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a b s t r a c t

The paper presents quantum mechanical ab initio calculations of transport coefficients of dilute H2 gas,
derived from an empirically corrected ab initio interaction potential used in so-called close-coupled
channel calculations which provided scattering matrices and subsequently differential scattering cross
sections of the elastic and inelastic rotational interactions, for grids of relative kinetic energies sufficient
to obtain converged results of transport coefficients at temperatures up to 300 K. The formalism of the
Waldmann–Snider theory of the Boltzmann equation has been used following previous work in this field.

Results are presented for the pure para- and ortho-H2 gas as well as for their mixtures. Excellent agree-
ment has been found in comparisons with measured results of pure para-H2 gas thus providing proof of
the proper input used in the calculations. The comparison with measured normal H2 transport coeffi-
cients was also successful for the calculated normal H2 shear viscosity (±2%) and the calculated transla-
tional heat conductivity coefficient (±2%). Deviations from experiments of up to �10% have been found
for the total normal H2 heat conductivity in the temperature range between 75 and 225 K.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

As discussed in the famous elaborate textbook on Molecular The-
ory od Gases and Liquids by Hirschfelder et al. [1], the interchange
between the translational and the internal rotational motion in
hydrogen gas is weak because of the weak anisotropic interaction
of the H2–H2 system. It has been shown there that differential cross
sections are the crucial input data for determining the transport
coefficients which enter the Boltzmann equation of this simplest
system of linear molecules, but they were obviously not available
when this book has been written. At about the same time when
the book appeared, Waldmann and Snider [2a,b,3a] have introduced
a generalized Boltzmann equation for particles with degenerate
(rotational) degrees of freedom, the Waldmann–Snider equation,
to describe Senftleben–Beenakker effects of transport coefficients
of polyatomic particles in magnetic fields. A selection of references
in [2c–e,3b–e] gives an overview of the further developed theory.

Following the Waldmann–Snider theory, the transport coeffi-
cients of the dilute hydrogen gas are determined by collision inte-
grals called relaxation coefficients of the Waldmann–Snider
linearized collision operator, and the pertaining cross sections are
the ‘‘relaxation cross sections”. A detailed application of the for-
malism has already been published by Köhler and Schaefer
[4a,b], where the emphasis was on anisotropic transport phenom-

ena of pure parahydrogen gas discussed by using the molecular
scattering amplitude matrix. The rotational relaxation cross sec-
tion, the shear viscosity cross section and the relaxation cross sec-
tions of the translational and rotational heat flux contain the
double trace of the squared scattering amplitude matrix, i.e., as
noted above, only the less voluminous input of differential cross
sections is needed for doing quantum mechanical ab initio calcula-
tions applied to pure para-H2 and ortho-H2 species and their mix-
tures. The attempt of doing this is interesting enough for several
besides general physical reasons: to show how well we can do with
the available tools, especially in calculations of the thermal con-
ductivity coefficients, where several effects contribute, and besides
that, there is a request of preparing data for the modelling of astro-
physical problems in so-called Molecular Clouds, star-forming
regions, together with similar contributions of atomic hydrogen
and Helium replacing one of the H2 molecules.

The interaction potential between the two hydrogen molecules
is the crucial starting input for obtaining reasonable quantitative
agreement of the calculated results with measured quantities like
transport properties discussed here. It has been improved in steps:
starting from an ab initio calculated potential energy surface pro-
vided by Meyer [5a] and included ab initio results of Liu yielding
converged anisotropic spherical expansion terms (in M80), there
has been a need of empirical corrections, especially important for
the calculations presented in this paper: the isotropic term of the
spherical potential expansion has been changed to achieve agree-
ment with low temperature second virial coefficients of para-H2
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gas, by means of a shift of the attractive potential to a slightly
smaller distance, followed by a necessary shift of the anisotropic
potential terms. The successfully tested resulting ‘‘rigid-rotor”
potential version has been published [5b] and again empirically fit-
ted with rather small corrections in the attractive potential region
to reproduce measured hyperfine transitions of the dimers [5c].
This gave the final potential version used in this paper.

The available measurements for tests of the calculated dilute
hydrogen gas transport coefficients are restricted to pure parahy-
drogen and normal hydrogen gas, whereas the preparation of
pure ortho-H2 gas and any gas of fixed ortho–para ratio is rather
difficult or even impossible. Since the formulae of the transport
coefficients are the same for the pure species, we can rely on
the converged ortho-H2 results, when agreement with measure-
ments is confirmed for the para-H2 gas. Comparisons of some nor-
mal hydrogen gas transport coefficients need extra theoretical
expenditure.

Measured rotational relaxation cross sections of parahydrogen
gas [7] have been compared with ab initio calculations [4b] before
the empirical fit of the isotropic potential was done. The new cal-
culations show now results also of the proper shifts of the aniso-
tropic potential terms obtained after this empirical correction. All
the other cross sections of this paper are mainly determined by
elastic interactions of the molecules at different rotational states
which allows experimentalists to complete a restricted number
of measurements within a temperature range and slightly below
and above, by using a fitted isotropic interaction potential applied
in a simple one-channel integration code, a successful method used
e.g. for the interpolations of shear viscosity coefficients.

The paper is ordered as follows: the preparation of the differen-
tial cross sections used as input data sets is briefly described in
Section 2, Section 3 contains formulae and shows calculated results
as well as comparisons with selected measurements of the trans-
port coefficients, each one discussed in a subsection. Results of
the comparisons with experiments are discussed in Section 4.

