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Non-linear and non-Gaussian signal inference problems are difficult to tackle. Renormalization
techniques permit us to construct good estimators for the posterior signal mean within information
field theory (IFT), but the approximations and assumptions made are not very obvious. Here we
introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renor-
malization results emerge naturally. They can be understood as being the Gaussian approximation
to the full posterior probability, which has maximal cross information with it. We derive optimized
estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a
log-normal signal from Poissonian data with background counts and point spread function, as it
is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii)
inference of a Gaussian signal with unknown spectrum and (iii) inference of a Poissonian log-normal
signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how Gaussian
knowledge states constructed by the minimal Gibbs free energy principle at different temperatures
can be combined into a more accurate surrogate of the non-Gaussian posterior.

I. INTRODUCTION

A. Abstract inference problem

Measurements provide information on the signals we
are interested in, encoded in the delivered data. How
can this information be best retrieved? Is there a generic
and simple principle from which optimal data analysis
strategies derive? Can an information energy be con-
structed which – if minimized – provides us with the cor-
rect knowledge state given the data and prior informa-
tion? And if this exists, how can this information ground
state be found at least approximatively?

An information energy, to be minimized, would be very
useful to have, since many of the existing minimization
techniques, analytical and numerical, can then be ap-
plied to it. A number of such functions to be extremized
to solve inference problems were proposed in the liter-
ature, like the likelihood, the posterior, or the entropy.
The likelihood is the probability that the data has re-
sulted from some signal. The posterior is the reverse, it
is the probability that given the data some signal was the
origin of it. Extremizing either of them certainly makes
sense, but often ignores the presence of slightly less prob-
able, but much more numerous possibilities in the signal
phase space. Those have a much larger entropy and are
therefore favored by maximum entropy methods. How-
ever, maximum entropy alone can not be the inference
determining criterion, since it favors states of complete
lack of knowledge, irrespective of the data. Thus some
counteracting energy is required which provides the right
amount of force to the inference solution. Here, we ar-
gue that the ideal information energy is provided by the
Gibbs free energy, which combines both maximum en-
tropy and maximum a posteriori (MAP) principles.

The Gibbs free energy has to be regarded as a func-
tional over the space of possible probability density func-
tions (PDF) of the signal given the data. The result of
the minimization is therefore a PDF itself, and not a sin-

gle signal estimate. Minimizing the Gibbs free energy
maximizes the entropy within the constraints given by
the internal energy. The latter is understood as the av-
erage of the negative logarithm of the joint probability
function of signal and data weighted with the PDF.

The usage of thermodynamical concepts for inference
problems is not new, see e.g. [1, 2]. What is new here,
is that we develop this for signals which are fields, spa-
tially distributed quantities with an infinite number of
degrees of freedom, while using an approximate Gaus-
sian ansatz for the PDF to be inferred. We thereby con-
nect information field theory (IFT) [3–10], as a statistical
field theory dealing with a huge number of microscopic
degrees of freedom, to thermodynamics, as a means to
generate simplified, but macroscopic descriptions of our
knowledge. Thereby we find that former IFT results ob-
tained with complex renormalization schemes in [9, 11]
can easily be reproduced, and even be extended to more
complicated measurement situations.

In the remainder of Sect. I we briefly introduce to
IFT, MAP, and Maximum Entropy. This motivates the
minimal Gibbs free energy principle, which we formally
derive in Sect. II, and show its equivalence to maximal
cross information. The application of this principle to
optimize approximations of the posterior of concrete in-
ference problems is provided in Sect. III. There, the
log-normal Poisson problem (Sect. III A) and the prob-
lem to reconstruct without known signal power spectrum
(Sect. III B), as well as their combination (Sect. III C)
are addressed. Finally, we show how approximate poste-
riors obtained at different temperatures can be combined
into a better posterior surrogate in Sect. IV before we
conclude Sect. V.

B. Information field theory

Information theory describes knowledge states with
probabilities. If Ω is the complete set of possibilities,
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and A ⊂ Ω is a subset, then P (A) ∈ [0, 1] describes the
plausibility of A being the case, with P (A) = 1 denot-
ing A being assumed to be sure, P (A) = 0 denoting A
being (assumed to be) impossible, and 0 < P (A) < 1
describing uncertainty about the truth of A. Obviously
P (Ω) = 1 and P (∅) = 0. The usual rules of proba-
bility theory apply, and generalize the binary logic of
Aristotle to different degrees of certainty or uncertainty
[12, 13]. In case the set of possibilities is a continuum,
it makes sense to introduce a PDF P(ψ) over Ω, so that
P (A) =

∫
A
dψP(ψ). Each possible state ψ can be a

multi-component vector, containing all aspects of reality
which are in the focus of our inference problem.

We might be interested in a signal s = s(ψ) be-
ing a sub-aspect of the reality ψ. The induced sig-
nal PDF is retrieved from a functional or path integral
over all the phase spaces of the possibilities of ψ via
P (s) =

∫
DψP(ψ) δ(s − s(ψ)). If s is a field, a func-

tion over a physical space V , then s = (sx)x∈V might
be a vector in the Hilbert space Ω of all L2-integrable
functions over V and P(s) is then a probability density
functional. Information theory for s becomes IFT, which
is a statistical field theory.

Inference on the signal s from data d is done from the
posterior probability P(s|d), which can be constructed
from the joint PDF of signal and data P(d, s) via

P(s|d) =
P(d, s)
P(d)

=
e−β H(d,s)

Zβ

∣∣∣∣
β=1

, (1)

where P(d, s) =
∫
Ω
DψP(d|ψ) δ(s − s(ψ))P(ψ) =

P(d|s)P(s) and P(d) =
∫
DsP(d, s). The second equal-

ity in (1) is just a renaming of the nominator and denomi-
nator of the first fraction, which highlights the connection
to statistical mechanics. Thus we define the information
Hamiltonian

H(d, s) = − logP(d, s), (2)

the partition function including a moment generating
source term J

Zβ(d, J) =
∫
Ds e−β (H(d,s)+J†s), (3)

and the inverse temperature β = 1/T as usual in statis-
tical mechanics. Here s† is the transposed and complex
conjugated signal vector s, leading to a scalar product
j†s =

∫
V
dx j̄xsx.

