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Abstract

Statistical properties of turbulent magnetic fields in radio-synchrotron sources should imprint on the statistics of polarimetric ob-
servables. In search of these imprints, we calculate correlation and cross-correlation functions from a set of observables containing
the total intensity I, the polarized intensity P and the Faraday depth φ. The correlation functions are evaluated for all combinations
of observables up to fourth order in the magnetic field B. We derive these as far as possible analytically and from first principles
only using some basic assumptions such as Gaussian statistics of the underlying magnetic field in the observed region and statistical
homogeneity. We further assume some simplifications to reduce the complexity of the calculations, as for a start we were interested in
a proof of concept. Using this statistical approach, we show that it is in principle possible to gain information about the helical part of
the magnetic power spectrum, namely via the correlation functions 〈P(k⊥)φ(k′⊥)φ(k′′⊥)〉B and 〈I(k⊥)φ(k′⊥)φ(k′′⊥)〉B. Using this insight,
we construct an easy-to-use test for helicity, called LITMUS (Local Inference Test for Magnetic fields which Uncovers heliceS). For
now, all calculations are given in a Faraday-free case, but set up in a way so that Faraday rotational effects could be included later on.
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1. Introduction

Magnetic fields are observed in almost all astronomical objects, they permeate planets and stars as well as galaxies and clusters.
Most, if not all, of the interstellar and intergalactic plasma appears to be magnetized and the magnetic fields contribute significantly
to physical processes. Examples include the formation of stars (Price et al. 2009), the anisotropy of transport processes (thermal
conduction or plasma resistivity, see e.g. Narayan & Medvedev (2001)), the angular momentum transport in accretion discs or the
propagation of cosmic ray populations (Strong et al. 2007).

Although magnetic fields are ubiquitous in the cosmos, we often cannot treat them properly in astrophysical situations due to
the lack of knowledge of their properties. Cosmic magnetic fields are difficult to observe and their distribution, evolution and origins
are far from being perfectly understood. We have three main sources of information: the Zeeman effect, synchrotron radiation and
Faraday rotation. The Zeeman effect is extremely difficult to detect, because other line shifting effects, such as thermal Doppler-
broadening, are usually stronger. We obtain a great deal of information from synchrotron radiation but only regarding the magnetic
field component perpendicular to the line of sight. In order to get a picture of the 3D magnetic field, one needs another source of
information. This leads us to Faraday rotation, the change of the polarisation-plane of long wavelength radiation due to a magnetic
field along the line of sight. Faraday rotation provides a powerful tool, but is also difficult to observe, to evaluate, and to interpret
due to the involved line of sight projection. This projection is one of the main obstacles to understand the 3D properties of magnetic
fields.

One important property of cosmic magnetic fields that we do not know much about is magnetic helicity. It is defined as the
integral

H =
∫

V
A · B dx3 (1)

over a Volume V with surface ∂V on which n · B = 0; where A refers to the vector potential from electrodynamics with B = ∇ ×A.
Helicity is a measure for the “spiral quality” of a magnetic field. It quantifies how much the magnetic field lines are sheared and
twisted and counts the number of spirals the field lines exhibit within a given volume. Particularly turbulent magnetic fields should
show considerable helicity. The relevance of helicity has increased since its inclusion as an essential element in the magnetic dynamo
theory, which tries to explain the sustainement of magnetic fields on large scales over cosmic timescales (see Subramanian 2002;
Brandenburg & Subramanian 2005a,b). The possible operation of a large scale dynamo for instance is directly connected to the
generation of helicity in turbulent environments (see Shukurov et al. 2006; Brandenburg 2009; Sokoloff 2007), a process which,
until now, could not be verified through observation.

This study is particularly concerned with the question of how to extract knowledge regarding turbulent magnetic helicity spectra
from the statistical information found in radio-observational data involving polarisation and Faraday rotation measurements. It was
highly motivated by the studies of Volegova & Stepanov (2010).
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Information on magnetic fields can be imprinted onto radio data by two of the processes already mentioned above: Synchrotron
emission and Faraday rotation. Yet information is not only contained in their mean values but also in higher order correlation and
cross-correlation functions.

We therefore investigate a set of suitable radio observables for their cross-correlations, to see how these are connected to the
statistical properties of the magnetic fields to be examined. This idea goes back to previous works by Spangler (1982, 1983);
Eilek (1989a,b); Enßlin & Vogt (2003); Kahniashvili & Vachaspati (2006); Waelkens et al. (2009). The set of radio observables
we investigate contains the total intensity I(x), the polarised intensity P(x) and the Faraday depth φ(x). We work out all correlation
functions between them in a general framework. We restrict ourselves to fourth order in the magnetic field strength and as far as
possible we do all calculations analytically. The aim is to find a direct relation to statistical properties of the magnetic fields, such
as their power spectra.

The intensity I(x) and the polarised intensity P(x) are connected to the synchrotron emission within a magnetized volume. We
assume them to be taken at sufficiently high frequencies and, therefore, free of Faraday rotation. The Faraday depth φ(x) is measured
via the Faraday rotation of a polarized background source seen through the same volume. The observational situation is visualized
in Fig. (1).

With regard to these observable quantities, we can successfully establish all correlation functions in the form of analytical
relations to the magnetic field power and helicity spectra implementing Gaussian field statistics for simplicity. The result here is to
prove that it is possible, in principle, to gain information not only in respect of the total but also regarding the helical part of the
magnetic power spectrum, namely via 〈P(k⊥)φ(k′⊥)φ(k′′⊥)〉B and 〈I(k⊥)φ(k′⊥)φ(k′′⊥)〉B.

Based on these results we further present the LITMUS test (Local Inference Test for Magnetic fields which Uncovers heliceS),
a first simple procedure to probe data for helicity. An analysis of real and simulated data using this test along with a thourogh
investigation of its applicability can be found in Oppermann et al. (2010). The study is organised as follows: Section 2 presents
our method and the general formalism we developed to evaluate the correlation functions analytically. Section 3 details a complete
example calculation for one of the correlation functions, namely 〈P(k⊥)·P(k′⊥)〉B. Section 4 then presents all the correlation functions
up to fourth order in magnetic field strength. Section 5 introduces the LITMUS test. Section 6 presents finally a thorough evaluation
of our findings. Details of the derivation of the other correlation functions are listed in the Appendix which also contains the
remaining technical information regarding the study.

background source Faraday rotating and synchrotron emitting medium

using only short wavelenghts radiation from the medium,
-> intrinsic Faraday rotation can be ignored 

Faraday rotated background emission

Figure 1. Schematic of an observational situation fo which our set of correlation functions is suitable (modified picture taken from Waelkens et al.
(2009)).

2. Methods

We now proceed to calculate the correlation functions of I(x⊥), P(x⊥) and φ(x⊥). Since all calculations resemble each other in
respect of certain basic features, a general framework has been developed for them. Before presenting that, we introduce our basic
notations and the magnetic correlation tensor, a quantity that will be referred to frequently but requires some preliminary explanation
due to its complexity.
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2.1. Notation

During this study we use the following definitions for the radio observables I(x⊥), P(x⊥) and φ(x⊥):

I =
∫

dz
(
B2

1 + B2
2
)
, (2)

P =
∫

dz
(
B2

1 − B2
2 + 2iB1B2

)
, and (3)

φ =

∫
dz B3. (4)

Thoughout this study, the coordinate axis z always equals the line of sight. For convenience, all fore factors are suppressed including
the electron density ne, assumed to be constant. A detailed derivation can be found in Appendix B.

Apart from this, we like to introduce some further notation we use frequently. In the following, the vectors r or r′ shall always
denote a combination such as x′ − x to be defined exactly when needed. Furthermore, w = (k′′′⊥ , 0),u = (k′′⊥, 0), v = (k′⊥, 0) and
a = (−q⊥ − k′⊥,−qz) holds.

2.2. The magnetic correlation tensor

We assume generally Gaussian statistics for the magnetic field distribution in the observed region. This is, of course, a simplification
but represents an initial starting point, especially as we are mainly interested in a proof of concept and therefore seek for simplicity.
In addition, we assume statistical homogeneity to first establish the most illuminating cases. This assumption is widely used in the
literature. For an arbitrary field ψ, statistical homogeneity means that the two point correlation function of the field depends only on
the distance of the two parts, 〈ψ(x′)ψ(x)〉 = C(r) with r = x′ − x. This automatically implies for this correlation function in Fourier
space:

〈ψ(k′)ψ(k)〉 = (2π)3δ(3)(k′ − k)Pψ(k′)

where the ψ-power spectrum is specified by the Fourier transformed correlation function Pψ(k′) ∝
∫

dr3Cψ(r) exp [ik′r] as stated by
the WKT-Theorem.

Within this study, the magnetic correlation tensor Mi j(x, x′) = 〈Bi(x)B j(x′)〉 is frequently used for which this translational
invariance leads to

Mi j(x, x′) = Mi j(x′ − x = r) in normal space, and (5)

M̂i j(k,k′) = (2π)3δ(k′ − k)M̂i j(k′) in Fourier space. (6)

For homogeneous and isotropic magnetic turbulence the translationally invariant magnetic correlation tensor can be written as

Mi j(r) = MN(r)δi j +
(
ML(r) − MN(r)

) rir j

r2 + MH(r)εi jmrm (7)

with the longitudinal, normal and helical spectra denoted by ML(r), MN(r) and MH(r) respectively. The solenoidal condition∇·B = 0
enables the connection of the two non-helical spectra by MN(r) = 1

2r
d
dr

(
r2ML(r)

)
. By applying a Fourier transformation, we obtain:

M̂i j(k) = M̂N(k)(δi j −
kik j

k2 ) − iεi jmĤ(k)
km

k
. (8)

In this case, the condition ∇ · B = 0 was used directly in the form kiM̂i j(k) = 0 to reduce the degrees of freedom to the normal and
the helical spectra. These two functions are specified in terms of their real space counterparts as

M̂N(k) =
∫

dr3MN(r) exp[ikr], and (9)

Ĥ(k) =
d
dk

M̂H(k) =
d
dk

∫
dr3MH(r) exp[ikr]. (10)

Some interesting properties are:

MN(0) = ML(0) by definition, (11)
Mi j(0) = MN(0) δi j, and (12)

M̂N(0) = 0, since MN would diverge otherwise. (13)
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The magnetic correlation tensor is closely related to the energy spectrum of the magnetic field. The field’s mean energy density can
be expressed as follows

1
8π
〈B2(x)〉 =

1
8π

∫
dk3

(2π)3

〈∑
i

Bi(k)Bi(k)
〉
=

1
8π

∫
dk3

(2π)3

∑
i

M̂ii(k) =

=
1

(2π)3

∫ ∞

0
dk k2M̂N(k) !

