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ABSTRACT

We present a first application of the recently proposed LITMUS test for magnetic helicity, as well as a thorough study of its applicability
under different circumstances. In order to apply the test to the galactic magnetic field, the newly developed critical filter formalism
is used to produce an all-sky map of the Faraday depth. The test does not detect helicity in the galactic magnetic field. To understand
the significance of this finding, an applicability study is performed, showing that a definite conclusion about the absence of magnetic
helicity in the galactic field is not yet reached. This study is conducted via the test’s application to simulated observational data. We
consider simulations in a flat sky approximation as well as all-sky simulations, both with constant electron densities assumed and with
realistic distributions of thermal and cosmic ray electrons. Our results suggest that the LITMUS test does indeed perform very well in
cases where constant electron densities can be assumed, both in the flat-sky limit and in the galactic setting. Non-trivial distributions
of thermal and cosmic ray electrons, however, may complicate the scenario to the point where helicity in the magnetic field can escape
detection.
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1. Introduction

Helicity is of utmost interest in the study of astrophysical mag-
netic fields. Mean field theories for turbulent dynamos oper-
ating in the galactic interstellar medium have been successful
in explaining the maintenance of the observed magnetic field
strengths (e.g. Subramanian 2002). These theories predict he-
licity to be present on small scales in interstellar magnetic fields.
An observational detection or exclusion of helicity in these fields
would therefore either strongly suggest the validity of these the-
ories or indicate the existence of some flaws in them.

However, since helicity is a quantity that describes the three-
dimensional structure of a magnetic field and most observation
techniques produce at best two-dimensional images leading to
an informational deficit, it has thus far largely eluded observers.

Previous work on the detection of magnetic helicity in astro-
physical contexts has focused mainly on either magnetic fields
of specific objects, such as the Sun (see e.g. Zhang 2010, and
references therein) or astrophysical jets (cf. e.g. Enßlin 2003;
Gabuzda et al. 2004), or cosmological primordial magnetic fields
(e.g. Kahniashvili & Ratra 2005; Kahniashvili et al. 2005). One
exception is the work of Kahniashvili & Vachaspati (2006), in
which the use of charged ultra high energy cosmic rays of known
sources is suggested for probing the three-dimensional struc-
ture of magnetic fields through which they pass. However, the
sources of ultra high energy cosmic rays are not known yet and
the applicability of this test is therefore limited.

The LITMUS (Local Inference Test for Magnetic fields
which Uncovers heliceS) procedure for the detection of mag-
netic helicity suggested by Junklewitz & Enßlin (submitted)
probes the local current helicity density B· j, which for an ideally
conducting plasma becomes

B · j ∝ B · (∇ × B) . (1)

Here, the magnetic field is denoted by B and the electric cur-
rent density by j. The test uses measurements of the Faraday

depth and of the polarization direction of synchrotron radiation
to probe the magnetic field components along the line of sight
and perpendicular to it, respectively. Its simple geometrical mo-
tivation should make it applicable in a general setting, provided
the aforementioned quantities can be measured. The results de-
pend only on the properties of the magnetic field along a line of
sight and are therefore purely local in the two-dimensional sky
projection. Our aim is to test this idea on observational as well
as on simulated data and thereby determine the conditions under
which the test will yield useful results.

This paper is organized as follows. In Sect. 2, the basic equa-
tions used in the LITMUS test are reviewed. They are applied
to observational data describing the galactic magnetic field in
Sect. 3, with special emphasis on a sophisticated reconstruction
of the Faraday depth, described in Sect. 3.2. Sect. 4 is devoted
to a thorough general assessment of the test’s reliability. To this
end it is applied to simulated observations of increasing com-
plexity. Sect. 4.1 describes the application in a flat sky approx-
imation, whereas Sect. 4.2 examines all-sky simulations, finally
arriving at complete simulations of the galactic setting in Sect.
4.2.2, where realistic electron distributions are added. We dis-
cuss our results and conclude in Sect. 5.