C. Maximum a posteriori

The first guess for a suitable energy to be minimized
to obtain the information state might be the Hamilto-
nian. Minimizing the Hamiltonian with respect to s,
while keeping d at their observed values, is equivalent
to maximizing the joint probability P(d, s) and also the
posterior P(s|d). The classical field emerging from this is

called the MAP signal reconstruction in signal process-
ing. For a detailed discussion of the usage of the MAP
principle in IFT see [10]. The MAP field is often a very
good approximation of the mean field

m = 〈s〉(s|d) ≡
∫
Ds sP(s|d), (4)

which is the optimal estimator of the signal in a statistical
L2 error norm sense:

m = argmins̃

〈∫
V

dx (sx − s̃x)2
〉

(s|d)

. (5)

The MAP estimator on the other hand can be shown
to optimize the statistical L0 norm1, the result of which
may strongly deviate from the mean m, if the posterior
is highly asymmetric around its maximum. Thus we can
regard the MAP estimator as a good reference point, but
not as the solution we are seeking in general. It is, how-
ever, accurate (in the L2 error norm sense) in case the
posterior around its maximum is close to a Gaussian. In
this case, the MAP field can easily be augmented with
some uncertainty information from the Hessian of the
Hamiltonian

H =
δ2H(d, s)
δs δs†

∣∣∣∣
s=m

, (6)

as an approximation of the two point function of the sig-
nal uncertainty

D ≡
〈
(s−m) (s−m)†

〉
(s|d)

. (7)

Thus we set D ≈ H−1 in

P(s|d) ≈ P̃(s|d) = G(s−m,D), (8)

where we introduced the Gaussian

G(φ,D) ≡ 1
|2πD| 12

e−
1
2 φ†D−1φ. (9)

Unfortunately, the MAP estimator can perform subop-
timally in cases where the Gaussian approximation does
not hold, see e.g. [11].

D. Maximum Entropy

1. Image entropy

Another quantity often extremized in inference prob-
lems is the image entropy [14–25]. In classical maximum

1 The L0 norm measures the amount of exact agreement via
‖f‖0 = limε→0

1
ε

∫
dx θ(f2(x)− ε2), with θ denoting the Heavi-

side function.
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entropy (ME) reconstruction the image entropy is defined
for a strictly positive signal via

SME(s) = −
∫

V

dx sx log(sx/s̃x) ≡ −s† log(s/s̃), (10)

where s̃x is the reference image, which is used to model
some prior information. In the second equality we have
defined the component-wise application of functions on
fields, e.g. (f(s))x = f(sx), which we use throughout
this work.

The data enter the ME method in form of an image
energy, which is ideally chosen to be the negative log-
likelihood,

E(d|s) = − log
(
P(d|s)

)
, (11)

in order to ensure the best imprint of the data on the
reconstruction. The entropy is then maximized with the
energy constraint given by minimizing

EME(d, s) = E(d|s)− T SME(s) (12)

with respect to s. Here T is some adjustable
temperature-like parameter, permitting us to choose the
relative weight of image entropy and image energy. Low
temperature means that the ME map follows the data
closely, high temperature that the map space wants to be
more uniformly occupied by the signal reconstruction.

The prior information on the signal, P(s), does not
enter the ME formalism explicitly. Actually, an implicit
prior can be identified, assuming that ME is actually
a MAP principle. In that case the implicitly assumed
Hamiltonian is HME(d, s) ∼= EME(d, s), where ∼= denotes
equality up to an irrelevant, since s-independent, addi-
tive constant, and we find

PME(s) ∝ eT SME(s) ∝
∏
x

(
sx

s̃x

)−T sx

. (13)

This is not a general prior, but a very specific PDF. Al-
though there is some flexibility to adopt its functional
form by choosing s̃, T , and the image space (pixel space,
Fourier space, wavelet space, etc.) in which (10) holds,
PME(s) can not be regarded as being generic. The ME
prior strongly suppresses large values in the ME map. If
a data feature can be either explained by a single map
pixel exhibiting a peak value or by several pixels dividing
that value among themselves, ME will usually prefer the
second option, leading to blurred reconstructed images.

2. Physical entropy

The image entropy is actually not an entropy in the
physical sense of a phase space integral measuring the
distribution spread of a PDF. In fact, the latter is given
by the Boltzmann entropy as given by the negative Shan-
non information,

SB = −
∫
DsP(s|d) logP(s|d), (14)

which is a functional of the signal posterior, SB =
SB[P(s|d)], and not of the signal map. Inserting (1)
yields

SB = 〈H(d, s)〉(s|d) + log Z1(d, 0) = U − F, (15)

where we introduced the internal energy U =
〈H(d, s)〉(s|d) and the Helmholtz free energy F = F1(d, 0)
with

Fβ(d, J) = − 1
β

log Zβ(d, J). (16)

The fully J-dependent Helmholtz free energy provides
the field expectation value via

m = 〈s〉(s|d) =
∂Fβ(d, J)

∂J

∣∣∣∣
β=1,J=0

. (17)

The entropy is also given in terms of the free energy via

SB =
∂Fβ(d, J)

∂β

∣∣∣∣
β=1,J=0

. (18)

The entropy as well as the free energy are functionals of
the posterior and not of the signal. Maximizing or min-
imizing them does not provide a signal estimator, but
singles out a PDF. If we restrict the space of PDFs to
the ones we can handle analytically, namely Gaussians
as given in (8) and (9), we might obtain a suitable ap-
proximation scheme to the full field theoretical inference
problem.

Maximizing the entropy alone does not lead to a suit-
able algorithm, since the maximal entropy state is that of
complete lack of knowledge, with a uniform probability
for every signal possibility. The internal energy, however,
favors knowledge states close to the posterior maximum
and would return the MAP solution if extremized alone.
Thus the right combination of entropy and internal en-
ergy is to be extremized. In analogy to the Maximum
(image) Entropy principle as specified in (12) we would
expect a free energy of the form U − T SB to be this
function. Thermodynamics teaches us that the Gibbs
free energy is the quantity to be minimized. Since we
are going to calculate this for an approximation of the
real PDF, it is necessary to go through the derivation in
order to make sure we do this in the right fashion and
understand all implications.