=

∫ ∞

0
dk εB(k). (14)

In this case, we have used Mii(k) = 2MN and εB(k) denotes the 1D-energy density of B. From this we derive

εB(k) =
k2MN(k)

8π3 , (15)

which is used in the following to replace MN(k) by the more commonly applied magnetic energy spectrum.
Analogeously to (14), the current helicity j · B can be expressed in terms of a helicity spectrum via

〈j · B〉 = 〈B · (∇ × B)〉 = 〈Bl(r)εli j∂ri B j(x + r)〉|r=0 = ∂riεli jMl j(r)|r=0

= iεli j

∫
dk3

(2π)3 kiM̂l j(k) =
∫

dk3

(2π)3 εli jεl jmĤ(k)
kikm

k

= −

∫
dk3

(2π)3 εl jiεl jm︸ ︷︷ ︸
2δim

Ĥ(k)
kikm

k
= −

8π
(2π)3

∫ ∞

0
dk k3Ĥ(k)

!
=

∫ ∞

0
dk εH(k). (16)

For isotropic, turbulent fields, the current helicity and the magnetic helicity B ·A are closely connected. From now on we will mostly
deal with current helicity and assume both notions to be convertible. We can read off the 1D-helical energy density εH(k)

εH(k) = −
k3Ĥ(k)
π2 . (17)

The helical energy density can also be used to substitute H(k). A more detailed analysis of these relations can be found in Moffatt
(1978).

For the magnetic energy density in 1D Fourier space, a broken power-law is assumed in the following in our examples by
adopting

εB(k) = ε0

( k
k0

)β(
1 +

( k
k0

)2)− (α+β)
2
, (18)

usually with β = 2 and k0 = 1 if not stated otherwise, but with different spectral indices α. The low-k asymptotic εB ≈ k2

corresponds to a white noise spectrum without correlations on scales larger than 1/k0. For large k, we find εB ∝ k−α, eventually
becoming a Kolmogorov-spectrum for α = 5/3.

When ever necessary, we can always model the helicity power spectrum as Ĥ(k) = − π
2

k3 εH(k) = π2

k3 h(k)εB(k), where h(k) is a
function between −1 and 1. This can be seen from

M̂i j(k) =
εB(k)

k2

[
8π(δi j −

kik j

k2 ) − iπ2εi jmh(k)
km

k

]
︸                                    ︷︷                                    ︸

Ai j

. (19)

The matrix Ai j must be positive definite. We adopt k = kex without loss of generality and find the characteristic polynomial of Ai j
to be

(1 − λ)2 − h2 = 0
−→ 1 ± h = λ ≥ 0
−→ |h| ≤ 1 (20)

Which yields that h ∈ [−1, 1].
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2.3. General framework for all calculations

The correlation functions of our observables are calculated in a general and consistent way. The main steps of all calculations can
be summarized and their presentation can be shortened which enables the differences between the correlation functions to be better
highlighted.

Before we start, some general remarks about the mathematics are in place. Throughout this study an expression such as J†B
relates to a multidimensional scalar product:

J†B =
∑

i

∫
dx3 Ji(x)Bi(x). (21)

This definition includes a discrete summation over indices as well as a continuos integral over position space. The symmetric
properties of matrix objects defined over a space with a scalar product (21) reflect the appearance of discrete summation and
continous integration. Therefore, a matrix element Mi j(x, y) is called symmetric (or hermitian for complex quantities), if it is
symmetric under a transposition of its indices and under an interchange of its vectors r:

M†i j(x, y) = M ji(y, x). (22)

Thus, a symmetrised element is expressed as

Mi j,sym(r) =
1
2

(
Mi j(r) + M ji(−r)

)
, (23)

where r = y − x. In the case where a matrix element is only symmetrised for index transposition, we call it index-symmetric:

Mi j,isym(x, y) =
1
2

(
Mi j(r) + M ji(r)

)
. (24)

This distinction between symmetric and index-symmetric is important, because it takes care of subtleties that could easily generate
confusion. We like to emphasize the difference between both symmetry operations, when applied to the magnetic correlation tensor
(8). The tensor contains an intrinsic symmetric and an intrinsic antisymmetric element. Regarding (23), the intrinsic antisymmetric
part is preserved, whereas regarding (24) it is not. This is of paramount relevance, since information on the helical power spectrum
is only preserved, if the intrinsic antisymmetric parts do not cancel out during calculations.

Furthermore, we like to introduce the functional derivative, which is the natural generalisation of a derivative to function vector
spaces. Its precise definition is (see Peskin & Schroeder 1995):

δ

δJi(x)
J j(y) = δ(3)(x − y)δi j

δ

δJi(x)
1
2

J†MJ =
δ

δJi(x)

∫
dy3

∫
dy′3

1
2

Jk(y)Mkl(y, y′)Jl(y′)

=

∫
dy′3

[1
2

Jl(y′)Mli(x, y′) +
1
2

Mil(x, y′)Jl(y′)
]

=
1
2

(J†M)i(x) +
1
2

(MJ)i(x)

For convenience and to avoid confusion with the delta function, we sometimes adopt easier notations:

δ

δJi(x)
= ∂Ji (x) = ∂i(x) (25)

Now we proceed, presenting the framework of the calculations. The general evaluation of the expectation value of a function X
of observables for Gaussian magnetic field statistics with correlation function M is conducted as follows1:

〈X(k⊥,k′⊥, ...)〉B =
1

√
|2πM|

∫
DB X(k⊥,k′⊥, ...) exp[−

1
2

B†M−1B]

=
1

√
|2πM|

∫
DB

∫
dx⊥ ...

∫
dx′′′⊥

∫
dz ...

∫
dz′′′ F(Bi(x), B j(x′), ...)

exp[−
1
2

B†M−1B] exp[i(k⊥x⊥ + k′⊥x′⊥ + ...)]

=
1

√
|2πM|

∫
DB

∫
dx⊥ ...

∫
dx′′′⊥

∫
dz ...

∫
dz′′′ F

(
∂Ji (x), ∂J j (x

′...)
)
|J=0

1 We denote with X either I, P or φ or combinations thereof up to fourth order in the magnetic field in Fourier space. Therefore X contains up
to 4 Fourier vectors within the observed plane labeled with primes. We denote with F the real space source function of X which depends directly
on the local components of the magnetic field Bi so that X =

∫
dz . . .

∫
dz′′′F(B,B′,B′′,B′′′).
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exp[−
1
2

B†M−1B + J†B] exp[i(k⊥x⊥ + k′⊥x′⊥ + ...)] (26)

=

∫
dx⊥ ...

∫
dx′′′⊥

∫
dz ...

∫
dz′′′ exp[i(k⊥x⊥ + k′⊥x′⊥ + ...)]

F
(
∂Ji (x), ∂J j (x

′...)
)
|J=0 exp[

1
2

J†MJ]

=

∫
dx ...

∫
dx′′′ exp[i(k⊥x⊥ + k′⊥x′⊥ + ...)]

F
(
∂Ji (x), ∂J j (x

′...)
)
|J=0 exp[

1
2

J†MJ] (27)

At this point, it is necessary to consider the actual form of F. The calculations vary enormously as complexity of the correlation
functions differs. From now on we identify the covariance matrix of the Gaussian distribution with the magnetic correlation tensor.
This identity is proven in Appendix C. In (26) we introduced a generating functional J and completed the square of the exponential.
By integrating out the shifted Gaussian part, which depends on B, we are left with the part solely dependent on J:

1
√
|2πM|

∫
DB exp[−

1
2

B†M−1B + J†B]

=
1

√
|2πM|

∫
DB exp[−

1
2

B†M−1B +
1
2

J†B +
1
2

B†J]

=
1

√
|2πM|

∫
DB exp[−

1
2

B†M−1B +
1
2

J†MM−1B +
1
2

B†M−1MJ]

=
1

√
|2πM|

∫
DB exp[−

1
2

(B −MJ)†M−1(B −MJ)] exp[
1
2

J†MJ]

= exp[
1
2

J†MJ] (28)

In (27), we finally made the assumption that the observed space is sufficiently extended, so that we can neglect the finiteness of the
integrals over the lines of sight

∫
dz and treat them as if they were infinite.

Introducing the generating functional J and thereby changing the fields B(x) to the functional derivative ∂Ji (x) = ∂
∂Ji

(x) in (26)
provides a powerful method to calculate the integral DB over all possible magnetic field configurations as an infinite-dimensional
path integral. With the definition of the functional derivative at hand (25), we can discuss its actual evaluation. Since all uneven
products of functional derivatives in (27) give zero because they also leave expressions with J which have been “taken down” from
the exponential function during the differentiation, we are left with just two general types of possible combinations: Two or four
derivatives.

In addition to the generating functional technique familiar from quantum field theory, we also apply the renowned Wick theorem
(see for example Peskin & Schroeder 1995) to evaluate the remaining derivatives in an elegant, quick and safe manner, rather than
calculating them by brute force. The Wick theorem can be used under conditions which will become clear if one looks at how the
underlying differentiation works. Firstly, we need the covariance matrix to be symmetric or hermitian. This, as already mentioned,
means

Mi j(x, y) = M†i j(x, y) = M ji(y, x) (29)

which is fulfilled by (7) and (8). However, since there will be one case where the covariance matrix is not symmetric or hermitian
(see Chapter 3) and since we have to take thorough care of the exact order of the vectors, discussed in more detail below, the Wick
theorem is expressed in a form that takes care of these subtleties:

∂i(a)∂ j(b) exp
[
1
2

J†MJ
]∣∣∣∣∣∣

J=0

= ∂i(a)
[
1
2

(J†M) j(b) +
1
2

(MJ) j(b)
]

exp
[
1
2

J†MJ
]∣∣∣∣∣∣

J=0

=
1
2

Mi j(a,b) +
1
2

M ji(b, a) (30)

and

∂i(a)∂ j(b)∂k(c)∂l(d) exp
[
1
2

J†MJ
]∣∣∣∣∣∣

J=0

= ∂i(a)∂ j(b)∂k(c)
[
1
2

(J†M)l(d) +
1
2

(MJ)l(d)
]

exp
[
1
2

J†MJ
]∣∣∣∣∣∣

J=0

6
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= ∂i(a)∂ j(b)
[(1

2
Mkl(c,d) +

1
2

Mlk(d, c)
)

+
(1
2

(MJ)l(d) +
1
2

(J†M)l(d)
)(1

2
(J†M)k(c) +

1
2

(MJ)k(c)
)]

exp
[
1
2

J†MJ
]∣∣∣∣∣∣

J=0

= ∂i(a)
[(1

2
Mkl(c,d) +

1
2

Mlk(d, c)
)(1

2
(J†M) j(b) +

1
2

(MJ) j(b)
)

+
(1
2

Ml j(d,b) +
1
2

M jl(b,d)
)(1

2
(J†M) j(b) +

1
2

(MJ) j(b)
)

+
(1
2

(J†M)l(d) +
1
2

(MJ)l(d)
)(1

2
Mk j(c,b) +

1
2

M jk(b, c
)
+ . . .

