of a given mass, the halo-to-halo scatter
is large.

The situation is similar for cosmological re-simulations
of individual MW-mass dark matter halos. In the quest to
understand the Milky Way’s formation, numericists have
been simulating individual MW-mass dark matter halos
at increasingly high resolution. By investing substantial
computational resources, the most recent generation has
reached one billion particles per halo, with particle masses
∼1000M� (Diemand et al. 2008; Springel et al. 2008; Stadel
et al. 2009). Only a small number of such simulations can
be performed and there is no guarantee that the simulated
halos will be “typical.”

In order to explore whether various characteristics of
the Milky Way (e.g., its satellite galaxy population, thin
disk, or merger history) are consistent with ΛCDM expec-
tations, we must understand the statistical properties pre-
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2 M. Boylan-Kolchin et al.

dicted for MW-mass halos. The advent of modern galaxy
surveys has enabled such an undertaking observationally:
the Sloan Digital Sky Survey (SDSS; York et al. 2000) has
provided a huge sample of galaxies with stellar masses sim-
ilar to that of the MW, although only mean halo properties
averaged over large numbers of similar galaxies can readily
be measured (Mandelbaum et al. 2006; More et al. 2009).
Predicting the formation histories and redshift zero proper-
ties of the halos of a representative population of MW-mass
galaxies requires numerical simulations that combine large
volume with high mass resolution. Resolving the internal
structure of ∼ ten subhalos per host halo requires approxi-
mately one hundred thousand particles per host, which is not
trivial when combined with the goal of obtaining a statistical
sample of MW-mass halos. This would, for example, require
1012 particles in the volume probed by the Millennium Sim-
ulation (MS; Springel et al. 2005), a 100-fold increase over
the particle number actually used.

The only computationally feasible approach at present
is to use a smaller simulation volume combined with higher
mass resolution. In this paper, we use the Millennium-II
Simulation (MS-II; Boylan-Kolchin et al. 2009), which was
designed to meet these requirements. It allows us to investi-
gate statistical properties of MW-mass halos, including their
assembly histories and their subhalo content. Throughout
this work, we also compare results for our representative
sample to the six halos from the Aquarius simulation series
of Springel et al. (2008). These cosmological resimulations
of Milky Way-mass dark matter halos have approximately
one thousand times better mass resolution than the MS-II
(see Section 2.2).

The basic properties of the MS-II and of the sample
of MW-mass dark matter halos we investigate are given in
Section 2, together with a convergence study for subhalos.
Section 3 discusses the assembly history of MW-mass ha-
los in terms both of their virial mass and of their central
gravitational potential, and relates these to their z = 0 con-
centrations and angular momenta. Section 4 investigates the
subhalo population of MW-mass halos at z = 0, including
the subhalo mass function and whether its scatter is Pois-
sonian, the distribution of masses for the most massive sub-
halo in each host, and typical accretion times for subhalos
as a function of their current mass. In Section 5, we explore
the merger histories of MW-mass halos, focusing on mergers
that are likely to result in galaxy-galaxy mergers. Section 6
contains a discussion of our results and their implications,
while Section 7 gives our conclusions. Some properties of
satellite subhalos are quantified in the Appendix. Through-
out this paper, all logarithms without a specified base are
natural logarithms.

2 NUMERICAL SIMULATIONS

2.1 The Millennium-II Simulation

The Millennium-II Simulation is a very large cosmological
N -body simulation of structure formation in the ΛCDM cos-
mology. The simulation is described fully in Boylan-Kolchin
et al. (2009). For completeness, we review some of its salient
features here.

The MS-II follows 21603 ≈ 10 billion particles, each of

mass mp = 6.885 × 106 h−1 M�, from redshift z = 127 to
z = 0 in a periodic cube with side length L = 100h−1 Mpc.
The Plummer-equivalent force softening of the simulation is
ε = 1h−1 kpc and was kept constant in comoving units for
the duration of the simulation.

The cosmological parameters used in the MS-II are
identical to those adopted for the Millennium Simulation
and the Aquarius simulations:

Ωtot =1.0, Ωm =0.25, Ωb = 0.045, ΩΛ = 0.75,

h = 0.73, σ8 = 0.9, ns = 1 , (1)

where h is the Hubble constant at redshift zero in units of
100 km s−1 Mpc−1, σ8 is the rms amplitude of linear mass
fluctuations in 8h−1 Mpc spheres at z = 0, and ns is the
spectral index of the primordial power spectrum. While
the values of these parameters were originally chosen (for
the MS) for consistency with results from the combination
of WMAP 1-year and 2dF Galaxy Redshift Survey data
(Spergel et al. 2003; Colless et al. 2001), some are now only
marginally consistent with more recent analyses. In partic-
ular, σ8 = 0.812 and ns = 0.96 are now the preferred val-
ues based on WMAP 5-year results combined with baryon
acoustic oscillation and Type Ia supernova data (Komatsu
et al. 2009). For the most part, these differences are unim-
portant for the results presented in this paper: the abun-
dance of 1012 h−1 M� halos in the WMAP5 and Millennium-
II cosmologies differs by less than 7% at z = 0, for example.
A discussion about possible effects of varying the assumed
cosmology is contained in Sec. 6.3.

In addition to the raw simulation output of six phase-
space coordinates and one identification number per parti-
cle, stored at 68 outputs spaced according to equation 2 of
Boylan-Kolchin et al. (2009), additional information about
dark matter structures and merging histories in the MS-II
was computed later and saved.1

Friends-of-Friends (FOF) groups were identified on-the-
fly during the simulation using a linking length of b = 0.2.
All groups at each time with at least 20 particles were stored
in halo catalogs. FOF groups were searched for bound sub-
structure using the SUBFIND algorithm (Springel et al. 2001).
All substructures containing at least 20 bound particles were
deemed to be physical subhalos and were stored in subhalo
catalogs at each snapshot. Each subhalo in the MS-II was
assigned a mass Msub equal to the sum of its constituent par-
ticles; this is the mass for subhalos we use throughout this
paper. All subhalos also have a maximum circular velocity
Vmax, defined via

V 2
max ≡ max

(
GMsub(< r)

r

)
. (2)

The main component of a FOF halo is generally a domi-
nant subhalo2 whose particles make up most of the bound
component of the FOF group. FOF halos can also contain
non-dominant subhalos (“satellites”); these typically contain

1 Dark matter halo catalogs (both FOF and SUBFIND) and merger
trees from the MS-II are publicly available at

http://www.mpa-garching.mpg.de/galform/millennium-II
2 This is sometimes referred to as the “central” subhalo and cor-
responds closely to the standard picture of a smooth, virialized

dark matter halo
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Statistics of Milky Way-mass halos 3

in total only a small fraction of the mass of the dominant
subhalo, even in the highest resolution simulations currently
possible (Gao et al. 2004; Springel et al. 2008; Diemand et al.
2008; Stadel et al. 2009).

Each FOF halo containing at least one subhalo has
an associated virial mass and virial radius, defined as the
mass and radius of a sphere containing an average density
∆ times the critical value ρc(z) Throughout this paper, we
use ∆ = ∆vir, which is derived from the spherical top-hat
collapse model (e.g., Gunn & Gott 1972; Bryan & Norman
1998); we denote the virial mass Mvir and the virial radius
Rvir. Other common choices include ∆ = 200 (correspond-
ing to M200 and R200) and ∆ = 200 Ωm(z) [corresponding to
M200m and R200m]. At z = 0, ∆vir ≈ 94 for the cosmology in
equation (1) and M200 < Mvir < M200m for any given halo.
For dominant subhalos, Msub is comparable to, but usually
slightly less than, Mvir.

Merger trees were constructed at the subhalo level by
requiring each subhalo to have at most one unique descen-
dant. Descendants were determined by considering all sub-
halos at snapshot SN+1 containing at least one particle from
a given subhalo at snapshot SN and computing a weighted
score based on the particles’ binding energies from SN . The
descendant-finding algorithm also checks possible descen-
dants at SN+2 to account for cases where a subhalo tem-
porarily disappears from the catalogs, usually because it
passes very near another, more massive subhalo. Note that
the merger trees are not constructed to explicitly follow
mergers of FOF groups but rather to follow mergers of indi-
vidual subhalos; the merger of two subhalos is often delayed
relative to the merger of their original host FOF groups by
several dynamical times. Such subhalo mergers correspond
much more closely to the intuitive notion of disjoint objects
merging to form a monolithic descendant than do mergers
of FOF groups.

2.2 The Aquarius Simulations

The Aquarius Project (Springel et al. 2008) is a suite of
cosmological resimulations of Milky Way-mass dark matter
halos. Six halos, denoted Aq-A through Aq-F, were selected
at z = 0 from a cosmological simulation known as hMS
(Gao et al. 2008). The hMS is a lower resolution version
of the MS-II: it follows 9003 particles in the same volume,
with the same cosmological parameters, and with the same
amplitudes and phases3 for the initial power spectrum as
the MS-II. The halos were selected randomly from the full
set of Milky Way-mass halos in the hMS simulation subject
only to a weak isolation criterion: the nearest halo with mass
greater than half that of the candidate halo was required to
be at least 1h−1 Mpc from the candidate halo at z = 0.
This isolation criterion is not particularly restrictive: only
22% of the halos from the mass-selected sample in the MS-II
described below fail to meet this requirement. Once selected,
the halos were re-simulated at up to five different levels of
resolution. The highest level, which used a particle mass of

3 The amplitudes and phases are identical for all perturbations
with wavenumber smaller than the Nyquist frequency of the hMS;
higher wavenumber modes in the MS-II were randomly sampled

from the same underlying power spectrum

1.2 × 103 h−1 M� and a force softening of 14h−1 parsecs,
led to over 1.5 billion particles within R200m at z = 0. This
resolution was used for only one of the six halos but all six
were resimulated at the next resolution level, for which mp

is at most 104 h−1 M�. These are the “level 2” simulations
that we compare to the MS-II halos in this paper. Subhalo
catalogs and merger trees analogous to those from the MS-
II were also created for the Aquarius simulations. Further
details of the Aquarius Project are presented in Springel
et al. (2008).

