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ABSTRACT

In the framework of particle-based Vlasov systems, this paper reviews and analyses
different methods recently proposed in the literature to identify neighbours in six
dimensional space (6D) and estimate the corresponding phase-space density. Specif-
ically, it compares Smooth Particle Hydrodynamics (SPH) methods based on tree
partitioning to 6D Delaunay tessellation. This comparison is carried out on statical
and dynamical realisations of single halo profiles, paying particular attention to the
unknown scaling, SG, used to relate the spatial dimensions to the velocity dimensions.

It is found that, in practice, the methods with local adaptive metric provide the
best phase-space estimators. They make use of a Shannon entropy criterion combined
with a binary tree partitioning and with subsequent SPH interpolation using 10 to 40
nearest neighbours. We note that the local scaling SL implemented by such methods,
which enforces local isotropy of the distribution function, can vary by about one order
of magnitude in different regions within the system. It presents a bimodal distribution,
in which one component is dominated by the main part of the halo and the other one
is dominated by the substructures of the halo.

While potentially better than SPH techniques, since it yields an optimal estimate
of the local softening volume (and therefore the local number of neighbours required to
perform the interpolation), the Delaunay tessellation in fact generally poorly estimates
the phase-space distribution function. Indeed, it requires, prior to its implementation,
the choice of a global scaling SG. We propose two simple but efficient methods to
estimate SG that yield a good global compromise. However, the Delaunay interpolation
still remains quite sensitive to local anisotropies in the distribution.

To emphasise the advantages of 6D analysis versus traditional 3D analysis, we
also compare realistic six dimensional phase-space density estimation with the proxy
proposed earlier in the literature, Q = ρ/σ3, where ρ is the local three dimensional
(projected) density and 3σ2 is the local three dimensional velocity dispersion. We show
that Q only corresponds to a rough approximation of the true phase-space density,
and is not able to capture all the details of the distribution in phase-space, ignoring,
in particular, filamentation and tidal streams.

Key words: methods: data analysis, methods: numerical, galaxies: haloes, galaxies:
structure, cosmology: dark matter

1 INTRODUCTION

There are many methods to analyse dark matter
haloes structures. A standard approach involves inves-
tigating spherically averaged density profiles, such as
the Hernquist profile (Hernquist 1990), the NFW pro-

⋆ E-mail: maciejewski.michal@gmail.com (MM); colombi@iap.fr
(SC); alard@iap.fr (CA); bouchet@iap.fr (FB); pichon@iap.fr
(CP)

file (Navarro, Frenk and White 1997), the Moore profile
(Moore et al. 1998; Moore et al. 1999) and the Stoehr pro-
file (Stoehr 2006). More sophisticated methods devel-
oped recently involve different elliptical density profiles
(Jing & Suto 2002; Hayashi et al. 2007). An other alterna-
tive consists of analysing velocity profiles, e.g., Romano-Diaz
& van de Weygaert (2007), for a review.

Other investigations look in more details at halo detec-
tion as well as their internal substructures, the subhaloes.
They usually use a two steps procedure: they first find haloes

http://arXiv.org/abs/0810.0504v1
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and substructures in position space, then use velocity infor-
mation to apply binding criteria. Many such schemes are
found in the literature, the simplest being the Friend-Of-
Friend (FOF) algorithm (Huchra & Geller 1982). More ad-
vanced methods rely for instance on the SKID algorithm
(Stadel 2001) or on SUBFIND (Springel et al. 2001).

However, thanks to increased computational power,
it now becomes possible to perform more detailed analy-
ses that combine simultaneously velocity and position in-
formation. Indeed, modern simulations now reach enough
resolution to identify structures and substructures in the
full, six dimensional phase-space. Recent investigations
in this topic studied phase-space dark matter profiles
(Taylor & Navarro 2001), phase-space density estimation by
using six dimensional Delaunay Tessellation (SHESHDEL)
(Arad et al. 2004), or by using binary tree methods with
smoothing (FiEstAS) (Ascasibar & Binney 2004), and a va-
riety of different binary tree and six dimensional SPH
methods with local adaptive metric in the EnBiD package
(Sharma & Steinmetz 2006).

Two noticeable results were derived within these in-
vestigations: the measurement of a universal logarithmic
slope for the phase-space density f as a function of radius
r, f(r) ∼ r−α, with α ∼ 1.875 (Taylor & Navarro 2001),
and the observation of a universal profile for the phase-
space volume occupation function, v(f) ∝ f−2.5±0.05

(Arad et al. 2004; Ascasibar & Binney 2004).
These results depend on the quality of the phase-space

density estimators, a topic to which we devote this paper.
We carefully analyse and cross compare the SHESHDEL,
FiEstAS and EnBiD estimators.

This paper is organised as follows. Section 2 describes
the various generic1 phase-space estimators and the corre-
sponding concepts. We pay particular attention to the issue
of the unknown scaling, SG, which relates position coordi-
nates and velocity coordinates prior to the phase-space dis-
tribution function measurement. In Section 3 we test the
phase-space estimators in three realisations of a halo pro-
file: (i) a pure Hernquist isotropic halo, (ii) a composite
Hernquist halo (a main Hernquist component with Hern-
quist subhaloes) and (iii) a halo extracted from a standard
Cold Dark Matter (CDM) cosmological simulation. To have
a better understanding of the results, more thorough analy-
ses are performed in Section 4 focusing on (i) the local num-
ber of neighbours built by the Delaunay tessellation and on
(ii) the local scaling between positions and velocities given
by the adaptive metric of EnBiD. Section 5 shows the ad-
vantages of full phase-space analysis, with respect to more
classical approaches such as the proxy Q = ρ/σ3. Finally,
Section 6 wraps up.

2 PHASE-SPACE DENSITY ESTIMATION

There are a few common approaches to measure six dimen-
sional phase-space density, f(x,v), for unrelaxed systems.

A straightforward method involves dividing phase-space
into a Cartesian grid and approximating phase-space density
by counting particles in each bin. While this clearly works

1 i.e. applicable to systems without specific symmetries.

quite well in three-dimensional space, it starts to be prob-
lematic in six dimensions. Even if we choose a poor quality
resolution, e.g. 100 bins along each axis, we get in the end
a very large number of cells, e.g. 1012, and, for modern sim-
ulations with e.g. 107 particles, almost all the cells will be
empty. This basic example shows that for improved phase-
space estimation, one needs to go well beyond the naive
binning algorithm. Notice as well that to achieve a level of
detail in phase-space comparable to what is usually obtained
in position space, one needs a simulation with an extremely
large number of particles.

A more sophisticated, frequently used method for den-
sity estimation in position space, uses smoothing with k
nearest neighbours found with standard tree techniques; it
can be easily generalised to the six dimensional case. Assum-
ing for the sake of simplicity that all particles have the same
mass mp, if, for each particle, k neighbours are enclosed in
a six dimensional ball of volume V6, then the local phase-
space density can for instance be measured with the simple
following estimator, mpk/V6, which corresponds to a top hat
kernel. In practice, more sophisticated kernels are used, i.e.
each neighbour contributes to the measured density with a
weight defined by a smooth function, usually a Smooth Par-
ticle Hydrodynamics (SPH) kernel. This kind of algorithm
was proposed for phase-space density estimation by Sharma
and Steinmetz (2006) (hereafter S06). It however requires
the proper set up of a metric in six-dimensional space (ve-
locity/position scaling).

In this paper we investigate more accurate algorithms
developed recently in the literature, including improvements
of the above SPH technique.

The first method, discussed in § 2.1, relies on six di-
mensional Delaunay tessellation (Arad et al., 2004; here-
after Arad04). The big advantage of this method is that
it is parameter free, fully adaptive, while each particle has
a natural neighbourhood. In practice, however, the De-
launay tessellation needs some additional smoothing. It is
also very time and memory consuming (Arad et al. 2004;
Weygaert & Shaap 2007). It requires, similarly as the
straightforward SPH method just mentioned above, a proper
set up of a metric in six-dimensional space.

The second group of algorithms was proposed by As-
casibar & Binney (2004, hereafter A04) and improved by
S06. The first step of their method, detailed in § 2.2, is sim-
ple and robust. Space is divided with the help of a binary
tree into disjoint hyperboxes with one particle in each leaf
node. Since each particle is in one hyperbox with volume
V , its local phase-space density could be directly estimated
from the equation f = mp/V . Yet the phase-space density
derived from this estimator is quite noisy: it is almost im-
possible to use it for practical purposes. Hence additional
steps were proposed to make it useful. First, the binary tree
may be improved with the help of a Shannon entropy cri-
terion combined with boundary particles correction (S06).
Secondly, some additional smoothing should be performed.
There are few options to do so, as proposed by A04 and S06
and described in § 2.3, ranging from (a) a hyperbox smooth-
ing following the philosophy of the SPH method, (b) a SPH
method with a local adaptive metric, to (c) anisotropic SPH
methods. The main advantage of this type of algorithm com-
pared to the tessellation methods is time and memory con-
sumption.
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Table 1. The various 6D estimators tested in this paper

The estimator name Description

SPH Smoothing with spherical Epanechikov kernel using N neighbours, global scaling

SPH-AM Smoothing with spherical Epanechikov kernel using N neighbours, local adaptive metric

ASPH-AM Anisotropic smoothing with ellipsoidal Epanechikov kernel, using N neighbours, local adaptive metric

FiEstAS Smoothing with the hyperbox kernel, local adaptive metric

DTFE Estimation from the Delaunay tessellation (equation 2), global scaling

smooth DTFE Estimation from the Delaunay tessellation with spherical smoothing (equation 8), global scaling

In the next sections, we describe each of these methods
in turn and follow with a detailed discussion on the issue
of position/velocity scaling (§ 2.4). The reader may refer to
Table 1 and to the summary in § 6, if needed.