]
exp

[
1
2

J†MJ
]∣∣∣∣∣∣

J=0

=
(1
2

Mkl(c,d) +
1
2

Mlk(d, c)
)(1

2
Mi j(a,b) +

1
2

M ji(b, a)
)

+
(1
2

Ml j(d,b) +
1
2

M jl(b,d)
)(1

2
Mki(c, a) +

1
2

Mik(a, c)
)

+
(1
2

Mil(a,d) +
1
2

Mli(d, a)
)(1

2
Mk j(c,b) +

1
2

M jk(b, c)
)
. (31)

Now all derivatives up to fourth order can be calculated just by simply inserting the current case. For example
∂2

1(x)∂2
1(x′)|J=0 exp

[
1
2 J†MJ

]
can be read off from (31) by inserting i = j = k = l = 1, a = b = x and c = d = x′ :

∂2
1(x)∂2

1(x′) exp
[
1
2

J†MJ
]∣∣∣∣∣∣

J=0
= M2

11(0) + 2M2
11(r) (32)

As we can see from (31), all antisymmetric parts cancel out during the differentiation. Thus although M was not explicitly restricted
to be symmetric, only the symmetric elements of the magnetic correlation tensor

Mi j,sym(r) =
1
2

(
Mi j(r) + M ji(−r)

)
(33)

remain in the end. However, it is important to understand that these symmetric elements actually preserve the intrinsic antisymmetric
parts that constitute the magnetic correlation tensor. As mentioned above, this is because we take into account the inversion of the
vector r when transposing the tensor elements. A look at (7) reveals, that the minus sign of the Levi-Civita-tensor εi jm we encounter
under interchanged indices is exactly cancelled by the minus sign occuring due to inversion of the vector r:

Mi j(r) = MN(r)δi j +
(
ML(r) − MN(r)

) rir j

r2 + MH(r)εi jmrm. (34)

This means that although the tensor (34) is symmetric in the general way defined in (23), it is not index-symmetric due to its
individual antisymmetric constituents. The consequence is that if we carry out the derivatives using the Wick theorem we not
only have to take care of the right combination of indices but also of the corresponding vectors r or −r and, in the end only the
symmetric parts of M, as defined in (23), appear. And further, this does mean that if we encounter index-symmetric expressions
such as Mi j(r) = 1/2

(
Mi j(r) + M ji(r)

)
, the intrinsic antisymmetric part related to the helical power spectrum in (34) is lost during

the differentiation. A careful look at (31) reveals that with the right combination for i, j, k, l and a,b, c,d and a sum of terms as in
(31), it is possible to get such combinations. For example

∂2
1(x)∂2

2(x′) + ∂2
2(x)∂2

1(x′) exp
[
1
2

J†MJ
]
|J=0 = 2M11(0)M22(0)

+ 2
(
M2

21(x-x’) + M2
12(x-x’)

)
= 2M11(0)M22(0) + 4M2

21,isym(x-x’) (35)

3. The polarisation 2-point function 〈P(k⊥) · P(k′⊥)〉B

In this section the polarisation 2-point function 〈P(k⊥) · P(k′⊥)〉B is calculated to serve us as an example for the general calculation
to obtain the other correlation functions of our observables. Since the steps are similar for all correlation functions and differ only
in complexity, we intend to present them in detail only for a single case here and just list the other calculations in the Appendix A.

As 〈P(k⊥) · P(k′⊥)〉B is of fourth order in the magnetic field and, in addition, P has a rather complex dependence on B, it is
convenient to introduce a compact notation for P(x⊥) =

∫ L
0 dz(B1(x) + iB2(x))2 in order to clarify the calculation as far as possible.

Defining B± = 1
√

2
(B1 ± iB2) allows the expression P(x⊥) =

∫ L
0 dz 2B2

+(x) and P(x⊥) =
∫ L

0 dz 2B2
−(x). Thus, a change of basis of

B is introduced, mapping B = (B1, B2, B3) −→ B̂ = (B+, B−, B3). We can then work effectively with 2B2
+(x) · 2B2

−(x′) instead of
(B1(x) + iB2(x))2 · (B1(x′) − iB2(x′))2. With regard to the correlation function, this results in:

〈P(k⊥) · P(k′⊥)〉B = 4
∫

dx⊥
∫

dx′⊥
∫

dz
∫

dz′ exp[i(k⊥x⊥ − k′⊥x′⊥)]

7
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∂2
J+ (x)∂2

J− (x
′) exp

[
1
2

J†MJ
]∣∣∣∣∣∣

J=0
(36)

Regarding the differentiation with respect to J± we need to establish a relation between J1/2 and J±. The basis transformation should
preserve all scalar products, therefore, we have J†+B+ + J†−B− + J†3 B3 = J†1 B1 + J†2 B2 + J†3 B3. Using this we establish the required
relations:

J++B+ + J†−B− = J†1 B1 + J†2 B2 (37)

−→ J†1 =
1
√

2
(J†+ + J†−) and J†2 =

i
√

2
(J†+ − J†−)

from which we obtain J± =
1
√

2
(J1 ± iJ2) (38)

and also J1 =
1
√

2
(J− + J+) as well as J2 =

i
√

2
(J− − J+). (39)

Thus, the transformation matrices J = OĴ and Ĵ = O†J are:

O =


1
√

2
1
√

2
0

− i
√

2
i
√

2
0

0 0 1

 , and O† =


1
√

2
i
√

2
0

1
√

2
− i
√

2
0

0 0 1


We now need to express the argument J†MJ of the exponential in (36) in terms of the transformed quantities:

J†MJ = Ĵ†O†MOĴ = Ĵ†M̂Ĵ with M̂ = O†MO

Some elements of M̂ that will soon become important are:

M̂++(r) =
1
2

(M11(r) + M22(r) − iM12(r) + iM21(r)) (40)

M̂−−(r) =
1
2

(M11(r) + M22(r) + iM12(r) − iM21(r)) (41)

M̂+−(r) =
1
2

(M11(r) − M22(r) + iM12(r) + iM21(r)) (42)

M̂−+(r) =
1
2

(M11(r) − M22(r) − iM12(r) − iM21(r)) (43)

The entire matrix then reads:

M̂ =


M̂++(r) M̂+−(r) 1

√
2
(M13 + M23)

M̂−+(r) M̂−−(r) 1
√

2
(M13 − M23)

1
√

2
(M31 − iM32) 1

√
2
(M31 + iM32) M33


Returning to the correlation function (36), we can now carry out the functional derivatives. Since Ĵ is a complex quantity, we now
have to concern ourselves with the complex conjugation implied in the † operation which affects Ĵ = (J+, J−, J3) = (J−, J+, J3).
Using (31) we find :

∂J+ (x) ∂J+ (x) ∂J− (x
′) ∂J− (x

′) exp[
1
2

Ĵ†M̂Ĵ] |Ĵ=0 = 2
(
M11(r) + M22(r)

)2 (44)

Inserting this into the overall equation for the correlation function (36) results in:

〈P(k⊥) · P(k′⊥)〉 = 8
∫

dx3
∫

dx3′(M11(r) + M22(r)
)2 exp[i(k⊥x⊥ − k′⊥x′⊥)]

= 8
∫

dx3
∫

dr3 ·
(
M2

11(r) + M2
22(r) + 2M22(r)M11(r)

)
exp[ix⊥(k⊥ − k′⊥)]

exp[−ir⊥k′⊥]

= 8
∫

dx3
∫

dr3
∫

dq3

(2π)3

∫
dq̃3

(2π)3 ·
(
M11(q)M11(q̃) + M22(q)M22(q̃)

+ M22(q)M11(q̃) + M22(q̃)M11(q)
)

exp[ix⊥(k⊥ − k′⊥)] exp[−ir(q + q̃)]
exp[−ir⊥k′⊥]

= 8(2π)2δ2(k⊥ − k′⊥)
∫

dz
∫

dr3
∫

dq3

(2π)3

∫
dq̃3

(2π)3 ·
(
M11(q)M11(q̃)

8
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+ M22(q)M22(q̃) + M22(q)M11(q̃) + M22(q̃)M11(q)
)

exp[−ir⊥(q⊥ + q̃⊥ + k′⊥)]
exp[−irz(qz + q̃z)]

=
8

2π
δ2(k⊥ − k′⊥)Lz

∫
dq3

∫
dq̃3 · δ2(q⊥ + q̃⊥ + k′⊥)δ(qz + q̃z)

(
M11(q)M11(q̃)

+ M22(q)M22(q̃) + M22(q)M11(q̃) + M22(q̃)M11(q)
)

a=(−q⊥−k′⊥,−qz)
=

8
2π
δ2(k⊥ − k′⊥)Lz

∫
dq3 ·

(
M11(q)M11(a) + M22(q)M22(a)

+ M22(q)M11(a) + M22(a)M11(q)
)

=
8

2π
(2π)6δ2(k⊥ − k′⊥)Lz

∫
dq3 ·

εB(q)εB(a)
q2a2 ·

[(
1 −

q2
x

q2

)(
1 −

a2
x

a2

)
+

(
1 −

q2
y

q2

)(
1 −

a2
y

a2

)
+

(
1 −

q2
y

q2

)(
1 −

a2
x

a2

)
+

(
1 −

q2
x

q2

)(
1 −

a2
y

a2

)]
= 8(2π)5δ2(k⊥ − k′⊥)Lz

∫
dq3 ·

εB(q)εB(a)
q2a2

[(
2 −

q2
⊥

q2

)(
2 −

a2
⊥

a2

)]
︸                                              ︷︷                                              ︸

K

(45)