2.3 Milky Way-mass halos

Recent estimates of the mass of the Galaxy’s dark mat-
ter halo range from 1 − 3 × 1012 M� (Wilkinson & Evans
1999; Sakamoto et al. 2003; Battaglia et al. 2005; Dehnen
et al. 2006; Xue et al. 2008; Li & White 2008). To bracket
these estimated values of Mvir,MW and to assess any possi-
ble trends with halo mass, we select all halos with 1011.5 ≤
Mvir/[h

−1 M�] ≤ 1012.5 from the redshift zero output of the
MS-II. The resulting sample of 7642 total “Milky Way-mass”
halos forms the basis of the analysis in this paper. With the
mass resolution of the MS-II – mp = 6.885 × 106 h−1 M�
– this selection criterion means that the MW-mass halos
considered here are represented by 50,000-500,000 particles.
The typical virial radius of these halos is Rvir ≈ 200h−1 kpc,
which is 200 times larger than the Plummer-equivalent force
softening of the MS-II.

An alternative to selecting halos by mass is instead
to select by Vmax, which is more observationally accessible.
Such a selection is not without complications, however, as
the presence of a disk and bulge is likely to significantly alter
Vmax in real galaxies. In the models of Klypin et al. (2002),
for example, the adiabatic response of the dark matter halo
to the formation of the MW causes an increase in Vmax of
between 19% and 100%. The virial mass of the halo should
not be modified by these effects.

2.4 Subhalos

Halo substructure is a direct result of the hierarchical nature
of halo formation in the ΛCDM cosmology. Properties of
subhalos such as their abundance, spatial distribution, and
internal structure can provide an important link between
simulations and observations, since (at least some) subhalos
are expected to be the hosts of satellite galaxies. One should
consider only subhalos that are reliably resolved, however, as
subhalo structure can be modified by numerical effects at low
resolution. The upper panel of Fig. 1 shows the relationship
between Vmax at z = 0 (denoted Vmax,0) and Msub at z =
0 (Msub,0) for all satellite subhalos in our MW-mass halo
sample that lie within distance Rvir from the center of their
host halos (black lines); the three lines show the 16th, 50th,
and 84th percentiles of the distribution. Also plotted is the
same relation for all host halos in the MS-II (red dashed
lines). The Milky Way sample agrees very well with the full
simulation sample.

The upper panel of Fig. 1 also shows the best power
law Vmax,0 − Msub,0 relation fitted over the range 40 ≤
Vmax,0 ≤ 80 km s−1 (blue dashed curve) of Msub,0 = 6 ×
1010 (Vmax,0/100 km s−1)3.23 h−1 M�. The relation follows

c© 2010 RAS, MNRAS 000, 1–19
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Figure 1. A comparison of various Vmax −Msub relations for
satellite subhalos with dsub < Rvir at redshift zero. Top: the

median and ±1σ Vmax,0 −Msub,0 relation for subhalos of Milky

Way-mass halos (black) and for subhalos of all halos (red) from
the MS-II. The best power law fit to the median relation is plotted

in blue. Bottom: A direct comparison of Vmax,0 −Msub,0 for the

six level 2 Aquarius halos (filled black circles) and for the corre-
sponding six halos in the MS-II (open magenta squares); the best-

fit relation from the upper panel is also plotted as a blue dashed
line. The two data sets agree well for Vmax & 25 km s−1, while

the MS-II points lie systematically above the Aquarius points at

lower Vmax due to mass resolution effects. The six central halos
are also included in the bottom panel (upper right) and are offset

from the satellite subhalo relation because they are not affected

by tidal stripping.

the power law fit closely for Vmax & 25 km s−1, while there
is a strong break at low Vmax. This is due to mass reso-
lution, as is confirmed by the lower panel of Fig. 1. This
panel shows the same relation but now for all six of the level
2 Aquarius halos (black circles) and for the corresponding
six halos in the MS-II (open magenta squares). While the
level 2 Aquarius data follow the power-law relation down to

the smallest Vmax plotted [10 km s−1], the MS-II data start
to differ systematically at Vmax ≈ 25 km s−1. Note that the
host halos follow a relationship with a similar slope but with
larger mass at fixed Vmax. This is in part because central
subhalos are not affected by tidal stripping. In addition, the
way SUBFIND assigns particles to bound structures, start-
ing with all particles bound to the dominant subhalo, con-
tributes to the offset. Given the results of Fig. 1, we adopt
150 particles (Msub = 1.03× 109 h−1 M�), corresponding to
Vmax,0 = 28.3 km s−1, as the minimum number of particles
for which we consider a subhalo well enough resolved to esti-
mate Vmax. This corresponds to a cut where the Vmax−Msub

relation deviates by about 10% from the power law fit in the
upper panel of Fig. 1.

Subhalos in high resolution simulations can lose sub-
stantial mass as they are tidally stripped and gravitation-
ally shocked within the potential of their hosts (e.g., Tormen
et al. 1998; Klypin et al. 1999; Ghigna et al. 2000; Hayashi
et al. 2003; Kravtsov et al. 2004b; Gao et al. 2004; Boylan-
Kolchin et al. 2009). The putative galaxies within these sub-
halos should be much more resilient to stripping and dis-
ruption both because they sit in the densest regions of dark
matter halos and because the condensation of baryons to
the centers of dark matter halos deepens the gravitational
potential (White & Rees 1978).

This differential stripping, affecting dark matter more
strongly than stellar components, means that the relation-
ship between the stellar content and the instantaneous dark
matter properties of a subhalo is generally very complicated.
It is much more likely that the mass (or Vmax) a subhalo had
when it was still an independent halo (i.e., a dominant sub-
halo in a FOF group) can be related to its stellar content
in a straightforward manner. Indeed, several studies have
shown that many features of the observed galaxy distribu-
tion can be reproduced in N -body simulations simply by
assuming that the stellar mass of a galaxy is a monotoni-
cally increasing function of the maximum dark matter mass
ever attained by the subhalo that surrounds it. This “abun-
dance matching” assumption (Vale & Ostriker 2004) can
reproduce observed galaxy clustering and its evolution with
redshift (Conroy et al. 2006; Brown et al. 2008; Conroy &
Wechsler 2009; Wetzel & White 2010; Guo et al. 2010).

Since it is useful to know when a given subhalo first be-
came a satellite and what its mass was at that time, we trace
each subhalo back in time and find the point at which its
bound mass (determined by SUBFIND) reached a maximum.
We denote this redshift by zacc and the corresponding sub-
halo mass and maximum circular velocity asM(zacc) ≡Macc

and Vmax(zacc) ≡ Vacc. The subscript “acc” is used because
subhalos usually reach their maximum mass immediately
before being accreted into a more massive object; in this
sense, zacc represents an accretion redshift.4 This allows us
to study quantities such as the distribution of zacc and the
average mass loss of satellite subhalos. Relationships among

4 Even though the criterion defining zacc is that the subhalo’s
bound mass is maximized over its history, we avoid the subscript

“max” so as not to cause any confusion with the peak in the

circular velocity curve Vmax, which is defined at all redshifts for
which a subhalo can be identified

c© 2010 RAS, MNRAS 000, 1–19



Statistics of Milky Way-mass halos 5

Macc, Vacc, and Vmax,0 for subhalos are presented in the Ap-
pendix.

3 MAIN HALOS

In this section, we study some properties of the main halos
themselves. Sec. 3.1 explores the assembly histories of Milky
Way mass halos, both in terms of Mvir and Vmax. In Sec. 3.2,
we investigate the distribution of halo concentrations. The
focus of Sec. 3.3 is on halo spin parameters. Throughout this
section, we compare properties of the six Aquarius halos to
properties of the full MS-II sample of “Milky Way” halos.

3.1 Halo Assembly

The mass assembly histories (MAHs) of dark matter halos
have been studied extensively via N -body simulations and
extended Press-Schechter (1974) theory (Lacey & Cole 1993,
1994; Wechsler et al. 2002; van den Bosch 2002; Zhao et al.
2003b,a; Tasitsiomi et al. 2004; Cohn & White 2005; Neistein
et al. 2006; Li et al. 2008; Zhao et al. 2009; McBride et al.
2009). As a direct result of this work, many basic proper-
ties of MAHs have been established. For example, Wechsler
et al. (2002) found that MAHs of individual halos follow a
one-parameter family M(z) = M0 e

−κ z. The parameter κ
is directly related to the typical formation time for halos of
mass M0 and is an increasing function of mass. Tasitsiomi
et al. (2004) showed that this exponential form was unable
to fit individual cluster-mass MAHs in some cases and that
a more general function, M(z) = M0 (1+z)η e−κ z, provided
a better match on a case-by-case basis. McBride et al. (2009)
confirmed and extended this result over a wide range in halo
masses.

The median MAH from the full MW sample is plotted
as the dashed line in Fig. 2; the gray shaded region marks
the ±1σ region for the MAHs. A purely exponential form is
a poor fit to the median MAH, while the modified form of
Tasitsiomi et al. with κ = 0.795 and η = 0.435 provides a
fit to within 10% for z < 5. The median MAH can be fitted
extremely well by

M(z) = M0 (1 + z)η exp[−κ′ (
√

(1 + z)− 1)] (3)

with κ′ = 4.90 and η = 2.23: this fit matches the measured
median MAH to within 1.6% for z ≤ 10. The solid lines in
Fig. 2 show the MAHs for the Aquarius halos measured from
the MS-II.5 The Aquarius halos sample the full distribution
of MAHs: halos A and C form early, halo F forms late, and
halos D and E track the median MAH. Halo B trails the
mean MAH at early times but catches up at z ≈ 2.