2. The Helicity Test

For a thorough introduction into the ideas behind the LITMUS
test, the reader is referred to Junklewitz & Enßlin (submitted).
Here, we only summarize the resulting equations.

On the one hand side, synchrotron emission produced by
cosmic ray electrons is used to probe the magnetic field com-
ponent perpendicular to the line of sight. Its polarization is de-
scribed by the complex field

P = Q + iU = |P| e2iχ, (2)
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where Q and U are the usual Stokes parameters quantifying the
linearly polarized components of the radiation with respect to
some orthogonal coordinate system and χ is the polarization an-
gle with respect to the first coordinate direction.

On the other hand, the Faraday depth

φ ∝

∫
LOS

neB · dl (3)

is used to probe the magnetic field component parallel to the line
of sight (LOS).

A helical magnetic field will lead to a gradient of the squared
Faraday depth that is parallel to the polarization direction of the
synchrotron emission, as was argued in Junklewitz & Enßlin
(submitted). In order to compare the directions of the two quan-
tities, this gradient is also formulated as a complex field

G =
∣∣∣∇φ2

∣∣∣ e2iα, (4)

with

α = arctan


(
∇φ2

)
y(

∇φ2)
x

 , (5)

where the indices x and y denote its components with respect to
the coordinates used. The helicity test that is performed in this
work consists simply of multiplying G with the complex conju-
gate of the polarization P∗. If the two angles χ and α differ by a
multiple of π (i.e. the gradient and the polarization direction are
parallel), the product will be real and positive. If they differ by
an odd multiple of π/2 (i.e. the two directions are perpendicu-
lar), it will be real and negative. Any orientation in between will
produce varying real and imaginary parts in the product. Thus,
observational directions along which a magnetic field is helical
are indicated by a positive real part and a vanishing imaginary
part of the product. Averaging over all directions will give an
indication of the global helicity of the field.

3. Application to Galactic Observations

In this section, we try to answer the question whether the mag-
netic field of the Milky Way is helical by applying the LITMUS
test to the available observational data. Since the magnetic field
is localized in a region that surrounds the observer, all relevant
quantities will be given as fields on the sphere S2, i.e. as func-
tions of the observational direction, specified by two angles ϑ
and ϕ, which are taken to represent the standard spherical polar
coordinates in a galactic coordinate system.

3.1. Observational Data

For the synchrotron emission, we use the data gathered by the
WMAP satellite after seven years of observations1, described in
Page et al. (2007). Since the foreground synchrotron emission
is most intense at low frequencies, we use the measurement in
the K-Band, which is centered at a frequency of ν = 23 GHz.
Furthermore, we assume that the detected polarized intensity is
solely due to galactic synchrotron emission. Thus, the Stokes Q
and U parameter maps (defined with respect to the spherical po-
lar coordinate directions êϑ and êϕ in the galactic coordinate sys-
tem) can be simply combined according to equation (2) to give

1 The data are available from NASA’s Legacy Archive for Microwave
Background Data Analysis at http://lambda.gsfc.nasa.gov.
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Fig. 1. Vertical galactic profile p(ϑ) of the Faraday depth.

the complex quantity P whose argument is twice the rotation an-
gle of the plane of polarization with respect to the êϑ-direction

χ(ϑ, ϕ) =
1
2

arctan
(

Im(P(ϑ, ϕ))
Re(P(ϑ, ϕ))

)
(6)

(cf. Junklewitz & Enßlin submitted).
In order to construct a map of the Faraday depth, we use

the catalogue of rotation measurements provided by Taylor et al.
(2009)2. These provide an observational estimate of the Faraday
depth for certain directions in the sky where polarized radio
point-sources could be observed. Since the catalogue encom-
passes a large number (37 543) of point-sources, it paints a rather
clear picture of the structure of the Faraday depth. However,
earth’s shadow prevents observations in a considerably large re-
gion within the southern hemisphere.