This integral can be further simplified. To do this, we transform it into spherical coordinates and perform the subintegral over ϕ
analytically. The remaining 2-dimensional integral can be done numerically without problems. We choose the axes to be selected
so that the angle θ is between the x-axis and vector q⊥ while the angle ϕ rotates around the x-axis. Without loss of generality, we
choose k⊥ = k⊥ex to ensure that the angle between q⊥ and k⊥ coincides with θ. Thus the transformation is

qx = q cos θ (46)
qy = q sin θ sinϕ (47)
qz = q sin θ cosϕ. (48)

Which implies for the required quantities:

q2
⊥ = q2

x + q2
y = q2 sin2 θ sin2 ϕ + cos2 θ = q2(1 − sin2 θ cos2 ϕ) (49)

a2
⊥ = (q⊥ + k⊥)2 = q2

⊥ + k2
⊥ + 2 q⊥ · k⊥ = q2

⊥ + k2
⊥ + 2qk⊥ cos θ (50)

a2 = (q⊥ + k⊥)2 + q2
z = q2

⊥ + k2
⊥ + q2

z + 2 q⊥ · k⊥
= q2 + k2

⊥ + 2qk⊥ cos θ. (51)

The integral (45) is then transformed as follows:

K =
∫

dq3 ·
εB(q)εB(a)

q2a2 [(2 −
q2
⊥

q2 )(2 −
a2
⊥

a2 )]

=

∫
dq

∫ 1

−1
d cos θ

εB(q)εB(a)
q2a2

∫ 2π

0
dϕ [1 + sin2 θ cos2 ϕ][

2 −
q2(1 − sin2 θ cos2 ϕ) + k2

⊥ + 2qk⊥ cos θ
q2 + k2

⊥ + 2qk⊥ cos θ

]
=

∫
dq

∫ 1

−1
d cos θ

εB(q)εB(a)
q2a2

[
2 + sin2 θ

+
(
1 +

3
4

sin2 θ
)( q2 sin2 θ

q2 + k2
⊥ + 2qk⊥ cos θ

)]
π (52)

We integrate this numerically for values of k⊥ between k = 10−2 and 103. We vary the spectral index α between α = 1
2 and the

Kolmogorov-type spectrum α = 5/3. The results can be seen in Fig. 2 (left). The slope of the declining section is not equal to α but
depends on it. It is referred to as the polarisation spectrum slope α∗. If one plots the energy spectrum slope α against the polarisation
spectrum slope α∗, one can see that there are two different regimes, for roughly α > 1 and α < 1 (see Fig. 2 (right) ).

It is now necessary to understand the approximate behavior of our findings in Fig. 2 (left) as well as the significance of the
different regimes seen in Fig. 2 (right). As long as α is large enough the term ε(q) only contributes to the integral within a sphere
with radius q0 in q-space, because there it is mainly constant: ε(q)

q2 ≈ const. Beyond this sphere it is strongly suppressed by the
q−α-dependence. In this case the slope is determined by the second term ε(|q + k′⊥|) in (52) which also contributes only within a
sphere determined by q around the point k′⊥. Inside this sphere, ε is roughly ε(k′⊥) because q is small in comparison to k′⊥ since
we are looking at the case k′⊥ > q0 (otherwise we get a constant behaviour of the total integral as can be seen in the plots). So
we get approximately I ∝ ε(0)ε(k′⊥) which leads to log[I] ≈ −(α + 2) log[k′⊥] + const. This is confirmed by the approximations

9
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plotted in Fig. 2 (left) and Fig. 2 (right). In Fig. 2 (left) we plotted a rough estimate for the integral, where we have just integrated
I ∝ ε(0)ε(k′⊥) inside the q0-sphere. In order to match the original integral better, it had to be shifted by a factor of 1.6, which is
perfectly reasonable considering that the simple sphere is just an approximation for a more complex structure. In Fig. 2 (right) we
see that −α − 2 is indeed a good approximation for α∗ in the high-α regime. The regime where α < 1 is not really of physical
interest because all energy spectra with α < 1 would lead to the unphysical situation of infinite energies on the smallest scales as
the spectrum complies with k−α. Therefore we are not interested in the exact behaviour of the integral values below α = 1.
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Figure 2. Left: Numerically evaluated integral values of 〈P(k⊥) ·P(k′⊥)〉B in a log-log diagram with an approximation for the α = 5/3 case. Right:
Plot of the energy spectrum slopes α against the polarisation spectrum slopes α∗ in 〈P(k⊥) · P(k′⊥)〉B.
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Figure 3. Helical spectra of 〈I(k⊥)φ(k′⊥)φ(k′′⊥)〉B and 〈P(k⊥)φ(k′⊥)φ(k′′⊥)〉B for α = 1 and α = 5/3, k⊥ = 0 and different values of h(k) and under
further assumptions for which both functions take on the same analytical form.
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4. Other correlation functions

We now provide the results for the other correlation functions of our observables without repeating the details of the calculations.
All functions of first or third order in B are omitted because they are obviously zero due to the uneven number of fields appearing in
them. These are 〈φ(k⊥)〉B, 〈φ(k⊥)φ(k′⊥)φ(k′′⊥)〉B, 〈I(k⊥)φ(k′⊥)〉B and 〈P(k⊥)φ(k′⊥)〉B. As stated before, the calculational steps to gain
these expressions are fairly similar to the case of 〈P(k⊥) · P(k′⊥)〉B. As a matter of fact, most of them are even easier to obtain. More
complex numerical integrations are only needed in the cases of 〈I(k⊥)I(k′⊥)〉B and 〈I(k⊥)P(k′⊥)〉B. In the following, the vectors r or
r′ shall always denote a combination such as x′−x, to be defined for each correlation function in Appendix A. By B(a, b) we denote
the Beta–function. Furthermore u, v and w are defined as w = (k′′′⊥ , 0),u = (k′′⊥, 0), v = (k′⊥, 0) and a = (−q⊥ − k′⊥,−qz).
Here are the results:

〈I(k⊥)〉B = 2(2π)2δ(k⊥)LzMN(0)

= 128π4δ(k⊥)LzB
(β
2
+

1
2
,
α

2
−

1
2

)
(53)

〈P(k⊥)〉B = 0 (54)

〈φ(k⊥)φ(k′⊥)〉B = (2π)2δ2(k⊥ + k′⊥)LzM̂33(k′⊥, 0)

= 32π5δ2(k⊥ + k′⊥)Lzε(v)/v2 (55)

〈I(k⊥)I(k′⊥)〉B = (2π)2δ2(k⊥ + k′⊥)Lz

∫
dq3

(2π)3

(
2
(
M̃11(q)M̃11(a)

+ M̃22(q)M̃22(a)
)
+ 4M̃21,isym(q)M̃21,isym(a)

)
= 8π2δ2(k⊥ + k′⊥)Lz

∫
dq3 ε(q)ε(a)

q2a2

[(
1 −

q2
1

q2

)(
1 −

a2
1

a2

)
+

(
1 −

q2
2

q2

)(
1 −

a2
2

a2

)
+ 2

(q2q1

q2

)(a2a1

a2

)]
(56)

〈P(k⊥)P(k′⊥)〉B =
8

2π
δ2(k⊥ − k′⊥)Lz

∫
dq3(

M11(q)M11(a) + M22(q)M22(a)
+ M22(q)M11(a) + M22(a)M11(q)

)
= 8(2π)5δ2(k⊥ − k′⊥)Lz

∫
dq3 ·

εB(q)εB(a)
q2a2[(

2 −
q2
⊥

q2

)(
2 −

a2
⊥

a2

)]
(57)

〈φ(k⊥)φ(k′⊥)φ(k′′⊥)φ(k′′′⊥ )〉B = (2π)4
[
δ2(k′′⊥ + k′′′⊥ )δ2(k⊥ + k′⊥)M̂N(w)M̂N(v)

+ δ2(k′′′⊥ + k′⊥)δ2(k′′⊥ + k⊥)M̂N(w)M̂N(u)

+ δ2(k′′⊥ + k′⊥)δ2(k′′′⊥ + k⊥)M̂N(w)M̂N(u)
]

(58)

〈I(k⊥)P(k′⊥)〉B = (2π)2δ2(k⊥ + k′⊥)Lz

∫
dq3

(2π)3

[ MN(q)MN(a)
q2a2[

2(q2
2 + q2

3)(a2
2 + a2

3) + 2(q2
1 + q2

3)(a2
1 + a2

3)
]]

(59)

〈I(k⊥)φ(k′⊥)φ(k′′⊥)〉B = L2(2π)4δ2(k′⊥ + k′′⊥)δ2(k⊥)M̂N(u)2MN(0)

− 2Lz(2π)2δ2(k⊥ + k′⊥ + k′′⊥)Ĥ(u)Ĥ(v)/uv(
u1v1 + u2v2

)
(60)

〈P(k⊥)φ(k′⊥)φ(k′′⊥)〉B = 2Lz(2π)2δ2(k⊥ + k′⊥ + k′′⊥)

Ĥ(u)Ĥ(v)/uv
((

u1v1 − u2v2
)
+ i

(
u1v2 + u2v1

))
(61)

Many of the results are, as expected, providing no surprises. The mean total intensity (53) is given, in principle, by the energy density
of the magnetic field whereas the mean polarized intensity (54) should be zero due to the isotropy of the problem. The correlation
function (55) was already evaluated by Enßlin & Vogt (2003) and also by Cho & Ryu (2009), it depends on the kz = 0 plane of M̂zz.
The fourth order quantities (56), (57) and (58) are more complex, but nevertheless, only correlated combinations of the second order
quantities. They can be used to monitor the validity of the assumption of Gaussianity and isotropy. Non-Gaussianity or anisotropy
in magnetic field statistics would lead to a deviation from this form, which by comparison to 〈φ(k⊥)φ(k′⊥)〉B can be detected.
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By far the most interesting results are of course (60) and (61) as they contain a direct dependence on the helical power spectrum
Ĥ(k). Both are plotted in Fig. (3) at the same time, but only for the case where k⊥ = 0. We also restrict us to k = k ey for (61)
without loss of generality. This reduces both correlation functions to 2(2π)2Ĥ2(k). Actually plotted is only Ĥ2(k). To represent the
helical spectrum Ĥ2(k) graphically, we factor out the energy spectrum εB(k) thus leaving us a function h(k), that parameterises the
plots (see Sec. (2.2)).