While the MAHs are normalized to unity at z = 0, the
1σ scatter in M(z0)/M(z = 0) grows fairly quickly with
redshift, reaching a factor of 2.5 at z = 2 and 4 at z = 4.
The scatter in log(1 + z) at fixed M/M(z = 0) is nearly
constant for M/M(z = 0) . 0.6. As a result, formation
times zf defined with respect to fixed fractions of the final

5 Figure 13 of Boylan-Kolchin et al. (2009) shows that there is
excellent agreement between the MAHs of the level 2 Aquarius
simulations and the corresponding halos in the MS-II.
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Figure 2. Top: Mass assembly histories of Milky Way-mass ha-
los. The median MAH is shown as a dashed curve, while the gray

shaded region contains 68% of the distribution. Also plotted are

the MAHs for the MS-II versions of the six Aquarius halos. The
Aquarius halos provide a fairly representative sample of MAHs;

halos A and C have quiescent merger histories, while halo F has a
recent major merger. Bottom: Vmax accretion histories from the

MS-II. As in the upper panel, the median relation is plotted as a

dashed curve while the ±1σ region is shown as the gray shaded
region. The earliest-forming Aquarius halos in terms of MAHs –

halos A and C – also assemble earliest as judged by V 2
max, with

V 2
max changing by less than 25% from z = 5 to z = 0. Halo F,

on the other hand, undergoes a major merger at z ≈ 0.4 that

changes V 2
max by 25%.

mass – i.e., M(zf ) = f M(z = 0) – will all have similar
scatter in log(1 + zf ), approximately 0.25, for f < 0.6.

While characterizing the growth of Mvir for a halo that
reaches MW-like masses at z = 0 is useful, it is far from a
complete description of that halo’s assembly history. Many
studies have shown that halo growth occurs inside-out, with
the central regions built up first and the outskirts assem-

c© 2010 RAS, MNRAS 000, 1–19



6 M. Boylan-Kolchin et al.

bled later (e.g., Fukushige & Makino 2001; Loeb & Peebles
2003; Zhao et al. 2003b; Diemand et al. 2007; Cuesta et al.
2008). Furthermore, defining halo boundaries with respect
to ∆ ρc(z) means that a halo’s virial mass will increase with
time, even in the absence of any physical accretion, simply
due to the re-definition of the boundary. A halo can therefore
grow substantially in Mvir without any appreciable change
in the mass at small radii, where the main baryonic com-
ponent should lie. Accordingly, it is useful to find a way to
characterize the build-up of the central regions of halos in
addition to studying the growth of Mvir.

To this end, we consider the growth of V 2
max in the bot-

tom panel of Fig. 2. For the sample of Milky Way-mass halos
considered here, Rmax is on average a factor of 6.1 smaller
than Rvir, so V 2

max probes the mass distribution on a scales
∼ 6 times smaller than Rvir. Additionally, the gravitational
potential energy per unit mass of a halo is proportional to
V 2

max, so studying the evolution in V 2
max probes the growth of

the dark matter halo’s central potential. The dashed curve
in the bottom panel of Fig. 2 show the median relation
while the shaded region shows the ±1σ scatter. For redshifts
z ≤ 10, the median value of V 2

max(z) can be approximated
to within 1.3% as

V 2
max(z) = V 2

max,0 (1 + z)0.338 e−0.301 z . (4)

Qualitatively, the trend in V 2
max(z) is the same as in

Mvir(z): both grow rapidly at early times and slowly at late
times. At a more detailed level, however, the two show im-
portant differences in growth. V 2

max – and consequently, the
central potential – approaches its redshift zero value much
earlier than Mvir: if we define a formation redshift zf,v as the
time when V 2

max reaches half of its present value, then the
median zf,v is approximately 4, in comparison with zf ≈ 1.2.
This is a reminder that the central potential of a halo is set
much earlier than its virial mass. The scatter in log(1 + z)
at fixed V 2

max is noticeably larger than at fixed Mvir, show-
ing that the spread in formation times is larger if these are
defined using V 2

max rather than Mvir.

As in the upper panel of Fig. 2, the build-up of V 2
max

for the Aquarius halos (the colored lines) spans the range
given by the full sample of MW-mass halos. Furthermore,
the behavior of mass growth for individual halos is matched
by that of V 2

max. Halos A and C also assemble their central
potentials at an early time, while F forms much later.

A stable central potential is likely to be conducive to
disk galaxy formation and evolution, as potential fluctu-
ations may drive “secular” evolution and help transform
disks into bulges. Halos A-E have nearly constant central
potentials from z = 1 to z = 0 (in the case of C, from
z = 2), indicating they are possible disk galaxy hosts. Halo
F, which experiences a late major merger, would likely host
a spheroid-dominated galaxy. These expectations are gener-
ally borne out by SPH simulations of the Aquarius halos by
Scannapieco et al. (2009). Using a dark matter mass reso-
lution 2 to 3 times better than that of the MS-II, they find
that halos C, D, and E all have well-defined disks and that
halos A and B also contain (smaller) disks, while halo F has
a spheroid with no disk at all.
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Figure 3. The probability distribution of halo concentrations c

(solid black line), along with the best log-normal fit (dashed line)
with mean 〈log c〉 = 2.56 and standard deviation σlog c = 0.272.

Values for the individual Aquarius halos in the MS-II are shown

as colored vertical lines. See the text for a discussion of how the
concentrations are computed.

3.2 Halo Concentrations

While numerical simulations have shown that dark matter
halos have a nearly universal density profile (Navarro et al.
1996, 1997, hereafter NFW), the radial scale of the profile

does not follow the virial scaling of R ∝ M
1/3
vir . An addi-

tional parameter is therefore required to specify the profile
of the typical halo of a given Mvir; a common choice is halo
concentration c, defined as the ratio of the virial radius to
the radius r−2 at which the logarithmic slope of the den-
sity profile reaches −2. The scatter in c at fixed halo mass
is related to the diversity of halo formation histories. Pre-
vious studies have shown that average halo concentrations
decrease weakly with halo mass – c ∝M−0.1 – with a fairly
large scatter at fixed mass, σ(log10 M) ≈ 0.1−0.14 (Navarro
et al. 1997; Jing 2000; Bullock et al. 2001b; Neto et al. 2007;
Gao et al. 2008; Macciò et al. 2008; Zhao et al. 2009).

We can estimate a concentration parameter for each
halo in our MW-mass sample by assuming that each halo’s
density structure can be fitted with an NFW profile; we then
have Rmax = 2.16 r−2 and therefore, c = 2.16Rvir/Rmax.
The measured Rmax values for the Aquarius halos in the MS-
II differ from those in the level 2 Aquarius simulations by less
than 10%, showing this radius to be accurately determined
at MS-II resolution. The probability distribution function
for log c from our MW-mass halo sample is plotted as a solid
black line in Fig. 3. The dashed line shows the best-fitting
normal distribution with 〈log c〉 = 2.56 and σlog c = 0.272.
The dark (light) shaded region marks the ±1σ (±2σ) range
of this distribution. There is a slight but noticeable excess
of halos at low concentrations compared to the best-fitting
log-normal distribution; Neto et al. (2007) have shown that
this is due to a population of unrelaxed halos.

Vertical colored lines mark the concentrations of the
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Aquarius halos in the MS-II, computed as described above.
Halos B, D, E, and F lie near the peak of the distribu-
tion while halos A and C lie in the high concentration tail
(though see the caveat about halo A below). This behavior
is expected given the results of Fig. 2: the concentration of a
halo is (loosely) related to the density of the universe when
the halo formed. Early-forming halos such as A and C are
more concentrated because the universe was denser when
they formed.

It is important to note that we did not fit the density
profiles of these halos to a specific parametric form such as
NFW when estimating the concentrations presented here.
Instead, Rmax and Rvir were measured directly from the
simulation data using SUBFIND. Navarro et al. (2010) have
made a thorough study of the structure of the Aquarius ha-
los at z = 0, concluding that their density profiles are not
perfectly universal and therefore cannot be fully described
by a model with two scale parameters but no shape parame-
ter (such as NFW). In agreement with Neto et al. (2007) and
Gao et al. (2008), they found significantly better fits with
the three parameter model of Einasto (1965), although the
mass range spanned by the Aquarius halos is too small to see
the systematic redshift dependence of the shape parameter
that was measured in the earlier work. We emphasize that
profile fitting typically attempts to represent the widest pos-
sible range in radius but tends to focus on the inner regions,
usually starting at the minimum resolvable radius. This is in
part because inner regions of halos are more relaxed and also
more regular than the outskirts. For example, Navarro et al.
show that the Aquarius A-1 halo is fitted extremely well by
an Einasto profile over the range 0.1h−1 . r . 25h−1 kpc
but that at larger radii, its density profile rises above this
model due to substructure and recently accreted material.
The latter is a substantial contribution to the mass and leads
to an increase in the virial radius of the halo relative to an
extrapolation of the profile fitted to the inner region. This is
not the case for any of the other halos (see fig. 3 of Navarro
et al.) In this sense, the measured concentration of the A
halo is larger than it “should be.”

3.3 Halo Spin

The angular momentum content of a galaxy is often assumed
to be connected to the spin of its dark matter halo. In the
commonly-adopted model of Mo, Mao, & White (1998), the
specific angular momentum of a galactic disk is a fixed frac-
tion of that of its host halo. Many more recent versions of
the Mo, Mao, and White model (e.g., Dutton et al. 2007)
modify this assumption only slightly. Quantifying the angu-
lar momentum content of dark matter halos may therefore
help to connect dissipationless N -body simulations to the
properties of disk galaxies.

A convenient parametrization of a dark matter halo’s
angular momentum is the modified spin parameter λ′ (Bul-
lock et al. 2001a), defined as

λ′ ≡ 1√
2

j

Vvir Rvir
, (5)

where j is the specific angular momentum of the halo. The
distribution of spin parameters for dark matter halos as
a function of their mass has been studied by several au-
thors (Barnes & Efstathiou 1987; Warren et al. 1992; Cole
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Figure 4. The probability distribution for the spin parameter λ′

for Milky Way-mass halos in the MS-II (solid black curve), along
with ±1 and 2σ regions (shaded dark and light gray, respectively).

Dashed black line: best-fitting log-normal distribution, with mean

〈log λ′〉 = −3.41 and standard deviation σlog λ′ = 0.580. Dashed
cyan line: fit to the distribution given in equation (6) with λ0 =

0.0358 and χ = 2.50.