3.2. Reconstructing the Faraday Depth Map

The reconstruction is conducted according to the critical filter
method first presented in Enßlin & Frommert (2010). A more
elegant derivation of the same filter can be found in Enßlin &
Weig (2010). Since this formalism takes into account available
information on the statistical properties of the signal in the form
of the power spectrum, it is able to interpolate into regions where
no direct information on the signal is provided by the data, such
as the shadow of earth in this case. Furthermore, it takes into
account the available information on the uncertainty of the mea-
surements. All in all it is expected to lead to a reconstructed map
of the Faraday depth that is much closer to reality than e.g. a
map in which the data were simply smoothed to cover the sphere.
Small-scale features that are lost in such a smoothing process are
for example reproduced by the critical filter algorithm.

3.2.1. Data Model

The field that is to be reconstructed here is the sky-map of the
Faraday depth. In order to apply the critical filter formula, the
signal should be an isotropic Gaussian field. Since the Faraday
depth clearly is larger along directions passing through the galac-
tic plane, the condition of isotropy is not satisfied. Therefore, a

2 The catalogue is available at
http://www.ucalgary.ca/ras/rmcatatlogue.
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vertical profile is calculated by binning the observations into in-
tervals [ϑi, ϑi + ∆ϑ), calculating the root mean square rotation
measure value for each bin and smoothing the resulting values
to obtain a smooth function p(ϑ). The result is shown in Fig. 1.
This profile is used to approximatively correct the anisotropies
induced by the galactic structure and the resulting signal field

s(ϑ, ϕ) =
φ(ϑ, ϕ)

p(ϑ)
(7)

is assumed to be isotropic and Gaussian with a covariance ma-
trix S . The Gaussian covariance matrix is determined solely by
the angular power spectrum coefficients Cl, the reconstruction of
which is part of the problem at hand.

The data d, i.e. the rotation measure values in the cata-
logue, are taken to arise from the signal s by multiplication
with a response matrix R, which consists of a part encoding the
specific directions in which the signal field is probed in order
to produce the measurements and another part that is a sim-
ple multiplication with the vertical profile p(ϑ). Additionally, a
Gaussian noise component n is assumed with a covariance ma-
trix N = diag(σ2

1, σ
2
2, . . . ), where σi is the one sigma error bar

for the ith measurement in the catalogue, which is also provided.
Thus, the data are given by3

d = Rs + n = R̃ps + n (8)

Any contribution to the measured data from intrinsic Faraday
rotation within the sources is expected to be small and therefore
neglected here. It could in principle be included by increasing
the σi-values appropriately.

3.2.2. Reconstruction Method

In order to reconstruct the mean signal field m = 〈s〉, where the
brackets denote a Gaussian posterior mean, i.e. an average over
the posterior probability distribution P(s|d,Cl) = G(s −m,D), it
is also necessary to reconstruct the angluar power spectrum Cl.
To do so, the critical filter formulas

m = D j (9)

and
Cl =

1
2l + 1

tr
((

mm† + D
)

S l

)
(10)

are iterated, starting with some initial guess for the power spec-
trum. Here, the signal covariance matrix is expanded as S =∑

l ClS l, where S l is the projection onto the spherical harmonic
components with index l. Furthermore, D is the posterior covari-
ance matrix,

D =
(
S −1 + R†N−1R

)−1
, (11)

and j is the information source term,

j = R†N−1d. (12)

The † symbol denotes a transposed and complex conjugated
quantity.

Since the critical filter is on the brink of exhibiting a per-
ception threshold (cf. Enßlin & Frommert 2010) and it is gen-
erally more desirable to overestimate a power spectrum enter-
ing a filter than to underestimate it, the coefficients Cl are sub-
jected to a procedure in which the value of Cl is replaced by

3 The discretized version used in the implementations is di =∑
j Ri j s j + ni =

∑
j R̃i j p j s j + ni, where the index j determines a pixel

on the sphere, so that s j = s(ϑ j, ϕ j) and p j = p(ϑ j).
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Fig. 3. Angular power spectrum of the signal field s.

