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S-pro
ess elements in extremely metal-poor stars
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s, Mi
higan State University, East Lansing, MI 48824, USAABSTRACTWe present preliminary results for estimation of barium ([Ba/Fe℄) and strontium ([Sr/Fe℄) abundan
esratios using medium-resolution spe
tra (1-2 Å). We established a 
alibration between the abundan
eratios and line indi
es for Ba and Sr, using multiple regression and arti�
ial neural network te
hniques.A 
omparison between the two te
hniques (showing the advantage of the latter), as well as a dis
ussionof future work, is presented.1 Introdu
tionMetal-poor stars (hereafter, MPS), de�ned as stars with less than 1/10th of the solar iron abundan
e ([Fe/H℄ < −1.0 ), are important for understanding the 
hemi
al enri
hment of the early Galaxy. However,the full range of nu
leosyntheti
 pathways for the produ
tion of the heaviest elements in su
h stars isstill not fully understood. Additional information on abundan
e patterns are needed in order to provide
lues and 
onstraints on the nature of element produ
tion for the �rst generations of stars.Many studies of MPS have been 
arried out in the last de
ades, making available abundan
e patternsfor stars with metalli
ities down to almost [Fe/H℄= −6 (Frebel et al. 2008). However, a large fra
tionof these studies only provide abundan
e values for elements lighter than iron. Among su
h studies, thewide-angle spe
tros
opy surveys, su
h as the HK survey (Beers et al. 1985, 1992; Beers et al. 1999),have performed an important role in the identi�
ation of numerous low metalli
ity stars. The aim of thepresent proje
t is to go one step further and �nd a method to identify s-pro
ess-element enhan
ed MPS,using the available medium-resolution spe
tros
opy data, and 
reate a pre-sele
ted sample for detailedinvestigation at higher spe
tros
opi
 resolution.Here we present preliminary results involving two methods for estimation of barium ([Ba/Fe℄) andstrontium ([Sr/Fe℄) abundan
es ratios, dis
uss the di�
ulties en
ountered, and future developments.
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Figure 1: The metalli
ity distribution fun
tion of our 
alibration sample.2 Data SamplesOur 
alibration data were sele
ted from the library of medium resolution spe
tra obtained during theHK (Beers et al. 1985, 1992; Beers et al. 1999) and Hamburg/ESO (Christlieb 2003) surveys with[Fe/H℄< −1.0, and with Ba and Sr abundan
es ratios already estimated by previous high-resolutionstudies. Their metalli
ity distribution (derived from the high-resolution spe
tra) is shown in Figure (1).We have about 100 spe
tra with resolution between 1-2 Å.We performed an extensive sear
h for reported abundan
e ratio values for [Ba/Fe℄ and [Sr/Fe℄ in theavailable literature. Sin
e we found di�eren
es from author to author as high as ∼ 0.2 dex, we de
idedto adopt a simple set of sele
tion 
riteria for the adopted abundan
es ratios instead of averaging all thevalues found for a single obje
t, in hopes to de
reasing the overall errors.The following 
riteria were applied to the literature sample:
• More re
ent values - from the nineties (late nineties were preferred) up to the present;
• LTE values;
• Highest S/N and resolving power.Line indi
es for barium and strontium, as de�ned in Table (1) and Figure (2), the Beers et al. 1999line index (KP) for the CaII K line, and the 2MASS1 (Skrutskie et al. 2006) near-IR 
olors (J − K)0,were required for the appli
ation of our methods.Table 1: Index de�nitionsBands Ba SrBlue Sideband 4536-4540 4068-4072Line Band 4551-4557 4073-4081Red Sideband 4558-4562 4087-4093Our program data 
ontains about 35000 stars from the Sloan Digital Sky Survey2 Data Release 5(SDSS; Gunn et al. 1998; York et al. 2000; Adelman-M
Carthy et al. 2007). These stars were previouslysele
ted by metalli
ity, using the values of [Fe/H℄ reported by the SDSS/SEGUE spe
tros
opi
 pipeline(Lee et al. 2008a,b; Allende Prieto et al. 2008), have resolving power about R = 2000, and 
over thewavelength range 3800 - 9200 Å.1Two Mi
ron All Sky Survey2http://www.sdss.org/ 2
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Figure 2: De�nition of the indi
es Ba (top panel) and Sr (bottom panel) in the star LP 625-44. Red boxes arethe sidebands and bla
k box is the line band.3 CalibrationThe line indi
es were measured using the LECTOR program by Vazdekis (Vazdekis et al. 2003), as wellas our own 
ode. Figure (3) shows a 
omparison between the two di�erent methods. The agreementbetween the two 
odes is quite good, even for the Sr index whi
h presents a larger s
atter. This largers
atter for the Sr index 
ould be explained by two e�e
ts: a) The signal-to-noise ratio in this part ofthe spe
trum � A