The exact results (60) and (61) can be understood from the physical point of view. In both correlation functions we have a part
connected to the magnetic field component that lies in the surface perpendicular to the line of sight I(k⊥) and P(k⊥) due to the
polarisation properties of synchrotron emission. There is also a part which depends on the line-of-sight component φ(k⊥)φ(k′⊥) due
to Faraday rotation. If we consider the corresponding delta functions, we see that in cases, where we have δ2(k′⊥+k′′⊥)δ2(k⊥) the two
parts are somewhat uncorrelated as the related term is more or less the product of 〈I(k⊥)〉B and 〈φ(k⊥)φ(k′⊥)〉B. This is reflected in
the absence of any helicity dependence. In contrast, if we examine the parts with δ2(k⊥ +k′⊥ +k′′⊥) there is a type of mixing between
the different observables due to the mutual dependence of the three vectors k⊥,k′⊥,k′′⊥ through the delta function. Accordingly, there
is a dependence on helicity. More about the physical interpretation of these results can be found in the following section.

Please note that information on the overall sign of the helicity cannot be obtained using this method becaus Ĥ(k) only appears
quadratically.

5. The LITMUS test

For the correlation function (61), a strikingly intuitive picture can be found to explain the result. Let us take a look at Fig. (4
(left))where we imagine the line of sight to be directly aligned with the axis of a magnetic helix. In a combined polarisation and
Faraday depth map, we should see a central region with nonzero faraday depth φ and around it a radial polarisation pattern. These
are correlated structures, that make (61) nonzero for helical magnetic fields. They would vanish with the field becoming nonhelical.
However, we clearly have two possibilities for the direction of the magnetic field going around and therefore could get positive
or negative φ respectively. Thus, these correlated structures can only be seen in 〈P(k⊥)φ(k′⊥)φ(k′′⊥)〉B and not in 〈P(k⊥)φ(k′⊥)〉B,
where the single dependence on φ would induce the positive and negative parts to cancel out over averaging. This is confirmed, as
〈P(k⊥)φ(k′⊥)〉B becomes zero due to the odd number of functional derivatives.

Guided by this picture, the LITMUS test (Local Inference Test for Magnetic fields which Uncovers heliceS) was developed, a
small and simple test that could be easily used to probe real data for helicity.

The LITMUS test is not developed to produce quantitative measurements of the helicity spectra, but to provide a fast and
qualitative test for helicity. To shorten the presentation, we therefore stick to a more loose notation throughout this section, thus
refering to φ(k′⊥)φ(k′′⊥) simply as φ2 and to P(k⊥) simply as P.

5.1. The basic idea

We take a closer look at one of the aforementioned patterns of polarisation and Faraday rotation (see Fig. 4 (left)). In the ideal case,
the gradient G = ∇φ2 of φ2 points to the center of the region with Faraday rotation and should therefore be perfectly aligned with
the polarisation (see Fig. 4 (right)). The polarised intensity P is a complex number representing a spin 2 field. To compare P with G,
we just transform G from a two-dimensional vector into a complex number G in the same representation of “directionless vectors”:

G = |G| exp[2iα], with α = arctan
Gy

Gx
. (62)

The LITMUS test consists of simply multiplying G with P∗ for every pixel of a given map of φ2 and P. This complex scalar product
will produce different results depending on the orientation of G and P in the complex plane. If the gradient and the polarisation are

RM>0 RM<0

Helical magnetic field lines
in two different directions

RM^2>0

Gradient 

Figure 4. Left: Schematic picture of correlated structures in combined polarisation and RM maps that can give rise to a non-zero correlation
function 〈P(k⊥)φ(k′⊥)φ(k′′⊥)〉B. Right: Schematic picture of the orientation of the gradient G of φ2.
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parallel (χ and α differ by a multiple of π) the result is real and positive. If they are perpendicular (χ and α differ by an odd multiple
of π/2) the result is real and negative. For any orientations in between, the result will take any complex values possible.

From this we can construct a condition for a given dataset to test whether it contains information on helical magnetic fields or
not. In the presence of helical fields, gradient and polarisation should be mostly aligned at least over certain regions of a GP∗ - map.
This means that the average of the scalar product GP∗ over all pixels should have a real value significantly larger than 0. Whereas in
the case of non-helical fields, the alignment should be changing randomly from pixel to pixel so that we would expect the average
over GP∗ to be zero. In short mathematical notation this is summed up into〈

(GP∗)
〉

helicity
> 0 and real, (63)〈

(GP∗)
〉

no helicity
= 0, (64)

where the average is meant to be taken over all pixels of a GP∗-map.
This means that a given dataset can be easily tested for helicity. If P and φ2 are available, a test using the conditions (63) and (64)

can be implemented without huge computational costs. This provides a simple but nonetheless powerful tool that can be directly
applied to data exactly because of its simplicity and the usage of only local quantities. An application, both on real and simulated
data, and a thorough analysis thereof was conducted in Oppermann et al. (2010).

6. Conclusions

We have shown how statistical properties of turbulent cosmic magnetic fields can imprint on the statistics of certain radio observ-
ables. Our analysis involved the total intensity I(k⊥) and the polarised intensity P(k⊥) coming from radio synchrotron emission out
of a volume and the rotation measure φ(k⊥) of background sources seen through the same volume. The first two depend on B⊥, the
magnetic field component lying in the surface perpendicular to the line of sight. In contrast, φ(k⊥) depends on B‖, the component
parallel to the line of sight. Whenever this set of observables is available, we can examine all three components of the magnetic
field.

With regard to these observables, we evaluated a complete set of cross-correlation functions up to fourth order in the magnetic
field and presented simple analytical equations in Fourier space depending on the field’s energy spectra. We demonstrated that two
correlation functions of our set, namely 〈P(k⊥)φ(k′⊥)φ(k′′⊥)〉B and 〈I(k⊥)φ(k′⊥)φ(k′′⊥)〉B, explicitly depend on the helical spectra of
the turbulent field. The first one depends solely on the helical parts and becomes zero for non-helical fields.

This finding offers a new way for measuring the helicity of magnetic fields and thereby for testing existing mean field dynamo
theories involving helicity. Measuring these correlation functions in real data will permit the study of helicity spectra up to their
overall sign. If (60) or (61) provide a non-zero result with statistical significance for k⊥ , 0 , this is direct evidence for helicity in
the magnetic field.

Furthermore, we presented the LITMUS test, a first simple procedure to apply our ideas on data and probe for helicity. First
results of an application to real data and to subsequent numerical tests using simulated helical and non-helical fields can be found
in Oppermann et al. (2010).

The application to real data requires a suitable observational configuration and, for the general case, further theoretical develop-
ment in order to alleviate the simplifications and assumptions made beforehand.

Subsequent work should therefore follow two directions: To find more observations that match our assumptions best and to
extend our calculations to be able to cope with more complex observational situations. Advancements should include

– more realistic non-Gaussian components of the magnetic field statistics
– the removal of statistical homogeneity as an overall simplification
– spatially varying electron densities instead of assuming them as constant (see Appendix B)
– the possibility for preciser values for the spectral index of the cosmic ray electron density than the choice p = 3 (see Appendix

B)
– calculations without the restrictions imposed by observed space being large leading to the approximation

∫ observer
source dz ≈

∫ ∞
−∞

dz
(see Sec. 2.3)

– the introduction of a window function formalism
– and finally developing an approach for dealing with intrinsic Faraday rotation which modifies the polarisation at long wave-

lengths, a topic which has been neglected here (see Appendix B).

Before becoming more deeply involved in discussions on possible advances in the future, we should first think about which observa-
tions could be applicable to our approach in the present form. Observations required by our analysis have to come from a polarized
radio-synchrotron source with background Faraday-rotation. A suitable target could probably be found in the interstellar medium
(ISM) within our own galaxy, of which we have the most established knowledge in respect of large scale fields. With regard to the
latter point, it would be advantageous to choose a source beginning in a region in which the magnetic helicity flows are expected to
be found in accordance with mean field theory. Furthermore, the polarisation data has to be taken at high frequencies to be Faraday
rotation free. For that, the upcoming Planck polarisation data of our Galaxy will be ideal, since it is at short wavelength, has high
resolution and accuracy and is also full sky. Compilations of RM measurements of background sources seen through our galaxy
already exist (Haverkorn 2007; Brown et al. 2007; Taylor et al. 2009). Attractive extragalactic sources for intensity and polarisation
statistics may be radio-galaxies. However, no Faraday rotation could be detected yet through their lobes. For the radio jets, this
is different and there, helicity can be probed and is yet actually expected to be present (Enßlin 2003; Gabuzda 2005; Mahmud &
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Gabuzda 2008). Galaxy clusters are probably not well suited for our approach, although they host large scale magnetic fields. The
high degree of intrinsic Faraday rotation usually found there erases polarisation of the cluster radio halo emission at the synchrotron
frequencies we observe them.

However, handling intrinsic Faraday-rotation analytically is a considerable challenge. We would need to include an extra expo-
nential factor for the rotation in P(x⊥):

P(x⊥) =
∫

dz · [B1(x) + iB2(x)]2 · exp[2iφ(x⊥)λ2]. (65)

As φ(x⊥) itself contains an integration over dz, the extra exponential factor couples all positions along the line of sight. Thus,
the exponential becomes so complicated that it has to be approximated in a suitable way. This seems to spoil a purely analytical
approach. Nevertheless, the inclusion of intrinsic Faraday rotation is one of the next important challenges as it would enable our
approach to be applied to many sources excluded until now, such as galaxy clusters.

To resume further our basic discussion, there is more to consider. From a technical aspect, the first problem to be tackled is
the inclusion of a realistic window function into the formalism. A window function is set by the observations but also incorporates
variation of the signal due to changing relativistic electron density and magnetic field strength. It scales with the electron density
ne(x) for φ(k⊥), with the cosmic ray electron density ncre(x) for I(k⊥) and P(k⊥) and with the average magnetic field profile. The two
former densities have to be taken from independent observations (e.g. free-free emission), the latter has to be guessed depending on
the source and relying on prior knowledge. It is clear that introducing a window function will make calculation and integration more
complex. In principle, however, there is no basic restriction that could prevent its implementation. Previous attempts have already
proven successful, e.g. Vogt & Enßlin (2005); Kuchar & Enßlin (2009).

The next aspect to be considered is whether to use Gaussian statistics. Real fields are probably non-Gaussian. Any attempt to
model exactly the real situation has to include at least non-Gaussian deviations. This brings additional complexity into our approach
as they could not be handled analytically anymore. In (27), we would not get rid of the path integral and would need to rely
on approximations or pertubative approaches, such as in field theory. At this point, it is absolutely essential to be certain of our
objectives. Initially, our primary goal was, firstly, to find simple analytical relations between the statistics of radio observables and
magnetic fields and, secondly, to prove that with such an approach, it is possible to extract information about the helical part of the
magnetic field. As explained previously, we can, in principle, decide whether data contains signatures of helical magnetic fields or
not. The simplification of Gaussian fields is sufficient to achieve this goal.