max {Cl−1,Cl,Cl+1} after each iteration step. The advantage of
overestimating the power spectrum can be seen by considering
the limit of Cl → ∞ in Eq. (9) and (11). For large values of Cl,
the first term in Eq. (11) can be neglected and Eq. (9) becomes

mCl→∞ = s + R−1n. (13)

Thus, by overestimating the power spectrum the importance of
its exact shape is diminished and the reconstruction will instead
follow the information given directly by the data more closely.
Considering an extreme underestimation of the power spectrum,
Cl → 0, on the other hand, would lead to

mCl→0 = 0, (14)

suppressing the information given by the data.

3.2.3. Calculating ∇φ2

Once the posterior mean of the signal is reconstructed, the cor-
responding quantity for the squared signal can be calculated ac-
cording to〈

s2
〉
G(s−m,D)

=
〈
(m + ψ)2

〉
G(ψ,D)

= m2 +
〈
ψ2

〉
G(ψ,D)

= m2 + D̂,
(15)

where a multivariate Gaussian probability distribution with co-
variance matrix X is denoted by

G(x, X) =
1

|2πX|1/2
exp

(
−

1
2

x†X−1x
)

(16)

and D̂ is the vector that contains the diagonal elements of the
matrix D.

Thus, given m and D̂, the posterior mean for the Faraday
depth is given by 〈φ〉 = pm, its one sigma error bars by ±p

√
D̂,

and the posterior mean for the desired gradient by〈
∇φ2

〉
= ∇

[
p2

(
m2 + D̂

)]
. (17)

3.3. Results

Figure 2 and 3 summarize the results of the Faraday depth re-
construction and the application of the LITMUS test to these
data. All calculations are conducted at a HEALP4 resolution

4 The HEALP package is available from
http://healpix.jpl.nasa.gov.
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Fig. 2. Results of the Faraday depth reconstruction and the application of the LITMUS test to these data. Panel (a) shows the reconstructed signal
field s, panel (b) its one-sigma uncertainty. The resulting Faraday depth map is shown in panel (c) and its uncertainty in panel (d). The values are

given in m−2. Panel (e) shows the logarithm of the squared Faraday depth map, log
((

m/
[
m−2

])2
)
, where m is the map and m−2 its unit, and panel

(f) the result of the LITMUS test, namely Re (GP∗), in arbitrary units. The color bar for the last panel does not cover the full range of values.

Nside = 64. Figure 3 shows the angular power spectrum of the
signal field s which is obtained after the iteration of Eqs. (9) and
(10) has converged. In the first panel of Fig. 2, the reconstructed
signal field is shown. Evidently, the reconstruction method is
able to extrapolate from the available information into regions
where no data are taken, i.e. the earth’s shadow in the lower right
of the projection. However, only structures on scales compara-
ble to the extent of the region without information are recon-
structed within it and the reconstruction’s uncertainty, shown in
panel (b), naturally becomes large in this region. The middle row
of Fig. 2 shows the reconstructed Faraday depth and its uncer-
tainty. Clearly, the field 〈φ〉 takes on only small values within the
information-less region, whereas, again, its uncertainty is espe-
cially large there. These two effects add up to yield a field

〈
φ2

〉
,

shown in panel (e), that is neither especially small nor especially

large in this region. This is an important fact for the LITMUS
test, since the gradient of φ2 would otherwise be dramatically
contorted near the edge of that region.

Finally, the real part of the product GP∗ is shown in the last
panel of Fig. 2. Obviously, there is an excess of pixels with a
positive value, represented by bright colors, over pixels with a
negative value, represented by dark colors, in this image. Indeed,
taking the spatial average Re 〈GP∗〉S2 yields a positive value. In
order to assess the significance of this value, the two fields G
and P are rotated with respect to one another about an angle
β around the galactic axis and their product is again averaged
over the whole sky. For a helical magnetic field, this procedure
should result in a curve Re 〈GP∗〉S2 (β) that exhibits a maximum
at β = 0, since the correlations between the fields G and P are
expected to be local. The resulting curve for this test is shown in
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Fig. 4. Rotational curve for Re 〈GP∗〉S2 in arbitrary units.
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Fig. 5. Same as Fig. 4, only with the factor p2 dropped in the calculation
of φ2.