2. Ab initio calculated input data

A 6-term spherical expansion of the interaction potential of the
H2–H2 system has been used, available after empirical corrections
[5b,c] in form of a rigid-rotor approximation:

VðRij; ri; rjÞ ¼ ð4pÞ3=2
X
l1 l2K

Vl1 l2KðRij; ri; rjÞ
X

m1m2m

Cðl1l2K; m1m2mÞ

� Yl1m1 ðr̂iÞYl2m2 ðr̂jÞY�KmðcRijÞ; ð1Þ

where l1; l2 range up to 2 and ri, rj are confined to the vibrationally
averaged distance of the H2 ground-state (1.449 a.u.). V000 is the iso-
tropic potential term, the leading anisotropic terms V022 and V202

are equal for symmetry reasons, V224 is the important quadru-
pole–quadrupole interaction term and V220 and V222 are small and
less relevant.

The wave function is expanded in a basis of total angular
momentum J eigenfunctions with solutions defined by the initial
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0
2; j
0
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where the Cs are Clebsch–Gordan coefficients, and the Ys are spher-
ical harmonics. The angular part shows the coupling of j1 and j2:

IJM
j1 j2jlðr̂1; r̂2; bRÞ ¼ X

m1m2mml

Cðj1m1; j2m2=jmÞCðjm; lml=JMÞ

� Yj1m1 ðr̂1ÞYj2m2 ðr̂2ÞYlml
ðbRÞ:

The angular momenta are coupled in the order of j1 + j2 ? j, and
j is coupled with the orbital angular momentum l to the total J. The
ms are magnetic quantum numbers.

H2 as well as H2–H2 are Bose systems, i.e., in case of indistin-
guishable H2 molecules in pure ortho-H2 or para-H2 gas the angular
part of the wave function must be symmetrized. Symmetrization of
these pair wave functions is a basic condition of describing hydro-
gen gas properties of the pure hydrogen species. Exchange of the
molecules gives then a new angular wave function

IJMðsÞ
j1 j2jl ¼ ½2ð1þ dj1j2 dv1v2 Þ�

�1=2 IJM
j1 j2 jlðr̂1; r̂2; bRÞh

�ð�1Þj1þj2þjþlIJM
j2j1 jlðr̂1; r̂2; bRÞi; ð3Þ

where + in front of (�1) means symmetric, �means antisymmetric
wave functions. The weights for parahydrogen are one for symmet-
ric and zero for antisymmetric states, for orthohydrogen we have
2/3 for symmetric and 1/3 for antisymmetric states.

The two restricted symmetrized products, one for j1 6 j2 and
the other one for j2 6 j1 are angular wave functions of parahydro-
gen or orthohydrogen free ðj1; j2Þ pairs, both contributing to cross
sections with equal magnitude.

By substituting Eqs. (1)–(3) into the Schrödinger equation

��h2r2
R

2m12
þ H1ðr1Þ þ H2ðr2Þ þ Vðr1; r2;RÞ � E

" #
Wðr1; r2;RÞ ¼ 0; ð4Þ

and using the solutions of the single molecule Hamiltonians

HiðriÞ � Evj
� � 1

ri
vvjðriÞYjmðbriÞ ¼ 0; ð5Þ

to integrate over the internal molecular motion and the angles, a
(schematic) coupled equations system is obtained

d2

dR2 �
lðlþ 1Þ

R2 þ k2
a

" #
f J
a0!aðRÞ ¼ 2l�h�2

X
a00

VJ
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J
a0!a00 ðRÞ; ð6Þ

with

�h2k2
a ¼ 2lðErelkin � ðEa � Ea0 ÞÞ;

Ea ¼ Ej1 þ Ej2 ;

and with the reduced mass l of the system and the potential matrix
element VJ

aa00 [see Ref. [5a], formulae (11) and (12)].
After solving Eq. (6) numerically, the scattering matrices

SJðE;a;a0Þ are computed from the asymptotic f J
a0!aðRÞ vectors and

their derivatives and stored for subsequent calculations.
In our case we need differential cross sections which are calcu-

lated via (space fixed) scattering amplitudes, where the initial
asymptotic collision vector ðbR ¼ ê0Þ is put on the fixed z-axis
yielding
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Summation over the ms of the squared amplitudes gives the dif-
ferential cross section
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Differential cross sections are stored with a mesh of p=360 for
energy grids reaching up to roughly 2000 wavenumbers
(�7000 m/s relative velocity). Since the full temperature range
has been covered from 5 up to 300 K, partial wave expansions for
a sufficient number of energy points (60–80) of each rotational
H2 pair state have been done in the calculations.

The formalism of the transport coefficients uses dimensionless
rotational energies �i ¼ ErotðjiÞ=kBT of the molecule in the rotational
state ji and the energy transfer between the precollisional quantum
numbers j01; j02 and the postcollisional quantum numbers j1; j2 is

D� ¼ �ðj01Þ þ �ðj
0
2Þ � �ðj1Þ � �ðj2Þ ð9Þ

Relative velocities c are used in units of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=l

p
, and the

relation

D� ¼ c02 � c2

is valid because of the conservation of energy.