II. THERMODYNAMICAL INFERENCE

A. Tempered Posterior

In order to take full advantage of the existing ther-
modynamical machinery we want to construct the Gibbs
free energy for information problems. To this end, we
introduce a temperature and a source function into the



4

PDF of the signal posterior as suggested by the definition
of the partition function (3) by defining

P(s|d, T, J) =
e−β (H(s,d)+J†s)

Zβ(d, J)
=

(P(d, s) e−J†s)β∫
Ds′ (P(d, s′) e−J†s′)β

.

(19)
With the temperature we can broaden (for T > 1) or nar-
row (for T < 1) the posterior. Three temperature values
are of special importance, namely T = 0, which modi-
fies the PDF into a delta peak located at the posterior
maximum, T = 1, which returns the original posterior,
and T = ∞, leading to the maximum entropy state of an
uniform PDF. The source function J permits us to shift
the mean of the PDF to any possible signal configuration
m = m(d, T, J).

The modified PDF will be approximated by a Gaussian
with identical mean and variance:

P(s|d, T, J) ≈ G(s−m,D) = P̃(s|m,D), (20)

where also D = D(d, T, J).

B. Internal, Helmholtz and Gibbs energy

The next step is to calculate the Helmholtz free energy.
In case it can be calculated explicitly from (16), the in-
ference problem is basically solved, since any (connected)
moment of the signal posterior can directly be calculated
from it by taking derivatives with respect to the moment
generating function J , e.g. see (17). This will, however,
only be the case for a very restricted class of Hamilto-
nians, like the free ones, which are only quadratic in s.
In the more interesting case the Helmholtz free energy
can not be calculated explicitly, we can use the thermo-
dynamical relation of the Helmholtz free energy with the
internal energy and entropy.

First, we note that the internal energy of the modified
posterior is given by

U(d, T, J) = 〈H(s, d)〉(s|d,T,J)

≈ 〈H(s, d)〉(s|m,D) = Ũ(d,m,D), (21)

where m and D are still functions of d, T , and J . The
average in the second line has to be understood to be
performed over a Gaussian with mean m and dispersion
D: 〈f(s)〉(s|m,D) =

∫
Ds f(s)G(s−m,D).

Further, we need to calculate the entropy for the mod-
ified PDF, which for a Gaussian depends only on D:

SB[G(s−m,D)] =
1
2

Tr
(
1 + log(2πD)

)
= S̃B(D). (22)

For the full modified posterior, (19), the entropy is cal-
culated via (14) to be

SB = β
(
U + J†m− F

)
, (23)

where m = m(d, T, J) = 〈s〉(s|d,T,J), U is given by (21),
and F by (16). Solving (23) for the Helmholtz free energy
yields

Fβ(d, J) = U − T SB + J†m. (24)

This expresses the Helmholtz free energy in terms of in-
ternal energy and entropy. Unfortunately, this expression
contains the term J†m, where m depends on J implicitly
through (17). In order to get rid of this term, we Leg-
endre transform with respect to J and thereby use (17),
which provides us with the Gibbs free energy

Gβ(d,m) = F − J†
δF

δJ
= U − T SB. (25)

The Gibbs energy depends solely on m and not on J . It
can be constructed approximatively, in case approxima-
tions of the internal energy and the entropy are available.
For our Gaussian approximation of the modified poste-
rior we therefore write

G̃β(d,m,D) = Ũ(d,m,D)− T S̃B(D). (26)

We know from thermodynamics that the minimum of the
Gibbs free energy with respect to variations inm provides
the expectation value 〈s〉(s|d) of our field:

δG(d,m,D)
δm

∣∣∣∣
m=〈s〉(s|d)

= 0 (27)

Thus, the Gibbs energy is the information energy we were
looking for in the introduction.

Minimizing the Gibbs free energy for a Gaussian PDF
with respect to m yields

0 =
δG̃

δm
=
∫
DsH(d, s)

δ G(s−m,D)
δm

= −D−1 〈φHm(d, φ)〉(φ|D) , (28)

with Hm(d, φ) = H(d,m+ φ), which implies

m =
〈sH(d, s)〉(s|m,D)

〈H(d, s)〉(s|m,D)

=
〈sH(d, s)〉(s|m,D)

Ũ(m,D)
. (29)

The optimal map is therefore the first signal moment of
the full Hamiltonian weighted with the approximating
Gaussian.

Thermodynamics teaches us further that the propaga-
tor, the uncertainty dispersion of the field, is provided
by the second derivative of the Gibbs free energy around
this location, thanks to the well known relation(

δ2G

δmδm†

)−1
∣∣∣∣∣
m=〈s〉(s|d)

= − δ2F

δJ δJ†

∣∣∣∣
J=0

= β D. (30)

This relation closes the set of equations by providing D.
Evaluating (30) with our approximate Gibbs energy (26)
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and using (27) yields

T D−1 =
δ2G̃

δm δm†

∣∣∣∣∣
m=〈s〉(s|d)

= −D−1 Ũ(d,m,D)

+ D−1
〈
φφ†Hm(d, φ)

〉
(φ|D)

D−1.

Thus the propagator is the second moment of the Gaus-
sian weighted Hamiltonian,

D =

〈
φφ†Hm(φ)

〉
(φ|D)

Ũ(d,m,D) + T
. (31)

This equation seems to suggest that the propagator eval-
uated at higher temperature is narrower, since T appears
in the denominator. However, the opposite is the case
due to the presence of D in all terms, as a test with a
free Hamiltonian will show in (42).

C. Cross information

The Gibbs free energy at T = 1 is directly related to
the cross information between the posterior and its Gaus-
sian approximation. The cross information (or negative
relative entropy) of a PDF P̃ with respect to another
one P is measured by the so called Kullback-Leibler di-
vergence [26]:

dKL[P̃,P] =
∫
Ds P̃(s|d) log

(
P̃(s|d)
P(s|d)

)
. (32)

The Kullback-Leibler divergence characterizes the dis-
tance between a surrogate and target PDF in an informa-
tion theoretical sense. It is an asymmetric distance mea-
sure, reflecting that the roles of the two involved PDF
differ. The equivalence of Gibbs free energy and cross in-
formation with respect to inference problems can easily
be seen:

G̃(m,D) = 〈H(d, s) + log(G(s−m,D))〉(s|m,D)

=
∫
DsG(s−m,D) log

(
G(s−m,D)
P(s, d)

)
∼=
∫
DsG(s−m,D) log

(
G(s−m,D)
P(s|d)

)
= dKL[P̃,P]. (33)

In the second last step we added the term logP(d), which
is irrelevant here, since m- and D-independent, and in
the last step we introduced the Kullback-Leibler diver-
gence between posterior P(s|d) and its Gaussian surro-
gate P̃(s|d). Minimal Gibbs free energy therefore seems
to corresponds to minimal Kullback-Leibler divergence,
and therefore to maximal cross information of the surro-
gate with the exact posterior.