Fig. 4. Not only does it not take on its maximum at β = 0, but it
is also clearly positive for any relative rotation between the two
fields. Therefore, the positive spatial average can not be counted
as a detection of helicity.

A striking feature of Fig. 2.f is the fact that large positive val-
ues are encountered mainly within the galactic plane. This can
be explained by the vertical galactic profile. Since the absolute
value of the Faraday depth tends to be larger the closer the direc-
tion is to the galactic plane, there is an overall gradient perpen-
dicular to this plane in

〈
φ2

〉
. It now happens, due to the magnetic

field structure, that the polarization direction of the synchrotron
radiation emitted within the galactic plane is also perpendicular
to this plane and hence their complex product produces a pos-
itive real part, more or less independent of any rotation around
the galactic axis.

This explanation can be checked by disregarding the vertical
profile, i.e. by dropping the multiplication with p2 in Eq. (17). In
the resulting map of Re

(
Gnoprof.P∗

)
, the positive values around

the galactic plane vanish at least partly and the spatial average
in fact becomes negative. The rotational curve for this case is
shown in Fig. 5. It fluctuates around zero, giving credibility to
the assertion that the positive offset in Fig. 4 is due to the galactic
profile.

4. Application to Simulated Data

In order to check whether the non-detection of helicity in the
previous section allows the conclusion that the galactic magnetic
field is in fact non-helical, we now apply the same helicity test
to a number of artificially generated magnetic fields with known
helicity.

4.1. Planar Implementation

The most simple setting that can be considered is the observation
of a well localized magnetic field structure. In the limit of great
distances between the magnetic field under consideration and the
observer, the lines of sight penetrating the field become parallel.
We assume the field to be contained in a cubic box which is
oriented along the lines of sight.

The field in the box is generated by the  code (first
applied in Kitaura & Enßlin 2008). This code draws the three
cartesian components of the magnetic field in Fourier space in-
dependently from a common power spectrum, assumed here to
be a Kolmogorov-type spectrum of the form PB(k) ∝ k−5/3−2,
according to Gaussian statistics. In order to produce a magnetic
field without divergence, its frequency components parallel to
the respective k-vector are then subtracted

Bdiv-free(k) ∝ B(k) − k
k · B(k)

k2 . (18)

A degree of helicity is then imprinted onto the field by applying
the formula

Bdiv-free,hel(k) ∝ Bdiv-free(k) + η
ik × Bdiv-free(k)

k
, (19)

where η = 0 leaves the field unaffected and η = ±1 produces the
highest degree of helicity.

Finally, we assume the thermal and cosmic ray electron den-
sities to be constant throughout the box. Thus, the observables
Q, U, and φ can be obtained by simply integrating the appro-
priate magnetic field components along the box direction asso-
ciated with the line of sight. Then the complex quantities G and
P are easily calculated and multiplied, yielding two-dimensional
images of GP∗. This procedure is conducted for various realiza-
tions of random magnetic fields both without helicity (η = 0)
and with maximal helicity (η = 1).

4.1.1. Results

The resulting images for one random magnetic field realization
are shown in Fig. 6. The cube was discretized for the calcula-
tion into 5123 pixels. It can already be seen by eye that positive
values of Re (GP∗) dominate in the case with maximal helic-
ity (panel (a)), whereas in the case without helicity (panel (b)),
positive and negative values seem to be roughly equally repre-
sented. Calculating the spatial averages over the whole square
yields Re 〈GP∗〉� = 4.0 · 10−2 and Re 〈GP∗〉� = 3.6 · 10−4 for the
case with and without helicity, respectively.