ording to Cayrel 1988 the un
ertainty in the index is inversely proportional to theS/N ratio thus, the smaller S/N in the Sr lo
ation in
reases the errors; b) The 
ontinuum pla
ement �The Sr index band is 
loser to a strong absorption line, whi
h implies more di�
ulties in the 
ontinuumdetermination. Therefore, the di�erent pro
edures to estimate the 
ontinuum by our and Vazdekis 
odes
ould also 
ontribute to the s
atter. A quantitative analysis of the errors introdu
ed by 
ontinuumdetermination 
an be seen in Stetson & Pan
ino 2008.Two di�erent pro
edures were used to perform the 
alibration � multiple regression and appli
ationof an arti�
ial neural network (ANN), as des
ribed below.
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Figure 3: Comparison between the line indi
es measured with LECTOR and our 
ode.3.1 Multiple RegressionWe have obtained the abundan
e ratio [X/Fe℄, where X represents barium or strontium, as a fun
tionof log10(X), log10(KP ) and (J − K)0. The regression expressions for barium and strontium are shownbelow: 3



[Ba/Fe] = 7.34(0.02) + 4.37(0.02)log10(Ba)

−3.71(0.03)log10(KP )

−3.15(0.05)(J − K)o. (1)
[Sr/Fe] = 4.59(0.05) + 1.96(0.05)log10(Sr)

+0.04(0.09)log10(KP )

−6.24(0.01)(J − K)o, (2)where the values in parenthesis are the one sigma errors in the determination of ea
h 
oe�
ient.The standard deviation for the 
alibration values are about 0.4 dex and 1.1 dex for barium andstrontium, respe
tively. Therefore, this method is not reliable to measure the strontium abundan
eratios, at least by 
onsidering the present data. Figure (4) shows the residual values for [Ba/Fe℄ as afun
tion of the adopted literature values.

Figure 4: Distribution of the residual of the estimated [Ba/Fe℄ by regression, as 
ompared to the adoptedliterature values. The green line represents the mean value of the residual and the pink lines are the 1σ lines.4 Arti�
ial Neural NetworksArti�
ial neural networks (hereafter, ANNs) are playing an in
reasingly important role in the analysis oflarge astronomi
al databases. This te
hnique 
an be used to �nd patterns, as well as make predi
tions(similar to regression). In the latter 
ase, the main advantage over simple regression is the possibility forallowing non-linear intera
tions of the predi
tor variables, whi
h 
an 
hange over the parameter spa
e,in addition to the rapid training and retraining.For appli
ation of the ANN pro
edure, we have used the same input as in the regression 
ase, e. g., (Y,
X1, X2, X3) = ([X/Fe℄, log10(X), log10(KP ), (J −K)0). Sin
e we are 
ondu
ting a supervised learningexer
ise, we applied the ba
k-propagation algorithm whi
h propagates ba
kwards the error derivative ofthe weights, adjusting the weights in order to minimize the �nal errors of determination. About 80 %of the 
alibration sample were used as a training set, setting aside 20 % as a testing set, in a networkwith 2 layers and 10 nodes. In order to 
he
k the ANN's stability, we have used 10 di�erent training andtesting subsets.Figures (5) and (6) show the results for the ANN 
alibration. It is 
lear that 
onsiderable improve-ment has been a
hieved, even for the Sr abundan
es, in the determination of abundan
e ratios pro
ess.However, there are still problems to be solved in the Sr 
alibration. As 
an be seen in the residual plot,there is a small trend with 10% - 20% error asso
iated (not 
onsidering the outlier in the upper left).4



Sin
e there is no trend when the residual is plotted versus the predi
tor variables (Sr, KP and (J −K)0)and versus the 
al
ulated values (see Figures (7) and (8)), it is believed that a more homogeneous sample
ould help solve this problem.The standard deviation for these 
alibrations are 0.16 dex and 0.21 dex for Ba and Sr, respe
tively.

Figure 5: Distribution of the residual of the estimated [Ba/Fe℄ by ANN, as 
ompared to the adopted literaturevalues. The green line represents the mean value of the residual and the pink lines are the 1σ lines.