& Lacey 1996; Lemson & Kauffmann 1999; Bullock et al.
2001a; Bailin & Steinmetz 2005; Macciò et al. 2007; Bett
et al. 2007; Macciò et al. 2008). One of the most recent, and
extensive, studies is that of Bett et al. (2007), who showed
that the distribution of halo spins in the MS is well-fitted
by the function

P (log λ′) = A

(
λ′

λ0

)3

exp

[
−χ
(
λ′

λ0

)3/χ
]
. (6)

In Figure 4, we show the probability distribution function
of λ′ for the MS-II MW-mass halos (solid curve), with ±1
and 2σ regions given by the dark and light shaded re-
gions, respectively. The best-fitting log-normal distribution
has 〈log λ′〉 = −3.41 and σlog λ′ = 0.580 and is shown as a
dashed black line. The dashed cyan line shows a fit to equa-
tion (6) with λ0 = 0.0358 and χ = 2.5; this provides a sig-
nificantly better description of the data than the log-normal
fit.

The λ′ values for all of the Aquarius halos in the MS-II
are shown as vertical tick marks in Fig. 4. While all of the
halos lie within the 2σ region, five of the six lie below the
median λ′. The lone exception, halo F, had a recent major
merger (see Fig. 2). Recent major merger remnants tend to
have spin parameters that are higher than typical (Vitvit-
ska et al. 2002; Maller et al. 2002). The spin parameter of
these halos usually decreases after the major merger due to
further accretion, which brings in additional non-aligned an-
gular momentum. It therefore seems that at least five, and
possibly all six, of the Aquarius halos lie in the lower half of
the λ′ distribution.
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Figure 5. The differential subhalo mass function. Data from the

2039 MW-mass halos in the MS-II with 1012 ≤Mvir/h
−1M� ≤

1012.5 are shown as the black data points, while the best-fitting
relation using equation (8) is shown as a dotted black line. Results

are plotted both for redshift zero subhalo masses (Msub, lower
points) and for masses at accretion (Macc, upper points; offset 0.5

dex vertically for clarity). Extrapolation of the MS-II results to

low µ agrees well with results from the individual level 2 Aquarius
simulations (colored lines).

4 SUBHALOS

The abundance of subhalos in MW-mass halos has been the
topic of fierce debate since late in the 1990’s, when cosmo-
logical simulations were finally able to reliably resolve dark
matter substructure within galaxy-scale halos. These stud-
ies predicted that MW-mass halos should have hundreds of
dark matter subhalos with Vmax & 10 km s−1, while only
of order ten such satellite galaxies were seen in the Local
Group (Klypin et al. 1999; Moore et al. 1999). Since then,
the discovery of several faint Local Group satellites in SDSS
data (e.g., Belokurov et al. 2007) has extended the range
of observed satellite luminosities by almost four orders of
magnitude, to ∼ 103 L�, roughly doubling the observational
sample. On the other hand, the dynamic range of dark mat-
ter simulations has increased by an additional three decades
in mass and the number of resolved dark matter subhalos
has increased by a factor of approximately one thousand:
Springel et al. (2008) find 105 subhalos with Vmax > 2 km s−1

inside R200m of the Aq-A-1 simulation at z = 0 (see also
Diemand et al. 2008 and Stadel et al. 2009). It is unambigu-
ous that the observed number of luminous satellites with
Vmax & 10 falls far short of the expected number of dark
matter subhalos above the same Vmax threshold for standard
ΛCDM models. The resolution of this discrepancy likely lies
in the strong dependence of galaxy formation physics on
Macc (see Kravtsov 2010 for a recent review) combined with
the limited sky coverage and the surface brightness detec-
tion threshold of the SDSS (Tollerud et al. 2008; Walsh et al.
2009). Substructure in galaxy-mass halos is therefore still
of great interest for clarifying the properties both of dark
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0.001

0.01

0.1

1.0

10.0

100.0

〈N
(>

µ
)〉

〈N(>µ)〉 =
(
µ
µ̃1
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(
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Figure 6. The cumulative subhalo mass function for MW-mass

halos having 1012 ≤ Mvir/h
−1M� ≤ 1012.5. Results are shown

both in terms of Msub,0 (lower solid line) and Macc (upper solid
line). The dotted curves show equation (7) using the parameters

determined by fitting the differential mass functions (Fig. 5).

matter and of galaxy formation at low mass (and low star
formation efficiency). In this section, we explore the sub-
halo content of the MW-mass halo sample from the MS-II
at z = 0.

In the analysis that follows, the dominant subhalo is ex-
cluded in all cases. Furthermore, we consider only subhalos
lying within Rvir; from their host; this provides consistency
when comparing halos of different host mass. It is very im-
portant to note that using a different limiting radius such as
R200 or R200m will strongly affect subhalo abundance statis-
tics because the radial distribution of subhalos is heavily
weighted toward large radii (De Lucia et al. 2004; Gao et al.
2004; Springel et al. 2008). This choice also affects statistics
measuring the dynamical evolution of subhalos, as subha-
los falling into their host for the first time experience tidal
stripping that depends on the local density and therefore,
on the pericenters of their orbits about the halo.

4.1 Subhalo mass function

As shown by several authors (e.g., Gao et al. 2004; Giocoli
et al. 2008; Angulo et al. 2009), the abundance of subha-
los with a given fraction of their host’s mass varies sys-
tematically, with more massive hosts having more subha-
los. This reflects the later formation times of more mas-
sive halos, which leave their subhalos less time to be tidally
stripped. In the MS-II, the normalization of the differen-
tial mass function increases by approximately 15% for each
decade in host mass. In order to maximize our resolution,
in this section we use only the 2039 MS-II host halos with
1012 ≤ Mvir/h

−1 M� ≤ 1012.5 when computing the mass
function.

The differential mass function of (non-dominant) sub-
halos is shown for this sample in Fig. 5. Results are plot-
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Figure 7. The cumulative subhalo velocity function for MW-

mass halos having 1012 ≤ Mvir/h
−1 M� ≤ 1012.5 (solid line),

plotted in terms of ν ≡ Vmax/Vvir,host. The dotted line shows the
analog of equation (7), determined by fitting the differential ve-

locity function; the best-fitting parameters are given in the figure.

ted as black points both for the actual redshift zero masses
(Msub; lower data points) and also for the accretion masses
(Macc; upper points, offset vertically by 0.5 dex for clarity).
For comparison, subhalo mass functions obtained from the
individual level 2 Aquarius simulations (thick colored lines)
are also plotted in Fig. 5.

We assume that the cumulative mass function can be
represented by a power law with an exponential cut-off at
high masses:

〈N(> µ)〉 =

(
µ

µ̃1

)a
exp

[
−
(

µ

µcut

)b]
. (7)

The differential mass function then also has a simple func-
tional form:

d〈N〉
d log µ

=

[
b

(
µ

µcut

)b
− a
]
〈N(> µ)〉 . (8)

Equation (8) provides an excellent fit to the MS-II data for
µ̃1 = 0.01, µcut = 0.096, a = −0.935, and b = 1.29. This fit
is plotted as a dotted line in Fig. 5. Although the range of
overlap between the MS-II and Aquarius data is relatively
small, extrapolating the fit from the MS-II data to low µ
agrees extremely well with the Aquarius data all the way to
the Aquarius level 2 resolution limit, µ ≈ 10−6.

We also use equation (8) to fit the subhalo mass func-
tion computed in terms of Macc. The comparison of MS and
MS-II results in Guo et al. (2010) suggests that Np(zacc) &
1500 per subhalo is required to obtain converged results for
Macc. We are therefore able to probe 〈N(> µacc)〉 only for
µacc & 10−2. This limited range makes the determination of
the slope a using the MS-II data alone nearly impossible.
Giocoli et al. (2008) have suggested that this slope is close
to that of the redshift zero cumulative mass function, and

we also fit µacc with equation (8) holding a fixed to -0.935,
the value obtained from fitting the differential mass func-
tion for Msub. A good fit can be obtained with µ̃1 = 0.038,
µcut = 0.225, and b = 0.75 and is plotted as the upper dotted
line in Fig. 5. Again, the extrapolation of the MS-II fit to low
masses agrees very well with subhalo mass functions com-
puted directly from the level 2 Aquarius simulations (upper
set of solid curves). This shows that our adopted value of a
is indeed appropriate.

The corresponding cumulative subhalo mass functions
are plotted in Fig. 6 for redshift zero subhalo masses (Msub,
lower solid curve) and for subhalo masses at accretion (Macc,
upper solid curve). The dotted lines show equation (7) with
parameters taken directly from fits to the differential mass
functions (i.e., we do not fit the cumulative mass functions
independently). These curves are excellent representations
of the data for occupation numbers 〈N(> µ)〉 & 0.03. At
lower N , the presence of a very small number of ongoing
major mergers results in an excess cumulative abundance
compared to the fit for Msub.

The abundance of subhalos as a function of Vmax is a
related quantity, and one that is often used when comparing
simulation data to observations because Vmax is less affected
than Msub by the dynamical evolution of a subhalo within
its host. Fig. 7 shows the cumulative abundance of subhalos,
〈N(> ν)〉, in terms of ν ≡ Vmax/Vvir,host (solid curve). It ex-
hibits the same behavior as 〈N(> µ)〉: a power law at low ν
with an exponential cut-off at high ν. By fitting the differ-
ential velocity function (to ensure that errors in each bin are
uncorrelated) to the same functional form as in equation (8)
and converting the fit to the cumulative velocity function,
we find that the slope of 〈N(> ν)〉 is -2.98 at low ν and that
〈N(> ν)〉 = 1 at ν ≈ 0.4; this fit is shown as the dotted
line in Fig. 7. This low-ν slope is in good agreement with re-
sults from the individual, high resolution Aquarius and Via
Lactea simulations.

