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ABSTRACT
We study merger histories of dark-matter haloes within various cosmological models by run-
ning a set ofN -body simulations. The simulated cases include the Wilkinson Microwave
Anisotropy Probe (WMAP) 5th year results, as well as Einstein-de Sitter universe, with sev-
eral different power-spectrum shapes. We identify the scaling laws which allow a universal
description of merger-trees independently on cosmological parameters. This is done by ex-
pressing the conditional mass function (CMF) in scaled variables of mass and time, and re-
laxing few symmetry assumptions which are usually adopted by the excursion set formalism.
The CMF is then approximated by a global fitting function which is accurate for a large range
of parameters; including different halo masses, redshifts, and cosmological models. The fit
is significantly more accurate than previous estimates. Other statistical properties such as
merger-rates and main-progenitor histories are shown to follow the scaling laws provided by
the CMF. We show that our global fit can be used to transform merger-trees extracted from
a givenN -body simulation into a different cosmology or mass resolution. This technique is
promising as it conserves the non-markov features of trees and it might be extended easily
for handling substructures. It offers a simple way to study the effect of cosmology, dark en-
ergy models, and mass resolution on galaxies or other astrophysical objects. As an alternative
approach, we confirm that main-progenitor histories followa lognormal distribution, as was
found by Neistein & Dekel. This description is shown to be more natural in capturing the
behaviour of trees with time and descendant mass. However, due to the high level of simi-
larity between the different simulations we cannot formulate a universal law describing the
parameters of the lognormal distribution.

Key words: cosmology: theory — dark matter — galaxies: haloes — galaxies: formation —
gravitation

1 INTRODUCTION

The growth of dark-matter haloes through merging and accretion
is the driving force for many astrophysical phenomena. Accurate
theoretical prediction for halo growth is thus a fundamental ingre-
dient in various fields of cosmology, including structure formation,
galaxy assembly, black holes growth and quasars physics.

The conditional mass function (hereafter CMF) has been an
important tool in quantifying the growth of haloes. It is defined
as the average number of progenitors which will merge into a
descendant halo at a later time. The CMF was first introduced
theoretically by the Extended Press-Schechter formalism (here-
after EPS, Bond et al. 1991; Bower 1991; Lacey & Cole 1993). Re-
cent theoretical predictions use a variation of EPS, where the el-
lipsoidal collapse model is adopted instead of spherical collapse
(Sheth & Tormen 2002; Moreno et al. 2008; Zhang et al. 2008). In
addition, an empirical fit to the CMF which is based onN -body
simulation was presented by Cole et al. (2008).

⋆ E-mail: eyal@mpa-garching.mpg.de

Although excursion set theories based on the ellipsoidal col-
lapse are successful in predicting the halo abundance (i.e.halo mass
function, see below), it seems that they do not provide a CMF
which is significantly closer toN -body simulations than the tra-
ditional EPS result. Most of the current estimates of the CMFshow
significant variations from the results ofN -body simulations where
the number of progenitors can differ up to a factor of 3, especially
for massive progenitors. The only estimate which was provedto
be more accurate is the empirical study of Cole et al. (2008),where
deviations can occasionally reach 50%. Since this fit was calibrated
against the Millennium simulation (Springel et al. 2005), there is a
need to verify it for cosmological parameters which better fit the
recent Wilkinson Microwave Anisotropy Probe (WMAP) 5th year
data (e.g. Komatsu et al. 2009).

A major target of this paper is to provide a better empirical
description of the CMF as measured fromN -body simulations.
We work out the possible scaling laws which can be applied to
the CMF in order to capture its details over large range of cosmo-
logical models, halo mass and redshifts. The result is an accurate
fitting function, which offers a significant improvement in accu-
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racy over previous studies. This empirical fit is useful for various
applications. It can help us distinguish between differentanalytical
models, and can guide us to new improved versions of them. Such a
fit can be used for generating monte-carlo merger-trees, which will
accurately reproduce the results ofN -body simulations. The effect
of cosmology, environment density and different dark energy mod-
els can be studied, relating these ingredients to haloes andgalaxies
(e.g. Macciò et al. 2008). We discuss below few additional applica-
tions in more details.

Much effort has been invested in recent years in quantify-
ing the abundance of haloes of a given mass (i.e. the halo mass
function). The analytical model of Sheth & Tormen (1999) offers
a significant improvement over the previous classical estimate of
Press & Schechter (1974). On the other hand, the ever-growing
dynamical range ofN -body simulations allows an accurate mea-
surement of the mass function with a negligible sampling scatter
or cosmic variance (e.g. Jenkins et al. 2001; Warren et al. 2006;
Reed et al. 2007). However, deviations between the theory and sim-
ulations still exist. For example, Tinker et al. (2008) haveshown
that deviations can increase as a function of redshift, reaching few
tens of percents atz = 2.5. An accurate knowledge of the CMF can
predict how the halo mass function will change with redshift. The
benefit in using the CMF is that it includes much more information
than the halo mass function, and the statistical noise is still small
enough.

We will discuss a new methodology for scaling a given set
of merger-trees into a different cosmological model or massres-
olution. Although this technique requires an existing database of
merger-trees extracted from a givenN -body simulation, it offers
an easy transformation for merger-trees to different redshift, mass
resolution or cosmology. There are various advantages for using
this method over monte-carlo generated trees. It can bypassthe is-
sue of non-markov features of the trees which correlates adjacent
time-steps (Sheth & Tormen 2004; Neistein & Dekel 2008a), and it
may be extended to include substructures and halo locations. Such
a method can be very useful for semi-analytical modeling of galaxy
formation, black hole growth, and dwarf galaxies assembly.

The usual line of thought in quantifying merger-trees starts
with the definition of the CMF. This is the basic prediction ofthe
EPS formalism, and it includes substantial information on the trees
statistics. Once the CMF is known, more detailed statisticscan
be examined, such as main-progenitor histories and merger-rates.
However, Neistein & Dekel (2008a, hereafter ND08a) have shown
that a different path of reasoning is possible. These authors quan-
tified the main-progenitor histories first, and then showed that it
allows a full construction of merger-trees. Moreover, it was shown
that the main-progenitor statistics is very regular, and follows a log-
normal distribution in an appropriate mass variable (S, the variance
of the smoothed density field). In this study we test this methodol-
ogy for the set of simulations used here, and show that it allows
an accurate description ofN -body simulations which is more sim-
ple than the standard CMF approach. However, additional data is
needed in order to formulate this approach independently onthe
cosmological model.