The reminder of our assumptions and simplifications only represent minor problems. Deviations from the cosmic ray electrons
spectral index p = 3 could be included in the form of correction terms. To assume that the distance between observer and source is
very large is most of the time a fairly well approximation given the vast distances we encounter on cosmic scales, but it might break
down if we analyse the large scale magnetic field directly in front of us. For the LITMUS test, the work of Oppermann et al. (2010)
shows that it is still applicable in such a situation. However the varying ne seems to be a more severe problem. The assumption of
statistical homogeneity is widely used in the literature and proved appropriate for similar problems in the past.

The outcome of our study will hopefully contribute to new findings on cosmic magnetic fields. It establishes a new, structured
and definite way to measure magnetic helicity and it offers a new option to test cosmic dynamo theories. It presents the LITMUS test,
developed from our ideas, that might be able to easily probe data for helicity although first results tell us that further development
is necessary for an actual helicity-sensitive implementation (see Oppermann et al. 2010). Last but not least, it provides a complete
range of radio observable correlation functions in elegant, simple forms, which are easy to evaluate and, in principle, easy to compare
with real data. In fact, some of the correlation functions may be of interest in themselves, disregarding the topic of helicity.

It is understood that this study represents only a beginning but the potential for developement is promising and worth being
explored further. The final objective is the realisation of a tool that could reveal the 3D statistical properties, including helicity, of
magnetic fields in the Universe, regardless of the physical properties of their host sources. Such a tool could finally help to answer
the question how magnetic fields emerge in the cosmos, emerged in the first place and are mantained against decay.
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Appendix A: All correlation functions

This Appendix contains a full list of all evaluated correlation functions and their derivations. This constitutes the core of our work
but provides no further inside information on the concepts or helps understanding the findings. Therefore, we have collected the
calculations in this Appendix. The details of the calculations are similar to the example of 〈P(k⊥) · P(k′⊥)〉B, dealt with some depth
in Sec. 3 and are only commented on if necessary. All correlation functions are given in Fourier space. The functions with an odd
number of fields are equal to zero due to the analogous odd number of derivatives with respect to the generating functional J. The
calculations involving P(k⊥) are given in a Faraday-free case, but set up in a way so that we could include Faraday rotational effects
for further analysis later on. Refer to chapter 6 for more information on future perspectives. In the following, the vectors r or r′ shall
always denote a combination such as x′ − x, to be defined for each correlation function in Appendix A. In the following u, v and w
are defined as w = (k′′′⊥ , 0),u = (k′′⊥, 0), v = (k′⊥, 0) and a = (−q⊥ − k′⊥,−qz).

A.1. Calculation of 〈φ(k⊥)〉B

〈φ(k⊥)〉B =
∫

dx3 exp[ik⊥x⊥] ∂3(x) exp
[
1
2

J†MJ
]
|J=0 = 0 (A.1)

A.2. Calculation of 〈φ(k⊥)φ(k′⊥)〉B

〈φ(k⊥)φ(k′⊥)〉B =
∫

dx3
∫

dx′3 exp[ik⊥x⊥ + ik′⊥x′⊥] ∂3(x) ∂3(x′)

exp
[
1
2

J†MJ
]
|J=0

=

∫
dx3

∫
dx′3 exp[ik⊥x⊥ + ik′⊥x′⊥] M33(r)

=

∫
dx3

∫
dr3 exp[ix⊥(k⊥ + k′⊥)] exp[ir⊥k′⊥] M33(r)

= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dr3 exp[ir⊥k′⊥] M33(r)

= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dr3

∫
dq3

(2π)3 exp[ir⊥k′⊥] exp[−irq] M̂33(q)

= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dq3δ2(k′⊥ − q⊥) δ(−qz) M̂33(q)

= (2π)2δ2(k⊥ + k′⊥)LzM̂33(k′⊥, 0)

= (2π)2δ2(k⊥ + k′⊥)LzM̂N(v)

= 32π5δ2(k⊥ + k′⊥)Lz
ε(v)
v2 (A.2)
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A.3. Calculation of 〈φ(k⊥)φ(k′⊥)φ(k′′⊥)〉B

〈φ(k⊥)φ(k′⊥)φ(k′′⊥)〉B = a3
0n3

e

∫
dx3

∫
dx

′3
∫

dx
′′3 exp[ik⊥x⊥ + ik′⊥x′⊥ + k′′⊥x′′⊥]

∂3(x)|J=0 ∂3(x′)|J=0 ∂3(x′′) exp
[
1
2

J†MJ
]
|J=0 = 0 (A.3)

A.4. Calculation of 〈φ(k⊥)φ(k′⊥)φ(k′′⊥)φ(k′′′⊥ )〉B

〈φ(k⊥)φ(k′⊥)φ(k′′⊥)φ(k′′′⊥ )〉B = n4
e

∫
dx3

∫
dx′3

∫
dx′′3

∫
dx′′′3

exp[ik⊥x⊥ + ik′⊥x′⊥ + ik′′⊥x′′⊥ + ik′′′⊥ x′′′⊥ ]
[
∂3(x)∂3(x′)∂3(x′′)∂3(x′′′)

]
exp

[
1
2

J†MJ
]
|J=0

= n4
e

∫
dx3

∫
dx′3

∫
dx′′3

∫
dx′′′3 exp[ik⊥x⊥ + ik′⊥x′⊥ + ik′′⊥x′′⊥ + ik′′′⊥ x′′′⊥ ][

M33(x′′′ − x′′)M33(x′ − x)︸                            ︷︷                            ︸
Part1

+M33(x′′′ − x′)M33(x′′ − x)︸                            ︷︷                            ︸
Part2

+ M33(x′′′ − x)M33(x′′ − x′)︸                            ︷︷                            ︸
Part3

]
(A.4)

Part 1 gives with x′′′ − x′′ = r′ and x′ − x = r:

Part 1 = n4
e

∫
dx3

∫
dx′′3

∫
dr3

∫
dr′3 exp[ix′′⊥(k′′⊥ + k′′′⊥ )] exp[ix⊥(k⊥ + k′⊥)]

exp[ir′⊥k′′′⊥ ] exp[ir⊥k′⊥]M33(r′)M33(r)

= n4
e(2π)4δ2(k′′⊥ + k′′′⊥ )δ2(k⊥ + k′⊥)

∫
dr3

∫
dr′3

∫
dq3

(2π)3

∫
dq′3

(2π)3

exp[ir⊥(k′⊥ − q⊥)] exp[−irzqz] exp[ir′⊥(k′′′⊥ − q′⊥)] exp[−ir′zq
′
z]

M̂33(q′)M̂33(q)

= n4
e(2π)4δ2(k′′⊥ + k′′′⊥ )δ2(k⊥ + k′⊥)M̂33(k′′′⊥ , 0)M̂33(k′⊥, 0). (A.5)

Part 2 and Part 3 essentially provide the same if one just adopts the definition of r and r′ as follows
Part 2: x′′′ − x′ = r′ and x′′ − x = r,
Part 3: x′′ − x = r′ and x′′′ − x = r.
The final result is then

〈φ(k⊥)φ(k′⊥)φ(k′′⊥)φ(k′′′⊥ )〉B = n4
e(2π)4

[
δ2(k′′⊥ + k′′′⊥ )δ2(k⊥ + k′⊥)

M̂33(k′′′⊥ , 0)M̂33(k′⊥, 0) + δ2(k′′′⊥ + k′⊥)δ2(k′′⊥ + k⊥)M̂33(k′′′⊥ , 0)M̂33(k′′⊥, 0)

+ δ2(k′′⊥ + k′⊥)δ2(k′′′⊥ + k⊥)M̂33(k′′′⊥ , 0)M̂33(k′′⊥, 0)
]

= n4
e(2π)4

[
δ2(k′′⊥ + k′′′⊥ )δ2(k⊥ + k′⊥)M̂N(w)M̂N(v) + δ2(k′′′⊥ + k′⊥)δ2(k′′⊥ + k⊥)

M̂N(w)M̂N(u) + δ2(k′′⊥ + k′⊥)δ2(k′′′⊥ + k⊥)M̂N(w)M̂N(u)
]

(A.6)

A.5. Calculation of 〈I(k⊥)〉B

〈I(k⊥)〉B =
∫

dx3 exp[ik⊥x⊥]
(
∂2

1(x) + ∂2
2(x)

)
exp

[
1
2

J†MJ
]
|J=0

=

∫
dx3 exp[ik⊥x⊥] (M11(x, x) + M22(x, x))

=

∫
dx3 exp[ik⊥x⊥] (M11(0) + M22(0))

= 2MN(0)
∫

dx3 exp[ik⊥x⊥]
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= 2(2π)2δ(k⊥)LzMN(0)

= 128π4δ(k⊥)LzB
(β
2
+

1
2
,
α

2
−

1
2

)
(A.7)

In the final step, MN(0) was expressed in terms of a Beta-function B(a, b). This function is assigned a specific value for a given set
of spectral indices α and β.