3. Calculations

3.1. Relaxation times

The rotational relaxation time is connected with the effective
Waldmann–Snider relaxation cross section rð0001Þ by the relation
[4b]

srot ¼ ½nv thrð0001Þ��1
; ð10Þ

where n is the particle number density and v th ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBT=pl

p
is a

thermal velocity.
Different kinds of effective cross sections rð0001Þ have been

evaluated because we have normally partial ortho- and para-H2

contributions to a general H2 gas mixture with known mole frac-
tions xp and xo. Since kinetic theory provides effective Wald-
mann–Snider cross sections for rotational relaxation of infinitely
dilute molecules, the general expression of the effective cross sec-
tion becomes [6]

rð0001ÞðH2Þ ¼ x2
pr
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� �
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þr
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!
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� �
o

: ð11Þ

By using kinetic theory results [4b], we can write for the pure
ortho- and para-H2 contributions, marked with k:

r
0001jk
0001jk

� �
k

¼ 2pkB

crot
k

Z�2
k

X
j1j2 ;j

0
1j02

Z Z
expð��kðj1Þ

� �kðj2Þ�c2Þc2c0 � ðD�Þ2
X
all m

aj1 j2 ; j01 j02
m1m2 ;m01m02

��� ���2 sin#d#dc

ð12Þ

In Eq. (12), Zk is the rotational partition function of the k species,
crot

k =kB is the rotational heat capacity per molecule ð�2
k � �k

2Þ. Only
rotational inelastic interactions contribute.

Results of the calculated cross sections of pure para-H2 and pure
ortho-H2 pairs are shown in Fig. 1, together with reported measure-
ments of Jonkman et al. [7] and Prangsma et al. [8].

The agreement is satisfying in the case of pure para-H2, whereas
measurements by Prangsma et al. [8] applied to gas of enriched
ortho-H2 give only estimates because the effect of the rest of
para-H2 contributing to the sound absorption measurement could
not be analyzed properly. This explanation is reasonable, since
Eq. (12) is valid for both pure species of hydrogen gas and the re-
sult of orthohydrogen is converged as shown in Fig. 1. The two

additional terms of Eq. (11) are obtained from the general formal-
ism [6]:

r
0001jk
0001jk

� �
kl

¼pkB

crot
k

1
ZkZl

X
j1 j2 ;j

0
1 j02

Z Z
expð��kðj1Þ

��lðj2Þ�c2Þc2c0 �ð�kðj01Þ��kðj1ÞÞ
2
X
allm

aj1 j2 ; j01 j02
m1m2 ;m01m02

��� ���2 sin#d#dc;

ð13Þ

where the rotational states of the k species can relax and the states
of the l species are kept fixed. Rotational double transitions in the
mixed pairs have been neglected because their contributions are
rather small up to 300 K. Results are shown in Fig. 1.

Half of the forefactor of Eq. (12) in Eq. (13) is generally ex-
plained by the fact that the two possible symmetrized wave func-
tions-one for j1 6 j2 and the other one for j2 6 j1-contribute in
Eq. (12) with equal magnitude.

The para–para, the mixed, the ortho–ortho and the normal H2

relaxation cross sections are plotted in Table 1. Since the ortho–
ortho H2 cross sections dominate the relaxation of normal hydro-
gen, they are similar in magnitude to the normal H2 cross sections.

The rotational cross section rð0001Þ is also connected with the
bulk (or volume) viscosity by the relation [4b]

gV ¼
crot

k =kB

ðcrot
k =kB þ 3=2Þ2

kBT
1

v thrð0001Þ ; ð14Þ

where kBT stands for p/n. It appears in the Navier–Stokes equation
for compressible fluids applied to shock waves. And a Waldmann–
Snider cross section determining the translational–rotational cou-
pling of the heat conductivity (see below) can also be expressed
with rð0001Þ [4b].

r
1010
1001

� �
¼ 1

3

ffiffiffiffiffiffiffiffiffiffi
5crot

k

2kB

s
rð0001Þ: ð15Þ

3.2. Coefficients of shear viscosity

The shear viscosity coefficient g is essentially determined by the
elastic differential cross sections of the H2 encounters. I may note
again that cross section calculations discussed in the rest of this
paper are mainly determined by the isotropic potential term fitted
to reproduce the second virial coefficients of para-H2 [5b]. The
Waldmann–Snider theory provides again an inverse cross section
determining the shear viscosity [4a]

g ¼ kbT
v th

rð2000Þ�1
: ð16Þ

The resulting cross section for any mixture of para–ortho-H2 gas
is again

rð2000ÞðH2Þ ¼ x2
pr

2000jp
2000jp
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þ xpxo r
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2000jp
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þr
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2000jo

� �
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!
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or
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� �
o
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We use for the pure para- and ortho-H2 gas (marked with k) the
‘‘viscosity cross section” [4a]:

r
2000jk
2000jk

 !
k

¼ 4p
15

1
Z2

k

X
j1 j2 ;j

0
1 j02

Z Z
expð��kðj1Þ
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�
X
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2
j2 sin#d#dc: ð18Þ
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A published formula for the mixed terms (Eq. (2.30) in [6]) can-
not be applied because the results are obviously useless. Instead
we proceed in the same way as in the preceding subsection: The
formula for the mixed terms gets an extra factor 1=2; Z2

k is re-
placed by Zk � Zl; �kðj2Þ is replaced by �lðj2Þ, and the l states are kept
fixed, the k states can relax, yielding

r
2000jk
2000jk

� �
kl

¼ 2p
15

1
ZkZl

X
j1 j2 ;j

0
1 j02

Z Z
expð��kðj1Þ

� �lðj2Þ � c2Þc2c0 � ðc4 þ c04 þ c2c02ð1� 3cos2#ÞÞ

�
X
all m

jaj1 j2 ; j01 j02
m1m2 ;m01m0

2
j2 sin#d#dc: ð19Þ

Calculated results of v th and of the pure and the mixed terms
are plotted in Table 2. I may note that differences between results
of the pure species are rather small and both are in agreement with
measurements [9,10] (see Fig. 2), although one would expect dif-
ferent cross sections because of the different contributions. The dif-
ference between the parahydrogen and the normal hydrogen shear
viscosities should be within the error bars of the measurements
which is �2% (Hanley et al. [10]). Consequently, the sum of the
mixed terms should be very close to twice the results found for
the two pure species. The possibility of gp > gn is discussed below

by showing a comparison with a measurement of Kestin and
Leidenfrost [11] for normal hydrogen at 293.2 K and with measure-
ments of Becker and Stehl [12].