4.2 Scatter in the subhalo mass function

The halo-to-halo scatter about the mean relation in equa-
tion (7) is a matter of considerable interest for several rea-
sons. A number of groups have invested considerable com-
putational resources into simulating individual MW-mass
halos at extremely high resolution. State-of-the-art simula-
tions currently use approximately one billion particles to
resolve the mass distribution within Mvir (Diemand et al.
2008; Springel et al. 2008; Stadel et al. 2009). Such calcu-
lations are extremely expensive, however, so only a small
number can be performed. In order to interpret their re-
sults, we must know how much scatter is expected among
halos of the same mass. This scatter is also a fundamen-
tal input parameter for halo occupation distribution (HOD)
models (e.g., Ma & Fry 2000; Peacock & Smith 2000; Seljak
2000; Scoccimarro et al. 2001; Berlind & Weinberg 2002).

We find that the scatter in the cumulative mass func-
tion at fixed µ can be well-modeled by postulating that the
variance in N(> µ) is the sum of two contributions, one
due to Poisson fluctuations (σ2

P = 〈N〉) and one intrinsic
(σ2

I ∝ 〈N〉2):

σ2 = σ2
P + σ2

I . (9)

This is demonstrated in Fig. 8. The solid curves show σ/σP
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Figure 8. The ratio of the measured dispersion σ in N(> µ)

relative to that expected from a Poisson distribution with mean
value equal to 〈N(> µ)〉. The dispersion is larger than Poissonian

and the ratio of the two increases systematically to lower µ. The

dashed gray line shows a model in which the variance is a linear
sum of Poisson fluctuations and an 18% fractional intrinsic scatter

[equation (9)], while the shaded gray region encompasses the same

model with intrinsic scatter between 14 and 22%.

as a function of µ for host halos of different masses, from
Milky Way-mass hosts to halos corresponding to rich galaxy
clusters. We have used the MS for host halos with Mvir ≥
1014 h−1 M�, as the volume of the MS-II does not provide
sufficient statistics at this mass scale; for all other masses
we use the MS-II. The dashed gray line shows the model of
equation (9) with a fractional intrinsic scatter sI ≡ σI/〈N〉
of 18%, while the shaded gray region corresponds to varying
sI from 14% to 22%.

This analysis shows that the scatter in the subhalo mass
function is nearly Poissonian for massive subhalos (µ &
5× 10−3, corresponding to occupation numbers of 〈N〉 . 2)
but is broader than Poissonian at low masses (µ . 10−3 or
〈N〉 & 8). This behavior agrees with the mass functions com-
puted from the level 2 Aquarius simulations, which probe an
additional three decades in mass to µ ≈ 10−6.5. The scat-
ter in the subhalo abundance among these simulations is
fairly small: the fractional scatter, defined as the standard
deviation in N(> µ) normalized by the mean of N(> µ),
is constant over the range 10−6 . µ . 10−4.5 at approx-
imately 12%. This is somewhat smaller than our estimate
from MS-II data but is consistent given the small number of
Aquarius halos. Poisson scatter would give 4.5% at µ = 10−5

and 1.5% at µ = 10−6. This is clearly inconsistent with the
Aquarius results.

Many previous studies have analyzed subhalo occupa-
tion statistics using reduced moments {αj} of the subhalo
mass function, defined via

αj(µ) ≡ 〈N (N − 1) . . . (N − j + 1)〉1/j
〈N〉 (j = 2, 3, 4, . . .) .(10)

These studies, which have usually been done in the context
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Figure 9. The reduced second moment parameter α2 versus

µ for several ranges of Mvir. The behavior of α2(µ) is nearly
independent of host mass: α2 = 1 + ε, with ε ≈ 0.02, for µ .
4 × 10−3. Despite this, a comparison with Fig. 8 shows that the

satellite HOD is not Poisson at these mass fractions.

of HOD modeling, have used the αj values as measures of
how close the scatter in subhalo count is to Poissonian: for a
Poisson distribution, αj = 1 for all j. All studies have found
that α2 ≈ 1 over a wide range in mass and have concluded
that the scatter is indeed Poissonian (e.g., Kravtsov et al.
2004a; Zheng et al. 2005). While the finding that α2 ≈ 1
does indeed justify the replacement of 〈N (N−1)〉 with 〈N〉2
when computing correlation functions in HOD modeling, it
does not show that the variation about 〈N〉 at fixed µ can be
well-described by Poisson statistics: distributions that differ
substantially from Poisson can result in mere percent-level
variations from α2 = 1.

Figure 9 shows α2 as a function of µ for the same ranges
of host halo mass as Fig. 8. The behavior is similar at all
masses: α2 is very close to, but slightly greater than, unity
for µ . 4 × 10−3, corresponding to occupation numbers
〈N〉 & 2. The deviations from α2 = 1 are quite small –
2 to 3% – over this range. This is precisely the range where
the scatter in N(> µ) deviates systematically and substan-
tially from the Poisson expectation: Fig. 8 shows that the
scatter is 30% broader than Poissonian at µ = 4× 10−4 and
nearly twice as broad at µ = 10−4, whereas α2 = 1.02−1.025
over this same mass range. The satellite HOD is certainly
not Poisson for µ . 10−3 even though α2 is within 2% of
unity. While Poisson scatter is an excellent approximation
for 〈N〉 . 3, it is increasingly inaccurate at higher occupa-
tion number.

Why do we find a dispersion that is significantly broader
than Poisson even when α2 is only 2% larger than unity? Let
us re-write α2 as

α2
2 = 1 +

σ2

〈N〉2 −
1

〈N〉 = 1 +
1

〈N〉

(
σ2

σ2
P

− 1

)
. (11)

From this expression, it is clear that any distribution where
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σ increases more slowly than 〈N〉 will lead to α2 ≈ 1 for large
values of 〈N〉. Equation (11) also shows that the deviation
from α2 = 1 can be directly related to the fractional scatter
sI in the model of equation (9):

sI =
σI

〈N〉 =
√
α2

2 − 1 (12)

Even slight departures from α2 = 1 are therefore important:
for example, if α2 = 1.1, then sI = 0.46, i.e., a 46% intrinsic
scatter. These results suggest that more care is needed in
treating the scatter in HOD modeling. It is still true that
αj

j specifies the error incurred by assuming Poisson statis-
tics when computing the jth moment of the HOD, however.
Using Poisson statistics will therefore result in ∼ 5% error
in the second moment and ∼ 8% error in the third moment
of the HOD.

The subhalo occupation distribution can be well-
approximated by the Negative Binomial distribution, which
is given by

P (N | r, p) =
Γ(N + r)

Γ(r) Γ(N + 1)
pr (1− p)N . (13)

Here Γ(x) = (x − 1)! is the usual Gamma function and the
parameters r and p are determined by the mean 〈N〉 and
variance σ2 of the distribution:

p =
〈N〉
σ2

, r =
〈N〉2

σ2 − 〈N〉 . (14)

Using our model for the variance in N , the values of p and r
can be expressed in terms of 〈N〉 and the fractional intrinsic
scatter sI alone:

p =
1

1 + s2
I 〈N〉

, r =
1

s2
I

. (15)

Given 〈N〉, it is therefore straightforward to compute
the full distribution P (N | 〈N〉, s2

I ). Note that in the limit
r → ∞ – i.e., as the intrinsic scatter goes to zero – the
Negative Binomial distribution approaches the Poisson dis-
tribution with mean 〈N〉, as desired.

The good agreement between the measured subhalo oc-
cupation distribution and the Negative Binomial distribu-
tion is illustrated in Fig. 10. Black data points show the sub-
halo occupation distribution for 〈N(> µ)〉 = 4 (top panel,
corresponding to µ > 2.3 × 10−3), 15 (middle panel, corre-
sponding to µ > 5.6 × 10−4), and 125 (bottom panel, cor-
responding to µ > 7.1 × 10−5). The upper two panels use
MS-II hosts with 1012 ≤ Mvir ≤ 1012.5 h−1 M�, while the
lower panel uses MS-II hosts that are a factor of ten more
massive. Poisson (green lines) provides a fairly good match
for 〈N〉 = 4 (the dispersion is 9% smaller than that of the
data) but is noticeably too narrow at 〈N〉 = 15 (the Pois-
son dispersion is 25% smaller than that of the data). For
〈N〉 = 125, Poisson is a very poor match to the data, with
a dispersion that is too small by a factor of 2.25. The Neg-
ative Binomial distribution (magenta curves) matches the
data well for all three values of 〈N〉.

While the results presented in this section were derived
using the cumulative mass function, we have confirmed that
they hold equally well for the cumulative maximum circu-
lar velocity function. Specifically, the intrinsic scatter in
〈N(> Vmax/Vvir)〉 is nearly identical to that in 〈N(> µ)〉,
i.e., the subhalo abundance also shows an intrinsic scatter
of 18% when expressed in terms of Vmax/Vvir. This is not
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Figure 10. The subhalo occupation distribution from host ha-
los in the MS-II with 1012 ≤ Mvir ≤ 1012.5 h−1M� (upper two

panels) and with 1013 ≤ Mvir ≤ 1013.5 h−1 M� (bottom panel).
Black data points show the measured distribution, green lines

show the Poisson distribution with the same 〈N〉, and magenta
lines show the Negative Binomial distribution with the same 〈N〉
and variance given by equation (9) with fractional intrinsic scat-

ter sI = 0.18. Both distributions match the data for 〈N〉 = 4

(top panel, corresponding to µ > 2.3 × 10−3), while the Pois-
son distribution is noticeably too narrow for 〈N〉 = 15 (middle

panel, corresponding to µ > 5.6 × 10−4) and much too narrow
for 〈N〉 = 125 (bottom panel, corresponding to µ > 7.1× 10−5).
The Negative Binomial distribution matches the data well at all

〈N〉.
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true when considering Vmax/Vmax,host, however. This defini-
tion introduces additional scatter in the subhalo abundance
due to the scatter in concentrations at fixed mass: host halos
of a given Vvir have a range of Vmax values.

Ishiyama et al. (2009) have recently studied a sample of
125 well-resolved halos from a cosmological simulation; their
work corroborates this result. They show that the scatter in
N(> Vmax/Vmax,host) is of order 40% for host halos with
1012 . Mvir . 2 × 1012 h−1 M�. They find the scatter to
be markedly reduced when using a criterion more similar
to ours, N(> Vmax/V200m,host) for subhalos within R200m,
signifying that subhalo properties correlate more tightly to
host Vvir than to host Vmax (see also Springel et al. 2008).
This is yet another reminder that results on subhalo mass
and circular velocity functions are sensitive both to how the
host halo sample is defined and to how subhalos are selected
(e.g., the limiting radius chosen).