Figure 6: Distribution of the residual of the estimated [Sr/Fe℄, as 
ompared to the adopted literature values.The green line represents the mean value of the residual and the pink lines are the 1σ lines.The primary di�
ulty in performing su
h 
alibrations is related to the gaps in the abundan
e spa
e.As 
an be seen in Figures (9) and (10), the distributions of stars, a

ording to barium and strontiumabundan
e ratios, does not �ll the entire parameter spa
e. In parti
ular, the Sr abundan
es fall mostlyin the range −0.5 ≤ [Sr/Fe] ≤ 0.5. This is parti
ularly important for the ANN approa
h, whi
h is notsuitable for extrapolation.After 
onsidering these limitations, we have applied only the ANN method to the program stars.The [Ba/Fe℄ and the [Sr/Fe℄ distributions for 
alibration stars 
an be seen in Figures (9) and (10). Itappears possible to identify Ba-enhan
ed stars from medium-resolution data alone, with a

ura
y thatapproa
hes that of high-resolution investigations. Our next goal is to in
rease the 
alibration sample.There are about 100 additional stars whose Ba and Sr abundan
es have already estimated using high-resolution spe
tros
opy data by di�erent groups, but whi
h la
k medium-resolution spe
tros
opy. Therequired follow-up of the same obje
ts with medium-resolution (R ∼ 2000) spe
tros
opy is now underway.Appli
ation of the re�ned estimation pro
edure to the program stars will appear in a forth
oming paper.5
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Figure 7: Distribution of the residual of the estimated [Sr/Fe℄ as a fun
tion of the predi
tor variables Sr (toppanel) and KP (bottom panel).
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Figure 8: Distribution of the residual of the estimated [Sr/Fe℄ as a fun
tion of the predi
tor variable (J − K)0(top panel) and as fun
tion of the 
al
ulated values (bottom panel).
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Figure 9: [Ba/Fe℄ distribution for the 
alibration sample.6
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Figure 10: [Sr/Fe℄ distribution for the 
alibration sample.A
knowledgmentsMAC would like to a
knowledge the LOC and the Max-Plan
k-institut für Astrophysik for makingpossible her attendan
e at the workshop. MAC and SR thank the partial support from FAPESP, CNPq,and Capes. TCB a
knowledges support from the US National S
ien
e Foundation under grants AST04-06784 and AST 07-07776, as well as from grants PHY 02-16783 and PHY 08-22648; Physi
s FrontierCenter/Joint Institute for Nu
lear Astrophysi
s (JINA).Referen
es[Adelman(2007)Adelman et al.℄ Adelman-M
Carthy, et al. 2007, ApJS, 172, 634.[AllendePrieto(2008)AllendePrieto et al.℄ Allende Prieto, C., et al. 2008, AJ, 136, 2070.[Beers, Preston & She
tman(1985)Beers et al.℄ Beers, T. C., Preston, G., She
tman, S. 1985, AJ, 90,2089.[Beers, Preston & She
tman(1992)Beers et al.℄ Beers, T. C., Preston, G. W., She
tman, S. 1992, AJ,103, 1987.[Beers, Rossi, Norris, Ryan, She�er(1999)Beers et al.℄ Beers, T. C., Rossi, S., Norris, J. E., Ryan, S.G., She�er, T. 1999, AJ, 117, 981.[Cayrel(1988)Cayrel℄ Cayrel, R. 1988, IAU Symp. 132, The Impa
t on Very High S/N Spe
tros
opy onStellar Physi
s ed. G. Cayrel de Strobal & M. Spite (Dordre
ht Kluwer), 345C.[Christlieb(2003)Christlieb℄ Christlieb, N. 2003, Rev. Mod. Astron., 16, 191.[Frebel, Collet, Eriksson, Christlieb & Aoki(2008)Frebel et al.℄ Frebel, A., Collet, R., Eriksson, K.,Christlieb, N., Aoki, W. 2008, ApJ, 684, 588.[Gunn(1998)Gunnet al℄ Gunn, J. E., et al. 1998, AJ, 116, 3040.[Lee(2008)Lee et al.℄ Lee, Y.S., et al. 2008a, AJ, 136, 2022.[Lee(2008)Lee et al.℄ Lee, Y.S., et al. 2008b, AJ, 136, 2050.[Stetson & Pan
ino(2008)Stetson et al.℄ Stetson, P., B., Pan
ino, E. 2008, PASP, 120, 1332S.[Skrutskie, Cutri(2206)Skrutskie et al.℄ Skrutskie, M. F., et al. 2006, AJ, 131, 1163.[Vazdekis, Cenarro, Gorgas, Cardiel & Peletir(2003)Vazdekis et al.℄ Vazdekis, A., Cenarro, A. J., Gor-gas, J., Cardiel, N., Peletier, R. F. 2003, MNRAS,340,1317.[York(2000)York et al.℄ York, D. G.,et al. 2000, AJ, 120, 1579.7


	Introduction
	Data Samples
	Calibration
	Multiple Regression

	Artificial Neural Networks