3.3. Coefficients of heat conductivity

The heat flux contains contributions from the translational and
the internal rotational motion of energy and a collisional coupling
between them [4b] written

k ¼ ktr þ krot þ ktr;rot; ð20Þ

Again, the coefficients of the heat conductivity are essentially
determined by elastic differential cross sections and again, these
coefficients are proportional to inverse Waldmann–Snider cross
sections. There are essentially two terms to be calculated, the
translational and the internal rotational coefficient, whereas the
collisional coupling between them will be shown negligible.

The translational heat conductivity is proportional to the in-
verse effective Waldmann–Snider cross section rð1010Þ [4a]:

ktr ¼
5
4

k2
BT

lv th
rð1010Þ�1

; ð21Þ

and there are again four terms determining the cross section of the
mixed gas:

Fig. 1. Calculated relaxation cross sections rð0001Þ for pure and mixed para-H2 and ortho-H2 gas. The bars show comparisons with measurements [7,8].
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rð1010ÞðH2Þ ¼ x2
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The pure para- and ortho-H2 terms are obtained from [4a]:

r
1010jk
1010jk

� �
k

¼ p
15

Z�2
k

X
j1 j2 ;j

0
1 j02

Z Z
expð��kðj1Þ

� �kðj2Þ � c2Þc2c0 �
X
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jaj1 j2 ; j01 j02
m1m2 ;m01m0

2
j2½11ðD�Þ2

þ 8c2c02ð1� cos2 #Þ� sin#d#dc: ð23Þ

Experimental results for a comparison have been derived by
Ditzhuyzen [13] from viscosity measurements, by using the
relation

rð1010Þ ¼ 2
3
rð2000Þ þ 5

18
crot

kB
rð0001Þ ð24Þ

which is valid for small nonsphericity interactions and the pure
hydrogen species. Since rð0001Þ is roughly two to three orders of
magnitude smaller than rð2000Þ, the neglect in Eq. (24) means an
error of <1%. The comparison of measured and calculated results
of Eq. (23) is plotted in Fig. 3.

The published formula for the mixed terms (Eq. (2.24) in [6])
turned out to be useless again and we proceed in the same way
as in the preceding two subsections yielding

Fig. 2. Calculated shear viscosities of the pure para-H2 and ortho-H2 gas agree both with measurements of Coremans et al. [9] and Hanley et al. [10] as shown with 10% error
bars applied to the rð2000Þ cross section.

Fig. 3. Calculated cross sections rð1010Þ of pure para-H2 and ortho-H2 gas. Experimental results with error bars of 10% are used from a collection of Ditzhuyzen [13].
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r
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30
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j2½11ðD�kÞ2

þ 8c2c02ð1� cos2 #Þ� sin#d#dc: ð25Þ

Eq. (24) is now also valid for the mixed terms as shown in
Table 3.

Inelastic differential cross sections contribute very little in the
D� term of Eqs. (23) and (25). We have the same situation as shown
in the preceding subsection: the translational heat conductivities
of the pure and the mixed gases are practically the same.

The rotational heat conductivity is proportional to the inverse
Waldmann–Snider cross section rð1001Þ [4b]:

krot ¼
k2

BT
2lv th

crot
k =kB

rð1001Þ ; ð26Þ

where rð1001Þ is again a sum over four terms:

rð1001ÞðH2Þ ¼ x2
pr
�1001jp

1001jp

	
p
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�1001jp

1001jp

	
po

þ r
�1001jo

1001jo

	
op

 !

þ x2
or
�1001jo

1001jo

	
o

;

ð27Þ

and the first and second term must be divided by crot
p =kB, the third

and fourth term by crot
o =kB.

In case of pure para-H2 or ortho-H2 gas we have [4a]:
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Fig. 4. Calculated cross sections rð1001Þ of pure and mixed H2 pairs in the gas.
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The cross sections of the two pure species are again almost the
same – the difference at 300 K is <3% – and approximately propor-
tional to rð2000Þ over the whole temperature range (see Fig. 4),
although several pairs do not contribute in Eq. (28), as e.g. the pairs
ðj1; j2Þ ¼ ð0;0Þ and (2,2) for para-H2, and (1,1) and (3,3) for ortho-
H2. A successful comparison with experiments (viscosity measure-
ments) has already been published for the case of para-H2 at tem-
peratures up to 200 K [4a].

The cross sections of mixed para–ortho-H2 pairs in the gas can
be obtained by using one of two possible formulae which give
identical results. Formula (a) has been published by Köhler and ’t
Hooft [6]; we use it with a factor 1/2:
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where the l states are again kept fixed and

h�ki0 ¼ Z�1
k

X
j

ð2jþ 1Þ�k:

The four calculated rð1001Þ cross sections are plotted in
Table 4.