Finally, we have investigated whether the subhalo mass
function shows systematic variation with the host’s envi-
ronment (as measured by the overdensity on a scale of
5h−1 Mpc) or host halo properties. No obvious correlations
exist. Furthermore, the variation in the subhalo mass func-
tion between hosts can be modeled as a simple normalization
shift, i.e., the mass function within individual halos is con-
sistent with the low-mass slope measured from the ensemble
average. This is in good agreement with the behavior of the
mass Aquarius halos’ mass functions (e.g., Fig. 5).

4.3 Massive subhalos

The parameter µ̃1 in equation (7) is approximately the mass
fraction relative to Mvir of the most massive subhalo in a
“typical” host; µ̃1 = 0.01 therefore shows that the most mas-
sive subhalo in a Milky Way-mass halo typically has about
1% the mass of its host. The distribution of µ for the most
massive subhalo in each of our hosts is shown in Fig. 11. Data
are plotted for both µ1 = Msub,0/Mvir,0 (solid histogram and
filled squares) and for µ1 = Macc/Mvir,0 (dashed histogram
and open squares6). Values for the individual Aquarius ha-
los are shown by colored symbols. Fig. 11 confirms that the
probability distribution function for µ1 peaks at µ1 ≈ 0.01
for subhalo masses measured at z = 0, albeit with a large
spread: the probability for µ1 to be larger than 0.025 is 29%
and to be larger than 0.1 is 4.3%, while 4.8% of halos have
µ1 < 0.0025.

The model presented in Sec. 4.2 suggests the scatter in
the subhalo mass function should be nearly Poissonian for
masses relevant for the most massive subhalo. We can test
this directly: if the most massive subhalo in each halo is Pois-
son sampled from the underlying 〈N(> µ)〉, then the proba-
bility density P (µ1) for finding µ1 in the range [µ1, µ1 +dµ1]
can be directly computed as

P (µ1) dµ1 =
d

dµ1
e−〈N(>µ1)〉 dµ1 . (16)

The cyan lines in Fig. 11 show P (µ1) computed this way for
Msub,0 (solid line) and Macc (dashed line); the agreement

6 Note that what is plotted as the dashed histogram in Fig. 11
is the probability distribution for the subhalo at z = 0 with the
largest Macc, not Macc of the most massive subhalo at z = 0.
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Figure 11. Distribution over logµ of the most massive subhalo

within Rvir of each of our Milky Way-mass hosts, both in terms of
Msub,0 (solid histogram) and Macc (dashed histogram). In each

case, µ1 is computed relative to Mvir,0. The values of µ1 for each

Aquarius halo in the MS-II are also noted with square symbols
(filled for Msub,0, open for Macc). The distribution of µ1 is fairly

broad and peaks at µ1 ≈ 0.01 (0.035) for Msub,0 (Macc). The

cyan lines show the prediction for µ1 (solid) and µacc,1 (dashed)
if the most massive subhalo is Poisson-sampled from our analytic

fit to the cumulative mass function. In both cases, the Poisson

prediction agrees very well with the actual distribution.

with the actual distributions for µ1 (the histograms) is ex-
cellent. The distribution of µ1 is therefore consistent with
the Poisson hypothesis, both for the redshift zero masses
and for the accretion masses.

The distribution of µ1 computed with respect to Macc

can be used to estimate the probability that the Milky Way
should host a galaxy at least as massive as the Large Magel-
lanic Cloud (LMC), the most luminous MW satellite. Using
the abundance matching results of Guo et al. (2010) and
a stellar mass of 2.5 × 109 M� for the LMC (Kim et al.
1998), we find that Macc(LMC) = 1.9 × 1011 M�. For a
Milky Way mass of 1012 M�, there is a 8% chance of having
a satellite with this accretion mass or greater. For a mass
of 2.5× 1012 M� – consistent with the abundance matching
results of Guo et al. and the Local Group timing argument
value obtained by Li & White (2008), this probability rises
to 27%.

This same line of reasoning can be used to compute
the probability of a dark matter halo hosting two satel-
lite galaxies at least as massive as the Small Magellanic
Cloud (SMC). The SMC has a total stellar mass of ap-
proximately 3 × 108 M� (Stanimirović et al. 2004), corre-
sponding to an abundance matching mass at accretion of
8.2 × 1010M�. If the Milky Way has a dark matter halo
of mass 1012 M�, then there is a 3.3% chance of having a
second-ranked satellite with at least this infall mass. For a
halo mass of 2.5× 1012 M�, the probability becomes 20%.

These probabilities ignore any scatter in the M?−Mhalo

relation. This scatter is subdominant to the uncertainty in
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the Milky Way’s mass, however. For example, Guo et al.
(2010) give 80% confidence intervals that correspond to
±25% on the infall halo masses of the Magellanic Clouds
based on a dispersion of 0.2 in log10(Mhalo) at fixed M?.
Clearly, the satellite statistics quoted above give some sup-
port for the higher estimates of the Milky Way’s halo mass.

4.4 Subhalo accretion times

Subhalos persisting to z = 0 are fossils of previous halo
merger events. The accretion redshifts zacc of z = 0 sub-
halos are therefore important quantities for understanding
the dynamical evolution of subhalos and can help constrain
other quantities, such as merging timescales. The median
zacc for z = 0 subhalos as a function of µ = Msub,0/Mvir is
shown as a solid curve in Fig. 12. The 25th and 75th (10th
and 90th) percentiles of the zacc distribution are included
as dashed (dotted) curves. Results for Milky Way-mass host
halos are shown in the left panel. The median zacc is a de-
creasing function of µ, which is mainly a dynamical effect:
massive subhalos that are accreted at early times are able to
lose their orbital energy and angular momentum and merge
with the dominant subhalo by z = 0 while low-mass subha-
los are not (e.g., Boylan-Kolchin et al. 2008). As a result,
the only remaining massive subhalos are those that were ac-
creted at relatively late times. At µ = 10−3, the typical zacc

of a surviving subhalo is somewhat larger than z = 1, while
at µ = 10−1, zacc ≈ 0.3 for surviving subhalos. It is diffi-
cult to compare the individual Aquarius halos, as there are
only 60 satellites across all six halos satisfying µ ≥ 0.001
and d ≤ Rvir, but the median accretion time for these 60
satellites, zacc = 0.76, falls well within the expected range
based on the distribution from the MS-II.

For comparison, the right panel of Fig. 12 shows the dis-
tribution of zacc for surviving subhalos in much more mas-
sive hosts, those with Mvir > 1013.5 h−1 M�. The trend is
very similar to that seen for Milky Way-mass hosts, namely,
the median zacc is a decreasing function of µ. The typical
zacc values are uniformly lower for the massive halo sample,
however: at µ = 10−3, the median surviving subhalo in the
massive host sample was accreted at zacc ≈ 0.6. This dif-
ference is a manifestation of the hierarchical growth of dark
matter halos: more massive halos are dynamically younger
and have accreted a larger fraction of their mass (and of their
subhalo population) recently. Fig. 12 also indicates that a
large fraction of the galaxy population in galaxy clusters has
joined the cluster fairly recently, whereas most of the lumi-
nous satellites of galaxies similar to the Milky Way have
been part of their host halos since z ≈ 1. At all masses, the
median value of Macc/Msub,0 is 2.4 (see Fig. A1), indicating
that a typical z = 0 subhalo has lost 60% of its mass.

The results in the left panel of Fig. 12 appear to differ
substantially from those of Gao et al. (2004), who found
that 90% of subhalos in a Milky Way-mass halo at z = 0
have zacc < 1. These differences are due to the choice of
definition for zacc. Gao et al. define zacc as the last time a
subhalo entered the FOF group of the main progenitor of its
z = 0 host while we define zacc to be the redshift when the
subhalo’s mass was at its maximum. This latter definition
is closer to the first time a subhalo enters its host’s FOF
group. We have checked that using Gao et al.’s definition
of zacc gives results similar to theirs. Our results for more

massive halos (the right panel of Fig. 12) agree with the
findings of De Lucia et al. (2004, e.g., their fig. 10), who use
the same definition of zacc as we do.

5 MERGER HISTORIES

Galaxy-mass dark matter halos are constantly bombarded
by smaller halos in the ΛCDM model. This has been the
source of great concern with respect to the formation of
MW-like galaxies: how is it possible to reconcile an active
merging history with the existence of a thin stellar disk (e.g.,
Toth & Ostriker 1992; Velazquez & White 1999; Benson
et al. 2004; Kazantzidis et al. 2008; Hopkins et al. 2009)? In
order to understand the severity of the problem, we investi-
gate the merger histories of MW-mass halos in this section,
concentrating on mergers of objects with mass comparable
to that of the MW disk.

When considering the merger history of a dark matter
halo, two major questions are (1) what is the rate of infall
of other, smaller dark matter halos across the halo’s virial
radius and (2) what is the rate at which other dark matter
halos lose their identity and merge with the center of the
halo? Clearly, the set of objects that merge into the center
of a halo will be a subset of those that crossed the halo’s
virial radius at earlier times, but connecting the two is far
from trivial. Several recent papers have addressed the fre-
quency of halo-halo mergers. Fakhouri & Ma (2008), Guo
& White (2008), and Genel et al. (2009) investigated the
halo merger rate directly in the MS, while Neistein & Dekel
(2008) and Cole et al. (2008) used extended Press-Schechter
theory to derive merger rates and compared the results to
the MS. The most relevant study for this paper is Stewart
et al. (2008), who used an N -body simulation to extract
halo-halo merger rates for MW-mass halos. Stewart et al.
found that while recent major mergers are very rare, merg-
ers involving halos with masses of ∼ 0.1Mvir,0 are quite
common over the past 10 Gyr and mergers with halos hav-
ing masses exceeding the mass of the galactic disk are vir-
tually inevitable over the same time period. These results
led the authors to conclude that the frequency of mergers
may present a substantial challenge to our understanding
of disk galaxy stability, as the majority of galaxies in MW-
mass halos are disk-dominated (Weinmann et al. 2006; van
den Bosch et al. 2007; Park et al. 2007)).