A.6. Calculation of 〈I(k⊥)I(k′⊥)〉B

〈I(k⊥)I(k′⊥)〉B =
∫

dx3
∫

dx′3 exp
[
i(k⊥x⊥ + k′⊥x′⊥)

] (
∂2

1(x) + ∂2
2(x)

)
(
∂2

1(x′) + ∂2
2(x′)

)
exp

[
1
2

J†MJ
]
|J=0

=

∫
dx3

∫
dx′3 exp

[
i(k⊥x⊥ + k′⊥x′⊥)

] (
∂2

1(x)∂2
1(x′) + ∂2

1(x)∂2
2(x′)

+ ∂2
2(x)∂2

1(x′) + ∂2
2(x)∂2

2(x′)
)

exp
[
1
2

J†MJ
]
|J=0

=

∫
dx3

∫
dx′3 exp

[
i(k⊥x⊥ + k′⊥x′⊥)

] ( (
M11(0) + M22(0)

)2︸                   ︷︷                   ︸
Part1

+ 2
(
M2

11(r) + M2
22(r)

)
+ 4M2

21,sym(r)︸                                      ︷︷                                      ︸
Part2

)
(A.8)

Part 12 is not dependent on r and can be applied directly without difficulties:∫
dx3

∫
dx′3 exp

[
i(k⊥x⊥ + k′⊥x′⊥)

] (
M11(0) + M22(0)

)2

= (2π)4δ2(k⊥)δ2(k′⊥)LzL′z
(
M11(0) + M22(0)

)2

= (2π)4δ2(k⊥)δ2(k′⊥)LzL′z4M2
N(0) (A.9)

In contrast, Part 2 needs a little more work using Fourier transformations:∫
dx3

∫
dr3 exp

[
ix⊥(k⊥ + k′⊥)

]
exp

[
ik′⊥r⊥

] (
2
(
M2

11(r) + M2
22(r)

)
+ 4M2

21,sym(r)
)

= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dr3 exp

[
ik′⊥r⊥

] (
2
(
M2

11(r) + M2
22(r)

)
+ 4M2

21,sym(r)
)

= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dr3

∫
dq3

(2π)3

∫
dq′3

(2π)3 exp
[
ik′⊥r⊥

]
exp

[
ir(q + q′)

]
(
2
(
M̃11(q)M̃11(q′) + M̃22(q)M̃22(q)′

)
+ 4M̃21,sym(q)M̃21,sym(q′)

)
= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dr3

∫
dq3

(2π)3

∫
dq′3

(2π)3 exp
[
ir⊥(q⊥ + q′⊥ + k′⊥)

]
exp

[
irz(qz + q′z)

] (
2
(
M̃11(q)M̃11(q′) + M̃22(q)M̃22(q)′

)
+ 4M̃21,sym(q)M̃21,sym(q′)

)
= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dq3

(2π)3

∫
dq′3

(2π)3 (2π)3δ2(q⊥ + q′⊥ + k′⊥)

δ(qz + q′z)
(
2
(
M̃11(q)M̃11(q′) + M̃22(q)M̃22(q)′

)
+ 4M̃21,sym(q)M̃21,sym(q′)

)
= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dq3

(2π)3

(
2
(
M̃11(q)M̃11(a)

+ M̃22(q)M̃22(a)
)
+ 4M̃21,sym(q)M̃21,sym(a)

)
= 8π2δ2(k⊥ + k′⊥)Lz

∫
dq3 ε(q)ε(a)

q2a2

[(
1 −

q2
1

q2

)(
1 −

a2
1

a2

)
+

(
1 −

q2
2

q2

)(
1 −

a2
2

a2

)
2 This is actually the same as the results obtained by computing 〈I(k⊥)〉2B
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+ 2
(q2q1

q2

)(a2a1

a2

)]
(A.10)

This integral has can be solved numerically for specific choices of the spectral indices α and β.

A.7. Calculation of 〈P(k)⊥〉B

〈P(k⊥)〉B =
∫

dx3 exp[ik⊥x⊥]
(
∂2

1(x) − ∂2
2(x) + 2i∂1(x)∂2(x)

)
|J exp

[
1
2

J†MJ
]

=

∫
dx3 exp[ik⊥x⊥]

(
M2

11(0) − M2
22(0) + 2i

(1
2

M12(0) +
1
2

M21(0)
))

= 0 (A.11)

The last step holds because of the relations M11(0) = M22(0) and M21(0) = M12(0) = 0.

A.8. Calculation of 〈I(k⊥)P(k′⊥)〉B

〈I(k⊥)P(k′⊥)〉B =
∫

dx3
∫

dx′3 exp
[
i(k⊥x⊥ + k′⊥x′⊥)

] (
∂2

1(x) + ∂2
2(x)

)
(
∂2

1(x′) − ∂2
2(x′ + 2i∂1(x′)∂2(x′))

)
exp

[
1
2

J†MJ
]
|J=0

=

∫
dx3

∫
dx′3 exp

[
i(k⊥x⊥ + k′⊥x′⊥)

][
M2

11(0) − M2
22(0) + 2M2

11(r) + 2M2
22(r)

+ 2M2
12(r) − 2M2

21(r) + 4iM21(r)
(
M11(r) + M22(r)

)]
= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dr3

∫
dq3

(2π)3

∫
dq̃3

(2π)3 exp
[
ik′⊥r⊥

]
exp

[
ir(q + q̃)

]
[
+ 2M11(q)M11(q̃) + 2M22(q)M22(q̃) + 2M12(q)M12(q̃) − 2M21(q)M21(q̃)

+ 4iM21(q̃)
(
M11(q) + M22(q)

)]
= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dq3

(2π)3

∫
dq′3

(2π)3 (2π)3δ2(q⊥ + q̃⊥ + k′⊥)

δ(qz + q̃z)
[
2M11(q)M11(q̃) + 2M22(q)M22(q̃) + 2M12(q)M12(q̃)

− 2M21(q)M21(q̃) + 4iM21(q̃)
(
M11(q) + M22(q)

)]
= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dq3

(2π)3

[
2M11(q)M11(a)

+ 2M22(q)M22(a) + 2M12(q)M12(a) − 2M21(q)M21(a)

+ 4iM21(a)
(
M11(q) + M22(q)

)]
= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dq3

(2π)3

[ MN(q)MN(a)
q2a2

[
2(q2

2 + q2
3)(a2

2 + a2
3)

+ 2(q2
1 + q2

3)(a2
1 + a2

3) − 4i(q2
1 + q2

2 + 2q2
3)a2a3

]
+ 2

MN(q)H(a)
q2a[

iq1q2a3 − 2(q2
1 + q2

2 + 2q2
3)a3

]
+

MN(a)H(q)
q2a

[
ia1a2q3

]]
= (2π)2δ2(k⊥ + k′⊥)Lz

∫
dq3

(2π)3

[ MN(q)MN(a)
q2a2

[
2(q2

2 + q2
3)(a2

2 + a2
3)

+ 2(q2
1 + q2

3)(a2
1 + a2

3)
]]

(A.12)

The last step was possible using an asymmetric property of the integrals. All terms in which a3 occurs become zero when integrated
from −∞ to∞. We can split up the integral into two parts covering the negative and positive regions and it can be seen that they will
cancel each other. The remaining integral can be solved numerically for specific choices of the spectral indices α and β.
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A.9. Calculation of 〈I(k⊥)φ(k′⊥)〉B

〈I(k⊥)φ(k′⊥)〉B = nea0

∫
dx3

∫
dx′3 exp[ik⊥x⊥ + ik′⊥x′⊥](

∂2
1(x)∂3(x′) + ∂2

2(x)∂3(x′)
)
|J=0 exp

[
1
2

J†MJ
]

= 0 (A.13)

A.10. Calculation of 〈P(k⊥)φ(k′⊥)〉B

〈P(k⊥)φ(k′⊥)〉B = nea0

∫
dx3

∫
dx′3 exp[ik⊥x⊥ + ik′⊥x′⊥](

∂2
1(x)∂3(x′) − ∂2

2(x)∂3(x′) + 2i∂1(x)∂2(x)∂3(x′)
)
|J=0

exp
[
1
2

J†MJ
]

= 0 (A.14)

A.11. Calculation of 〈I(k⊥)φ(k′⊥)φ(k′′⊥)〉B

〈I(k⊥)φ(k′⊥)φ(k′′⊥)〉B =
∫

dx3
∫

dx′3
∫

dx′′3 exp[ik⊥x⊥ + ik′⊥x′⊥ + ik′′⊥x′′⊥](
∂2

1(x)∂3(x′)∂3(x′′) + ∂2
2(x)∂3(x′)∂3(x′′)

)
|J=0 exp

[
1
2

J†MJ
]

=

∫
dx3

∫
dx′3

∫
dx′′3 exp[ik⊥x⊥ + ik′⊥x′⊥ + ik′′⊥x′′⊥]

[
M11(0)M33(x′′ − x′)︸                   ︷︷                   ︸

Part1

+ 2
(
M31(x′′ − x)M31(x′ − x)

)︸                              ︷︷                              ︸
Part2

+M22(0)M33(x′′ − x′)︸                   ︷︷                   ︸
Part3

+ 2
(
M32(x′′ − x)M32(x′ − x)

)︸                              ︷︷                              ︸
Part4

]
(A.15)

Part 1 and 3 can be calculated in the same way, as they only differ in the component of M chosen by the derivatives (i = 1, 2):∫
dx3

∫
dx′3

∫
dx′′3 exp[ik⊥x⊥ + ik′⊥x′⊥ + ik′′⊥x′′⊥]Mii(0)M33(x′′ − x′)

x”=x’+r
= Mii(0)

∫
dx3

∫
dx′3

∫
dr3M33(r) exp[ix′⊥(k′⊥ + k′′⊥)] exp[ir⊥k′′⊥]

exp[ik⊥x⊥]

= Mii(0)L2
z (2π)4δ2(k′⊥ + k′′⊥)δ2(k⊥)

∫
d3rM33(r) exp[ir⊥k′′⊥]

= Mii(0)L2
z (2π)4δ2(k′⊥ + k′′⊥)δ2(k⊥)

∫
d3r

∫
dq3

(2π)3 M33(q)

exp[ir⊥(k′′⊥ − q⊥)] exp[irzqz]

= Mii(0)L2
z (2π)4δ2(k′⊥ + k′′⊥)δ2(k⊥)

∫
dq3M̂33(q)δ2(k′′⊥ − q⊥)δ(−qz)

= Mii(0)L2
z (2π)4δ2(k′⊥ + k′′⊥)δ2(k⊥)M̂33(k′′⊥, 0) (A.16)

Equally, Part 2 and Part 4 can be solved on the same basis (i = 1, 2):

2
∫

dx3
∫

dx′3
∫

dx′′3 exp[ik⊥x⊥ + ik′⊥x′⊥ + ik′′⊥x′′⊥]M3i(x′′ − x)

M3i(x′ − x)

= 2
∫

dx3
∫

dr3
∫

dr′3 exp[ix⊥(k⊥ + k′⊥ + k′′⊥)] exp[ir′⊥k′′⊥] exp[ir⊥k′⊥]

M3i(r′)M3i(r)
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= 2Lz(2π)2δ2(k⊥ + k′⊥ + k′′⊥)
∫

dr3
∫

dr′3
∫

dq3

(2π)3

∫
dq′3

(2π)3 exp[ir′⊥(k′′⊥ − q′⊥)]

exp[−ir′zq
′
z] exp[ir⊥(k′⊥ − q⊥)] exp[−irzqz]M̂3i(q′))M̂3i(q)

= 2Lz(2π)2δ2(k⊥ + k′⊥ + k′′⊥)M̂3i(k′′⊥, 0)M̂3i(k′⊥, 0) (A.17)

This gives as final result:

〈I(k⊥)φ(k′⊥)φ(k′′⊥)〉B = L2(2π)4δ2(k′⊥ + k′′⊥)δ2(k⊥)M̂33(k′′⊥, 0)[
M11(0) + M22(0)

]
+ 2n2

e Lz(2π)2δ2(k⊥ + k′⊥ + k′′⊥)
[
M̂31(k′′⊥, 0)M̂31(k′⊥, 0)

+ M̂32(k′′⊥, 0)M̂32(k′⊥, 0)
]

= L2(2π)4δ2(k′⊥ + k′′⊥)δ2(k⊥)M̂N(u)2MN(0)

− 2n2
e Lz(2π)2δ2(k⊥ + k′⊥ + k′′⊥)

Ĥ(u)Ĥ(v)
uv

(
u1v1 + u2v2

)
(A.18)

A discussion and a plot of this important result can be found in Sec. 4.