The alternative formula (b) of the mixed pairs is again deter-
mined the same way as in the preceding three subsections
yielding
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The internal rotational heat flux for the normal hydrogen gas
contributes the critical part to the comparison of theory and exper-
iment. One reason to be mentioned are the mixed pair cross sec-
tions (see Fig. 4) which differ strongly at the lower temperatures,
e.g. by a factor of 1029 at 5 K, because of the different heat capaci-
ties of para-H2 and ortho-H2 (see the second and third column in
Table 5) which occur in Eqs. (29) and (30).

The coupling term of the translational and the internal rota-
tional heat conductivity is [4b]

ktr;rot ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
5
2

crot
k

kB

s
k2

BT
lv th

r
1010
1001

� �
rð1010Þrð1001Þ

which can be expressed by making use of Eq. (15) yielding

ktr;rot ¼
5
6

k2
BT

lv th

crot
k =kBrð0001Þ

rð1010Þrð1001Þ ð31Þ

where again crot
p =kB has to be multiplied to the first and second term

of the relaxation cross section rð0001Þ in Eq. (11) and crot
o =kB to the

third and fourth term. Now we have all cross sections available to
calculate the three heat conductivity terms for any para–ortho-H2

mixture, for any temperature up to 300 K, and for comparisons with
measurements.

Eqs. (23), (28) and (31) can be tested by comparing results of
the pure para-H2 gas with measurements of Roder and Diller [14]
and of Hanley et al. [10] (see Fig. 5). The agreement is excellent.

Fig. 5. Calculated heat conductivities summed up from the translational ðktrÞ, the internal rotational ðkrotÞ and the collisional coupling term ðktr;rotÞ are plotted vs. temperature.
Comparisons with measurements [10,14] are shown for parahydrogen (left, with error bars of ±2%) and for normal hydrogen (right, with error bars of ±10%).
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Table 1
Ab initio calculated relaxation cross sections rð0001Þ times 102 ðÅ2Þ of para–ortho H2 gas. The columns have to be multiplied with the known mole fractions according to Eq. (11).

T (K) pp po + op oo Normal T (K) pp po + op oo Normal

5 20.958 19.407 8.857 9.931 155 6.146 6.668 3.589 3.653
10 10.447 10.721 4.929 5.436 160 6.360 6.848 3.673 3.748
15 7.434 7.943 3.696 4.033 165 6.581 7.031 3.760 3.844
20 6.087 6.629 3.124 3.381 170 6.808 7.216 3.847 3.943
25 5.352 5.893 2.813 3.022 175 7.039 7.404 3.937 4.043

30 4.905 5.442 2.633 2.808 180 7.273 7.592 4.028 4.144
35 4.618 5.152 2.528 2.676 185 7.510 7.780 4.121 4.246
40 4.426 4.962 2.469 2.596 190 7.748 7.967 4.215 4.349
45 4.296 4.839 2.440 2.548 195 7.986 8.153 4.310 4.452
50 4.210 4.762 2.431 2.523 200 8.222 8.336 4.407 4.555

55 4.155 4.718 2.436 2.515 205 8.456 8.515 4.504 4.659
60 4.124 4.701 2.452 2.519 210 8.686 8.690 4.603 4.762
65 4.112 4.704 2.477 2.532 215 8.912 8.861 4.703 4.864
70 4.117 4.724 2.507 2.554 220 9.132 9.026 4.803 4.965
75 4.137 4.759 2.544 2.582 225 9.345 9.184 4.904 5.065

80 4.170 4.807 2.586 2.617 230 9.552 9.336 5.006 5.163
85 4.217 4.866 2.633 2.657 235 9.749 9.480 5.109 5.260
90 4.277 4.937 2.683 2.702 240 9.939 9.618 5.211 5.356
95 4.349 5.018 2.737 2.752 245 10.119 9.747 5.314 5.449
100 4.434 5.109 2.795 2.807 250 10.289 9.868 5.416 5.540

105 4.531 5.210 2.855 2.866 255 10.449 9.982 5.519 5.629
110 4.641 5.320 2.918 2.929 260 10.599 10.086 5.621 5.715
115 4.764 5.439 2.984 2.996 265 10.739 10.183 5.723 5.800
120 4.898 5.567 3.052 3.067 270 10.868 10.271 5.824 5.881
125 5.045 5.703 3.122 3.141 275 10.987 10.352 5.924 5.960

130 5.203 5.847 3.195 3.219 280 11.096 10.424 6.024 6.036
135 5.372 5.999 3.270 3.300 285 11.195 10.489 6.122 6.110
140 5.551 6.157 3.347 3.384 290 11.285 10.546 6.220 6.181
145 5.740 6.322 3.426 3.471 295 11.365 10.596 6.316 6.250
150 5.939 6.493 3.506 3.561 300 11.436 10.639 6.411 6.315

Table 2
Ab initio calculated relaxation cross sections rð2000Þ ðÅ2Þ of para–ortho-H2 gas. The thermal velocity vth (m/s) is plotted in the second column. The columns have to be multiplied
with the known mole fractions according to Eq. (17).