However, we have only minimized the Gibbs free en-
ergy so far with respect to mean field m degrees of free-
dom of our Gaussian, not with respect to the ones pa-
rameterizing the uncertainty dispersion D. We have de-
termined this using the thermodynamical relation (27).
If we want that our surrogate PDF has maximal cross in-
formation with the posterior with respect to all degrees
of freedom of our Gaussian, we also have to minimizing
the Gibbs energy with respect to D. A short calculation
shows that this actually yields a result which is equivalent
to the thermodynamical relation (30):

0 =
δG̃

δD
=
∫
DφHm(d, φ)

δ G(φ,D)
δD

− T
δ S̃B(D)
δD

=
D−1

2

[〈
φφ†Hm(d, φ)

〉
(φ|D)

−D
(
Ũ(m,D) + T

)]
D−1,

from which also (31) follows. Thus, we can regard both,
the map m and its uncertainty covariance D, as param-
eters for which the Gibbs energy should be minimized.
We will refer to this as the maximal cross information
principle.

We further note that the maximal cross information
principle also holds if the Gaussian is replaced by some
other model function, G[P̃(s|d)] ∼= dKL[P̃,P], a property
we will use later in Sect. IV.

D. Calculating the internal energy

In order to calculate the approximative Gibbs energy,
we need to estimate the internal energy, for which we
have to specify the exact Hamiltonian. We assume that
it can be Taylor-Fréchet expanded as

H(d, s) =
∞∑

n=0

1
n!

Λ(n)
x1...xn

sx1 · · · sxn︸ ︷︷ ︸
Λ(n)(s,...s)

, (34)

where repeated coordinates are thought to be integrated
or summed over. The approximative internal energy is
then

Ũ(m,D) = U [P̃(s|d)] =
∫
DsH(d, s) P̃(s|d)

=
∞∑

n=0

1
n!

〈
Λ(n)(s, . . . s)

〉
(s|m,D)

. (35)

The Gaussian n-point correlation functions in this equa-
tion can actually be calculated analytically. For this, we
again use the shifted field φ = s − m, which has the
Hamiltonian

Hm(d, φ) =
∞∑

n=0

1
n!

Λ(n)
m (φ, . . . φ), with (36)

Λ(n)
m (φ, . . . φ) =

∞∑
k=0

1
k!

Λ(n+k)(φ, . . . φ︸ ︷︷ ︸
n

,m, . . .m︸ ︷︷ ︸
k

).
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We assume that the interaction coefficients Λ(n)
x1...xn are

symmetric with respect to index permutations, since they
resulted from a Taylor-Fréchet expansion.

The internal energy can then be calculated via the
Wick theorem and the fact that all odd moments of φ
vanish:

Ũ(m,D) =
∞∑

n=0

1
n!

〈
Λ(n)

m (φ, . . . φ)
〉

(φ|D)
(37)

=
∞∑

n=0

1
2n n!

Λ(2n)
m (

n︷ ︸︸ ︷
D ⊗ · · ·D)

=
∞∑

n,k=0

Λ(2n+k)(

n︷ ︸︸ ︷
D ⊗ · · ·D⊗

k︷ ︸︸ ︷
m⊗ · · ·m)

2n n! k!
.

Here, we defined the symmetrized tensor product
(
T ⊗

T ′)
x1...xn

≡
∑

π∈Sn

1
n!Txπ(1)...xπ(k) ·T ′

xπ(k+1)...xπ(n)
by aver-

aging over all permutations in Sn, the symmetric group.
Having obtained the internal energy with (37), and

entropy with (23) approximatively, we can construct the
Gibbs free energy according to (26) which we use for our
inference.

E. Minimizing

In order to get our optimal Gaussian approximation
to the posterior, we have to minimize G̃β(m,D) with
respect to m and D. Minimizing for m is equivalent to
minimizing the internal energy, since the entropy does
not depend on m. This yields

0 =
δŨ(m,D)

δm
(38)

=
∞∑

n,k=0

Λ(2n+k+1)(

n︷ ︸︸ ︷
D ⊗ · · ·D⊗

k︷ ︸︸ ︷
m⊗ · · ·m, ·)

2n n! k!
,.

which has to be solved for m for any given D. The prop-
agator derives from (30) or from

0 =
δG̃(m,D)

δD
⇒ (39)

T D−1 =
∞∑

n,k=0

Λ(2n+k+2)(·, ·,
n︷ ︸︸ ︷

D ⊗ · · ·D⊗
k︷ ︸︸ ︷

m⊗ · · ·m)
2n n! k!

.

which also depends on m. Thus, (38) and (39) have to
be solved simultaneously.

A simple example should be in order. The simplest
case is that of the original Hamiltonian being quadratic.
The approximated one should then match this exactly. A
quadratic or free Hamiltonian is equivalent to a Gaussian

posterior, P(s|d) = G(s−m∗, D∗). We get

H(d, s) ∼=
1
2

(s−m∗)†D−1
∗ (s−m∗)

∼= Λ(1)
x sx +

1
2

Λ(2)
xy sxsy with (40)

Λ(1) = −D−1
∗ m∗, and

Λ(2) = D−1
∗ .

Inserting this into (38) and (39) yields

0 = Λ(1)(·) + Λ(2)(m, ·) = D−1
∗ (m−m∗)

⇒ m = m∗, (41)

T D−1 = Λ(2)(·, ·) = D−1
∗

⇒ D = T D∗, (42)

which indeed recovers the original coefficients for T = 1,
and a narrower or wider uncertainty dispersion for T < 1
or T > 1, respectively. In the following, we will see that
also in case of interacting Hamiltonians the minimal free
energy principle provides the correct results. We show
this by reproducing (and extending) signal estimators de-
rived previously in IFT using renormalization techniques.