A.12. Calculation of 〈P(k⊥)φ(k′⊥)φ(k′′⊥)〉B

〈P(k⊥)φ(k′⊥)φ(k′′⊥)〉B =
∫

dx3
∫

dx′3
∫

dx′′3 exp[ik⊥x⊥ + ik′⊥x′⊥ + ik′′⊥x′′⊥](
∂2

1(x)∂3(x′)∂3(x′′) − ∂2
2(x)∂3(x′)∂3(x′′) + 2i∂1(x)∂2(x)∂3(x′)∂3(x′′)

)
|J=0

exp
[
1
2

J†MJ
]

=

∫
dx3

∫
dx′3

∫
dx′′3 exp[ik⊥x⊥ + ik′⊥x′⊥ + ik′′⊥x′′⊥][

M33(x′′ − x′)
(
M11(0) + M22(0)

)
+ 2M31(x′′ − x)M31(x′ − x)

+ 2M32(x′′ − x)M32(x′ − x) + 2iM32(x′′ − x)M31(x′ − x)

+ 2iM32(x′ − x)M31(x′′ − x)
]

(A.19)

This can be evaluated in exactly the same way as (A.18) because all the terms have the same basic structure. This provides:

〈P(k⊥)φ(k′⊥)φ(k′′⊥)〉B = L2(2π)4δ2(k′⊥ + k′′⊥)δ2(k⊥)M̂33(k′′⊥, 0)[M11(0)

+ M22(0)] + 2n2
e Lz(2π)2δ2(k⊥ + k′⊥ + k′′⊥)[

M̂31(k′′⊥, 0)M̂31(k′⊥, 0) + M̂32(k′′⊥, 0)M̂32(k′⊥, 0) + iM̂32(k′′⊥, 0)M̂31(k′⊥, 0)

+ iM̂31(k′′⊥, 0)M̂32(k′⊥, 0)
]

= +2n2
e Lz(2π)2δ2(k⊥ + k′⊥ + k′′⊥)

Ĥ(u)Ĥ(v)
uv

(
u1v1 − u2v2 + i

(
u1v2 + u2v1

))
(A.20)

A discussion and a plot of this important result can be found in Sec. 4.

Appendix B: Radio observables, synchrotron radiation and Stokes parameters

This section introduces the notation to describe radio observables. For our statistical approach, synchrotron radiation is the funda-
mental observed quantity on which our deduction is based. Since we are attempting to infer properties of the magnetic field statistics
through statistics of the radio synchrotron observables, we need a clear and compact notation of these observables.

All accelerated charges emit electromagnetic radiation. If accelerated by a magnetic field, the radiation is called cyclotron
radiation in case of nonrelativistic and synchrotron radiation in case of relativistic velocities. With regard to astrophysics the latter
is far more important. This is because of the much higher power radiated by relativistic particles, since the total emitted power of an
accelereated charge depends on γ2, its Lorentz factor squared (Rybicki & Lightman 1979):

P =
4
3
σT cβ2γ2 B2

8π
, (B.1)

where β = v/c. Synchrotron radiation has a characteristic polarisation, with a high percentage of linear polarisation. Furthermore,
the relativistic beaming effect confines the energy radiated within a cone around the direction of the moving charge. Due to these
features and since a large fraction of astrophysical synchrotron emission falls into radio wavebands, it is relatively easy to detect
and provides us with an excellent way to observe and study magnetic fields.
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Synchrotron radiation is mainly emitted by relativistic electrons. Other charged particles like protons contribute far less to the
radiated power due to their larger mass. Following Rybicki & Lightman (1979) we assume a power-law distribution of the cosmic
ray electron energies with spectral index p

N(γ) dγ = Cγ−pdγ, (B.2)

where C is a normalisation factor which determines the number density of relativistic electrons. The total power emitted per unit
volume and unit frequency by such distributed electrons, assumed to have an isotropic pitch-angle distribution, is then given by the
integral over N(γ) dγ times the single particle radiation spectrum. It can be shown that this leads to a power law in synchrotron
emmissivity (Rybicki & Lightman 1979):

j ∝ ω−
(p−1)

2 B
(p+1)

2
⊥ C. (B.3)

In the end we are interested in observable quantities, namely the total and polarised intensity of the observed region. In terms of
emissivity j they are:

total intensity I(x⊥) =
∫

dz j(x), and (B.4)

polarised intensity P(x⊥) =
∫

dz j(x) f (p) exp(2iχ(x)), (B.5)

where f (p) = (p+1)/(p+7/3) is the polarisation fraction and the integrals are along the line of sight from the source to the observer.
The angle χ is the polarisation angle of the radiation. With χ we can introduce the effect of Faraday-rotation into our formulas.
Faraday rotation is the rotation of the polarisation plane of a linearly polarised wave in a medium with a non-scalar dielectric
constant due to a magnetic field. In such an environment, the dielectric constant differs for left and right circular polarisation
(Rybicki & Lightman 1979):

ε = 1 −
ω2

p

ω(ω ± ωB)
, (B.6)

where ω denotes the frequency of the wave and ωp = eB/mc is the cyclotron frequency. Plus and minus signs denote the case for
right and left circular polarisation respectively. If we describe a linearly polarised wave as a superposition of a wave with right
circular polarisation and a wave with left circular polarisation, the linear polarisation plane will not remain constant.

Including Faraday rotation, the total angle χ at the location of the observer is given by

χ(x) = χ0(x) + λ2φ(x). (B.7)

Here χ0 denotes the polarisation angle at the position of emission whereas the Faraday depth φ(x) is defined as (Kronberg et al.
2008)

φ(x) =
e3

2π n2
ec4

∫
dz ne B3. (B.8)

It describes the phase angle through which the electric vector rotates due to Faraday rotation. For this study, it is assumed that
the electron density ne is constant in order to simplify the calculations. Furthermore, we restrict ourselves to observations at short
wavelength λ, thus ignoring the term exp(2iλ2φ(x)) in (B.5), which would lead to so called intrinsic Faraday-rotation. Nevertheless
φ is used as an independent radio observable, allowing us to infer information about the component of the magnetic field parallel
to the line of sight. In real observations this would be possible by finding a background source to probe φ in the observed region
(see Fig. 1). Sometimes we refer to the notion rotation measure (RM) instead of Faraday depth. Correctly this describes the factor
between the rotation angle and λ2 obtained through observations. However, we use it in the context of real observations, because it
is the more conventional term than Faraday depth when dealing with data.

I(x⊥) and P(x⊥) can be expressed most suitable using the Stokes parameters. After some calculations (see e.g. Rybicki &
Lightman 1979; Waelkens et al. 2009) the first three Stokes parameters I,Q and U can be determined for synchrotron radiation of a
power-law spectrum distributed, isotropic, relativistic electron population :

I = 2 F(p) ω
(1−p)

2

∫
dz

(
B2

1 + B2
2
) (p−3)

4
(
B2

1 + B2
2
)
, (B.9)

Q = 2 G(p) ω
(1−p)

2

∫
dz

(
B2

1 + B2
2
) (p−3)

4
(
B2

1 − B2
2
)
, (B.10)

U = 2 G(p) ω
(1−p)

2

∫
dz

(
B2

1 + B2
2
) (p−3)

4 2B1B2. (B.11)

The two functions F(p) and G(p) are expressed in terms of physical constants and gamma functions of the spectral index p (see
Waelkens et al. 2009; Enßlin & Biermann 1998):

F(p) =
3√3 e3

32π2mec2

(2mec
3e

) (1−p)
2 C Γ

( p
4
−

1
12

)
Γ
( p

4
+

19
12

)2(p+1)2
p + 1

, (B.12)
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G(p) =
3√3 e3

32π2mec2

(2mec
3e

) (1−p)
2 C Γ

( p
4
−

1
12

)
Γ
( p

4
+

7
12

)
2(p−3)2. (B.13)

Throughout this study, the value p = 3 has been adopted for the spectral index of the electron distribution. This not only simplifies
calculations, it is also a reasonable choice from a physical point of view. Typical values for the spectral index of relativistic electrons
in our galaxy measured directly by cosmic rays on Earth or indirectly via their synchrotron emission are around p ≈ 2.7 (Amsler
et al. 2008). Deviations from p = 3 can be added to the results of this work later in terms of corrections.

Finally we can state I, P and φ in the form to be used in this study. During our calculations, all fore factors will be suppressed
for convenience, resulting in

I =
∫

dz
(
B2

1 + B2
2
)
, (B.14)

P =
∫

dz
(
B2

1 − B2
2 + 2iB1B2

)
, and (B.15)

φ =

∫
dzB3 (B.16)

Appendix C: Identity of the covariance matrix with the correlation tensor for Gaussian statistics

In Sec. 2.3 we use the fact, that the covariance matrix of a Gaussian probability distribution of the magnetic field is identical to the
magnetic correlation tensor. From the Gaussian probability distribution

G(B, M̃) =
1√
|2πM̃|

exp[−
1
2

B+M̃−1B]

the identity is easily to shown:

M = 〈BB†〉 =
∫
DB G(B, M̃)BB†

=
( ∂
∂J

∂

∂J+
)∣∣∣∣

J=0

∫
DB

1√
|2πM̃|

exp[−
1
2

B†M̃−1B + J†B]

=
( ∂
∂J

∂

∂J†
)∣∣∣∣

J=0
exp[

1
2

J†M̃J]

= ([M̃ + M̃J] exp[
1
2

J+M̃J)]|J=0 = M̃

In this case, we have used the generating-function technique which is explained in 2.3.
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