T (K) v th pp po + op oo T (K) vth pp po + op oo

5 324.2 110.470 223.880 112.860 155 1805.1 20.799 41.565 20.866
10 458.5 65.971 133.472 67.440 160 1833.9 20.662 41.298 20.732
15 561.5 50.060 100.426 50.710 165 1862.4 20.530 41.040 20.605
20 648.4 41.946 83.980 42.346 170 1890.4 20.404 40.794 20.482
25 724.9 37.128 74.294 37.413 175 1918.0 20.282 40.556 20.365

30 794.1 33.962 67.944 34.179 180 1945.2 20.165 40.327 20.251
35 857.7 31.727 63.464 31.898 185 1972.0 20.053 40.104 20.142
40 917.0 30.061 60.124 30.201 190 1998.5 19.944 39.889 20.037
45 972.6 28.769 57.530 28.885 195 2024.6 19.838 39.679 19.935
50 1025.2 27.734 55.448 27.832 200 2050.4 19.737 39.476 19.837

55 1075.2 26.885 53.734 26.968 205 2075.9 19.638 39.278 19.741
60 1123.1 26.173 52.294 26.245 210 2101.0 19.543 39.084 19.648
65 1168.9 25.566 51.064 25.629 215 2125.9 19.450 38.894 19.558
70 1213.0 25.040 49.998 25.096 220 2150.5 19.360 38.709 19.470
75 1255.6 24.579 49.064 24.629 225 2174.8 19.273 38.527 19.385

80 1296.8 24.170 48.237 24.216 230 2198.8 19.188 38.348 19.301
85 1336.7 23.804 47.498 23.847 235 2222.6 19.105 38.172 19.220
90 1375.5 23.472 46.831 23.513 240 2246.1 19.025 37.997 19.141
95 1413.1 23.171 46.227 23.210 245 2269.4 18.946 37.825 19.063
100 1449.9 22.893 45.673 22.932 250 2292.4 18.870 37.654 18.987

105 1485.7 22.637 45.165 22.677 255 2315.2 18.795 37.485 18.913
110 1520.6 22.400 44.694 22.440 260 2337.8 18.722 37.316 18.840
115 1554.8 22.178 44.257 22.220 265 2360.2 18.650 37.148 18.768
120 1588.2 21.970 43.849 22.014 270 2382.4 18.580 36.981 18.698
125 1621.0 21.775 43.466 21.821 275 2404.3 18.511 36.812 18.628

130 1653.1 21.591 43.106 21.639 280 2426.1 18.444 36.645 18.560
135 1684.6 21.416 42.765 21.468 285 2447.6 18.377 36.475 18.493
140 1715.5 21.251 42.443 21.306 290 2469.0 18.311 36.306 18.427
145 1745.9 21.093 42.136 21.152 295 2490.2 18.247 36.135 18.362
150 1775.7 20.943 41.844 21.005 300 2511.2 18.182 35.964 18.298
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Table 3
Ab initio calculated relaxation cross sections rð1010Þ ðÅ2Þ of para–ortho-H2 gas. The columns have to be multiplied with the known mole fractions according to Eq. (22).

T (K) pp po op oo T (K) pp po op oo

5 73.646 74.627 74.627 75.512 155 13.891 13.887 13.844 13.914
10 43.981 44.491 44.491 45.020 160 13.801 13.799 13.754 13.825
15 33.373 33.476 33.476 33.811 165 13.714 13.716 13.668 13.740
20 27.964 27.993 27.993 28.231 170 13.630 10.693 13.584 13.658
25 24.752 24.764 24.764 24.943 175 13.550 13.558 13.504 13.580

30 22.642 22.648 22.648 22.788 180 13.473 13.483 13.426 13.504
35 21.151 21.155 21.155 21.267 185 13.398 13.411 13.350 13.431
40 20.041 20.042 20.042 20.136 190 13.326 13.341 13.277 13.360
45 19.179 19.177 19.177 19.259 195 13.257 13.274 13.206 13.292
50 18.490 18.483 18.483 18.557 200 13.190 13.208 13.136 13.225

55 17.924 17.912 17.911 17.981 205 13.124 13.145 13.068 13.160
60 17.449 17.432 17.431 17.499 210 13.061 13.083 13.001 13.097
65 17.045 17.023 17.021 17.088 215 13.000 13.022 12.936 13.035
70 16.695 16.668 16.666 16.733 220 12.940 12.963 12.871 12.975
75 16.389 16.358 16.354 16.421 225 12.882 12.906 12.808 12.916

80 16.117 16.083 16.078 16.146 230 12.826 12.849 12.745 12.858
85 15.874 15.838 15.831 15.900 235 12.771 12.794 12.683 12.801
90 15.655 15.618 15.609 15.677 240 12.718 12.739 12.622 12.745
95 15.455 15.418 15.406 15.475 245 12.666 12.686 12.561 12.690
100 15.271 15.235 15.222 15.290 250 12.615 12.633 12.500 12.636

105 15.102 15.067 15.052 15.120 255 12.565 12.580 12.439 12.582
110 14.945 14.912 14.894 14.962 260 12.516 12.529 12.379 12.530
115 14.799 14.769 14.748 14.815 265 12.469 12.477 12.319 12.477
120 14.662 14.635 14.611 14.678 270 12.422 12.426 12.258 12.425
125 14.533 14.509 14.483 14.550 275 12.376 12.375 12.198 12.374

130 14.412 14.391 14.362 14.429 280 12.331 12.323 12.137 12.323
135 14.297 14.279 14.248 14.315 285 12.286 12.272 12.076 12.273
140 14.188 14.174 14.139 14.207 290 12.243 12.221 12.014 12.223
145 14.084 14.073 14.036 14.104 295 12.199 12.169 11.952 12.173
150 13.986 13.978 13.938 14.007 300 12.157 12.117 11.889 12.123

Table 4
Ab initio calculated relaxation cross sections rð1001Þ ðÅ2Þ of para–ortho-H2 gas. The columns have to be multiplied with the known mole fractions according to Eq. (27).