2.1 The Delaunay Tessellation

The idea of using a Delaunay tessellation was primarily im-
plemented to estimate density and velocity fields in cos-
mological simulations (Bernardeau & van de Weygart 1996;
Schaap & van de Weygaert 2003). The corresponding algo-
rithm, called the Delaunay Tessellation Field Estimator
(DTFE), was also used to demonstrate the advantages of
the tessellation over SPH methods (Pelupessy et al. 2003).
In particular, the DTFE method better captures the abrupt
transitions between regions of different densities and pro-
vides a better estimate for high densities.

The main parts of the DTFE algorithm were used by
Arad04 to develop their six dimensional phase-space density
estimator called SHESHDEL. Beside the position-velocity
scaling problem that is addressed in § 2.4 and in § 4.2,
the method itself is parameter free and presents well be-
haved statistical properties. Its main disadvantage is that it
is computationally costly, although it scales like N1.1 log N
(Arad, in preparation), where N is the number of particles:
the construction of a Delaunay tessellation of approximately
N ∼ 106 particles requires almost three days of calculation
on a modern computer and the full output of 109 Delaunay
cells amount to 40 GB of data in the end.

From a 6D Delaunay tessellation, it is easy to esti-
mate the phase-space density, f(x,v). Space is indeed par-
titioned into joint but non overlapping 6-dimensional poly-
hedrons - Delaunay cells, each one defined by 7 vertices.
There is an unique 6 dimensional sphere passing through
these 7 vertices, which by definition of the tessellation, does
not encompass any other particle from the sample. Let
{D1

i , D2
i , ..., DNi

i } be the Ni Delaunay cells around parti-
cle i. We can define a macro Voronoi cell Wi by joining all
Delaunay cells containing particle i:

Wi =
⋃

j=1,...,Ni

Dj
i . (1)

Then it is straightforward to define an estimate of the phase-
space density for each particle i of mass mp as:

fi = 7
mp

|Wi|
, (2)

Figure 1. A method of smoothing which is appropriate for a De-
launay tessellation and corrects for local anisotropies: it involves
redefining the local volume in such a way that one gets in the end
a more spherical mini-cell.

where |Wi| is the volume of the macro cell and the factor
7 accounts for the fact that each Delaunay cell contributes
to the density of 7 particles. In practice, as mentioned ear-
lier, the corresponding estimated phase-space density is very
noisy, and one must introduce some additional smoothing.
Let

fDi
=

1

7

∑

j∈Di

fj , (3)

be the average phase-space density defined for Delaunay cell
Di. One can then define a smoother phase-space density
estimator as:

f ′′
i =

∑

j=1,...,Ni

f
D

j

i

|Dj
i |

|Wi|
, (4)

where j indexes all Delaunay cells around particle i and |Dj
i |

represents the volume of each Delaunay cell.
For simulations without e.g. periodic boundaries, the

phase-space density of particles near the edge of the com-
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puting domain can be underestimated. This is for instance
the case when the sample has been cut from a bigger cos-
mological volume. To cope with this edge effect problem,
one can introduce another definition for the smooth phase-
space density estimator. Consider particle i, surrounded by
its Delaunay cells Dj , and let d be the distance between this
particle and its closest neighbour (Figure 1). Then, the mini-
cell around particle i is defined as the collection of Delaunay
cells D′

j , which are similar to Dj but are scaled in such a
way that each edge in D′

j containing particle i is exactly of
length d. The volume of D′

j reads

|D′
i| = |Di|

∏

j∈Di

d6

|eij |
, (5)

where |eij | is the length of the segment joining particle i and
j in Delaunay cell Di. As a result, a natural phase-space
density estimator reads

f ′′′
i =

∑

j=1,...,Ni

f
D

j

i

|D′j
i |

∑

j=1,...,Ni

|D′j
i |

. (6)

However, it might be better to use linear interpolation to es-
timate the phase-space density in each mini-cell, to perform
additional local noise filtering:

fD′

i
= fDi

+
d

7

∑

j∈Di

fi − fj

|eij |
. (7)

In the end we can thus define a phase-space density estima-
tor with interpolated density as follow:

f ′
i =

∑

j=1,...,Ni

f
D′j

i

|D′j
i |

∑

j=1,...,Ni

|D′j
i |

. (8)

The mini-cells are more regular and spherical, so both phase-
space density estimators f ′ and f ′′′ are expected to be less
sensitive to local fluctuations and local anisotropies due to
noise and edge effects.

Note that all of the above smoothing methods are
based on Natural Neighbour Interpolation techniques
(Weygaert & Shaap 2007). In what shall follow, although
we studied all the estimators, fi, f ′′

i , f ′
i and f ′′′

i , we shall
present explicit results only on f ′

i (equation 8) and on fi

(equation 2).

2.2 Tree partitioning

As discussed in the introduction of § 2, the main point of the
algorithm FiEstAS 2 proposed by A04 and later improved by
S04 in the EnBiD 3 implementation, is the division of space
into a binary tree. In FiEstAS, the splitting axis is chosen
alternatively between position space and velocity space, then
in each of these respective subspaces, the axis with highest
elongation, 〈x2

i 〉−〈xi〉2, is split. This splitting criterion helps
the cells to preserve a shape as cubic as possible.

However, a visual inspection of position and velocity

2 Field Estimator for Arbitrary Spaces
3 Entropy based Binary Decomposition

diagrams of typical simulations (Figure 11) shows that posi-
tion space contains more structures, and thus more informa-
tion than velocity space. As a result, one can argue that for
optimal accuracy, the splitting should occur more often in
position space than in velocity space. This observation was
used in the EnBiD algorithm to define a better splitting cri-
terion. Before splitting occurs, one has to find the subspace
(velocity or position) in which it should be performed. To
do that, the Shannon entropy, S, is calculated after dividing
each subspace into N equal size bins:4

S = −
N

∑

i=1

ni

N
log

ni

N
, (9)

where ni is the number of particles in each bin. The sub-
space which has to be splitted is the one with smallest en-
tropy. Finally, the direction of splitting is chosen again using
the highest elongation criterion, to preserve a close to cubic
shape.

As for Delaunay tessellation, correction for edge effects
is crucial in the binary tree partition algorithm. To illustrate
that point, it was shown in S06 that for 106 particles uni-
formly distributed in a 6D spherical region, about 79% of
them lie near the border, compared to 5% in the 3D case.
This reflects the so called curse of dimensions. The natural
shape of local border in the binary tree partition algorithm
is an hypercube. When the data do not preserve locally this
shape, the volume occupied by the boundary particles tends
to be overestimated, hence their phase-space density tends
to be underestimated. This bias is moreover expected to
worsen and to propagate further away from the edges if ad-
ditional smoothing is performed.

Both FiEstAS and EnBiD redefine borders to correct
for edge effects. While FiEstAS does it only for the tree
leaves, EnBiD applies the correction to all the nodes of the
tree, in order to insure proper entropy calculation and to
better estimate the phase-space density of small structures
found in the halo.5

2.3 Smoothing

From these tree methods, one could estimate naively the
phase-space density by exploiting directly the information
stored in the tree structure, as argued in the end of the in-
troduction of § 2, but measurements performed that way
would be rather noisy: additional interpolation, should be
applied to the data in order to achieve a good measure-
ment of phase-space density. A04 and S06 investigated a
few smoothing procedures, that we discuss now.

Let us first describe the smoothing method proposed
by A04 (called later FiEstAS smoothing). The main idea
comes from SPH techniques, but the smoothing kernel is a
hyperbox rather than a hypersphere. This treatment avoids
the need for a definition of a local metric. First, the mass of
each particle is distributed uniformly over its leaf volume.
Then, a hyperbox of volume Vs, centred on this leaf and
with the same axis ratio, is found, such that it contains

4 the choice of S06 is N to be equal to the number of particles
contained in the subspace.
5 See section 2.3 of S06 for more details.
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Figure 2. Biases in the SPH density estimation and potential
advantages of anisotropic SPH methods: a) SPH method: density
is underestimated for particle A and overestimated for particle B;
b) ASPH method better traces local structures and should lead
to better density estimation.

a mass Ms, which basically defines the kernel size. Local
phase-space density is then calculated from the equation f =
Ms/Vs. In our investigations, we shall use mainly the Ms =
2mp value proposed by S06 (while A04 suggest Ms = 10mp).

The other approach uses a classic SPH technique. For
our investigations, we shall use the Epanechikov kernel

W (x, h) = fd







1 −
∑

i=1

6
(

xi

hi

)2

, 0 ≤ xi/hi ≤ 1 ,

0 , xi/hi > 1 ,

(10)

with an additional bias correction. As mentioned in S06, this
estimator seems to give the best results for SPH phase-space
estimation.

One of the disadvantages of the SPH method is the way
it handles strong transitions between regions of very differ-
ent densities, as illustrated by Fig 2a. The key point is that
the SPH method is not able to capture correctly strong vari-
ations of the density local curvature. Because of the spheri-
cal shape of the kernel and the fixed number of neighbours
used to perform the calculations, the density will be under-
estimated near the edge of the regions with higher density
(particle A), or more generally in regions with significant
negative local curvature. On the other hand the density will
be overestimated near the edge of the low density regions
(particle B), or in regions with significant positive local cur-
vature. One way of resolving this issue, and of better cap-
turing filamentary structures such as in Fig 2a, is to use an
anisotropic SPH kernel, which adapts locally to the shape of
structures and is thus more appropriate to capture to local
curvature variations. First, the NA nearest neighbours are
found for each particle, which allows one to compute a de-
formation tensor H , that is used to define a local ellipsoid
with NB nearest neighbours (usually NA > NB). Each parti-
cle contained in this ellipsoid contributes to the phase-space
density with the weights given by the SPH kernel, scaled
properly to take into account the ellipsoid shape (Fig 2b).

Note that, in addition to the issues described in Fig-
ure 2, the density calculated with SPH methods presents
some non trivial biases due to local Poisson shot noise which
can in part be corrected for (see S06 for details).