III. APPLICATION EXAMPLES

A. Poissonian log-normal data

1. Separable case

Many inference problems have to deal with Poissonian
noise, like X-ray and γ-ray astronomy as well as recon-
struction of the cosmic large-scale structure from galaxy
counts. Let us assume that the mean count rate λ of
photons or galaxies is proportional to an exponentiated
Gaussian random field s with covariance S =

〈
s s†
〉
(s)

according to

λ(s) = κ eb s . (43)

Here, κ is the expected counts for s = 0, which may de-
pend on the spatial position. The scalar b permits us to
change conveniently the strength of the non-linearity of
the problem without changing the signal statistics. This
log-normal model for the cosmic large-scale structures as
an approximative description is actually supported ob-
servationally [27, 28] and theoretically [29–34].

As a starting point, we assume a local response, so that
the Poisson statistics for the actual counts dx at location
x are

P (dx|λx) =
λdx

x

dx!
e−λx , (44)

and the full likelihood is well separable into local ones:

P (d|s) =
∏
x

P (dx|λx(sx)). (45)
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The corresponding Hamiltonian was shown in [9] to be

H(d, s) ∼=
1
2
s†S−1s− d†b s+ κ†eb s. (46)

Reconstruction methods for this data model were devel-
oped by [9, 35–37].

The internal energy of our Gaussian approximation can
be calculated analytically,

Ũ(m,D) ∼=
1
2
m†S−1m+

1
2
Tr(DS−1)− d†bm

+ κ†eb m+ b2
2 D̂ (47)

where D̂ denotes the vector of diagonal elements of D.
Minimizing G̃(m,D) = Ũ(m,D) − T S̃B(D) with re-

spect to m and D yields

m = S b
(
d− κ

m+ b
2 D̂

)
, and

D = T
(
S−1 + b2 κ̂

m+ b
2 D̂

)−1

, (48)

respectively. Here we have defined κt = κ exp(b t) and
denote a diagonal matrix by putting a hat onto a vector
of its diagonal elements (λ̂)xy = λx δxy. This result is
identical with the one found in [9] using a lengthy renor-
malization calculation.

2. Entangled case

So far, we assumed that the response provides a one to
one correspondence between locations in signal and data
space. However, for most measurements this is not ex-
actly true. X- and γ-ray telescopes typically exhibit point
spread functions, which map a single signal space location
onto several detectors, of which each detects events com-
ing from several indistinguishable directions. Also galaxy
redshifts do not provide accurate distance information,
since redshift distortions and measurement errors lead to
effective point spread functions.

In the following, we generalize to the case of a known
and fixed, but non-local measurement response. Fixed
means, that the response is independent of the signal.
This excludes the treatment of galaxy redshift distortions
with this case (e.g. see [38] for this), but still includes
photometric redshift errors of galaxy catalogs as well as
X- and γ-ray telescope data. Such problems have been
approached in the past via the MAP principle [39–42].

The point spread function is modeled by the response
matrix R = (Rix) which describes how emissivity at lo-
cation x is expected to be observed in data channel i.
The expected count rate is now

λ(s) = Reb s, (49)

and the likelihood does not separate any more with re-
spect to x

P (d|s) =
∏

i

P (di|λi(s)), (50)

since λi(s) entangles the signal from several locations,
whereas in (45) it depends only on the local signal value.
We recover the former case for a diagonal response Rix =
κx δix. The resulting Hamiltonian

H(s|d) ∼=
1
2
s†S−1s+ 1†Reb s − d† log(Reb s) (51)

reduces to (46) for R being diagonal.
The internal energy of our surrogate Gaussian

P̃(s|d) = G(s−m,D) is then

Ũ(m,D) =
1
2
m†S−1m+

1
2
Tr(DS−1) + 1†Reb m+ b2

2 D̂

−
∑

i

di

∫
Dφ log

(
R†

i e
b (m+φ)

)
G(φ,D)︸ ︷︷ ︸

Ii

. (52)

This integral Ii can not be calculated in closed from due
to the logarithm in the integrand. We expand the loga-
rithm around R†

i e
m, since we will see that this recovers

the result of the separable case most easily for R being
diagonal. We get

Ii = log
(
R†

i e
b m
)

+

〈
log

(
R†

i e
b (m+φ)

R†
i e

b m

)〉
(φ|D)

.(53)

In case R is diagonal, the first term reduces to bm +
logRi, the second vanishes as 〈log(exp(b φ))〉(φ|D) =
〈b φ〉(φ|D) = 0, and we recover the Hamiltonian of the
separable case.

In the general case of an entangling response we Taylor
expand the logarithm of the second term

Ii = log
(
R†

i e
b m
)

−
∞∑

n=1

(−1)n

n

〈(
r†i e

b φ − 1
)n〉

(φ|D)︸ ︷︷ ︸
IIi n

, with (54)

ri =
Rie

b m

R†
i e

b m
or ri(x) =

Ri(x) eb m(x)∫
dx′Ri(x′) eb m(x′)

.

We note that r†i 1 =
∫
dx rix = 1 by construction.

The expansion coefficients IIi n can be worked out one
by one. We provide here the first few, namely

IIi 1 = r†i e
1
2 b2D̂ − 1,

IIi 2 = rixriy e
1
2 b2(Dxx+Dyy+2Dxy) − 2r†i e

1
2 b2D̂ + 1,

IIi 3 = rixriyriz exp

b2
2

∑
a,b∈{x,y,z}

Dab


− 3 rixriy exp

b2
2

∑
a,b∈{x,y}

Dab


+ 3 r†i e

1
2 b2D̂ − 1. (55)



8

These coefficients stay small if b2D � 1, which means
that the expansion can be truncated if the signal is known
within a few ten percent or if non-Gaussianity is small.
Large uncertainties in the signal strength do not nec-
essarily lead to large coefficients if they are located at
positions without instrumental sensitivity (Rix small) or
much lower expected count rates (mx small). In both
cases mostly prior information and extrapolation from
regions with more informative data will determine the
solution at such locations.

In case some of these coefficients are large, substan-
tial signal uncertainty at the locations to which they are
sensitive must be present. In this case an accurate recon-
struction for these locations can not be expected. Thus,
if we simplify the Hamiltonian by dropping such terms,
even if they are relatively large, the quality of the recon-
struction will not suffer too much since only regions are
affected, which are poorly constrained by the data any-
way. Therefore, truncating the expansion should already
provide usable algorithms.