We calculated this spatial average for the results of the
LITMUS test applied to 100 different random magnetic field re-
alizations, both with and without helicity. Averaging these val-
ues for the helical fields and for the non-helical fields separately
yields a positive value in the helical case. Normalizing all values
such that this average becomes equal to one yields

〈Re 〈GP∗〉�〉samples = 1.0, σRe〈GP∗〉� = 0.49



6 N. Oppermann et al.: Probing Magnetic Helicity

Fig. 6. Maps of Re (GP∗) for a particular magnetic field realization in arbitrary units. Panel (a) shows the case with maximal helicity (η = 1), panel
(b) the one without helicity (η = 0).

in the case with helicity and

〈Re 〈GP∗〉�〉samples = −0.013, σRe〈GP∗〉� = 0.19

in the case without. Clearly, the LITMUS test yields positive
results if applied to helical fields, whereas its results fluctuate
around zero if applied to non-helical fields. This is exactly the
behavior that should be expected and the basic functioning of
the LITMUS test is thereby demonstrated in this setting.

4.2. Spherical Implementation

As a next step, the applicability of the LITMUS test is checked
for magnetic fields surrounding the observer, as in the case of
the galactic field. Again, several sets of mock observations are
produced. These simulations are conducted using the 
code (see Waelkens et al. 2009) in connection with the 
code5. The  code allows for a large scale analytic
field model and an additional Gaussian random field component,
which can be generated by the  code with a preset de-
gree of helicity as described in Sect. 4.1.

The  code integrates the different field compo-
nents, weighted with the appropriate electron density, along ra-
dial lines of sight and produces sky maps of simulated obser-
vations of the Stokes parameters Q and U and Faraday depth φ
(among others), thus providing all necessary ingredients to per-
form the LITMUS procedure.

4.2.1. Constant Electron Densities

For simplicity, we start again by setting the densities of the ther-
mal electrons and the cosmic ray electrons to constant values
throughout the simulated galaxy.

5 Both codes are available from
http://www.mpa-garching.mpg.de/hammurabi/hammurabi11.
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Fig. 7. Rotational curve for Re 〈GP∗〉S2 in arbitrary units. The solid and
dashed lines depict the results for the same magnetic field with helicity
parameter η = 1 and η = 0 respectively. Constant electron densities are
assumed.

Gaussian Random Field. First, in order to apply the test to a
field with a well-defined degree of helicity, the field strength of
the large scale analytic component is set to zero, such that the
simulated galactic field is a purely random one with a chosen
degree of helicity. As in the planar case, we choose either no
helicity (η = 0) or maximal helicity (η = 1).

Figure 7 shows the results of the rotational test described
in Sect. 3.3 for one particular Gaussian random magnetic field
with a power law index of −5/3. Clearly, the spatial average
Re 〈GP∗〉S2 takes on a sharp maximum at β = 0 and is positive
in the case with helicity, while it does not have a maximum there
and in fact happens to be negative in the case without helicity.
This is exactly the result expected from the LITMUS test.
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Fig. 8. Same as Fig. 7, only with large-scale contributions neglected.
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Fig. 9. Same as Fig. 4, only with large-scale contributions neglected.

The sharpness of the peak in Fig. 7 indicates that the helicity
is to be found in small-scale features. As a test of this assertion,
we calculated the spherical multipole components Glm and Plm
of the complex gradient and polarization fields. Note that the
spatial average over the product of the fields is proportional to
the sum of the products of the multipole components, i.e.

Re 〈GP∗〉S2 =
1

4π
Re

 lmax∑
l=0

l∑
m=−l

GlmP∗lm

 , (20)

where lmax is determined by the finite resolution of the map. If
we now neglect the first terms in the sum, i.e. the small-l contri-
butions, we arrive at a spatial average over the product in which
all large-scale features were neglected. The resulting rotational
curves for the same magnetic fields used for Fig. 7 are shown in
Fig. 8, where only multipole moments with l ≥ 25 were consid-
ered. It can be seen that this procedure further sharpens the peak
at β = 0 and strengthens it relative to other local maxima in the
curves, thus facilitating the detection of small-scale helicity. The
same result for the observational data studied in Sect. 3 is shown
in Fig. 9. Clearly, there is still no sign of helicity in this case.