2.4 Position-velocity “metric” correction

There is a last one important problem that arises when
one aims to estimate phase-space density. In order to per-
form some local phase-space density estimation, one needs
to find a way to join position space and velocity space, or
in other words to define a proper metric that allows one to
estimate local distances and local volumes in phase-space.
This generic problem does not have an obvious solution. Let
us first discuss that issue and then detail the implementa-
tions to resolve it for the phase-space estimators used in this
paper.

2.4.1 Coarse grained versus fine grained phase-space
density

The dynamics of dark-matter is usually modeled by a self-
gravitational collisionless fluid which follows the so called
Vlasov6-Poisson equations:

df

dt
≡ ∂f

∂t
+ v

∂f

∂x
− ∂φ

∂x

∂f

∂v
= 0, (11)

∇2φ(x, t) = 4πG

∫

f(x, v, t)dv. (12)

Because it is very difficult to solve these equations directly,
the continuous fluid formulation is usually approximated by
collisionless particles which follow the classical gravitational
Newtonian equations, hence producing Monte Carlo realisa-
tions of this set, with additional softening to maintain the
forces bounded. The most important question here is how
this approximation affects the phase-space density proper-
ties. Liouville theorem states that the phase-space distri-
bution function remains constant along trajectories of the
system

f(x(t),v(t), t) = constant. (13)

This is true for the smooth, fine-grained phase-space den-
sity f . In N-body simulations, it is in practice possible
to probe only the coarse-grained phase-space density, f̄ ,
which is the average of f over a small but finite vol-
ume (Binney & Tremaine 2008). This quantity does not
follow the Liouville theorem anymore because of mixing
processes occurring at small scales (Tremaine et al. 1986;
Arad et al. 2004). Furthermore, the measurement of f̄ de-
pends highly on the way the coarse graining volume is de-
fined, hence in particular on the local scaling to be applied to
velocities versus positions. To have a proper measurement of
f̄ that approaches as much as possible the fine grained dis-
tribution function from the dynamical point of view, or some
sensible local average of it, one would need the knowledge
of the whole dynamical history of the system.

One way to overcome this problem is to solve numeri-
cally Vlasov’s equations using a more sophisticated approach
than the simple N-body method, where the phase-space dis-
tribution function is modeled by small elements of metric,
such as ellipsoid “clouds”, that sum up to a dynamically
meaningful coarse grained version of the distribution func-
tion. This method is discussed in detail and applied in 1+1
D in Alard & Colombi (2005). Of course the generalisation

6 also referred to as collisionless Boltzmann.
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Figure 3. Illustration from a 2D simulation of Alard & Colombi (2005) of the velocity-position scaling and the various methods used
to measure the coarse grained phase-space distribution function. 1) The left panel shows the phase-space distribution function in the
“global” coordinate system used by the authors. 2) The right panel shows a scaled version of it in such a way that the same spread
is observed in x and v coordinates. We call that a “local” system of coordinates as the scaling can be global as shown here, or local,
as discussed in the main text. 1a) SPH spherical kernel in global coordinates, 2a) becomes ellipsoidal in local coordinates and is not
optimal; 1b) SPH with a local Adaptive Metric presents an ellipsoidal kernel in global coordinates, 2b) but is set up in such a way
that the kernel is spherical in local coordinates; 1c) Anisotropic SPH with a local Adaptive Metric in global coordinates, 2c) in local
coordinates. 1d) FiEstAS smoothing in global coordinates 2d) presents a hypercubical kernel in local coordinates; f) local clouds resolve
accurately phase-space structures, but g) particles from cosmological simulations only sparse sample them.

of such a method to 6D is quite costly. However, a sim-
ple alternative, in the spirit of this method, would be to
attach to each particle of a N-body simulation the infor-
mation corresponding to the local phase-space volume (or
the local metric), that would be followed during the evolu-
tion of the system (Vogelsberger et al. 2008). Note that we
then follow a sparse sampling of the fine grained distribu-
tion function as long as the dynamical effects due to the
discrete particle representation are negligible. Then the ap-
propriate shape for the phase-space element used to measure
the coarse-grained distribution function would be given by
a local average on a number of neighbouring particles in
phase-space, as is achieved by the adaptive SPH method.

Finally, if such an information is not available, and
without supplementary prior on the dynamical state of the
system, one can just try to find the best coordinate trans-
form that preserves local isotropy within the coarse grained
volume. This method basically assumes that the systems
evolved from a smooth distribution function. In that sense,
for cold dark matter haloes, it only traces correctly the
coarse distribution after relaxation to a quasi-steady state
(i.e. a few dynamical times after collapse). Note that a sim-
ple application of this idea to find a global scaling between
position and velocities basically produces the system of co-

ordinates where the velocity scatter is of the same order of
the positions scatter.

To illustrate this discussion, figure 3.1 shows one of the
outputs of a 2D phase-space simulation of Alard & Colombi
(2005), using the cloudy method (briefly sketched above).
The system was evolved during approximately 40 dynamical
times from an initial top-hat distribution function slightly
apodized at the edges. Figure 3.2 shows the same realisation,
but the position coordinate is scaled in such a way that both
velocities and positions show the same spread: this is the
natural system of coordinate for a global definition of the
scaling to be used between positions and velocities prior to
the definition of a small round coarse graining volume.

In the cold dark matter scenario, initial conditions can
by approximated by a three dimensional sheet (small disper-
sion in velocity space) immersed in six dimensional phase-
space, that subsequently evolves in time and gains a com-
plex shape (without loosing its connectivity or volume as
stated by the Liouville theorem). The equivalent of such a
sheet in our 2D phase-space representation would be e.g. the
curve (f), accurately followed by many cloud elements. As
mentioned above, Vlasov-Poisson equations are usually nu-
merically resolved relying on a particle representation. After
many time steps, because of variations of the local force field,
particles initially close by depart from each other (g). Mixing
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processes occur at small scales, and the phase-space sheet,
poorly modeled by the particles, loses its fine structures. The
way the coarse-grained phase-space density f̄ is calculated is
shown on e.g. (2d). The use of a finite local volume for com-
puting f̄ results in the averaging of the phase-space density
over many curves – or sheets in six dimensions. From now
on, unless otherwise stated, we shall skip the bar and use
the f symbol for the coarse-grained phase-space density.

2.4.2 Solutions for the position-velocity scaling

Inspired by the discussion in previous paragraph, we now
propose two ways of fixing the position-velocity scaling:

• A global scaling factor between positions and veloci-
ties, that will be applied to the standard SPH and Delau-
nay Tessellation algorithms. This global factor tries to make
the phase-space distribution function globally isotropic, i.e.
with the same spread in velocities and in positions.

• A local scaling factor that depends on phase-space co-
ordinate (x, v), and that tries to make the phase-space dis-
tribution function locally isotropic. This local scaling factor
is implemented by construction in FiEstAS and its improve-
ment, EnBiD, as detailed below. It will be used as well when
additional smoothing is performed with SPH or ASPH tech-
niques. In that case we shall denote the methods by SPH-
AM and ASPH-AM, respectively.

(i) Global scaling:

For the global scaling method depending on one parameter,
SG, the metric transform can be written in the form:
(

dx′

dv′

)

=

(

1/
√

SG 0
0

√
SG

)(

dx
dv

)

. (14)

We test here two different ways of setting SG, that apply
to single dynamical systems, such as the cold dark matter
haloes analysed in this paper. Such a global scaling finds a
transformation that changes for instance Fig. 3.1 in Fig. 3.2.

The first scaling uses simple dynamical arguments
that lead to a comparable scatter in velocity and posi-
tion space of the phase-space distribution function, or in
other worlds to a “more round” shape of the cloud rep-
resenting f(x, v). It relies on the fact that dark matter
haloes are known to be well fitted by the NFW profile
(Navarro, Frenk and White 1997). In particular, within that
model, we use the relation

r200 =
v200

10H(z)
, (15)

where r200 and v200 are the viral radius and the viral ve-
locity of the halo, respectively, and H(z) is the Hubble con-
stant in units of km s−1 kpc−1 (Schneider, 2006). For the
haloes analysed in this paper, z = 0 and H(0) = 0.1h. In
that case, the natural set of coordinates, that fixes prop-
erly the global scaling between positions and velocities, sim-
ply uses distances expressed in units of kpc h−1 and ve-
locities in km s−1. In this case the global scaling is set to
SI = 1.0h km s−1 kpc−1.

The second method, more sophisticated, should reach
approximately the same scaling. It involves attempting to
enforce global isotropy of the distribution of particles in
phase-space. To achieve that, the distances of each parti-

cle to its closest neighbour in position subspace and in ve-
locity subspace, are computed, which allows us to estimate
the probability distribution functions of these distances, p(r)
and p(v). The global scaling Sdist between the two subspaces
is the one where the maximum of p(r) and the maximum of
p(v) coincide.

(ii) Local scaling:

Obviously, although it presents the advantage of being sim-
ple to implement and robust, the global scaling is not op-
timal. However, it is possible to enforce, to some extent,
local isotropy of the phase-space distribution function by
examining the local neighbourhood of each particle, as is
implemented in the FiEstAS and EnBiD algorithms.

In FiEstAS the natural local scaling SL between velocity
subspace and position subspace is simply determined from
the axis ratio of the tree leaf containing the particle (which
is equivalent to pass from Figure 3.1d to Figure 3.2d). By
construction of the tessellating tree, the local isotropy be-
tween both subspaces should be preserved in the first ap-
proximation, as the calculation of the final smoothing hy-
perbox preserves this axis ratio. For the modification of Fi-
EstAS proposed by the EnBiD algorithm, the splitting of the
binary tree is improved by the calculation of Shannon en-
tropy, which in principle warrants a better local assignment
of the metric frame.7

Finally one can perform additional SPH or Anisotropic
SPH interpolation in the local metric frame determined by
EnBiD, that lead to our SPH Adaptive Metric algorithms
(SPH-AM and ASPH-AM). Prior to SPH or ASPH interpo-
lation, the phase-space coordinates are scaled in such a way
that the local hyperbox corresponding to the leaf contain-
ing the particle becomes hypercubical (Figure 3.1d to Fig-
ure 3.2d, to obtain Figure 3.2b and Figure 3.2c). Of course
the biases expected in SPH and ASPH interpolations men-
tioned in the end of § 2.3 are still present, even with this
local metric approach.