3. Zeroth order solution

To zeroth order, we ignore all IIi n-terms and find for
the approximative free energy

G̃(m,D) ≈ 1
2
m†S−1m+

1
2
Tr(DS−1)

+
∑

i

[
R†

i e
b m+ b2

2 D̂ − di log
(
R†

i e
b m
)]

− T

2
Tr (1 + log(2πD)) . (56)

Minimizing this with respect to m and D yields

m = S b
∑

i

Ri e
b m

(
di

R†
i e

b m
− e

1
2 b2 D̂

)
= S b

(
d†r − κ′(m+ b D̂/2)

)
, and

D = T
(
S−1 + b2 κ̂′(m+ b D̂/2)

)−1

, with

κ′(t) =
∑

i

Ri e
b t. (57)

This is very similar to (48) and reduces to it for a diagonal
response.

4. First order correction

First order corrections are included by keeping the
IIi1-term in the approximative free energy, but ignoring
higher terms. The resulting equations are

m = S b

(∑
i

di

(
1 + r†i e

b2
2 D̂
)
ri − κ′′(m+ b D̂/2)

)

D = T
(
S−1 + b2 κ̂′′(m+ b D̂/2)

)−1

, with

κ′′(t) =
∑

i

Ri e
b t

(
1 +

di

R†
i e

b m

)
. (58)

This is a slight modification with respect to (57) in two
aspects. The map changes a bit, but the sign of the
changes depends on the details of the point spread func-
tion, since there are two new terms of similar order, but
with opposite signs. The uncertainty variance is reduced,
since the term added to the inverse propagator is always
positive.

5. Observation with background

The observation may suffer from a background, events
in data space, which do not contribute to our signal
knowledge. For example γ-ray astronomy has to suppress
cosmic ray events as much as possible, since charged par-
ticles do not point back to the same sources as neutral
photons due to cosmic magnetic fields. Fortunately, cos-
mic rays have different signatures in data space due to the
differences in hadronic and electromagnetic interactions.
However, not for all measured events is the distinction
clearly cut and we have to use prior knowledge to sup-
press the background events.

Therefore we should extend our formalism to also take
such unwanted backgrounds into account. Actually a
reinterpretation of the above formula will do. We ex-
tend our signal space by the quantity f determining the
logarithm of the background count rate, s→ s′ = (s, f).
fz might be a field over the same physical space as sx, or
just a single number as a total isotropic cosmic ray flux.
In any case, the x− and z−coordinates are regarded to be
over different spaces, or distinct areas of the joint space
over which f and s live. The joint covariance reads

S′ =
(
S 0
0 F

)
(59)

due to the independence of signal and background. Here,
F =

〈
f f†

〉
(f)

is the log-background covariance. The re-
sponse R→ R′ has to be extended to map also the back-
ground space into the data space. Whether the response
images of signal and background events in data space are
well separated or whether they overlap decides about the
background discriminating power of the instrument.

The combined map and covariance of signal and log-
background can now be obtained, e.g. from (57) or
(58) with the appropriate replacements for S,R,m,D →
S′, R′,m′, D′. Our joint map can be split into a sig-
nal and log-background part m′ = (s̃, f̃). Since we
are usually not interested in the background proper-
ties, we marginalize over it. This is especially simple
in the Gaussian approximation of our joint posterior
P (s′|d) ≈ G(s′ −m′, D′), with s′ = (s, f), m′ = (s̃, f̃),

m ≈
∫
Ds′ sG(s′ −m′, D′) = s̃, and (60)
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Dxy ≈
∫
Ds′ (s− s̃)x (s− s̃)y G(s′ −m′, D′) = D′

xy.

Although this does not look too different from the for-
mula for the case without background, the effect of the
background entered through the joint covariance matrix
D′, which mixes the contribution from the signal and
background events appropriately.

B. Reconstruction without spectral knowledge

1. Effective theory

The reconstruction of the Poisson log-normal model in
the previous section assumed that the signal covariance
is known a priori. In case it is unknown, it has to be
extracted from the same data used for the reconstruc-
tion [43–47]. However, the optimal way to do this was
usually not derived from first principles, maybe except in
[48–50]. A rigorous approach to such problems is given
by the computationally expensive Gibbs-sampling tech-
nique, which investigates the joint space of signal realiza-
tions and power spectra [51–54], which can then easily be
marginalized over the power spectra. This problem was
also addressed approximatively for the case of linear re-
sponse data from a Gaussian signal subject to Gaussian
noise using the MAP principle as well as by the help of
parameter uncertainty renormalized estimation by [11].
We re-address this problem here using the minimal free
energy approach.

We assume the covariance S =
〈
s s†
〉
(s)

of our Gaus-
sian signal s to be diagonal within some known function
basis Okx, e.g. the Fourier basis with Okx = ei k x. We
model the power spectrum (in this basis) as being a lin-
ear combination of a number of positive basis functions
fi(k) with disjoint supports (the spectral bands), so that

Ps(k) =
∑

i

pifi(k) (61)

is positive for all k (all coefficients of p = (pi)i are positive
and the spectral bands cover the full k-space domain).
We define

(Si)xy = (O†f̂iO)xy = Ok x fi(k)Ok y (62)

to be the i-th spectral band matrix and S−1
i to be its

pseudo-inverse. Thus, we write our signal covariance as

S =
∑

i

piSi, (63)

with p = (pi) the vector of unknown spectral parame-
ters. We further assume that the individual signal-band
amplitudes pi have an independent prior distribution,

P(p) =
∏

i

P(pi), (64)

with the individual priors being power-laws with expo-
nential low amplitude cutoff at qi :

P(pi) =
1

qi Γ(αi − 1)

(
pi

qi

)−αi

exp
(
− qi
pi

)
. (65)

For αi � 1 this is an informative prior, where qi/αi

determines the preferred value. A non-informative prior
would be given by Jeffreys prior with αi = 1 and qi = 0.2

For a linear data model

d = Rs+ n, (66)

with Gaussian noise with covariance N =
〈
nn†

〉
(n)

, the
parameter marginalized effective Hamiltonian is accord-
ing to [11]

H(d, s) ∼=
1
2
s†M s− j†s+

∑
i

γi log
(
qi +

1
2
s†S−1

i s

)
.