Furthermore, we created a set of 100 different Gaussian ran-
dom magnetic fields, performed the LITMUS test, and calculated
the spatial average Re 〈GP∗〉S2 for all of them. Each field realiza-
tion was considered in a version without helicity and a version
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Fig. 10. Rotational curve for Re 〈GP∗〉S2 in arbitrary units. The solid
line corresponds to the best-fit magnetic field model of Page et al.
(2007), the dashed line to a model where the parameter χ0 is set to
zero. Constant electron densities are assumed.

with maximal helicity, just as in the case of the planar imple-
mentation. Averaging over the 100 samples yields again a pos-
itive value in the helical case. Normalizing all values such that
this average is equal to one yields〈

Re 〈GP∗〉S2
〉

samples = 1.0, σRe〈GP∗〉
S2 = 0.72

in the helical case and〈
Re 〈GP∗〉S2

〉
samples = −0.54, σRe〈GP∗〉

S2 = 0.74

in the non-helical case. This clearly underlines the success of the
LITMUS test in the spherical setting.

Large Scale Field Models. As a next step, the (helical or non-
helical) random magnetic field component is switched off com-
pletely and replaced by an analytic large scale magnetic field
model.

Several sets of simulations are performed using different
models for the galactic large scale field. For these analytic mod-
els, the current helicity can be calculated directly, giving an ex-
pectation as to whether the helicity test should produce positive
results or not.

The results of the rotational helicity test are shown in Fig. 10
for the large scale magnetic field model described in Page et al.
(2007), i.e.

B(r, ϕ, z) = B0 [ cos (ψ(r)) cos (χ(z)) êr

+ sin (ψ(r)) cos (χ(z)) êϕ
+ sin (χ(z)) êz

] (21)

in galactic cylindrical coordinates, where

ψ(r) = ψ0 + ψ1 ln
(

r
8kpc

)
(22)

and

χ(z) = χ0 tanh
(

z
1kpc

)
. (23)

The solid curve corresponds to the parameters favored by Page
et al. (2007), namely χ0 = 25◦, ψ0 = 27◦, and ψ1 = 0.9◦. This
corresponds to a simple flat spiral in the galactic plane which
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Fig. 11. Same as Fig. 7, only with realistic electron densities used in the
calculation.

becomes more and more screw-like with vertical distance z from
the galactic plane, so that a slight degree of helicity is inherent
in the field geometry. This can be verified by direct calculation
according to Eq. (1), yielding

j · B = B2
0

sin (χ(z)) cos (χ(z))
r

(sin (ψ(r)) + ψ1 cos (ψ(r))) , (24)

which is non-zero for any generic point away from the galac-
tic plane. The resulting line in Fig. 10 is not a clear indication
for this helicity. However, the curve is nevertheless sensitive to
the angle χ0, which produces the helicity. Lowering its value,
i.e. making the spirals more and more parallel to the galactic
plane, changes the results of the LITMUS test. The extreme case
of χ0 = 0, i.e. Bz = 0 everywhere, for which the value of Eq.
24 becomes zero everywhere, is depicted by the dashed line in
Fig. 10. This curve’s value at β = 0 is even more distinct from its
maximum than in the case of the solid line. This example shows
that while the results react in a systematic way on changes in the
parameters, the test is not suited to detect helicity on the largest
scales.

We used the model of Page et al. (2007) in the demonstra-
tion of this effect mainly because of its mathematical simplicity.
More sophisticated models can be found e.g. in Jansson et al.
(2009), Sun et al. (2008), Jaffe et al. (2010), and references
therein.

4.2.2. The Role of the Electron Densities

In order to get closer to a realistic model of the Milky Way, as a
next step we replace the constant electron densities with realis-
tic models. The  code allows the use of the NE2001
model for the thermal electron density (cf. Cordes & Lazio 2002,
2003) to compute the Faraday depth and several analytic models
for the cosmic ray electron density to compute the synchrotron
emissivity (see also Waelkens et al. 2009). In the calculations
performed to obtain the results presented here, the cosmic ray
electron distribution model of Page et al. (2007) was used.