To summarise, we see that FiEstAS method with En-
BiD improvement corresponds to hyperbox smoothing with
adaptive metric. The only thing that changes between SPH-
AM or ASPH-AM is the shape of the kernel used to perform
the smoothing.

3 NUMERICAL EXPERIMENTS

3.1 Hernquist profile

In order to test the various above described methods, we
first examine control “phase mixed” samples for which there
are analytical solutions8. Hence, we follow A04 and S06 and

7 Note that the border corrections mentioned at the end of § 2.2
may have some significant impact on the local metric.
8 clearly, for such very symmetric relaxed models with explicit
first integrals, the best phase-space estimator would involve mov-
ing to angle-action variables and making use of the fact that the
distribution function should not depend on the angles; since our
purpose is to estimate phase-space density in more realistic set-
tings this venue is not explored here. Note nonetheless that the
validation is carried here in this regime, which strictly speaking
does leave open discrepancies for a very unmixed system.
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Figure 4. The ratio b = f/ft between the measured phase-space
distribution function, f , and the analytical value, ft, as a func-
tion of ft, derived for an isotropic Hernquist profile and different
smoothing methods as indicated on the top of each panel. From

left to right and top to bottom, (a) SPH with local Adaptive
Metric and 10 neighbours, (b) SPH with local Adaptive Metric
and 40 neighbours, (c) SPH with local Adaptive Metric and 200
neighbours, (d) Anisotropic SPH with local Adaptive Metric and
40 neighbours, (e) FiEstAS algorithm with EnBiD improvement
and mp = 2.0, (f) SPH with 10 neighbours, (g) DTFE method
and (h) DTFE with spherical sphere smoothing. These two di-
mensional histograms are calculated using 400x400 logarithmic
bins. The central curve corresponds to the median value of b cal-
culated over 200 logarithmic bins along the x axis, taking into
account only bins containing 2 particles or more. The two addi-
tional curves on each side show 3 sigma errors estimated from the
dispersion above and below the median curve. The two dashed
vertical lines mark the range for which the median departs by
more than a factor 5 from ft. The mean log-ratio 〈log b〉 and its

dispersion, σ =
√

〈(log b − 〈log b〉)2〉, are indicated on each panel
and were computed using all the data.

smooth DTFE
DTFE
FiEstA(EnBiD corr.) M=2
SPH-AM 40
SPH-AM 10

Figure 5. Hernquist profile: measurement of v(f) (left) and its
logarithmic slope (right) with different phase-space estimators.
The dashed line corresponds to the analytical solution. The ver-
tical dashed line marks the value log fmin = −4.41, corresponding
to the cut-off of the halo at 5 virial radii.

generate a Hernquist isotropic profile (Hernquist 1990). In
that case, the projected density distribution is given by

ρ(r) =
1

2π3

M

(r/a)(1 + r/a)3
, (16)

where M is the halo total mass and a is a scale length. We
follow exactly the prescriptions of A04 and S06 to create
a random set of positions and random velocities obeying
the appropriate distribution, relying on the fact that in this
model, the phase-space density distribution function, f , de-
pends only on energy E,

E =
v2

2
+ φ(r) =

v2

2
− GM

a

1

1 + r/a
, (17)

where r and v correspond to position and velocity, respec-
tively. At equilibrium, the distribution function reads

ft(E) = M
3 sin−1(q) + q

√

1 − q2(1 − 2q2)(8q4 − 8q2 − 3)

4a3π3(2GM/a)3/2(1 − q2)5/2
, (18)

with

q =

√

− E

GM/a
. (19)

In order to have a halo with realistic properties, we would
like it to follow equation (15), i.e. vvir = SIrvir (in our case
rvir ≃ r200), with SI = 1.0h km s−1 kpc−1. The circular
velocity of the Hernquist profile reads

vcir(r) =

√
GMr

r + a
. (20)

Combining this equation taken at the virial radius with
equation (15) gives the total halo mass

M =
h2a3c(c + 1)2

G
. (21)

In practice, the profile is also cut-off at a radius rcut, i.e. all
the particles verify r < rcut. In what follows, a concentration
parameter c is defined such that rvir = ca, where rvir is the
virial radius.

For our test sample, we take 5 · 105 particles, rvir = 320
kpc, rcut = 5rvir, h = 0.7 and c = 4. For both the Hernquist
profile and the Hernquist composite profile (next subsec-
tion), we measure f in units of M−1(GMa)3/2. This choice
of parameters was meant to compare directly our measure-
ments with S06. Note however that our value of rcut is much
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smaller than that of S06, to make DTFE method tractable.
Without such a cut-off, we would indeed have too many
neighbours for the particles near the edge. This abrupt cut-
off might a priori introduce some contamination for f <∼ fmin,
where fmin is the value of the phase-space distribution func-
tion at r = rcut and v = 0 (log fmin = −4.41 in our units).
Yet, we have checked, by taking very large values of rcut

that our implementation of the EnBiD estimator is quite
consistent with that of S06.

Figure 4 shows the ratio b = f/ft between the estimated
phase-space density f and the analytical result, ft given by
equation (18), as a function of ft, for various smoothing
methods, as indicated on the top of each panel.

For SPH-AM with 10 neighbours, we get a good ap-
proximation of ft over about 9 decades delimited by the two
vertical dashed lines. These lines correspond to a five fold
relative error on the determination of the phase-space den-
sity compared to the exact solution. With 40 neighbours, the
spread drops down by almost a factor of 2, but at the cost
of a narrower available dynamic range, because of the bias
introduced by the softening of the sharp transitions between
overdense and underdense regions and nearby local extrema
(see also the discussion in § 2.3). This effect is therefore even
more prominent for SPH-AM 200. The FiEstAS algorithm
with EnBiD improvement and mp = 2.0 gives a spread com-
parable to SPH-AM with around 20 particles, but the range
of accurate phase-space estimation is smaller as there is a
noticeable bias in the high density region. For Anisotropic
SPH-AM, 64 particles are used to find the best fitting local
ellipsoid while softening is performed over 40 particles. In
this case, the plot looks almost the same as for SPH-AM
with a small overall systematic overestimation of the true
phase-space density, which remains despite the kernel bias
correction.

For DTFE and standard SPH methods, we have to set
the global position-velocity scaling factor SG, where v =
SGr. We use the two methods described in part (i) of § 2.4.2.
The first one gives SG = SI = 1.0h km s−1 kpc−1 while
the second one, relying on peak matching of the distance
distribution, gives SG = Sdist = 0.4h km s−1 kpc−1. For
both standard SPH and DTFE, we find that Sdist leads to
a small but noticeable improvement of a few percent for the
phase-space density estimate compared to SI . As shown on
Figure 4, the SPH method with the Sdist scaling and 10
neighbours performs less well without the adaptive metric
correction, although it recovers correctly the middle range
of f values. Note that, contrary to the SPH-AM case, no
edge effect correction is performed for the pure SPH case,
which explains the small depression seen at f ≃ 10−4.5, due
to the cut-off at rcut.

Turning to the DTFE method, a simple estimation
given by equation (2) is closest to SPH with 10 neighbours,
in terms of scatter. However, within our (generous) allowed
factor of 5 margin for the phase-space density, we observe
that the DTFE method probes the low-f range nearly one
order of magnitude further, while it seems to do worse in
the high density regime. Note the bump at f ≃ 10−4 seen in
the lower left panel of Figure 4 in addition to the neighbour-
ing depression already noticed for SPH, here at f ≃ 10−5.
It is a consequence of the brutal cut-off at rcut, combined
with the strong effects of anisotropy in phase-space near the
edges: indeed, for f <∼ 10−5, the number of neighbours de-

fined by the Delaunay cells starts to increase dramatically
(see Figure 13 in § 4.1).

We checked alternate smoother DTFE interpolators dis-
cussed in § 2.1, and found that the best one is the “spherical”
smoothing implementation given by equation (8). This solu-
tion, shown on Figure 4 presents less scatter than the simple
DTFE and a slightly better behaviour with respect to edge
effects, at the cost of a significant reduction of the available
dynamic range, which covers only about 7 decades.

Another way to test our estimators, following Arad04,
involves measuring the probability distribution function of
f , which is, within a normalisation factor, the differential
volume

v(f) =
dV

df
, (22)

where V (f0) is the volume in phase-space occupied by the
excursion f > f0:

V (f0) =

∫

∞

f0

v(f ′)df ′ =

∫

f(x,v)>f0

d3xd3v. (23)

For an isotropic Hernquist profile, the function v(f) can
again be computed analytically (see § 3.1 of S06 for details).

The measurement of v(f) is straightforward when one
considers the simplest implementation of DTFE as V (f0) is
given exactly in that case by

V (f0) =
∑

fv>f0

mp

fv
. (24)

For other methods, equation (24) is only approximate. The
logarithmic derivative of function V is then obtained by sim-
ple finite difference in log f space using 100 bins, using 3
points interpolation.

Following Arad04, let us also estimate the logarithmic
slope, α, of the function v(f),

α(f) =
d log[v(f)]

df
, (25)

since it represents a more discriminant measure of the phase-
space density than v(f) itself.