It should be noted that the CMF does not include all the in-
formation needed for describing merger trees. There are in general
many different subsets of trees that can accurately fit a given func-
tion. Nonetheless, we will show in this work that the scalinglaws
of the CMF can provide a good estimate for the full statisticsof the
merger-trees, including main-progenitor histories and merger-rates.

This paper is organized as follows. In§2 we describe the
set ofN -body simulations we use, and the way merger trees are

Table 1.A summary of theN -body simulations used in this work, all with
flat cosmology and with a Hubble constant of 72 km/s/Mpc. Particle mass
is in units of h−1M⊙, box size is in Mpc. Each simulation follows the
evolution3503 particles.

Name Ωm σ8 Particle mass Box

wmap5 0.258 0.796 4.54 × 108 90
lcdm 0.258 0.915 4.54 × 108 90
scdm1 1.0 0.77 1.76 × 109 90
scdm2 (n = −2) 1.0 0.8 1.76 × 109 90

constructed. Section 3 is devoted to the conditional mass function
where we study its scaling properties, and we provide an accurate
fitting function. In§4 we discuss an alternative description, using
main-progenitor histories. A simple prescription on how toscale
a given simulation is developed in§5. We summarize the results
and discuss them in§6. Additional statistical properties of merger-
trees which are not critical for the body of the paper are added in
Appendix A. Throughout the paper we uselog to designatelog10,
natural logarithm is written asln.

2 THE SIMULATIONS

All simulations have been performed withPKDGRAV, a tree code
written by Joachim Stadel and Thomas Quinn (Stadel 2001). The
code uses spline kernel softening, for which the forces become
completely Newtonian at 2 softening lengths. Individual time steps
for each particle are chosen proportional to the square rootof the
softening length,ǫ, over the acceleration,a: ∆ti = η

p

ǫ/ai.
Throughout, we setη = 0.2, and we keep the value of the soft-
ening length constant in co-moving coordinates during eachrun
(ǫ=1.62h−1kpc). Forces are computed using terms up to hexade-
capole order and a node-opening angleθ which we change from
0.55 initially to 0.7 at z = 2. This allows a higher force accu-
racy when the mass distribution is nearly smooth and the relative
force errors can be large. The initial conditions are generated with
the GRAFIC2 package (Bertschinger 2001). The starting redshifts
zi are set to the time when the standard deviation of the smallest
density fluctuations resolved within the simulation box reaches0.2
(the smallest scale resolved within the initial conditionsis defined
as twice the intra-particle distance). For each simulationwe stored
more than 100 outputs from redshift 10 to redshift zero, in order to
construct detailed merger trees. The parameters of the simulations
used in this work are describe in Table 1.

In all simulations, dark matter haloes are identified using the
FOF algorithm with linking length of 0.2 times the mean interpar-
ticle separation. Only haloes which include more than 20 particles
are saved for further processing. For constructing merger trees, we
started marking all the particles within the virial radius of a given
haloes atz = 0 and we tracked them back to the previous output
time. We then make a list of all haloes at that earlier output time
containing marked particles, recording the number of marked par-
ticles contained in each one. In addition we record the number of
particles that are not in any halo in the previous output timeand we
consider them assmoothlyaccreted.

We used the two criteria suggested in Wechsler et al. (2002)
for halo 1 at one output time to be labeled a “progenitor” of halo
2 at the subsequent output time. In our language halo 2 will then
be labeled as a “descendant” of halo 1 if i) more than 50% of the
particles in halo 1 end up in halo 2 or if ii) more than 75% of halo
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Figure 1. Various shapes ofS(M) = σ2(M) for the set of simulations
used in this work.S(M) is defined as the variance of the initial density
field, smoothed over spherical regions that include on average the massM ,
and linearly extrapolated toz = 0. S(M) is corrected according to the ini-
tial condition density field used for each simulation. As a reference we plot
S(M) that was used in the Millennium simulation (Springel et al. 2005).

1 particles that end up in any halo at time step 2, do end up in halo
2 (this second criterion is mainly relevant during major mergers).
Thus a halo can have only one descendant but there is no limit to
the number of progenitors.

We found evidence for the so-called ‘backsplash’ subhalo
population (e.g. Knebe et al. 2008). These haloes have orbits that
brought them inside the virial radius of their host at some earlier
time, but without them been really accreted (i.e. they managed to
come out from their host dark matter halo). We decided to treat
them in two different ways according to their final fate: i) Ifaf-
ter have been inside the main halo, the backsplash halo survives as
isolated halo till the present time, than it is removed from the pro-
genitor list of the parent halo (i.e. it is removed from the merger
tree); ii) if the halo is accreted again (in a definite way) by the main
halo at a later time step then it is considered as accreted thefirst
time it entered the main halo. We found that back splash haloes are
roughly 8% of the total progenitor number but they only marginally
contribute (less than 2%) to the final halo mass.

According to the Extended Press-Schechter formalism the sta-
tistical properties of merger-trees are fixed by the densityfield at
early times when perturbations grow linearly. All the statistical
properties of this field are described by its variance,S(M) =
σ2(M). Specifically,S(M) is the variance of the density field,
smoothed with a spherical top hat filter in space, and linearly ex-
trapolated toz = 0 (for more details, see Lacey & Cole 1993). In
fig. 1 we plotS(M) for all the simulations used in this work. This
comparison shows the predicted similarity between merger-trees of
different simulations: we have two simulations with very similar
S(M) but differentΩm (lcdm & scdm2). One simulation has a low
value ofσ8 (wmap5), and the scdm1 simulation has a very different
shape ofS(M).