The mass resolution of the MS-II allows us to expand
on the results of Stewart et al. by studying mergers with the
central regions of MW-mass halos. These are more clearly
relevant to the survival of stellar disks (which have charac-
teristic radii that are less than 10% of Rvir). Accordingly,
in this section we consider only mergers between accreted
subhalos and the dominant subhalos in MW-mass halos. We
construct samples of merging objects by searching the main
progenitor branches of the dominant subhalos for merger
events with subhalos satisfying Vacc ≥ 50 km s−1.

In order to ensure that the mergers we are considering
are well resolved and are not affected by limited numeri-
cal resolution, we have computed the orbits and internal
properties of subhalos immediately prior to merging. For the
mergers considered here – those with Vacc > 50 km s−1 for
the satellite – the median separation between the satellite
and the dominant subhalo immediately prior to merger is
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Figure 12. Redshift of accretion zacc as a function of Msub,0/Mvir for all resolved subhalos in galaxy-mass (left) and cluster-mass

(right) host halos. The median relation is shown as a solid curve while the 25 and 75 (10 and 90) percentiles are shown as dashed (dotted)

curves. More massive subhalos at the present day were accreted later on average than low-mass subhalos; the spread of accretion times for
massive objects is also smaller. Subhalos of more massive host halos are accreted at lower redshifts on average, reflecting the hierarchical

build-up of dark matter halos.

about 15h−1 kpc; in 80% (90%) of the cases, the separation
is less than 30 (50)h−1 kpc.

Furthermore, the satellites themselves are well-resolved
immediately prior to merging: as we show in the Appendix,
even halos at our lower limit of Vacc = 50 km s−1 have on av-
erage 70 particles just prior to merging, while satellites with
Vacc = 65 km s−1 typically have 150 particles at the time
of merging. Accreted halos that are capable of substantially
impacting the Galactic disk can therefore be reliably tracked
to within . 10% of Rvir, allowing us to separate true merg-
ers with the centers of halos from accretion events that cross
Rvir but remain at large halo-centric distances.

Figure 13 explores the probability for dominant
z = 0 MW-mass subhalos to have merged since
redshift z with another subhalo with Macc/Mvir,0 >
0.01, 0.03, 0.05, 0.07, 0.1, and 0.15 (top to bottom). Approx-
imately two-thirds of MW-mass halos have experienced a
merger with a halo having Macc/Mvir,0 > 0.03 since z = 1,
and over 90% have had at least one such merger since z = 3.
On the other hand, only 30% of halos have merged with a
Macc/Mvir,0 > 0.1 halo since z = 1 and just 50% of halos
have ever experienced such a merger. Approximately 50%
of halos have had a merger with 0.03 . Macc/Mvir,0 . 0.15
since z=1.

It is important to note that we have been quoting satel-
lite masses in terms of the maximum dark matter mass the
satellite has ever attained, Macc. Subhalos usually lose a
large fraction of their mass before merging: for our sample,
the average subhalo loses 90% of its mass between accretion
and merging (see Fig. A2), independent of Macc. Subhalos
with Macc/Mvir,0 = 0.1 therefore typically have a mass ratio
of 1:100 at merger, meaning the mass involved in a potential
disk impact may be three times smaller than the disk mass
rather than three times larger.

We can also investigate the distributions of merger his-
tories in terms of the nth-most massive halo with which a
MW-mass halo has merged. This is done in Fig. 14. The
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Figure 13. The fraction of central subhalos that have merged

with an object having Macc greater than 1, 3, 5, 7, 10, and 15% of
Mvir,0 (upper through lower curves) since redshift z, as a function
of z. Virtually all halos have merged with a Macc > 0.01Mvir,0

halo since z = 3, while only half have merged with a Macc >
0.10Mvir,0 halo in the same redshift range. Recent merger events
with Macc > 0.03Mvir,0 are common: 70% of halos have had such

a merger since z = 1.

solid lines show the probability of having a merger with
Macc/Mvir,0 ≥ µ as a function of µ, while the dashed curves
give the same probability for mergers at z < 2. Different
colors correspond to different merger ranks: green shows the
probability distribution for the most massive merger for each
halo (in terms of Macc) while red shows the distribution for
the 5th most massive merger. 90% of halos have had one
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entire lifetime (solid lines) and since z = 2 (dashed lines). The

median value for the most massive merger is µ = 0.1, while the
3rd-most massive merger typically has µ = 0.02.

merger event with Macc > 0.03Mvir,0 since z = 2, 60% have
had two such events, and 30% have had three. The median
value for the most massive merger a halo has experienced
since z = 2 is Macc/Mvir,0 = 0.1, and the median redshift for
such mergers7 is z = 0.75; only 10% of halos have had two
events with Macc/Mvir,0 ≥ 0.1. The most massive merger
event since z = 2 for each of the Aquarius halos (A-F) has
Macc/Mvir,0 of 0.033, 0.078, 0.028, 0.030, 0.033, and 0.259,
respectively. Halos A, C, D, and E therefore lie near the 10%
most quiescent halos of Fig. 14 while halo B is fairly typical
and halo F has had a recent major merger, which is rare.

A thorough understanding of the stability of galactic
disks in the presence of satellite infall requires the inclu-
sion of baryonic physics, as several studies have shown that
factors such as the orbits and gas content of the merging
galaxies can have a substantial impact on remnant prop-
erties (Springel & Hernquist 2005; Kazantzidis et al. 2008,
2009; Scannapieco et al. 2009; Hopkins et al. 2009; Purcell
et al. 2009; Stewart et al. 2009; Moster et al. 2010; Gov-
ernato et al. 2009; D’Onghia et al. 2010) Nevertheless, we
can still use the statistics computed above to learn about
the frequency of satellite-disk interactions, as the dynamics
that determine which subhalos merge are mostly set by dark
matter halo properties such as the satellite’s orbit and mass
at infall.

Approximately 90% of MW-mass halos have had a cen-
tral merger with a halo of Macc ≥ 0.03Mvir,0 since z = 2. If
such mergers destroy galactic disks, it is extremely difficult
to understand the frequency of disk galaxies in MW-mass

7 This is the redshift at which the satellite subhalo merges with
the central subhalo, not the redshift at which the progenitor halos

merge.

halos (≈ 70%; Weinmann et al. 2006; van den Bosch et al.
2007; Park et al. 2007). Around half of MW-mass halos have
experienced a merger of Macc ≥ 0.1Mvir,0 since z = 2. These
events are likely to strongly affect galaxy disks; however, the
frequency with which they occur, coupled with the possibil-
ity that a non-negligible fraction of such mergers may have
sufficient gas to reform a disk in the merger remnant, does
not seem high enough to present a major obstacle to forming
galactic disks in a majority of MW-mass halos. It is there-
fore essential to simulate a large number of mergers in the
mass range of 0.03 . Macc/Mvir,0 . 0.1 with a distribution
of realistic orbits and galaxy models, including a variety of
gas fractions. This will significantly advance our knowledge
of disk formation and survivability in the ΛCDM cosmology.

6 DISCUSSION

6.1 How (a)typical are the Aquarius halos?

In general, the agreement between the properties of the
Aquarius halos and those of the full sample of MW-mass
halos from the MS-II is quite good: no halo is an outlier
from all of the relations studied here. Halos A and C form
somewhat earlier than average. Halo C also has a larger con-
centration than is typical. On the other hand, neither A nor
C seems to be an outlier in the distribution of the spin pa-
rameter λ′. Halo F is somewhat unusual in that it has a
recent major merger; on the other hand, it is quite typical
in most of its other properties. The Aquarius halos seem to
reflect the diverse properties of Milky Way-mass halos, both
in terms of assembly history and z = 0 structure.

The Aquarius halos do not, however, seem to uniformly
sample the spin parameter λ′: five of the six halos lie below
the median of the distribution, while the sixth is a merger
remnant and may well relax to a lower value as well. We
have explicitly checked that the isolation criterion in the
Aquarius halo selection does not bias the spin parameters,
as the distribution of λ′ from the isolated and non-isolated
samples are statistically identical. The somewhat low spin
parameter distribution of the Aquarius halos appears to be
a statistical fluctuation. This may be connected to the rel-
atively quiet recent merger history of the central subhalos
for the Aquarius halos.

6.2 How (a)typical is the Galaxy’s halo?

While the Milky Way is frequently considered as the proto-
typical massive spiral galaxy, this has its roots as much in
convenience as in evidence. While it is difficult to use dissi-
pationless N -body simulations to discern whether the MW
is indeed a typical galaxy for a halo of its mass, we can in-
vestigate whether the Galaxy’s halo itself is typical among
those of similar mass. Many possible constraints are pred-
icated on a more precise determination of the mass of the
MW’s halo, however. Current estimates vary by a factor of
approximately 2 to 3 (with 1 . Mvir,MW . 3 × 1012 M�).
This uncertainty has a large effect on the probability of host-
ing massive satellite galaxies such as the SMC and LMC: the
chances of having a subhalo capable of hosting the LMC or
two subhalos capable of hosting the LMC and SMC are ap-
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proximately 3-8% for a MW mass of 1012 M� but rise to
20-27% if the MW’s halo has a mass of 2.5× 1012 M�.

On the other hand, a more massive Galactic halo implies
that merger events of a given Macc/Mvir,0 correspond to a
larger fraction of the MW’s disk mass. If the MW’s thin disk
must be explained via an unusually quiescent merger history
over the past 10 Gyr (e.g., Hammer et al. 2007), we find
that the MW’s halo must be even more unusual (in terms of
merger history) if the halo is massive. If we assume the MW
cannot have merged with a Macc > 3Mdisk,MW halo since
z = 2, this corresponds to µ = 0.1 for MMW = 1012 M� and
µ = 0.04 if MMW = 2.5× 1012 M�. From Figure 13, we find
a 50% chance for the former case but only a 20% chance
for the latter. If halos with Macc = Mdisk,MW destroy thin
disks, the probabilities drop to 12% and 4%, respectively.