This is illustrated by Figure 5, which compares to the
analytical solution the measured v(f) and its logarithmic
slope. Note that, because of our cut-off at 5.0rvir, v(f) (and
therefore its logarithmic derivative) are not expected to fit
the analytical prediction for log f <∼ log fmin = −4.41, since
a fraction of the sample volume V (f), is missing in that
regime. All the methods reproduce quite well v(f) and α(f)
above that value and in the mid-density regime. In the high
density regime, the best results seem to be obtained by SPH-
AM with 10 particles, but the measurements are too noisy
to be definite: one can see that SPH-AM with 40 particles
and FiEstAS with EnBiD correction do as well at least for
f <∼ 1. On the other hand, the DTFE method behaves quite
poorly in the high density regime, while its smoother coun-
terpart is even worse, which confirms the results of Figure 4.
However, we shall see that this is a consequence of a subopti-
mal choice of the scaling between position and velocities, as
discussed in next section. Actually, with the proper choice
of SG, DTFE should give the best results in high density
regions, as, by construction, it provides a full tessellation
of space with optimal calculation of neighbours: the com-
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Figure 6. the Hernquist profile with substructures in phase-space. Upper left panel: x–y position space; upper right panel: vx–vy velocity
space; lower left panel: phase-space diagram, radius r–radial velocity vr ; lower right panel: radial velocity vr–tangential velocity vt. Each
plot is a two dimensional histogram with 400 × 400 bins. Only the central part of the halo is shown here.

bination of these last two properties is critical to measure
accurately an Eulerian quantity such as v(f).

3.2 Hernquist composite profile

Our single isotropic Hernquist profile allowed us to separate
well the different density regimes. However it is not realistic,
since real dark matter haloes exhibit non trivial substruc-
tures. We therefore now create a synthetic halo with a main
component and smaller subhaloes. We still use the Hern-
quist profile as a guideline to be able to perform analytical
predictions.

For the main halo we use the same realisation as before
with around 2.5 × 105 particles. Then we add 500 smaller
haloes which correspond to a scaled-down version of the
main halo. Their mass follow the following probability dis-
tribution function, p(M)dM ∝ M−1.8dM , where M varies
between Mmin = 0.00025Mmain and Mmax = 0.06Mmain.
The largest subhalo has around 14, 000 particles and the
smallest one, around 60. In total, the system involves, as
before, 5.0 × 105 particles, and around 50% of them belong
to substructures. This fraction is larger than what is found
in cosmological simulations, but we prefer this ratio given its
higher level of anisotropy. Each subhalo phase-space coordi-

nates centre is set randomly following the same Hernquist
distribution as for the main halo.

Figure 6 presents the halo in various projections. As
illustrated by the top panels, we can see clearly that the
structures are more concentrated in position space than in
velocity space, a feature also observed in N-body haloes
(see for instance Figure 11). The bottom panels correspond
to phase-space diagrams, in radius/radial velocity subspace
(lower-left panel) and in radial velocity/tangential velocity
subspace (lower-right panel). To draw them, we compute for
each particle the distance r from the centre of the main halo
and the relative radial velocity as follows:

vr =
1

r

∑

i

(xi − xc,i)(vi − vc,i), (26)

where i = 1, · · · , 3 corresponds to the coordinate, while xc

and vc are the position and velocity of the centre of the main
halo, respectively. The tangential velocity is then given by
vt =

√

(v − vc)2 − v2
r . Note the elongated vertical features

in lower-left panel, which illustrate again the smaller spread
of substructures in position space than in velocity space.

Figure 7 shows the phase-space density estimated by
SPH-AM with 40 particles, for the main component, the
subhaloes and the full halo. While the theoretical density is
a simple sum of all the components contributing locally, it is
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Figure 7. Comparison with the analytical prediction of numerically estimated phase-space density from various contribution of our
composite Hernquist halo. The measurement is performed with SPH-AM method using 40 neighbours. The quantity displayed is f/ft as
a function of ft, where f and ft are the measured and the analytical phase-space distribution functions, respectively. Left panel: main
component only. Middle panel: subhaloes, only. In that case the ratio f/ft is computed for each subhalo, individually. Right panel: the
full profile, with haloes and subhaloes, while ft is given by the sum of each analytical profile contributing locally.

Figure 9. Effect of the choice of the scaling parameter SG between positions and velocities. The ratio f/ft is shown as a function of ft,
following Figure. 8, but for SPH method with 40 neighbours. From left to right, SG = 0.25h km s−1 kpc−1, SG = 1h km s−1 kpc−1,
SG = 4.0h km s−1 kpc−1.

not exactly the case for the estimated density. By compar-
ing all the plots, one can see that the low-f regime and the
high-f regime are dominated by the main component and
the subhaloes, respectively. For each component, f presents
a large spread in the low density region, 10−4 <∼ f <∼ 1, be-
cause of the high level of shot noise due to the small number
of particles in the edges of substructures, and is underesti-
mated in the high density one. The range of accurate values
of f increases with the number of particles in each subhalo.
When summing up the subhaloes, as shown in middle panel,
this adds up to a significant spread of the scatter plot, ob-
viously much larger than for the main component. In fact,
such a spread dominates for the total halo (right panel) and
is larger than for a single Hernquist profile with same num-
ber of particles (see Figure 4). Because the high phase-space
density regime is dominated by subhaloes, the range of re-
covered values of f is tremendously reduced in that region,
and we lose about one order of magnitude for the available
high density range compared to the single Hernquist pro-
file. This issue has to be kept in mind when performing the
measurements in real N-body haloes.

Figure 8, following Figure 4, now compares the various
estimators of the phase-space density, and confirms most of
our previous findings: the best estimator is SPH-AM with

10 neighbours. It does better than SPH-AM 40 in the high-
density regions, because of the lower-level of smoothing, at
the cost of a larger spread. The effect is even stronger when
performing the comparison with SPH-AM 200, as expected.
Again, ASPH-AM with 40 neighbours seems to bring some
global estimation bias. EnBiD-FiEstAS with mp = 2 does
not perform any better than SPH-AM since it seems to un-
derestimate f earlier in the high density regime.

Regarding the global scaling, the findings of Figure 4
are confirmed: we obtain the best results by matching
the nearest neighbour distance distributions and we mea-
sure again (but this coincidence is not generic) Sdist =
0.4h km s−1 kpc−1). The suboptimal nature of the global
scaling induces an increase of the amplitude of the scatter
below the median, for instance when one compares SPH-AM
10 with SPH 10 on Figure 8. Turning to DTFE in its ba-
sic implementation, which stills perform best for low values
of f (except for the irregularity already observed in Fig-
ure 4), this spread becomes dramatic and strongly asym-
metric but can be reduced by using the smoother and more
isotropic “spherical” interpolator f ′. Note that, given our
factor of five tolerance between measured and exact phase-
space density distribution function, DTFE and its smoother
version do better than in Figure 4. In fact they now seem to



12 M. Maciejewski, S. Colombi, C. Alard, F. Bouchet, C. Pichon

Figure 8. Same as in Figure 4, but the ratio between measured
and analytic phase-space distribution function is now shown for
our composite Hernquist profile for various smoothing methods
as indicated on the top of each panel.

perform slightly better than SPH-AM 10 in the very high-
density regime. Indeed, the fraction of overdense particles
intervening in the calculation of Sdist is much larger: the
calculation of Sdist, corresponding to a compromise between
all the particles, is now more adapted to the overdense part
of the phase-space distribution function. For the single Hern-
quist profile, the fraction of particles belonging to the high
f part was indeed much smaller. Hence, provided that the
proper global scaling between velocities and positions has
been set up, DTFE chooses by construction the proper adap-
tive smoothing range (or the right number of neighbours).
However note that the overall shape of the median curve of

SPH-AM 40
SPH-AM 10
SPH 40
EnBiD+FiEstA(EnBiD corr.) M=2

smooth DTFE
DTFE
ASPH-AM 40
SPH-AM 200

Figure 10. Measurement of v(f) and its logarithmic derivative,
following Figure 5, but for the composite Hernquist profile. The
blue and red dashed curves correspond to the analytical predic-
tion for the main component and the full halo, respectively. Note
that, as discussed in § 3.1, there is a minimum value of f for
which we can measure accurately v(f), regardless of the method
used, due to the cut-off imposed at radius rcut (dashed vertical
line). This is now further complicated by the fact that here, the
cut-off is also imposed on the subhaloes, which explains why the
measurements tend to slightly overestimate the red dashed curve
for 10−4 <

∼ f <
∼ 0.1.

Figure 8 is not as flat as for SPH-AM, and this is a con-
sequence of the fact that the global scaling is only a com-
promise that is not locally optimal. In fact, in addition to
the small-f irregularity already observed in Figure 4, the
high-f plateau in lower-left panel of Figure 8 is somewhat
below the thick horizontal line. This follows from the pres-
ence of substructures, as discussed above, which does not
only induces a strong asymmetry of the spread around the
median value: it also biases it to lower values. This is because
DTFE uses many neighbours in that regime to perform the
interpolation, (about 200 as will be discussed in next sec-
tion, see Figure 13), which makes it very sensitive to the
local anisotropies in the phase-space distribution function.
The bias on the high-f plateau is at least partly corrected
for by the “spherical” version of DTFE, which is indeed ex-
pected to less sensitive to such anisotropies, as illustrated
by lower-right panel of Figure 8.

To illustrate in more detail the influence of the choice
of the global scaling parameter, SG, between velocity space
and position space, Figure 9 shows, for our composite pro-
file, how the quality of the measurement of f changes with
SG for the SPH method with 40 neighbours (similar trends
would be seen for the DTFE method, while adaptive metric
methods, e.g. SPH-AM with 40 particles, are by definition
totally insensitive to the choice of SG). The domain of valid
estimates for f considerably depends on the choice of SG,
as a change by a factor 4 in SG induces a loss by an order
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of magnitude in the high density range. Note in particu-
lar that the shape of the scatter, below the median curve,
changes with the actual value of SG. For instance, this scat-
ter is reduced in the intermediate range of values for f in
the middle panel of Figure 9. This is again a consequence of
the fact that the optimal value of SG depends on location
in phase-space, in particular on the local distribution of ve-
locities versus positions in the core of substructures, i.e. in
the neighbourhood of local density peaks in phase-space.