In order to avoid deviations ofS(M) due to the small box size
and cosmic variance we measured it directly from the initialcondi-
tion density field used for each simulation. The values ofσ8 given
in table 1 are those obtained by this calibration method. Forthe
scale free simulation (scdm2) the box size is important as itlimits

contributions from large scales to the field variance (see a detailed
discussion in Smith et al. 2003). This effect bendsS(M) slightly
at the high mass end, in agreement with the theoretical prediction.

3 CONDITIONAL MASS FUNCTION

This section is devoted to a comparison of the conditional mass
function (CMF) as extracted from our set ofN -body simulations.
The scaling laws of the CMF are important as they highly constrain
the behaviour of the full statistics of merger-trees. In Appendix A
we show other statistical properties of trees, and demonstrate that
they follow approximately the properties of the CMF found here.

According to the Extended Press-Schechter formalism (EPS,
Bond et al. 1991; Bower 1991; Lacey & Cole 1993), the average
number of progenitors in the mass interval[M, M + dM ], which
will merge into a descendant haloM0 after a timestep∆ω, is given
by

dN

dM
(M |M0, ∆ω)dM =

M0

M
f(∆S, ∆ω)

˛

˛

˛

˛

dS

dM

˛

˛

˛

˛

dM . (1)

Here ω ≡ δc(z)/D(z), whereδc(z) ≃ 1.68 with a weak de-
pendence onz, andD(z) is the cosmological linear growth rate.
∆ω ≡ ω − ω0 where the progenitors are identified atω(z) and
the descendant halo atω0. We refer the reader to the appendix of
ND08a for a detailed summary on how to computeω, and a simple
fitting function. The quantityf dS describes the fraction of mass
(out of the descendant halo) that is included within progenitors of
mass in the range[S, S + dS]. According to EPS

fps(∆S, ∆ω) =
1√
2π

∆ω

(∆S)3/2
exp

»

− (∆ω)2

2∆S

–

, (2)

where∆S ≡ S(M)−S(M0), andfps is the specific solution off
given by the EPS formalism. In what follows we will use the name
‘CMF’ to designatedN/dM only.

In the language of the EPS formalismfps does not depend
explicitly on the descendant halo massM0 or on the background
cosmology. These parameters appear only in the transformation
of ∆S and ∆ω to mass and redshift. Even though the EPS for-
malism fails to produce accurate merger-trees (i.e. theshapeof
fps is not accurate), in general it might be that the universality of
fps still exist. Sheth & Tormen (2002) and Cole et al. (2008) have
tested the behaviour off usingN -body simulations, both showing
non-negligible deviations from universality. However, these stud-
ies do not explore in detail the break in the universality, and do not
test other models forf againstN -body simulations. For example,
Cole et al. (2008) have studiedf only for descendant haloes iden-
tified atz = 0 and showed deviations of∼ 50%for various values
of ∆ω and halo masses.

The universality offps is based on two ingredients: the dy-
namics of the spherical collapse model, and the properties of the
initial density field when smoothed by a top-hat filter ink-space.
Many works have investigated variations of this formalism by us-
ing the ellipsoidal collapse model, or smoothing filters with differ-
ent shapes (Bond et al. 1991; Sheth & Tormen 2002; Zentner 2007;
Desjacques 2008). Such models predict thatf may depend on the
descendant halo mass, breaking its simple universality. For exam-
ple, Moreno et al. (2008) have stressed the fact that when using the
ellipsoidal collapse model,f is universal if the variablesS(M) and
∆ω are normalized byS(M0) and

p

S(M0) respectively. In its
most general formf may depend onS0 ≡ S(M0), ω0, and on the
specific cosmology used. As will be shown below, neglecting the
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Figure 2. The self-similarity of the conditional mass function (CMF)with
time. Each panel shows the CMF measured from oneN -body simulation
as indicated. The descendant halo is identified atz0 = 0, 1, 2, 3 (solid,
dashed, dotted-dashed, and dotted lines respectively), and the progenitors
are identified at two lookback times∆ω = 0.5, 3 (blue and red lines
respectively). The distribution of the descendant masses at z0 is selected
such that it produces the same distribution ofM0 values at allz0, and
1012 6 M0 6 1013 h−1M⊙. In the appendix we provide several other
tests for the time self-similarity.

dependence onω0 and cosmology is possible, but the dependence
onS0 is essential for accurate description of the CMF.

3.1 Self-similarity in time

According to eq. 1 the CMF as predicted by EPS depends only on
∆ω and not on the redshiftz0 where the descendant halo is defined.
This self-similarity implies that merger-trees extractedat different
redshifts are self-similar when usingω as the time variable. In-
deed, ND08a and Genel et al. (2008) have verified this behaviour
using merger-trees extracted from the large Millennium simula-
tion (Springel et al. 2005). It was shown to work well for main-
progenitor histories and merger-rates, with scatter of fewpercent
up toz ∼ 5 (see also Fakhouri & Ma 2008, who found deviations
from this symmetry using a different definition of the halo mass).

In fig. 2 we show the level of self-similarity in time obtained
by our fourN -body simulations. The scdm1 & scdm2 simulations
show small variations in the CMF between differentz0, consis-
tent with the sampling noise. The wmap5 and lcdm cosmologies
show larger deviations, up to a factor of two for small progenitors,
and for the time-step∆ω = 0.5. However, the data do not show a
monotonous trend withz0, hinting that our small statistics may con-
tribute to the scatter. For example, the number of descendant haloes
within a mass range1012 6 M0 6 1013 h−1M⊙ in the wmap5
cosmology is roughly (500,400,100,100) forz0 = (0, 1, 2, 3) re-
spectively. It is also encouraging that better results wereobtained
for the Millennium simulation (as described above) and for large
time-steps. Nonetheless, some deviation from self-symmetry may
be related to the halo mass definition (i.e. theFOF linking length)
and its evolution with redshift. As explained in section 2, we try
to correct the merger-trees for ’backsplash’ haloes. This correction
may introduce some additional asymmetry betweenz0 = 0 and
higher redshifts.