A possible resolution of this tension – that the existence
of the LMC and SMC argue for a more massive MW halo
while the lack of recent mergers argues for a less massive
Galactic halo – is to directly connect the two issues. A re-
cent analysis of the LMC’s orbital history (Besla et al. 2007)
based on the updated proper motions of the LMC (Kallivay-
alil et al. 2006) indicates that the LMC likely fell into the
Milky Way’s halo within the last ∼ 3 Gyr. The LMC’s in-
fall mass is likely to be in excess of 1011 h−1 M� (and the
SMC’s infall mass is likely to be only slightly less massive;
Guo et al. 2010), meaning that the Milky Way has actually
experienced a recent 1:10 merger at the halo level. Stewart
et al. (2008) show that Milky Way-mass halos typically un-
dergo one such merger at the halo level over the past 10 Gyr,
perhaps indicating that the Milky Way’s accretion history
is special only insofar as the LMC fell in so recently.

6.3 Cosmological Parameter Dependence

As noted in Sec. 2.1, the cosmological parameters used for
the MS-II are slightly different from the most recent obser-
vational estimates: the values of σ8 = 0.9 and ns = 1.0 are
approximately 3σ away from the best-fitting values of 0.81
and 0.96, respectively. Many of our results are insensitive
to such changes. The abundance of MW-mass halos differs
by only ∼ 7% in the WMAP5 cosmology compared to the
Millennium-II cosmology, for example, and the basic prop-
erties of halo assembly histories scale weakly with σ8 (van
den Bosch 2002). The subhalo abundance of MW-mass halos
could potentially be affected by σ8 and ns, as decreasing σ8

tends to reduce halo and subhalo concentrations at a fixed
mass (e.g., Macciò et al. 2008). This would tend to decrease
the amplitude of 〈N(> µ)〉 in lower σ8 cosmologies, as sub-
halos would be more easily disrupted. On the other hand,
halos tend to form later in such cosmologies, meaning that
subhalos are subject to less dynamical evolution (see the dis-
cussion at the start of Sec. 4.1); this would tend to increase
the amplitude of 〈N(> µ)〉 for a lower σ8. These two effects
compensate to some extent, reducing the overall shift.

In order to properly ascertain the effects of cosmology
on the structural properties of MW-mass halos, it is neces-
sary to run simulations that differ only in their cosmological
parameters and to search for differences in statistical prop-
erties. Nevertheless, there is reason to think that changing
from the cosmology of the Millennium, Millennium-II, and
Aquarius simulations to the WMAP 5 cosmology will not
have a strong impact. For example, the difference in ampli-

tude of N(>Vmax/Vmax,host) between σ8 = 0.74 and 1.0 is
only 14% (Reed et al. 2005; Diemand et al. 2008; Diemand
& Moore 2009), so reducing σ8 from 0.9 to 0.81 will likely
affect the amplitude of the subhalo mass function by a few
percent only.

7 CONCLUSIONS

We have presented a statistical study of Milky Way-mass ha-
los from the Millennium-II Simulation, which contains over
7000 halos in the mass range 1011.5 ≤Mvir ≤ 1012.5 h−1 M�.
Our principal results can be summarized as follows:

• As several previous studies have shown, halo growth
proceeds in an “inside-out” fashion: the central gravitational
potential of a typical MW-mass halo reached half of its
present-day value by z = 4, on average, whereas the virial
mass reached half of its present-day value at z = 1.2.
• The ratio of z = 0 mass to the host halo mass for the

most massive subhalo of a MW-mass halo has a broad distri-
bution that peaks at 1%. The corresponding quantity com-
puted using infall mass Macc instead of Msub,0 peaks at 3.5%
• The differential and cumulative subhalo mass functions,

computed in terms of µ ≡ Msub/Mvir, are both well-fitted
by a power law with an exponential cut-off at large µ. We
find both the abundance per log decade in µ and the number
of subhalos with mass greater than µ to be proportional to
µ−0.935 for small µ.
• The scatter in the cumulative mass function at fixed µ

is only well-approximated by a Poisson distribution at large
µ (corresponding to mean occupation number 〈N〉 . 4− 5).
Intrinsic scatter of approximately 18%, independent of the
host halo mass, becomes increasingly important at lower µ
(larger 〈N〉) and is dominant over Poisson scatter at µ .
3× 10−4 (〈N〉 & 20).
• The Negative Binomial distribution with variance in
〈N(> µ)〉 that is equal to the sum of a Poisson term and a
fractional intrinsic scatter of 18% matches the subhalo occu-
pation data well at all µ for host halo masses between 1012

and 1015 h−1 M�.
• The statistic α2(µ) [equation (10)], which is frequently

used to characterize deviations of the HOD from Poisson,
is not discriminating: distributions that differ strongly from
Poisson can lead to few percent differences of α2 from unity.
• Accretion redshifts of z = 0 subhalos vary systemat-

ically with host halo mass and with the ratio of subhalo
to host masses. Massive subhalos at z = 0 were typically
accreted more recently. This is a dynamical effect: massive
subhalos accreted at early times either merge via dynamical
friction or are heavily tidally truncated. At fixed µ, subhalos
of more massive host halos were accreted more recently, re-
flecting the hierarchical build-up of dark matter halos. Sub-
halos with µ = 0.001 have a median accretion redshift of
zacc = 1.1 for hosts with Mvir ≈ 1012 h−1 M� and zacc = 0.6
for halos with Mvir > 1013.5 M�.
• The frequency of central mergers – that is, the merger

of a satellite with the central region of a MW-mass halo
– is a strong function of the satellite’s Macc. Since z = 2
90% of MW-mass halos have experienced a central merger
with a satellite having Macc/Mvir,0 > 0.03 while 50% have
had such a merger with a Macc/Mvir,0 > 0.1 satellite, and
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only 30% with a Macc/Mvir,0 > 0.15 satellite. The compat-
ibility of thin stellar disks with the frequent mergers ex-
pected in ΛCDM thus depends strongly on exactly which
mergers destroy disks. If Macc/Mvir,0 > 0.03 events are suf-
ficient, the Milky Way must have an accretion history that
lies among the quietest 10% for halos of similar mass, while
if Macc/Mvir,0 > 0.1 is required, then the Milky Way may
have had a fairly typical merger history.
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A. A., Gottlöber, S., Allgood, B., & Primack, J. R. 2004a,
ApJ, 609, 35

Kravtsov, A. V., Gnedin, O. Y., & Klypin, A. A. 2004b,
ApJ, 609, 482

Lacey, C., & Cole, S. 1993, MNRAS, 262, 627

—. 1994, MNRAS, 271, 676

Lemson, G., & Kauffmann, G. 1999, MNRAS, 302, 111

Li, Y., Mo, H. J., & Gao, L. 2008, MNRAS, 389, 1419

Li, Y.-S., & White, S. D. M. 2008, MNRAS, 384, 1459

Loeb, A., & Peebles, P. J. E. 2003, ApJ, 589, 29

Ma, C.-P., & Fry, J. N. 2000, ApJ, 543, 503
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APPENDIX A: SUBHALO MASSES AND
CIRCULAR VELOCITIES

Figure A1 shows the median relations between Macc and
Vmax,0 (solid black line) and between Msub,0 and Vmax,0

(solid blue line); the latter is identical to the one plot-
ted in Fig. 1. Also plotted are the regions centered on the
median Macc − Vmax,0 relation containing 50 and 80% of
the distribution (dashed and dotted curves, respectively).
The Macc − Vmax,0 relation follows the same slope as the
Msub,0 − Vmax,0 relation but has an amplitude that is ap-
proximately 2.4 times larger: the solid magenta line shows
the result of multiplying the fit to Msub,0 − Vmax,0 at z = 0
by a factor of 2.44. The average subhalo at z = 0 was there-
fore approximately 2.4 times more massive at accretion, irre-
spective of its present Vmax. The spread in the Macc−Vmax,0

relation is non-negligible: the 90% value of Macc is typically
a factor of 2.5 larger than the 10% value at fixed Vmax. 10%
of halos have lost over 80% of their mass while another 10%
have lost less than 30%.

Figure A2 shows the median relation between Macc and
Vacc (solid black curve), along with the ranges containing
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Figure A1. Macc as a function of Vmax for subhalos surviving

to z = 0. The solid curve shows the median Macc, while the
dashed (dotted) curves show the 25 and 75 (10 and 90) percentiles.

Also plotted, in magenta, is the best-fitting power law relation

between Macc and Vmax,0, as well as the median relation between
M(z = 0) and Vmax,0 for subhalos (blue curve). The virtually

constant offset between the blue and solid black curves shows

that the typical surviving subhalo loses a factor of ∼ 2.5 in mass
between infall and the present day, irrespective of Vmax,0.

50 and 80% of the distribution (dashed and dotted black
curves). Our lower limit of Vacc = 50 km s−1 corresponds to
a median Macc of 5× 109 h−1 M�. Figure A2 also shows in
magenta the relation between Vacc and Mmerge, defined to be
the mass of the subhalo at the snapshot immediately prior
to merging. The relation is nearly parallel to Macc(Vacc) (the
solid black line) but is lower in amplitude by approximately
a factor of 10 at all Vacc. This means that these subhalos
lose approximately 90% of their mass prior to merging, ir-
respective of their mass at infall.
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Figure A2. Macc as a function of Vmax for subhalos with

Vacc ≥ 50 km s−1 that merge with their host. The solid curve
shows the median Macc, while the dashed (dotted) curves show

the 25 and 75 (10 and 90) percentiles. Also plotted, in magenta, is

the relation between Vmax and Mmerge, the mass of the subhalo
immediately prior to merging. The median Vmax −Mmerge rela-

tion is nearly parallel to the median Vmax −Macc relation but is

lower in amplitude by approximately 1 dex, indicating that sub-
halos lose approximately 90% of their mass before merging for all

Vacc.
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