Following § 3.1, let us finally turn to the measurement
of v(f) and its logarithmic derivative, α(f), as illustrated
by Figure 10. The analytic calculation of v(f) is similar to
§ 3.1 except that we now consider each component separately
and then combine them straightforwardly. The measurement
v(f) itself is performed exactly as explained in § 3.1. The re-
sults of Figure 8 are partly confirmed by Figure 10: the best
adaptive metric method is again SPH-AM with 10 neigh-
bours. However the best measurements are by far now given
by the basic DTFE method (without additional smoothing).
Recall that this is due, in part, by the fact that the calcula-
tion of v(f) is better behaved for the DTFE method than for
other methods: indeed the concept of Eulerian volume is well
defined for DTFE, while it remains only approximate with
the SPH methods. These methods are optimal when one
sits on particles, but get more and more inaccurate when
one goes away from the particles. In that sense, Figure 8,
which uses a pure Lagrangian point of view, greatly favours
the SPH methods, while the measurement of v(f), which is
intrinsically an Eulerian quantity, favours more DTFE.

Globally, the measurements in this section suggest that
the DTFE method performs rather well, provided that the
correct position/velocity scaling is set up. However, the very
calculation of the correct value of the scaling factor, SG, is
not straightforward: in § 3.1, the DTFE method was per-
forming poorly. Even if it is well estimated, this global scal-
ing provides only a compromise, that is not locally optimal.

Finally, let us mention some additional issues about the
DTFE method. While exploring various values of SG, we
found that with larger SG, this method starts to generate
very large number of Delaunay cells which becomes rapidly
impossible to handle computationally. The same happens
when we increase the cut-off radius rcut: in that case, parti-
cles near the border of the catalogue present tremendously
large number of Delaunay cells, as they are connected to
almost all the other particles. Indeed, it is expected that a
high level of local anisotropy increases the number of DTFE
neighbours.9 For all these reasons, we favour the SPH-AM
method relative to the DTFE method, even if they seem
to perform less well for the measurement of Eulerian quan-
tities such as v(f). Still, if one put aside the problem of
position/velocity scaling, the DTFE method provides a lo-
cal estimate of the optimal number of neighbours, which can
help to find the best number of neighbours for the SPH-AM
method, as we shall discuss in § 4.1. Finally, while potentially
better than the SPH-AM method, the ASPH-AM methods
tend to yield a slight overestimation bias for the mid-range
of values of f , and we did not find a straightforward way to
correct for it.

9 Note that a way to compute the optimal value of SG could
involve minimising the total number of Delaunay cells.

3.3 Haloes from N-body simulations

We now consider the realistic case of a halo extracted from
a Cold Dark Matter (CDM) N-body simulation. To do that,
we performed a standard CDM simulation with GAGDET2
(Springel 2005) involving 5123 particles in a periodic cu-
bic box of size 50 h−1 Mpc. The choice of the cosmologi-
cal parameters is matter density ΩM = 0.3 and cosmolog-
ical constant ΩΛ = 0.7. The linear variance of the density
fluctuations in a sphere of radius 8 h−1 Mpc is σ8 = 0.92
and the Hubble constant fixes h = 0.7. This is slightly
different from recent constrains e.g. provided by WMAP
(Spergel et al. 2003) but should be close enough for our pur-
pose. For reference, these cosmological parameters fix the
mass of a particle to be 7.7×107M⊙. Haloes were extracted
at present time from this simulation using standard FOF al-
gorithm with linking parameter b = 0.2. To make the calcu-
lations tractable for DTFE, we selected the third most mas-
sive halo, which contains about 1.83×106 particles. Only the
linked particles are considered. In the subsequent analyses,
calculations are performed in comoving phase-space coordi-
nates instead of physical ones. However, when it comes to
phase-space density calculation, the main change when pass-
ing from one system of coordinates to the other comes from
the effect of the Hubble flow, which has rather insignificant
impact on the final results.

Figure 11 displays various projections of the halo, fol-
lowing Figure 6. Here, only one additional complication
arises in order to calculate correctly phase-space diagrams:
the centre of the halo has to be defined accurately in phase-
space. We find this centre through an iterative process, ap-
plied to each subspace separately. The first step involves
considering the centre as the mean position (velocity) of all
the particles. Then, the distance of each particle from this
centre is computed and half of the particles are removed by
choosing the most distant ones. A new centre is computed
from the remaining particles. The process is repeated again
as long as there are more than 100 particles left.

As noted earlier, the velocity subspace (upper panels of
Fig. 11) is relatively featureless. Figure 11 is in fact very sim-
ilar to Figure 6, except for the lower-left panel which displays
more complex structures. In particular, in addition to the
vertical “fingers”, one can notice some elongated structures
that correspond to non trivial filamentation of phase-space
built up by the dynamics, e.g. tidal tails (see for instance
Peirani & Pacheco 2007).

In this more realistic framework, we cannot rely on an
analytic expression of the reference ft to perform plots simi-
lar to Figures 4 and 8. However since the SPH-AM methods
have our preference, we shall now use them as references.
This is illustrated by Figure 12, which shows the ratio f/ft

as a function of ft for various smoothing methods; ft is
given this time by the SPH-AM methods with 10 and 40
neighbours, for respectively the left and right columns. Note
that f and ft are measured for each particle individually to
perform these scatter plots. To fix the global scaling posi-
tion/velocity parameter for the DTFE implementations, we
use a coincidence scaling of the peak distance distribution
given by SG = Sdist = 0.38h km s−1 Mpc−1.

Figure 12 confirms qualitatively the results found for
the single and the composite Hernquist profiles. In partic-
ular, the SPH-AM methods with 40 neighbours underesti-
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Figure 11. Appearance of our CDM N-body halo with 1.8 million particles. This figure can for instance be compared to Figure 6. Upper

left panel: x–y position space; upper right panel: vx–vy velocity space; lower left panel: phase-space diagram, radius r–radial velocity vr ;
lower right panel: radial velocity vr–tangential velocity vt.

mates high phase-space densities compared to the SPH-AM
10 method. In the upper left panel of Figure 12, there is also
a tail below the median curve, which arises because the mea-
sured f is significantly biased toward lower values nearby
local phase-space density peaks corresponding to each sub-
structure, as explained in previous section; this local bias
is more prominent for the SPH-AM 40 than SPH-AM 10
method, and consequently the median curve of the upper
left panel is slightly below unity, except for low-f . This bias
can be reduced with adaptive smoothing, as shown in the
second row of Figure 12 with the ASPH-AM 40 method. But
recall that this is achieved at a price of a slight uncontrol-
lable positive bias, here in underdense phase-space regions.
The DTFE method seems to behave well overall, with a
positive bias in underdense phase-space regions when im-
plementing its smoother version. However, our appreciation
is again skewed by the somewhat loose factor of five toler-
ance. In fact, DTFE in its simpler implementation seems
to globally underestimate the phase-space density distribu-
tion function, except in the very-low and in the very-high
density regimes. Again, this is due to the contribution from
substructures, which is now more significant given the larger
effective number of neighbours used by DTFE and its high
sensitivity to the choice of the local scaling, SL. The effect
of the tail below the median value is therefore now more

significant than for the upper left panel, and it is reduced,
as well as the bias of the median curve in intermediate val-
ues of f , by the spherical implementation (lowest panels of
Figure 12). Hence Figure 12 globally confirms the findings
of Figure 8. Note that we do not observe any irregularity in
the low-f regime as in Figure 8, because the cut-off of the
halo is performed in a much smoother way.

4 ADDITIONAL INSIGHTS

Although the Delaunay tessellation cannot easily address
the problem of the position/velocity scaling, because of it
self adaptive nature, it still provides some insight about the
local neighbourhood, in particular about the optimal num-
ber of neighbours that should be used in SPH methods. In
§ 4.1, we analyse in details the neighbour distribution pro-
vided by the Delaunay tessellation. This will help us to bet-
ter understand the results found in the previous sections and
to further justify our preference for the SPH-AM estimator
with a number of neighbours ranging from 10 to 40.

The analyses of § 3 show that the entropy method im-
plemented in EnBiD provides a very good approximation of
the local scaling to apply between positions and velocities.
In § 4.2, we investigate how this scaling depends on the envi-
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Figure 12. Phase-space density estimation for our CDM N-body
halo with 1.8 million particles. The left and right columns cor-
respond to the SPH-AM method with 10 and 40 neighbours, re-
spectively, for the theoretical phase-space density, ft. From top
to bottom, the smoothing method considered is (a) the SPH-AM
method with 40 neighbours on the left panel and SPH-AM with
10 neighbours on the right panel, (b) the ASPH-AM with 40

neighbours on the left and ASPH-AM with 10 neighbours on the
right panel, (d) the basic DTFE method and (e) DTFE method
with spherical smoothing.

ronment, and in particular on the value of f . This will allow
us to better understand to choice of the global scaling.

Figure 13. Number of neighbours N found by the Delaunay
tessellation for the three profiles considered in this paper. Top left

panel: the probability distribution function, P (N), for a particle
of having N neighbours. Top right panel: N is shown as a function
of the theoretical phase-space density, ft, for our single Hernquist
profile. The horizontal line corresponds to the mean value of N ,
while the smooth black curve gives the median as a function of
ft. Bottom left panel: N is shown as a function of the theoretical
phase-space density, for our composite Hernquist profile. Bottom

right panel: N is shown as a function of the phase-space density
measured in our dark matter simulated halo.

4.1 Smoothing range and local neighbourhood

In Figure 13, we study the distribution of the number of
neighbours built by the Delaunay structure as a function of
phase-space density, for the single Hernquist profile of § 3.1
(upper right panel), the composite Hernquist profile of § 3.2
(lower left panel) and the N-body halo of § 3.3 (lower right
panel). The upper left panel shows, for each instance, the
overall distribution function of the number of neighbours.