The fact that merger-trees are similar when the descendant is
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d
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M0 = 2.69 × 1012

∆ω = 0.3

∆ω = 3

Figure 3.The self-similarity of the CMF for different expansion histories of
the universe. The two sets of CMF are computed atz0 = 0, for descendant
mass in the range1012 6 M0 6 1013 h−1M⊙, and for∆ω = 0.3, 3
(blue and red lines respectively). The solid (dashed) line shows results ex-
tracted from the scdm2 (lcdm) simulation. The distributionof the descen-
dant masses atz0 is matched in order to produce the same distribution of
S(M0) values. The average descendant halo mass is indicated in units of
h−1M⊙. Note that we plot the number of progenitors per unit ofS, which
is given by eq. 1 times|dM/dS|.

identified betweenz = 0 up to at leastz = 3 is an important re-
sult. Due to the change in the effective cosmological parameters
at largez (i.e. Ωm, ΩΛ), the merger trees at high-z correspond to
a different cosmological model. Thus, the dependence of merger-
trees onΩm, ΩΛ and on the Hubble constant should be all folded
into the time variableω = δc/D. In fig. 3 we test this hypothesis
by comparing the CMF from scdm2 and lcdm simulations. These
simulations have a similar shape ofS(M) (see fig. 1) but very dif-
ferentΩm values. The agreement is within the Poisson sampling
error-bars, proving thatω can scale properly different expansion
histories of the Universe.

3.2 Different power-spectrum

Following the EPS formalism (eq. 2) the fraction of mass in-
side progenitors,fps(∆S, ∆ω), depends only on∆ω and ∆S.
As mentioned above, one could assume less universal form,
f(∆S, ∆ω|S0) that will enable accurate description of the CMF in
N -body simulations. In order to test this we plotf in fig. 4 for two
sets of power-spectra. The results of the first comparison (left pan-
els), between lcdm and wmap5 simulations, is very good, showing
no significant deviation off between the two models. This is ob-
tained when the same values ofM0 are selected in each cosmology,
or the sameS0 = S(M0). The difference between these two selec-
tion criteria is negligible, so we actually samplef(∆S, ∆ω|S0) for
a small range inS0.

The second comparison (right panels), shown in fig. 4, is for
wmap5 and scdm1 cosmologies. As seen in fig. 1 bothS(M) and
its derivativedS/dM are very different between these two simu-
lations. This is being translated into a large discrepancy in f when
the same values ofM0 are chosen from both simulations. How-
ever, selecting a sample with the sameS0 values leavesf invariant,
proving thatf = f(∆S, ∆ω|S0) (at least for our limited set of
data). For a givenS0 the values ofM0 in both simulations differ
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Figure 4. The fraction of mass within progenitors for different power-
spectrum shapes and cosmologies. In each panel we compare results from
two different simulations as indicated, with∆ω = 0.3, 2, and descendant
haloes which are selected atz0 = 0. For the comparison between wmap5
& lcdm (left panels) we select haloes with1013 6 M0 6 1014 h−1M⊙

from wmap5 simulation. For the second comparison (right panels), the mass
range of1012 6 M0 6 1013 h−1M⊙ in wmap5 was used. Selection of
M0 at the other cosmologies were chosen to matchM0 or S0 distribution
from wmap5, as indicated in each panel.

by a factor of∼10, limiting the dynamical range for which we can
check thisf scaling.

The dependence off onS0 deserves a more careful test, prob-
ably with a larger set ofN -body simulations, spanning a larger
range of power-spectra. It is important to verify that such adepen-
dence is not related to theshapeof S(M), as was found here. If
this is true, it implies that a modification to the normalization of the
power-spectrum (σ8) which changesS0, will induce a non-trivial
change to the CMF. Such a dependence onσ8 is different from the
simple scaling of the shape∆ω/

√
∆S that is used by EPS (see

below).

3.3 Global fitting function

The EPS formalism suggests that the mass (∆S) and time (∆ω)
variables can be scaled into a new variableν ≡ ∆ω/

√
∆S. In

terms of ν, the functionf(ν) ν dS/dν should be universal. As
shown above some dependence onS0 is required, so we can try
to use a function of the shapef(ν|S0). This is tested in fig. 5
where we plotf(ν|S0) for a fixed value ofS0 and for various
∆ω. The clear deviations from a unique line show that such a for-
mulation is too simple and incompatible with the results ofN -
body simulations. This figure is very similar to the one givenin
Sheth & Tormen (2002) and Cole et al. (2008), and agrees with
these previous results. Thus, we are forced to use a more general
form f = f(∆S, ∆ω|S0).

We found that the fitting function below can fit the CMF
from our set ofN -body simulations for all time-steps larger than
∆ω ∼ 0.5 and allS0 values. We have looked for the simplest pos-
sible function that can fit the data, which is still similar tothe EPS
original function. The function we adopt is:

f(∆S, ∆ω|S0) = a
∆ω

∆S1.5
exp

»

−b
∆ω2

∆S

–

+ (3)

1
0.01

0.1

1

ν

f
(ν

)
ν

d
S

d
ν

 

 

∆ω=0.5
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∆ω=3
EPS
Lognormal

Figure 5. The limitation of using a fit of the shapef(ν|S0). Simulation
results are plotted as histograms, and are taken from the scdm2 simula-
tion at z0 = 0 with ∆ω = 0.5, 1, 3 and for average halo mass of
3 × 1012 h−1M⊙. The smoothed curves are derived from the global fit
(eq. 3), EPS prediction is plotted as a thin dashed line, and the lognormal
global fit toP1 (eqs. 5 & 6) is plotted in circles (the latter is plotted only for
M > M0/2 where it should be identical to the CMF, see section 4).

c
∆ω2

∆S3
exp

»

−d
∆ω2.5

∆S2+α

–

,

where the parameters explicitly depend onS0 in the following way:

a = 0.215 + 0.0037 S0

b = 0.414 + 0.0013 S2
0

c = 0.0746 + 0.0382 S0 (4)

d = 0.257 + 0.0568 S0

α = −0.0141 S0 + 0.0056 S2
0

In fig. 6 we compare our fitting function to the simulation data,
showing that it accurately reproduces the trends found. Theagree-
ment between the fit and data is at the level of the statisticalnoise.
The dependence onS0 is mainly seen at low∆S (corresponding
to massive progenitors). We also show the EPS prediction andthe
fit derived by Cole et al. (2008), both independent onS0. Evidently,
our fit agrees well with Cole et al. (2008) for intermediate and mas-
sive haloes. This is encouraging because the fits are based ondif-
ferent simulations and different merger-tree construction schemes.
However, our fit breaks the symmetry of using onlyν as was done
by Cole et al. (2008), in this way it can capture the behaviourof
the data for low mass haloes, and across various time-steps.The
accuracy for different∆ω can be specifically seen in fig. 5.