(67)
Here M = R†N−1R, j = R†N−1d, γi = αi − 1 + %i/2,
and %i = Tr[S−1

i Si] the number of spectral degrees of
freedom within the band i.

2. Free energy expansion

The internal energy of a Gaussian posterior-ansatz is
then

Ũ(m,D) ∼=
1
2
m†Mm+

1
2

Tr(DM)− j†m

+
∑

i

γi

〈
log
(
qi +

1
2
s†S−1

i s

)〉
(s|m,D)︸ ︷︷ ︸

Ii

.(68)

Again we have to deal with a Gaussian average over a
logarithm, which we expand as

Ii = log(q̃i)−
∞∑

k=1

(−1)k

k (q̃i)k

〈(
qi +

1
2
s†S−1

i s− q̃i

)k
〉
(s|m,D)︸ ︷︷ ︸

IIik

,

with q̃i = qi +
1
2

Tr((mm† + δ D)S−1
i ). (69)

Here we have introduced a parameter δ to be fixed soon.
The first two expansion coefficients are

IIi1 =
1
2

(1− δ)Tr(DS−1
i )

IIi2 = II2i1 + Tr
((

mm† +
1
2
D

)
S−1

i DS−1
i

)
. (70)

2 Since this would result in an improperly normalized prior, we
understand this as αi = 1 + ε, qi = ε, and limε→0 at the end of
the calculation.
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3. Zeroth order solution

To zeroth order we find by minimizing the free energy
while ignoring the II-corrections

m = D j, and

D = T

(
M +

∑
i

p−1
i S−1

i

)−1

. (71)

This means that the map is the Wiener filtered data,
where the spectral coefficients are assumed to be

pi =
q̃i
γi δ

=
1
γi δ

(
qi +

1
2

Tr((mm† + δ D)S−1
i )
)
. (72)

For δ = 0 this yields pi = ∞ and therefore D = M−1

if M is (pseudo)-invertible. The resulting filter provides
a noise weighted deconvolution, however is unable to ex-
trapolate into unobserved regions of the signal space. It
is widely used for map making in the field of cosmic mi-
crowave background observations. For δ = 1 we recover
the critical estimator of [11]. Since there it was shown
that the latter performs significantly better than the for-
mer, and also since IIi1 = 0 and IIi2 is minimal for δ = 1,
we adopt this in the following.

4. Second order correction

Including higher order corrections should improve the
reconstruction. The first order corrections vanish for δ =
1. The second order correction yields

m = D j,

D = T

[
M +

∑
i

γi

q̃i
Xi S

−1
i

]−1

(73)

Xi = 1 +
1
q̃2i

Tr
(

(mm† +
1
2
D)S−1

i DS−1
i

)
− 1
q̃i
S−1

i D.

The propagator can not any more be expressed as D =
(M +

∑
i p

−1
i S−1

i )−1, due to the operator structure of Xi

caused by the S−1
i D term, as was also found in [11].

However, if we can assume that this operator pro-
cesses any channel in the i-th band in a similar way,
we can replace this term by its channel averaged value
Tr(DS−1

i )/%i. This permits to identify spectral coeffi-
cients

pi =
q̃i
γi

[
1−

Tr
(
DS−1

i

)
q̃2i %i

(
qi +

1
2

Tr
(
mm†S−1

i

))]−1

(74)
which reduce to the ones of the zeroth order or criti-
cal filter (72) for vanishing uncertainty D → 0 or broad
spectral bands %i → ∞. In general, the corrected spec-
tral coefficients are higher than the zeroth order ones, as

already found in [11]. For Jeffreys prior we get

pi =
Tr(Bi)
%i

[
1−

2 Tr
(
DS−1

i

)
Tr
(
mm†S−1

i

)
%i (Tr(Bi))

2

]−1

(75)

with Bi = (mm† + D)S−1
i . This is maximal if

Tr
(
DS−1

i

)
= Tr

(
mm†S−1

i

)
= 1

2 Tr(Bi). Thus we con-
clude that

Tr(Bi)
%i

≤ pi ≤
Tr(Bi)
%i − 1

2

(76)

since we expect higher order corrections to have an op-
posite sign.

C. Poisson log-normal distribution with unknown
spectrum

The combined problem, reconstructing a Poisson log-
normal signal with unknown spectrum, can now be
treated approximatively. The combined free energy for
the Gaussian posterior approximation to zeroth order is

G̃(m,D) ≈
∑

i

[
R†

i e
b m+ b2

2 D̂ − di log
(
R†

i e
b m
)]

+
∑

i

γi log
(
qi +

1
2

Tr
(
(mm† +D)S−1

i

))
− T

2
Tr (1 + log(2πD)) . (77)

The resulting map and uncertainty dispersion are pro-
vided by (57) with the addition that S =

∑
i pi Si and

the pis are provided by (72). Higher order corrections can
be included in a similar way as in the individual prob-
lems. Also background counts with known or unknown
covariance structure can be included in the same way
they were treated in Sect. IIIA 5.

IV. INFORMATION SYNTHESIS

A. Multi-temperature posterior

Although the obtained Gaussian knowledge states from
minimal free energy estimation are approximative and
therefore of limited accuracy, they might permit us to
construct more accurate models of the posterior. The
idea is to combine different solutions obtained at different
temperatures T in a more accurate approximation of the
true non-Gaussian posterior probability, and to measure
the mean map and its uncertainty dispersion from this
combination.

To this end we postulate the existence of a temperature
distribution function P(T ), such that

P(s|d) =
∫ ∞

0

dT G(s−m(d,T ), D(d,T ))P(T ) (78)
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combines the different Gaussians with means m(d,T ) and
dispersions D(d,T ) to synthesize the right posterior prob-
ability. A formal proof of the existence of P(T ) is beyond
the scope of this work.

In the following we provide a recipe to construct P(T )
in practice. We assume that mi = m(d,Ti) and Di =
D(d,Ti) have been computed for a number NT of temper-
atures Ti. The temperatures are best chosen to sample
well the different part of the posterior, its peak by having
some Ti � 1, the bulk of the PDF with Ti = 1, and the
PDF tails with Ti � 1.