As expected, the average number of neighbours is ap-
proximately the same in the three cases: 〈N〉 = 175, 165
and 167, for the Hernquist profile, the composite Hernquist
profile and the N-body halo, respectively. The presence of
substructures widens the overall distribution of values of N ,
as shown by the green and the red curves in upper left panel
of Figure 13, as compared to the black one. In the three cases
considered, the typical number of neighbours decreases with
increasing phase-space density, following three regimes:

(i) particles near the edges: at the edges of the catalogue,
where f is very small, N is very large, of the order of 1000
for the Hernquist cases up to nearly 10 000 for the N-body
halo. It then decreases rapidly, while particles are getting
away from the edges to reach the next regime, (ii). Note
that N being large is not a consequence of f being small,
but follows from the fact that the phase-space distribution
function presents an overall positive curvature and is highly
anisotropic because of the edges.

(ii) The plateau at intermediate values of f , far from the
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edges and from the main distribution of local maxima: in this
quiescent regime, we have N ∼ 〈N〉, where 〈N〉 is the typi-
cal number of expected Delaunay neighbours just as quoted
above. Note that there is a slight difference between the
Hernquist profiles and the N-body halo, in particular a lower
bump at f ≃ 10−4.5 in upper right and lower left panels, that
corresponds to the transition between regime (i) and regime
(ii), and which does not appear for the N-body halo. This is
probably due to the brutal cut-off imposed at radius rcut as
mentioned in § 3.1, which can affect the neighbour distribu-
tion in a non trivial manner up to f ≃ 10−4.41 for the single
Hernquist profile and the main component of the composite
Hernquist profile.

(iii) The high density regime, dominated by the regions
nearby local maxima: the number of neighbours decreases
again rapidly because f now presents an increasingly overall
negative curvature when one reaches the densest regions,
which makes N smaller; we measure it to be as small as
30 in the presence of substructures (which dominate large
values of f , as noticed in § 3.2), while it remains close to
100 in the single Hernquist profile.

Intuitively these numbers suggest that, when turning to SPH
methods, the number of neighbours used to perform the in-
terpolation should depend on the environment. In particu-
lar, in the “quiescent” regime, i.e. far from the edges and
from the peaks, we should take around 200 neighbours to
perform the measurements. However, such a large number
of neighbours is not optimal near the peaks: the DTFE al-
gorithm suggests a value of N of the order of a few tens for
sampling best the core of substructures, which is fully con-
firmed by the analyses of our previous sections. Furthermore
we noticed that these values of N = 10 and N = 40 are still
appropriate in the quiescent regime: only the signal to noise
ratio –the spread due to local Poisson noise around the local
average value– is changed. Taking a value of N as large as
200 provides too much smoothing and biases the results in
overdense regions. Moreover it also induces non trivial diffus-
ing mixing effects. The larger the number of neighbours, the
more sensitive the determination of f to local anisotropies.

Such local anisotropies (and local curvature properties)
can be captured better –at least partly– by anisotropic SPH
smoothing (see the discussion in § 2.3 and Figure 2), but at a
risk of some potential slight positive biases, as argued previ-
ously. Since SPH methods in their usual implementation are
not self adaptive in terms of their number of neighbours,10

we think that the best choice for N is a value ranging from
10 to 40, because such a choice offers a good compromise for
all the dynamic range. Note that this also confirms the find-
ings of S06. There is still the problem of what happens near
the edges, but these can sometimes be extended sufficiently
far away to avoid contamination of the measurements in
the region of interest. What really influences the results are
abrupt changes of local curvature: while the DTFE method
captures them optimally, SPH method does it only approx-
imately, and of course, does it best when the number of
neighbours remains small, at the expense of a slightly worse
local signal to noise ratio.

Note, however, that this discussion is again biased by

10 It should be however rather easy to implement SPH smoothing
with a number of neighbours varying with the environment.

Figure 14. Local position-velocity scaling given by the EnBiD
algorithm as a function of phase-space density. The left and right

columns correspond to the composite Hernquist profile of § 3.2
and the simulated halo of § 3.3, respectively. From top to bottom,
the position subspace scaling, sx, the velocity subspace scaling,

sv, and the ratio SL = sx/sv. In the left panels, the phase-space
density is the theoretical one. In the right panels, it is measured
in the sample using SPH-AM with 40 neighbours.

the fact that SPH uses a Lagrangian point of view, i.e. it sits
on the centre of each particle to measure locally the phase-
space distribution function. An Eulerian point of view, that
would require to measure f in an arbitrary point of space
(see, e.g., Colombi, Chodorowski & Teyssier 2007), would
probably impose a slightly larger number of neighbours for
SPH methods to give sensible results.

Note finally that the findings of Figure 13 are of course
sensitive to the choice of the velocity/position scaling SG

which is taken here to be equal to Sdist as discussed in pre-
vious sections. Indeed, the value of SG influences the prop-
erties of the local curvature of the distribution function (or
the matrix of its second derivatives), so we expect the low-f
and particularly the high-f regimes to be affected by the
chosen SG (Fig. 9).
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4.2 On the EnBiD position-velocity scaling

In the EnBiD algorithm, one gets for each particle a hy-
perbox of size 2sx in position subspace and of size 2sv in
velocity subspace. Figure 14 shows the measured value of
sx, sv and SL = sx/sv as functions of f , for our composite
Hernquist profile (left columns) and our N-body halo (right
columns). The global behaviour of the quantities sx(f) and
sv(f) as decreasing functions of f (the median curves in the
four upper panels of Figure 14) is expected, as increasing
phase-space density corresponds to a smaller size for the lo-
cal hypercube. Due to the more concentrated extension of
substructures in position rather than in velocity space, the
corresponding decrease is more significant for sx(f) –by an
order of magnitude– than for sv(f) –by about a factor 2. As
a result, the ratio SL = sx/sv changes from about 1.3 − 0.7
in the low-f regime to 0.4 − 0.3 in the high-f regime (see
the median curve in two lower panels of Figure 14).

When examining in more details the scatter plots on
the right panels of Figure 14, we note a bimodal structure:
the cloud of points splits into two fingers at high f . The
shorter and denser finger corresponds to the main part of
the halo, while the other corresponds to the contribution of
substructures, which are more concentrated in phase-space
than the central part of the halo. This last statement can
be easily checked by looking at the upper right panel of Fig-
ure 18. The main part of the halo is globally relaxed so its
concentration in velocity space does not depend significantly
on the value of f (the upper horizontal finger in the middle
right panel of Figure 14), while its position density behaves
approximately like a power-law (lower roughly straight and
diagonal finger in the upper right panel of Figure 14). On the
other hand, substructures are tidally disrupted and lose par-
ticles while they spiral into the halo: they represent a popu-
lation of objects at various dynamical states, different from
the dynamical state of the main part of the halo. This ex-
plains the bimodality observed in right panels of Figure 14.
It would however go beyond the scope of this paper to fully
explain the details of this bimodality. It is indeed difficult
to disentangle the effect of the local change of substructure
phase-space/velocity subspace/position subspace profile due
to tidal deformation, in particular to a mass loss, from the
statistical averaging carried over the population of all the
substructures.

Note that, even though the prescription used to create
the Hernquist composite profile is dynamically unrealistic,
there still should be a bimodal effect in this experiment, be-
cause the substructures present a population of objects at
various “dynamical states”, different from the main com-
ponent, owing to the fact that they are less massive. How-
ever, in addition to having unrealistic individual profiles,
the contribution of substructures was purposely exagger-
ated: they are more massive than those of the simulated
halo. Consequently, the bimodality is much less obvious on
the left panels of Figure 14 than on the right panels. Of
course, this difference only partly accounts for this finding,
as tidal stripping changes the individual profiles of subhaloes
(Stoehr 2006) and also produces tidal tails that contribute
in a non trivial way to filamentation of phase-space.

The bimodal nature of the distribution of the ratio
sx/sv has a dramatic impact on methods which rely on
a global scaling between positions and velocities prior to

Figure 15. True phase-space density estimator (left panel) versus
the proxy Q = ρ/σ3 in our Hernquist composite profile. The ratio
f/ft is shown as a function of ft, where f and ft are the measured
and the exact phase-space densities, respectively. To generate the
left panel, we used SPH-AM with 40 neighbours. To measure
the function Q(x) on the right panel, we use a standard SPH
interpolation in position space with 32 neighbours to estimate
locally ρ(x) and measure the velocity dispersion σ2(x) with the
same position space kernel.

the measurement of the distribution function. Furthermore,
apart from that problem and the large scatter of this ra-
tio (of about one order of magnitude), its median value
changes with f , as mentioned earlier. Note however the
plateau reached at high values of f , a regime dominated
by substructures, where sx/sv ≃ 0.3. The global average of
the ratio is equal to 0.7 and 0.5 for the Hernquist composite
profile and the simulated halo, respectively, while Sdist = 0.4
and 0.38. It is important to notice that the values of Sdist

are thus close to the high-f plateau, showing that high val-
ues of f are expected to be calculated with nearly optimal
scaling parameter using our peak matching of the distance
distribution.