The integral off can be computed analytically only forα = 2
(S0 ∼ 2.5), for the whole halo mass range we computed the in-
tegral numerically, yielding 0.75 up to 0.9, depending on the de-
scendant mass and on the time-step. This predicts that a substantial
fraction of the mass is not included in any progenitors but rather
accreted from a ‘smooth’ component.

Throughout this work we mainly discuss the EPS formalism
in its standard version. However, as mentioned in the introduction,
versions of this formalism which use the ellipsoidal collapse model
are presumably more accurate, as is indicated by their ability to
predict accurate halo mass functions. We examine two such stud-
ies, the pioneer work of Sheth & Tormen (2002) and a more recent
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Figure 6.A global fit tof(∆S, ∆ω|S0) as defined in eqs. 3 & 4. Each panel shows the values off for a givenS0 as indicated, and for time-steps of∆ω = 0.5
& 3 (blue and red lines respectively). The simulation data were extracted and averaged from all the simulations used here, at z0 = 0 & 1, using descendant
mass with bin size of factor 3 inh−1M⊙. The histogram lines show results from simulations, smoothsolid curves are plotted using our global fit, dashed
lines are the EPS prediction, and the dashed-dotted lines are following the fit of Cole et al. (2008) (the latter are shown only for ∆ω = 3). Note that the EPS
and Cole et al. (2008) are identical for all values ofS0.

work by Moreno et al. (2008). Our interpretation of both studies is
that the CMF as predicted by the spherical model is comparable
in its accuracy to the one predicted by ellipsoidal collapse. This
can be seen in figs. 7 & 8 of Sheth & Tormen (2002). More ev-
idently, figs. 3-5 of Moreno et al. (2008) show that the spherical
model gives better results for low mass descendant haloes, but this
trend changes for massive haloes, where the ellipsoidal collapse is
more accurate. A similar trend can be seen in fig. 6 here, wherethe
deviations from EPS are shown to be larger for lowerS0 values.

4 MAIN-PROGENITOR HISTORIES

The “main-progenitor” history of a given merger-tree is con-
structed by following backward in time the most massive pro-
genitor in each merger event. This is a useful definition as ital-
lows us to follow a well defined branch of the tree. In addition, a
quantitative description of the main-progenitor history highly con-
strains the full statistics of trees. Properties of main-progenitor
histories were studied extensively, both analytically andusing
N -body simulations (Lacey & Cole 1993; Nusser & Sheth 1999;
Firmani & Avila-Reese 2000; Wechsler et al. 2002; van den Bosch

2002; Neistein et al. 2006; Li et al. 2007; Neistein & Dekel 2008a;
Zhao et al. 2008). Let us also mention that the main-progenitor is
not always the most massive progenitor at a given time.

We defineP1 as the probability density to find a main-
progenitor of massS(M1) for a given descendant halo massM0,
and a time-step∆ω. As was found by ND08a,P1 can be well fitted
by a lognormal distribution,

P1(∆S1|S0, ∆ω) =
1

σp∆S1

√
2π

exp

»

− (ln ∆S1 − µp)2

2σ2
p

–

. (5)

Here∆S1 = S(M1)−S(M0), the parameters(σp, µp) depend on
S0 and∆ω, and as usualS0 ≡ S(M0). By definition, the integral
overP1(∆S1) equals unity for anyS0 and∆ω.

Main-progenitor histories were constructed for all the simula-
tions used in this work. Following ND08a, we confirm that the log-
normal distribution fits accurately the simulation results. This was
tested for all possible ranges of halo masses, redshift, andtime-
steps. As was mentioned by ND08a the fit becomes inaccurate for
small time steps, typically for∆ω . 0.5. Such a behaviour is found
here as well. One exception to the above, where the lognormalfit
is somewhat innacurate, is for the scdm1 simulation atz0 = 0.
This may be due to the high sensitivity of∆S in this cosmological
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Figure 7.The full distribution of the main-progenitor in various cosmologi-
cal models. Results are shown for descendant haloes defined at z0 = 1, and
main-progenitor selected at two time-steps,∆ω = 0.5, 3. The descendant
halo mass is in the range1012 6 M0 6 4 × 1012 h−1M⊙ for wmap5
cosmology.M0 in the other cosmologies were selected in order to match
the same distribution inS(M0). Thin solid lines show the lognormal global
fit, eq. 6, as computed for lcdm & scdm1 cases.

model (dS/dM is typically 7 times larger than other cases). The
fact that the fit works well forz & 1 data using the same cosmo-
logical simulation is encouraging. In fig. 7 we plot main-progenitor
distributions for few cases of halo mass,z0 and∆ω, more exam-
ples can be found in Appendix B. The accuracy of the lognormal
fit as plotted here is typical for the rest of the cases.

For each cosmology we are able to use a global fit, similar to
the one suggested by ND08a1. The fit approximates the standard
deviation and average ofln ∆S1 by

σp = (a1 log S0 + a2) log ∆ω + a3 log S0 + a4 (6)

µp = (b1 log S0 + b2) log ∆ω + b3 log S0 + b4 .

We provide numerical details for the values of these parameters in
Appendix B. For a givenS0, the evolution with time ofσp andµp

is simply linear inlog ∆ω. In fig. 5 we show that this evolution
gives a very accurate fit to the relevant part of the CMF (the CMF
and main-progenitor distribution are identical forM > M0/2).
We recall that such time-evolution was obtained for the CMF using
much more complicated∆ω dependence (see eq. 3). Although both
approaches discuss only the fitting possibilities, it seemsthat the
main-progenitor gives a much simpler way to describe the merger
history in an accurate way.