T (K) pp po op oo T (K) pp po op oo

5 94.902 47.865 .45E+31 94.976 155 15.437 10.348 51.150 15.388
10 55.094 27.460 .74E+16 55.294 160 15.321 10.520 47.293 15.274
15 40.752 20.218 .78E+11 40.911 165 15.210 10.697 43.925 15.166
20 33.653 16.659 .24E+09 33.784 170 15.104 10.878 40.968 15.062
25 29.489 14.580 .74E+07 29.631 175 15.003 11.061 38.360 14.963

30 26.767 13.226 .72E+06 26.965 180 14.906 11.245 36.050 14.867
35 24.850 12.276 .14E+06 25.118 185 14.813 11.429 33.996 14.776
40 23.424 11.574 .39E+05 23.748 190 14.725 11.611 32.163 14.687
45 22.317 11.034 .15E+05 22.669 195 14.641 11.790 30.522 14.602
50 21.431 10.608 .67E+04 21.780 200 14.560 11.965 29.048 14.519

55 20.701 10.265 3517.20 21.024 205 14.483 12.134 27.721 14.439
60 20.089 9.988 2058.30 20.370 210 14.410 12.297 26.522 14.361
65 19.565 9.764 1307.40 19.798 215 14.340 12.452 25.436 14.285
70 19.110 9.584 885.68 19.294 220 14.274 12.598 24.451 14.211
75 18.710 9.443 631.69 18.848 225 14.210 12.735 23.555 14.139

80 18.355 9.336 469.74 18.451 230 14.150 12.863 22.738 14.069
85 18.036 9.260 361.48 18.095 235 14.092 12.979 21.991 14.000
90 17.748 9.212 286.20 17.777 240 14.037 13.084 21.307 13.933
95 17.485 9.190 232.05 17.489 245 13.985 13.178 20.680 13.867
100 17.244 9.192 191.98 17.228 250 13.935 13.260 20.103 13.802

105 17.021 9.216 161.57 16.990 255 13.887 13.329 19.571 13.738
110 16.815 9.261 137.99 16.773 260 13.841 13.387 19.080 13.675
115 16.623 9.324 119.37 16.573 265 13.796 13.433 18.625 13.613
120 16.443 9.406 104.42 16.388 270 13.753 13.468 18.203 13.552
125 16.274 9.503 92.24 16.216 275 13.711 13.490 17.811 13.491

130 16.115 9.615 82.193 16.056 280 13.670 13.502 17.446 13.431
135 15.965 9.740 73.809 15.906 285 13.630 13.503 17.105 13.371
140 15.823 9.878 66.744 15.765 290 13.590 13.493 16.785 13.311
145 15.688 10.026 60.738 15.632 295 13.550 13.473 16.485 13.251
150 15.559 10.183 55.591 15.507 300 13.510 13.444 16.203 13.192

46 J. Schaefer / Chemical Physics 368 (2010) 38–48



Author's personal copy

The second comparison in Fig. 5 is for normal hydrogen. It
shows good agreement at the lower and the higher temperatures,
but �10% lower theoretical results in the temperature range be-
tween 75 and 225 K. This will be discussed in the next section.

4. Discussions and conclusions

Transport coefficients of pure and mixed ortho- and para-H2 gas
have been calculated by using differential cross sections obtained
from ab initio calculated scattering matrices in so-called close-cou-
pled calculations. The interaction potential used was a ‘‘rigid-
rotor” type with the fixed intra-molecular distance of the vibra-
tionally averaged para-H2 ground-state. We could probably expect
to find small corrections obtained from the elastic differential cross
sections derived from an improved interaction potential, but com-
parisons of theory and experiments shown in the paper don’t indi-
cate missing potential corrections up to 300 K.

The calculated relaxation cross section rð0001Þ of parahydro-
gen shows about the same agreement with measurements [7] as
in the previous comparison [4b], though considerable improve-
ments of the interaction potential have still been included. Since
the results obtained for ortho-H2 gas are derived from the same for-
mula and convergence with regard to contributions has been
shown, the same validity of the relaxation cross section can also
be claimed for this hydrogen species. Similar accuracy has been
provided for the results of the mixed terms of rð0001Þ.

It is worth showing that calculated results of the shear viscosity
coefficient determined by the rð2000Þ cross section are approxi-
mately the same for all kinds of para–ortho-H2 gas mixtures over
the whole temperature range, within the limits of numerical errors
and in agreement with measurements applied to parahydrogen
gas. This is amazing. One could expect something different because

of the different contributions to the converged cross sections (see
Fig. 2). The numerical errors of the ab initio calculations are cer-
tainly of the order of J1%, rotational inelastic contributions to
the rð2000Þ cross section have been found of the order of <0.1%.