5 REVISITING A PROXY TO PHASE-SPACE

ESTIMATION

Prior to the existence of 6D phase-space density estimators,
an approximation of the phase-space density was proposed,
which involves only the measurement of quantities in posi-
tion space rather than in full 6D phase-space (see for in-
stance, Taylor & Navarro, 2001):

Q(x) = ρ(x)/σ3(x), (27)

= 33/2

[∫

f(x,v)d3v
]5/2

[∫

v2f(x,v)d3v
]3/2

, (28)

where ρ(x) is the local projected density and σ3(x)
is the local one dimensional velocity dispersion
defined as σ =

√

(σ2
x + σ2

y + σ2
z)/3. The func-

tion Q(x) has been widely used in the literature
as a proxy of the true “phase-space” distribution
function (Taylor & Navarro 2001; Rasia et al. 2005;
Austin et al. 2005; Peirani & de Freitas Pacheco 2007;
Diemand, Kuhlen & Madau 2006). It is often defined in a
spherically average way, Q(r) = ρ(r)/σ3(r). For instance,
Taylor & Navarro (2001) found that Q(r) ∝ r−α with
α = 1.875, in good agreement with the secondary infall
model (Bertschinger 1985).
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Figure 16. Appearance of the CDM N-body haloes in position space (left panels) and in velocity space (right panels), with different
colour codings. The pictures are computed in 3 steps as follows: (i) division of space into three dimensional equally spaced grid with
N = 400 divisions across each x, y, z axes, (ii) calculation of the mean density (ρ,f ,Q) of all particles inside each cell and (iii) projection
of this density on the x − y plane by taking in each z column the cell with the highest density. Only 40% of the central cells along the
z axis are used for the last step. The first, second and third rows correspond respectively to a colour coding with the projected density
ρ, with the parameter Q = ρ/σ3 and with phase-space density f . To enhance the contrasts, the equalisation of the histograms of the
logarithm of ρ, Q and f was implemented.
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Figure 17. Appearance of the CDM N-body haloes in radius/radial velocity space (left panels) and in radial/tangential velocity space
(right panels), using the same colour coding rules as in Figure 16, namely using ρ, Q and f for the first, second and third rows, respectively.
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Figure 18. Measured densities, from left to right, ρ, Q and f , as functions of distance r from the halo centre in our CDM N-body halo.
For the top and bottom rows, the density is represented as a function of log r and r, respectively, while the thick line is calculated by
taking local median.

To relate Q(x) to the true phase-space density in a more
intuitive way than equation (28), we can assume that f(x,v)
factorises as follows:

f(x,v) =
ρ(x)

(2π)3/2σ3(x)
exp

{

− [v − v0(x)]2

2σ2(x)

}

, (29)

where proper normalisations were set up directly. Hence,

f(x,v) = Q(x)
1

(2π)3/2
exp

{

− [v − v0(x)]2

2σ2(x)

}

. (30)

In particular, Q(x) = f [x, v0(x)](2π)3/2. We see that, within
a normalisation factor, function Q(x) is representative of
the true phase-space distribution function where it matters,
i.e. in the neighbourhood of local maxima in velocity space.
Of course, this argument is valid only if at fixed x = x0,
the function g(v) = f(x0, v) presents only one local maxi-
mum in v space. If this condition is verified, we could ex-
pect the function Q(x) to represent a fair estimate of the
true phase-space distribution function near the local maxima
in phase-space, which correspond to substructures. However
this is not strictly true since substructures a embedded in
the background of the main component of the halo: σ(x)
is not the local velocity dispersion of the substructure but
rather the local velocity dispersion of the diffuse compo-
nent, which is much larger. We therefore expect Q(x) to un-

derestimate the true distribution function in substructures,
corresponding to the high f regime, which is dominated by
these clumps. On the other hand, when considering the main
component of the halo, which dominates the low f regime,
we expect Q(x) to overestimate the true distribution func-
tion, as, f(x,v) < f(x,v0) for v 6= v0 in equation (29).
These arguments rely on the very simple modeling given by
equation (29), but they are confirmed by Figure 15, which
compares the measured function Q(x) to the exact solution
for the Hernquist composite profile studied in § 3.2. Similar
trends are observed for the simulated halo, not shown here.

Clearly, the function Q corresponds to a serious short-
coming when compared to the realistic phase-space estima-
tors studied in this paper. However it seems to capture the
main features of the distribution function, as illustrated by
Figures 16 and 17. These figures compare, in various sub-
spaces, the structures obtained when colour is coded by pro-
jected density ρ(x), using the parameter Q(x), and by phase-
space density. They are supplemented with Figure 18, which
shows ρ, Q and f as functions of distance r from the halo
centre. Note interestingly that, both for the 6D estimator
and its proxy Q, the maximum value of phase-space density
in substructures seems to be approximately the same for
all the substructures (and larger than at the centre of the
halo). This property is quite useful as it makes substructure
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detection quite easy with simple friend-of-friend algorithm,
as proposed by Diemand et al. (2006). These authors do
not use the true phase-space distribution function but the
function Q to carry the detection.

While pure projected density codes provide much less
information than phase-space density ones, the Q(x) func-
tion seems to capture the most important features of phase-
space, and in particular subhaloes. However, the true phase-
space density provides additional crucial information, in par-
ticular subtle phase-space structures such as the fine fila-
ments observed in the (r, vr) diagram, some of which being
at the origin of caustics, others corresponding to tidal tails.
In a forthcoming work, we shall discuss the detection and
analysis of substructures in phase-space. We shall see that
analysis of substructures in phase-space can be used to infer
powerful properties on the dynamical history of dark matter
haloes.

6 SUMMARY

We devoted this paper to the study of six-dimensional phase-
space density estimators in N-body samples. We considered
several methods used in the literature to estimate phase-
space density that differ from each other (i) in the way the
tessellation of space is performed, and (ii) in the way local
interpolation is performed. Concerning point (i), we consider
two kind of tessellations: the Delaunay tessellation (DTFE)
proposed by Arad et al. (2004) through the SHESHDEL al-
gorithm and the hierarchical decomposition of phase-space
using binary tree technique as proposed by Ascasibar & Bin-
ney (2004) through the FiEstAS algorithm, later improved
by Sharma & Steinmetz (2006) with the EnBiD implementa-
tion. In the (ii) class, we consider two ways of estimating the
phase-space density for the DTFE method, one based on the
direct estimation of the local Delaunay cells volumes, and a
more isotropic, smoother version of it. For the binary tree
method, we consider the hypercubical cell smoothing pro-
posed in FiEstAS and the standard SPH smoothing (but in
6D instead of 3D) using an Epanechikov kernel as advocated
by S06. We also test an anisotropic SPH method (ASPH).

In all these methods, a crucial problem is to set prop-
erly the local metric frame to relate position and velocities,
which basically sets a scaling factor between the position
and the velocity subspace. While the binary tree methods
can be optimised locally both through their refinement and
through the definition of such a system of coordinates —
using a Shannon entropy criterion, as advocated by S06 and
implemented through the EnBiD algorithm, a global metric
must also be defined for the DTFE method, prior to the
construction of the tessellation network.

In order to automatically specify a global metric, we
presented two methods which yield similar results. The first
one involves simple dynamical arguments based on the prop-
erties of NFW profiles. The second method involves measur-
ing the nearest neighbour distance distributions in position
and in velocity subspace and finding the scaling factor be-
tween position and velocities for which the positions of the
peak of these two distributions match each other.

To summarise, we tested the following implementations:

(i) the DTFE algorithm and a smoother, more isotropic

version of it. Both of them require the definition of a global
metric;

(ii) the FiEstAS binary tree method with EnBiD im-
provement;

(iii) SPH methods (a) with EnBiD improvement and (b)
without it. We denote case (a) by SPH-AM, i.e. SPH with
adaptive metric, in opposition to case (b) that we simply
denote by SPH; which requires a global metric setting;

(iv) Adaptive SPH methods with adaptive metric
(ASPH-AM).

To test the various algorithm in details, we used three
halo models:

(a) A Hernquist isotropic profile with 5× 105 particles. In
that case, analytical estimates are available for the phase-
space distribution function.
(b) A composite Hernquist halo, built from a main com-

ponent with 2.5 × 105 particles, and a set of substructures
amounting to 2.5×105 particles. In that more realistic case,
there is also an exact expression for the phase-space distri-
bution function.
(c) A N-body halo with 1.8 millions particles extracted

from a standard CDM simulation.

The main results of our analyses are the following:

• Because they are local and adaptive, the SPH-AM
methods provide the best estimators for the phase-space
density, when using a moderate number of neighbours, rang-
ing from 10 to 40 in order to perform the interpolation.

• While DTFE estimators are in principle better than
SPH estimators when one measures Eulerian quantities (not
centred on the particle positions), they generally perform
poorly in phase-space because they rely on a global metric
setup. A dynamically consistent measurement of the phase-
space distribution function requires that the scaling between
positions and velocity be locally adaptive. The best compro-
mise, without supplementary assumption on the dynamical
history of the system, is achieved by enforcing local isotropy
in phase-space: this is achieved in practice by the Shannon
entropy criterion used in EnBiD. Note finally a last weak-
ness of DTFE methods: they are extremely costly from a
computational point of view compared to SPH-AM, both in
terms of computer time and memory.

• While the optimal number of neighbours should typi-
cally be around 200 as suggested by DTFE, we find, using
also DTFE, that it should be around a few tens near high
density peaks, which justifies the low value we suggest to use
for the SPH-AM method: such a number increases noise to
signal ratio, but allows us to probe better high phase-space
density peaks.

• By analysing the properties of the local metric proposed
by EnBiD, we find that the distance distribution matching
method provides a global scaling between positions and ve-
locities which probes well the high density regions of phase-
space, which are dominated by substructures. We also find
that the actual “optimal” local scaling presents a bimodal
distribution, made from the contribution of the main com-
ponent of the halo, roughly in equilibrium, and the contribu-
tion of the substructures, which are tidally disrupted while
they spiral in within the halo. This bimodality and the cor-
responding large scatter of about one order of magnitude
on the local scaling parameter between positions and veloc-
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ities has a dramatic impact on the performance on methods
relying on global metric setting, such as DTFE.

• the ASPH-AM methods do not bring much improve-
ment over the SPH-AM implementation. They can poten-
tially improve phase-space estimation in high density re-
gions, but at the cost of a slight systematic overestimation
bias in the moderate density regime.11

Note that most of our estimators are Lagrangian in na-
ture,i.e. they estimate phase-space density at particles posi-
tions: in that sense they favour the SPH approach relatively
to the DTFE approach. One has to keep in mind that DTFE
tessellates accurately all space, while the SPH smoothing
becomes increasingly suboptimal while departing from the
particles. In particular, we found that an Eulerian quantity
such as v(f) was still best measured by DTFE, despite the
problem of the suboptimal position/velocity scaling.

Alternative routes to phase-space density estimation
could involve using the angle-action canonical variables
which match the closest spherical fit to a given halo. In-
deed, the topology of the underlying tori would provide a
natural setting in which to coarse grain the distribution.
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