The simple behaviour ofP1 for each cosmology as seen in
eq. 6 and in fig. 5 calls for a more global fit, which predicts the
parameters ofP1 in other cosmological models. We comparedP1

for our set of simulations and found a high level of self-similarity,
with the exception of the scdm1 case. Unfortunately we couldnot
find a general law able to combine scdm1 with the other cosmo-
logical models. For example, choosing haloes with the same values
of S0 from scdm1 and other simulations does not yield the same
results. To summarize, our study indicates that the main-progenitor

1 Here we parameterize the fit according toS0, and not according toM0,
as was done in ND08a, eq. 2
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Figure 8. The conditional mass function,dN/dM , computed for differ-
ent cosmological models using a transformation of the time-step∆ω. In
each panel we compare results from two different simulations and for the
same descendant halo mass as indicated (mass is in units ofh−1M⊙). The
time-steps used for the lcdm cosmology are∆ω = 0.5, 2. For the wmap5
(scdm1) cosmology we used time-steps which are different bya factor of
0.86 (1.8) in∆ω. It seems that time transformation allows reasonable scal-
ing of the merger-trees in these cases, although some deviations still exist.

distribution as extracted fromN -body simulations has a univer-
sal lognormal shape. However, the dependence of the lognormal
parameters on cosmology is not clear, and there is no theoretical
explanation to this phenomena yet.

5 APPLICATIONS

An accurate fitting function for the CMF includes substantial in-
formation on halo growth, and it has various interesting applica-
tions: it can shed more light on the evolution of the halo massfunc-
tion with redshift and cosmology (e.g. Tinker et al. 2008), it can
constrain dark energy models, it is useful for generating monte-
carlo merger-trees, and for predicting mass-accretion histories of
the main-progenitor. Here we focus on a new methodology for re-
scaling a given set of merger-trees between different cosmological
models. We also discuss briefly the possibility of generating monte-
carlo trees.

5.1 Re-scaling a given merger tree

There are many existing resources ofN -body simulations and re-
lated merger-trees which are publicly available. The most useful
one being the Millennium simulation (Springel et al. 2005) with its
web-based database (Lemson et al. 2006). However, recent changes
in the observed values of cosmological parameters (especially σ8)
make these simulations innaccurate for predicting observable quan-
tities in our Universe. Here we suggest a new methodology to trans-
form merger-trees into a different cosmological model, halo mass,
and redshift. Such transformation can also be useful for enhanc-
ing the mass resolution of merger-trees. There are few benefits for
this approach over the standard method of generating monte-carlo
trees: (a) it can preserve the non-Markov behaviour of trees(see
e.g. ND08a) (b) it might be easily extended to handle substructures
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(c) it might be extended to accurate transformation of halo spatial
locations.

We define caser as our reference data from a given merger-
tree,

{Mi |M0, ∆ω,C}r (7)

The data is defined as a set of progenitorsMi for a given descendant
halo massM0, time-step∆ω and a cosmological modelC. Our
target case is defined as a different cosmologyeC and descendant
massfM0

{fMi |fM0, g∆ω, eC}t . (8)

We are looking for a transformation of the kind

Mi → fMi , ∆ω → g∆ω (9)

that will yield a different set of progenitors, possibly fora different
time-step, which will be consistent with the target case. Wedefine
the new transformed case as being consistent with the targetcase
if the full statistical properties of the trees are similar.Specifically,
we will require that the transformed progenitors will yielda CMF
which is consistent withfM0, g∆ω, and eC. Note that our global fit
was done forf(∆S, ∆ω|S0), as seen from eq. 1 the CMF includes
two other components, the mass ratioM0/M and the derivative
dS/dM .

We start by searching for the most accurate transformation in
∆ω which can compensate for the change in cosmologyC, or de-
scendant halo massM0. This means we use only the transformation
∆ω → g∆ω. In fig. 8 we plot the CMF for two sets of cosmolo-
gies, where∆ω is matched according to the global fit to the CMF.
This time transformation is relatively accurate, althoughit can in-
troduce large transformation in time (almost a factor of 2 in∆ω
for one of the cases tested here). The original differences between
the simulations can be seen in fig. 2 for reference. Although results
are relatively accurate, it seems that the transformation in ∆ω do
not provide a uniform accuracy for all descendant masses. Infig. 9
we show how scaling∆ω can compensate for different descendant
halo masses. This indicates that enhancement of mass resolution
can be easily obtained. We emphasize that the∆ω transformations
used here are obtained from matching the CMF, using our global fit
(eq. 3).

This transformation in time is limited in few aspects: it is not
always accurate, it can lower the time resolution of a merger-tree
significantly, and it will stretch the non-markov correlations be-
tween consecutive time-steps in a way that might be different from
the behaviour of the simulations. Our statistical sample donot al-
low to explore the last effect in detail, but we plan to pursuethis in
a future work.

A less trivial transformation is needed when the time scaling
cannot provide an accurate enough solution. In this case we can
transform the mass of the progenitor haloes in order to yieldthe
same CMF. For any progenitor massM we definefM such that the
integral over the number of progenitors will be invariant,

fM :

Z fM0

fM

»

dN

dM

–

t

dM =

Z M0

M

»

dN

dM

–

r

dM . (10)

This equation can be used to find the transformationM → fM
numerically using the global fitting function of eq.3. In fig.10 we
show that this transformation can yield perfect matching between
very different CMF’s. The only limitation in the accuracy isthe
goodness of our global fit, which is used to find the mass transfor-
mation above. As shown in fig. 10 thesamemass transformation
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Figure 9. The conditional mass function (CMF) for different descendant
halo masses, computed at different time-steps. We show thatthe transfor-
mationg∆ω = 1.3 × ∆ω can compensate accurately for changing the de-
scendant massM0.
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Figure 10. Scaling the mass in order to compensate for the change in
dN/dM . We use eq. 10 to transform the mass of progenitors from wmap5
simulation (solid blue lines) into scdm1 (dashed red), bothat the same time
∆ω. The mass transformationMi → fMi was found according to the global
fit at a specifictime-step,∆ω = 1. The same transformation is used to
transform the actual progenitor masses forall time-steps used here. The
dashed-dotted lines show the resulting histograms, which are similar to the
target case. The descendant halo mass is1012 h−1M⊙.

is suitable for a large range of time-steps, so the deviations of the
CMF fit at small time-steps do not degrade the accuracy of the mass
transformation.