The surrogate probability function we want to con-
struct, and which should resemble the exact one as closely
as possible, is therefore of the form

P̃(s|d) =
NT∑
i=1

G(s−mi, Di)Pi. (79)

P̃(s|d) should be as close as possible to P(s|d) in an infor-
mation theoretical sense. The natural choice for the dis-
tance measure is the Kullback-Leibler divergence, which
measures the cross-information of P̃(s|d) on P(s|d), and
which is practically identical to the free energy G̃[P̃(s|d)]
of our surrogate posterior according to (32). Introducing
un-normalized probabilities pi as our degrees of freedom,
and setting Pi = pi/Zp with Zp =

∑
j pj in order to

enforce the proper normalization,
∑

i Pi = 1, this reads

G̃(p) =
∑

i

pi

Zp
(Ui − Ũi(p))− F. (80)

We have introduced the here irrelevant, since p-
independent, free energy F = − logZd of the original
problem and the energies Ui and Ũi(p) with respect to
the template distributions Gi(s) = G(s−mi, Di):

Ui = 〈H(d, s)〉Gi
=
∫
Ds Gi(s)H(d, s) and

Ũi(p) =
〈
H̃p(s)

〉
Gi

, with (81)

H̃p(s) = − log(
∑

i

pi Gi(s)/Zp).

B. Minimizing the Gibbs energy

1. Analytical scheme

Now one has to minimize the G̃(p) with respect to p.
The problem to calculate the path integrals defining the
energies was already addressed in this work. A system-
atic way is to Taylor-Fréchet expand the Hamiltonians
around the centers of the Gaussians mi and then use the
known moments of Gi(s) to approximate the energies.
For the surrogate energies this yields up to second order
in φi = s−mi

Ũi(p) = − log gi +
1
2

∑
j

gj i

gi
Tr(D−1

j Di) (82)

+
1
2

∑
j k

gj i

gi

(
gk i

gi
− δjk

)
m†

ijD
−1
j DiD

−1
k mik,

with

gj i = pj Gj(mi)/Zp, and

gi =
Nj∑
j=1

gj i, and (83)

mij = mi −mj .

2. Monte-Carlo scheme

Alternatively, one can approximate the average
〈X[s]〉Gi

of a quantity X[s] by sums over Ni sampling

points {s(j)i }j , which can easily be drawn from Gi(s):

〈X[s]〉Gi
≈
∑

j

X[s(j)i ]/Ni. (84)

This way, G̃(p) can be approximated, and minimized with
a suitable optimization scheme. The sampling points,
their Gaussian probabilities G(j)

k i = Gk(s(j)i ), as well as
the energies Ui need only be calculated once, but the sur-
rogate energies Ui(p) = logZp −

∑
j log(

∑
k pk G(j)

k i )/Ni

have to be updated at any step of the scheme.
One might argue, that if we use stochastic methods

to build P̃(s|d), one could have used a Markov-Chain
Monte-Carlo (MCMC) method right from the beginning
for the signal inference problem. However, we expect that
the here described posterior synthesis method should re-
produce the correct posterior better than a sample point
cloud, since we are using well adapted Gaussians as our
building blocks and not delta functions as the direct
MCMC approach uses. Furthermore, the analytical and
sampling method can be combined, in that the analyti-
cal estimates are combined with the sampling estimates
of the contributions of the neglected terms in the Taylor-
Fréchet expansions of (82). And finally, since our scheme
draws samples from Gaussians, it can be trivially paral-
lelized, which is not easily possible with MCMC schemes.

C. Maps and moments

Once the minimum of the G̃(p) with respect to p is
found, one has synthesized a posterior approximation.
From this, any moment of the distribution function can
easily be calculated. The mean map can be expressed as

m ≈ 〈s〉P̃ (s) =
∑

i

Pi 〈s〉Gi(s)
=
∑

i

Pimi, (85)

as well as the uncertainty dispersion as

D ≈
〈
(s−m) (s−m)†

〉
P̃ (s)

=
∑

i

Pi (Di+mim
†
i )−mm†.

(86)
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We leave the verification and application of the informa-
tion synthesis method for future work.

V. CONCLUSIONS

We have shown that the minimal free Gibbs energy
principle in information field theory can be used to ob-
tain approximate knowledge states with maximal cross-
information to the exact posterior. The construction of
such knowledge states with Gaussian PDF is relatively
straightforward:

1. The joint PDF of signal and data P(d, s) has to
be specified, e.g. by specifying a data likelihood
P(d|s) and signal prior P(s), and using P(d, s) =
P(d|s)P(s).

2. The information HamiltonianH is the negative log-
arithm of this, H(d, s) = − log(P(d, s)).

3. A suitably parametrized PDF as a surrogate for the
posterior has to be specified, e.g. a Gaussian with
its mean and dispersion as degrees of freedom.

4. The internal energy U and entropy SB of this
PDF have to be calculated as the PDF-average of
the Hamiltonian and the negative log-PDF, respec-
tively.

5. The Gibbs free energy, G = U − T SB, has then to
be minimized with respect to all degrees of freedom
of the surrogate PDF.

6. Any statistical summary like mean and variance
can now be extracted from the surrogate PDF.

The minimal free energy principle is therefore well suited
to tackle statistical inference problems. We have demon-

strated this with two different problems and their com-
bination: reconstructing a log-normal field from Poisson
data subject to a point spread function and reconstruc-
tion without prior knowledge on the signal power spec-
trum. Earlier results from renormalization calculations
in [9, 11] have been reproduced. The there used renor-
malization schemes can therefore be understood as aim-
ing for a surrogate Gaussian PDF which has maximal
cross information to the correct posterior. Since these
results were previously shown to reconstruct well, also
the here proposed method for the more complicated com-
bined case can be expected to work. However, a detailed
implementation and verification of this was left for future
work.

Finally we have sketched how Gaussian knowledge
states obtained at different thermodynamical tempera-
tures can be combined into a more accurate representa-
tion of the posterior, from which moments of the signal
uncertainty distributions can easily be extracted.

The minimal Gibbs energy and maximal cross informa-
tion principle introduced here to IFT should allow the
construction of novel reconstruction schemes for statis-
tical inference problems on spatially distributed signals.
The thermodynamical language may help to clarify con-
cepts and to simplify applications of IFT, since it permits
us to tackle non-linear inverse problems without the need
to use diagrammatic perturbation theory and renormal-
ization schemes.
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