Gaussian Random Field. The resulting rotational curves, as
calculated with the realistic electron distributions, for the case
of the Gaussian random field are shown in Fig. 11. Neither in
the case with helicity (η = 1), nor in the case without helicity
(η = 0) does the curve take on its maximum at β = 0. This is
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Fig. 12. Same as Fig. 10, only with realistic electron densities used in
the calculation.

the expected result in the latter case but contradicts the expecta-
tion in the former one. Therefore, the helicity imprinted onto the
small scale magnetic field clearly fails to be detected by the test
applied.

Large Scale Field Models. The result for the large scale mag-
netic fields is shown in Fig. 12. There actually seems to be a
maximum in the vicinity of β = 0 now. This is true, however, for
the case of the planar spiral model (χ0 = 0, dashed line in Fig.
12) as well as for the model with helicity (χ0 = 25◦, solid line in
Fig. 12). Therefore, the proposed helicity test might under cer-
tain circumstances even indicate helicity on large scales where
there is none, if the observer is surrounded by the field. Other
magnetic field models with planar spirals, such as the bisym-
metric (i.e. B(r, ϕ, z) = −B(r, ϕ + π, z)) spiral model of Stanev
(1997) lead to similar results.

5. Discussion and Conclusion

The present work presents the first application of the LITMUS
test for magnetic helicity proposed by Junklewitz & Enßlin (sub-
mitted) to actual data. The application of the test involves thor-
oughly reconstructing a map of the Faraday depth distribution,
calculating the gradient G of its square, creating a map of GP∗,
averaging over this map, shifting the two fields with respect to
each other to see whether any signal vanishes, and filtering out
large-scale contributions for a better detection of small-scale he-
licity. This procedure, applied to observations of the Faraday
depth and polarization properties of the synchrotron radiation
within our own galaxy in Sect. 3, does not show any signs of
helicity in the Milky Way’s magnetic field.

In order to assess the significance of this, the applicability of
the test was probed in different artificial settings. The complexity
of these settings was increased bit by bit to find out under what
circumstances exactly the LITMUS test yields reliable results.

It was found that meaningful results can be achieved if the
electron densities do not vary on the scales of the magnetic field,
both in the regime of magnetic field structures whose distance
from the observer is much greater than their extension, as shown
in Sect. 4.1, and in the regime of magnetic fields surrounding
the observer, as shown in Sect. 4.2.1. We showed that the per-
formance of the LITMUS test with regard to small-scale helic-
ity is further improved by dropping the first few terms in Eq.
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20. However, indications of helicity on large scales are unreli-
able, as shown in Sect. 4.2.1. Furthermore, it was demonstrated
in Sect. 4.2.2 that any non-trivial electron density may distort
the outcome of the test to a point where even small-scale helical
structures fail to be detected. This is not too surprising since e.g.
a variation in the thermal electron density will introduce a gradi-
ent in the Faraday depth that is not caused by the magnetic field
structure.

Therefore the non-detection of helicity for the galactic mag-
netic field does not necessarily mean that the field is non-helical
on small scales. It may be the case that small-scale fluctuations
of the electron density introduce effects in the observational data
that prevent the detection of helicity.

So, as a natural next step, the hunt for helicity in astro-
physical magnetic fields should focus on a region that is small
and/or homogeneus enough for the assumption of constant elec-
tron densities to hold at least approximatively.

Although our work has shown that the helicity test that we
studied is not suitable for all astrophysical settings, we are con-
fident that it may nevertheless yield useful results if applied in
such a setting.

As a side effect of this paper, it was demonstrated in Sect.
3.2 that the method proposed by Enßlin & Frommert (2010) to
reconstruct a Gaussian signal with unknown power spectrum is
very well suited for practical application.
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