In general, one might use transformation of∆ω and mass ac-
cording to the specific case needed. Time transformation aremuch
more easy to perform, and should be preferred for cases wherethe
resulting time resolution is not problematic. Mass transformation
can be done as a second step, to increase the accuracy of the statis-
tics by small variations in mass. For example, as tested above, using
the results of the Millennium simulation (Springel et al. 2005) with
a transformationg∆ω = 0.86∆ω should give merger-trees which
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are consistent with the cosmological model WMAP5 for a large
range of halo masses. For this simple case, the time transformation
is consistent with the naive EPS prediction and scales likeσ8.

5.2 Generating monte-carlo trees

Constructing monte-carlo merger-trees is doable once an accurate
knowledge of the CMF is given for all time-steps. There are var-
ious algorithms that were applied to the EPS CMF, and can be
easily generalized for other CMF’s (Kauffmann & White 1993;
Neistein & Dekel 2008b; Zhang et al. 2008). In this sense our fit-
ting function for the CMF might be very useful for constructing
monte-carlo trees that fit the results ofN -body simulations. How-
ever, there are some limitations to this approach which we will em-
phasize here below.

As stated in the previous section, the quality of our global fit is
poor for small time steps (∆ω < 0.5). On the other hand, the time-
step which is convenient for constructing monte-carlo trees is much
smaller, around∆ω = 0.1. Larger time-steps yield many progen-
itors in each merger event, and a large uncertainty in the predicted
merging time of the haloes. As a result, we do not have an accurate
fitting function for the CMF, which is appropriate for generating
monte-carlo trees. More than that, an accurate fit for the CMFat
small ∆ω will not provide a solution, because the behaviour of
merger-trees is highly non-markov at such small time-steps. This
means that applying the CMF in consecutive time-steps without
proper correlation between steps will generate large deviations in
the merger histories (ND08a).

A possible solution to these problems is to look for a new CMF
at small time-steps that will reproduce the CMF fromN -body sim-
ulations at big time-steps. The CMF at small∆ω does not have to
matchN -body simulations, it can only be tested by applying it on
few consecutive time-steps. Such a methodology was introduced by
ND08a and found to produce good results. However, the resulting
trees are fully markov, differing fromN -body simulations. As a re-
sult of the above complications we think that this problem deserve
more room than what is left here, and we postpone it to a future
work.

6 SUMMARY AND DISCUSSION

In this work we study merger-histories of dark-matter haloes us-
ing a set ofN -body simulations. The cosmological models sim-
ulated useΩm = 0.26 & 1, along with various power-spectrum
shapes. The main quantity we examine is the conditional mass
function (CMF), and we verified the results with the statistics of
main-progenitor histories and merger-rates.

It is first shown that merger-trees are self-similar in time when
the variableω = δc/D is used (δc ∼ 1.68 andD is the cosmolog-
ical linear growth rate). Such self-similarity was found before by
Neistein & Dekel (2008a) and Genel et al. (2008) using the Mil-
lennium simulation (Springel et al. 2005), and it is verifiedhere for
different cosmological models. We prove that this symmetryalso
implies thatω can scale properly different expansion histories of
the Universe.

For a given descendant mass and cosmology, the CMF de-
pends on the lookback time in a way more complicated than the
standard Extended Press-Schechter (EPS) prediction. Thisimplies
that the halo mass function should change in redshift in a different
way than the linearσ(M, z) behaviour. Indeed deviations of this
kind where found recently by Tinker et al. (2008) using a large set

of N -body simulations. This demonstrates that studies of the CMF
may constrain the halo mass function in a more detailed way.

We found that the CMF depends on the mass of the descendant
halo, when written in terms of the field varianceσ2(M). Using the
above findings we derive a global fit to the CMF which is accu-
rate for our set of simulations. We show that our fitting formula
behaves better than EPS estimates based on the ellipsoidal collapse
model (e.g. Sheth & Tormen 2002; Moreno et al. 2008), and also
than other empirical fit (Cole et al. 2008). Our global fit shows de-
viation from the results ofN -body simulations only at relatively
small time-steps (∆z < 0.5). Recently, Zhao et al. (2008) studied
the behaviour of main-progenitor histories for different cosmolog-
ical models. They provide a fitting procedure for estimatingme-
dian main-progenitor histories in any cosmological model.How-
ever, these authors used onlymedianvalues, so the full CMF cannot
be estimated from their results.

It was shown by Neistein & Dekel (2008a) that main-
progenitor histories follow the lognormal distribution when plotted
againstσ2(M), this behaviour is also valid for our set of simula-
tions. In this language the parameters of the distribution both de-
pend linearly onlog ∆ω. Such a time-dependence is more simple
than the dependence needed for an accurate CMF fit. Thus, the sim-
ple lognormal behaviour indicates that it might be useful toexplore
its origin further. We plan to do this in a future work.