The possibility of obtaining a difference between para-H2 and
normal H2 shear viscosities may be discussed in comparisons with
measurements of Coremans et al. [9], Hanley et al. [10], Kestin and
Leidenfrost [11] and Becker and Stehl [12]. Becker and Stehl re-
ported a relative difference of � 10�3 at 90 K, with gp > gn. This
is below the numerical errors of the calculations and even below
the uncertainty of the other measurements: Coremans et al. re-
ported 35:9 lP, Hanley et al. 35:62 lP at 80 K; the calculations give
35:24 lP for para-H2, 35.31 lP for ortho-H2 and 35:23 lP for nor-
mal H2. Another comparison uses the measured 88:73 lP for the
normal gas at 293 K by Kestin and Leidenfrost [11]. Interpolations
in Table 2 give 89.21 lP for para-H2, 88:77 lP for ortho-H2 and
89:22 lP for normal H2 with �0.5% deviation from experiment.

About the same agreement with experiments has been found
for the translational heat conductivities resulting from Eqs. (23)
and (25). Again the results of the pure hydrogen species and the
mixtures are essentially the same, although different contributions
are summed up as shown in Fig. 3. The rotational heat conductiv-
ities of the pure gases are also quite similar and in excellent agree-
ment with experiment as shown previously for the pure para-H2

gas [4a]. These agreements result from the relationships to the
shear viscosity.

Measurements of the combined translational and rotational
relaxation of the heat flux as obtained by Roder and Diller [14]
and again by Hanley et al. [10] could be used for a successful test
in the case of pure parahydrogen and a less successful comparison
of experiment and theory in the case of normal hydrogen. The lat-
ter is the only case of missing agreement of the calculated cross
sections with measurements. As to the details shown in Fig. 5:

Table 5
Heat capacities of para- and ortho-H2 (2 and 3 column) as used in the calculations and the ab initio calculated heat conductivity coefficients (mW/cm K) of para-H2 (4 column) and
normal H2 gas (5 column).

T (K) crot
p =kB crot

o =kB kpp kn T (K) crot
p =kB crot

o =kB kpp kn

5 .267E�39 .285E�68 .0298 .0293 155 1.44827 .29219 1.3432 .9569
10 .931E�18 .345E�32 .0707 .0694 160 1.46066 .32402 1.3783 .9899
15 .996E�11 .259E�20 .1140 .1131 165 1.46669 .35621 1.4111 1.0235
20 .275E�07 .189E�14 .1571 .1562 170 1.46718 .38853 1.4420 1.0579
25 .288E�05 .565E�11 .1985 .1976 175 1.46296 .42074 1.4708 1.0923

30 .600E�04 .109E�08 .2377 .2368 180 1.45481 .45266 1.4978 1.1273
35 .500E�03 .449E�07 .2749 .2740 185 1.44343 .48410 1.5234 1.1624
40 .236E�02 .702E�06 .3104 .3093 190 1.42950 .51490 1.5475 1.1977
45 .770E�02 .579E�05 .3446 .3429 195 1.41360 .54493 1.5703 1.2329
50 .194E�01 .307E�04 .3783 .3751 200 1.39624 .57406 1.5922 1.2680

55 .404E�01 .118E�03 .4123 .4060 205 1.37788 .60221 1.6132 1.3029
60 .734E�01 .356E�03 .4474 .4357 210 1.35891 .62929 1.6334 1.3374
65 .120E+00 .895E�03 .4843 .4644 215 1.33966 .65524 1.6529 1.3717
70 .181E+00 .195E�02 .5237 .4922 220 1.32039 .68004 1.6720 1.4054
75 .255E+00 .380E�02 .5658 .5192 225 1.30133 .70364 1.6907 1.4388

80 .34062 .00675 .6108 .5455 230 1.28267 .72604 1.7089 1.4716
85 .43563 .01113 .6586 .5712 235 1.26455 .74724 1.7271 1.5040
90 .53705 .01725 .7088 .5966 240 1.24708 .76724 1.7450 1.5359
95 .64188 .02536 .7610 .6217 245 1.23033 .78606 1.7628 1.5672
100 .74716 .03569 .8146 .6468 250 1.21437 .80374 1.7806 1.5981

105 .85016 .04837 .8689 .6719 255 1.19923 .82029 1.7984 1.6286
110 .94852 .06349 .9233 .6973 260 1.18493 .83577 1.8162 1.6586
115 1.04030 .08105 .9773 .7232 265 1.17148 .85021 1.8340 1.6882
120 1.12405 .10098 1.0301 .7496 270 1.15886 .86365 1.8520 1.7175
125 1.19876 .12317 1.0815 .7766 275 1.14708 .87614 1.8701 1.7464

130 1.26385 .14744 1.1310 .8045 280 1.13609 .88773 1.8882 1.7750
135 1.31914 .17360 1.1783 .8332 285 1.12588 .89847 1.9067 1.8034
140 1.36475 .20142 1.2232 .8628 290 1.11641 .90840 1.9251 1.8315
145 1.40106 .23063 1.2657 .8934 295 1.10765 .91758 1.9439 1.8595
150 1.42867 .26097 1.3056 .9247 300 1.09956 .92605 1.9628 1.8873

J. Schaefer / Chemical Physics 368 (2010) 38–48 47



Author's personal copy

we have practically the same translational parts for the pure para-
hydrogen and the normal hydrogen gas, and the contributions
from the pure pairs to the rotational term are also practically the
same as shown in Fig. 4. The critical quantities are the remaining
mixed terms of the rotational heat conductivity. The essential
and most sensitive quantities in the two mixed cross sections are
the heat capacities of para- and ortho-H2. All the other contribu-
tions to krot have also been used quite successfully in the calculated
shear viscosities and in the translational heat conductivity cross
sections. I may claim from that validity also for the calculated total
heat flux of normal hydrogen in the temperature range between 75
and 225 K, in contrast to the analysis of the measurements.
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