We discuss one specific application of this study, which is
to scale merger-trees given by anN -body simulation into a dif-
ferent cosmological model, mass range or redshift. We provethat
these scalings yield merger-trees which are quite accurate, more
than other approaches of constructing monte-carlo merger-trees.
The scaling conserves the correlation of the progenitor masses be-
tween time-steps, an effect that would be hard to mimic in monte-
carlo generated trees. There is still a need to study the scaling of
substructures in a similar methodology. Substructures should be af-
fected mostly by the mass ratio of the subhalo to its host halo, and
by the dynamical time-scale within the host. Once these quantities
are conserved, substructures might be easily scaled as well. This ef-
fect should be studied with high resolution simulations, and cannot
be pursued here.
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APPENDIX A: ADDITIONAL STATISTICS

A1 Self-similarity in time

In this section we provide more details on the accuracy of theself-
similarity in time, as discussed in section 3.1. In fig. A1 we plot
average main-progenitor histories for our set of simulations. The
histories are plotted for descendant haloes identified atz0 = 0, 1, 2.
Comparing histories for differentz0 we see small deviations with
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Figure A1. Average main-progenitor histories at different times. Smooth
lines show main-progenitor histories for descendant haloM0 identified at
z0 = 0, 1, 2 (z0 = 2 was omitted for the high-mass bin due to a small
statistical sample). Symbols and error-bars are the predictions of the EPS
formalism following the formula of Neistein et al. (2006), and are indepen-
dent onz0. The symbols shapes are diamonds, squares, triangles, circles
and pluses for the scdm1, scdm2, lcdm, wmap5, and Millenniumsimula-
tions respectively. It is evident that self-similarity in time is valid for all the
simulations. The deviations of the EPS formalism with respect to N -body
simulations are similar in all cases, although slight trends with cosmology
and halo mass can be seen.

z0, reaching∼ 20% at ∆ω = 5 (for the scdm1 & lcdm simu-
lations). It should be kept in mind that cosmic variance is non-
negligible in this plot. We also plot the EPS prediction for the
main-progenitor histories, as given by Neistein et al. (2006). The
difference between the analytical EPS prediction and the results of
N -body simulations seem to change slightly with halo mass. These
results are sometimes different from the study of Zhao et al.(2008).
We note that these authors comparedmedianvalues from simula-
tions againstaveragevalues from the EPS formalism, as estimated
by van den Bosch (2002). This makes their comparison less accu-
rate than what is done here.

The full distribution of the main-progenitor,P1(∆S|S0, ∆ω),
is plotted in fig. A2 for descendant haloes selected at different z0.
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Figure A2. The full distribution of the main-progenitor mass at different
times. In each panel we plot the results from one simulation as indicated,
where the descendant halo massM0 is between1012 and1013 h−1M⊙,
and it is selected atz0 = 0, 1, 2, 3 (solid, dashed, dashed-dotted, dotted
lines respectively). Main-progenitors are followed backwards in time until
∆ω = 0.5& 2 (blue and red curves respectively).

Here as well, self-similarity in time is shown to be accuratewith
the exception of the scdm1 simulation atz0 = 0.

In figs. A3 & A4 we plot the mutual distribution of the two
most massive progenitors. We show two dimensional histograms
for descendant haloes selected atz0 = 0, 1, 2. The results for
scdm1 & scdm2 simulations show accurate similarity for differ-
entz0. However, the lcdm and wmap5 show deviations a the level
of 10-20% in mass. These deviations decrease at larger time steps,
so they might be connected to non-markov effects at small time-
steps, and their variation with redshift. In addition, our treatment
of ‘blacksplash’ haloes may affect the results (see the discussion in
section 3.1).

A2 Scaling merger trees

In this section we further examine the scaling of merger-trees
as it was applied in section A2. We only show mutual distri-
butions of the two most massive progenitors,(M1, M2), as the
main-progenitor distribution is highly constrained by theCMF
(see e.g. Neistein et al. 2006). In fig. A5 we examine the time-
transformation which was used to generate fig. 8. The resultsof
the mass scaling as applied in fig. 10 are shown here in fig. A6.

APPENDIX B: A GLOBAL FIT TO THE
MAIN-PROGENITOR DISTRIBUTION

In section 4 we claim that the lognormal distribution can be easily
described for all time-steps and descendant masses using eqs. 5 &
6. This is shown in fig. B1, where full distributions of the main-
progenitor mass are plotted. In tables B1 & B2 we summarize the
parameters of the fits.
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Figure A3. The mutual distribution of the two most massive progenitors
(M1, M2). Each panel shows results from one simulation as indicated. The
descendant haloM0 is identified atz0 = 0, 1, 2 (plotted as solid, dashed,
dashed-dotted lines respectively). The contour lines are plotted for 7 & 30%
of the maximum histogram values. Descendant mass is between1012 and
1013 h−1M⊙, and∆ω = 0.3 in all cases.
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Figure A4. Same as fig. A3 but with∆ω = 0.8.

Table B1. The coefficients used for the global lognormal fit, eqs. 5 & 6.
The standard deviation ofln ∆S obeys the equationσp = (a1 log S0 +
a2) log ∆ω + a3 log S0 + a4, whereai are given below for each cosmol-
ogy.

Simulation a1 a2 a3 a4

wmap5 -0.333 -0.321 0.0807 0.622
scdm1 -0.0344 -0.608 0.185 0.697
scdm2 0.760 -1.085 0.184 0.668
lcdm -1.209 0.205 0.245 0.571
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Figure A5. The mutual distribution of the two most massive progenitors
(M1, M2), for ∆ω matching. The same∆ω transformation is done as in
fig. 8. The contour lines are plotted for 13 & 50% of the maximumhis-
togram values. Descendant mass is indicated in units ofh−1M⊙, ∆ω = 1.
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Figure A6. The mutual distribution of the two most massive progenitors
(M1, M2), for mass matching. Mass transformation for wmap5 was done
in the same way as in fig. 10.∆ω = 0.3, M0 = 1012 h−1M⊙.

Table B2. The coefficients used for the global lognormal fit, eqs. 5 & 6.
The mean ofln ∆S obeys the equationµp = (b1 log S0 + b2) log ∆ω +
b3 log S0 + b4, wherebi are given below for each cosmology.

Simulation b1 b2 b3 b4

wmap5 0.132 2.404 0.585 -0.436
scdm1 -0.8105 3.179 0.988 -0.513
scdm2 0.418 2.366 0.999 -0.647
lcdm 0.0788 2.418 0.671 -0.434
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Figure B1. The full distribution of the main-progenitor for differentcos-
mologies and time-steps. Descendant haloes are selected atz0 = 1 with
mass between1012 and1013 h−1M⊙. Main-progenitor mass is followed
backward in time until∆ω = 0.5, 2, 4. Histograms show the simulation
data, smooth lines are generated using our global fit.
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