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ABSTRACT

We study merger histories of dark-matter haloes withinauggicosmological models by run-
ning a set ofN-body simulations. The simulated cases include the Witkinsicrowave
Anisotropy Probe (WMAP) 5th year results, as well as Eimstég Sitter universe, with sev-
eral different power-spectrum shapes. We identify theisgdhws which allow a universal
description of merger-trees independently on cosmolbgiaeameters. This is done by ex-
pressing the conditional mass function (CMF) in scaledaldés of mass and time, and re-
laxing few symmetry assumptions which are usually adopyetthé excursion set formalism.
The CMF is then approximated by a global fitting function whig accurate for a large range
of parameters; including different halo masses, redshifisl cosmological models. The fit
is significantly more accurate than previous estimateseOskatistical properties such as
merger-rates and main-progenitor histories are shownllimfdhe scaling laws provided by
the CMF. We show that our global fit can be used to transforngaretrees extracted from
a givenN-body simulation into a different cosmology or mass resofutThis technique is
promising as it conserves the non-markov features of tredstanight be extended easily
for handling substructures. It offers a simple way to study éffect of cosmology, dark en-
ergy models, and mass resolution on galaxies or other dstsagal objects. As an alternative
approach, we confirm that main-progenitor histories follvegnormal distribution, as was
found by Neistein & Dekel. This description is shown to be enaatural in capturing the
behaviour of trees with time and descendant mass. Howewmertalthe high level of simi-
larity between the different simulations we cannot fornila universal law describing the
parameters of the lognormal distribution.

Key words: cosmology: theory — dark matter — galaxies: haloes — gatax@mation —
gravitation

1 INTRODUCTION Although excursion set theories based on the ellipsoidal co
lapse are successful in predicting the halo abundancéél@mass
function, see below), it seems that they do not provide a CMF
which is significantly closer taV-body simulations than the tra-
ditional EPS result. Most of the current estimates of the Gifiéw
significant variations from the results df-body simulations where
the number of progenitors can differ up to a factor of 3, eisgc
for massive progenitors. The only estimate which was praeed
be more accurate is the empirical study of Cole et al. (200Bgre
deviations can occasionally reach 50%. Since this fit wabreaéd
against the Millennium simulation (Springel etlal. 2005gre is a
need to verify it for cosmological parameters which bettethie
recent Wilkinson Microwave Anisotropy Probe (WMAP) 5th yea
data (e.g. Komatsu etlal. 2009).

A major target of this paper is to provide a better empirical
description of the CMF as measured fraNtbody simulations.
We work out the possible scaling laws which can be applied to
the CMF in order to capture its details over large range ofrmes
logical models, halo mass and redshifts. The result is aorate
* E-mail: eyal@mpa-garching.mpg.de fitting function, which offers a significant improvement ioca-

The growth of dark-matter haloes through merging and aiceret
is the driving force for many astrophysical phenomena. Aatu
theoretical prediction for halo growth is thus a fundamkintgre-
dient in various fields of cosmology, including structurenfiation,
galaxy assembly, black holes growth and quasars physics.

The conditional mass function (hereafter CMF) has been an
important tool in quantifying the growth of haloes. It is ahefil
as the average number of progenitors which will merge into a
descendant halo at a later time. The CMF was first introduced
theoretically by the Extended Press-Schechter formalisemef
after EPS, Bond et &l. 1991; Bower 1991; Lacey & Cole 1993). Re
cent theoretical predictions use a variation of EPS, whieeeet-
lipsoidal collapse model is adopted instead of sphericlhjgse
(Sheth & Tormen 2002; Moreno etlal. 2008; Zhang €&t al. 2008). |
addition, an empirical fit to the CMF which is based dibody
simulation was presented by Cole et al. (2008).
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racy over previous studies. This empirical fit is useful farigus
applications. It can help us distinguish between diffeeeralytical
models, and can guide us to new improved versions of theni Suc
fit can be used for generating monte-carlo merger-treeshwhill
accurately reproduce the resultsiéfbody simulations. The effect
of cosmology, environment density and different dark epengd-
els can be studied, relating these ingredients to haloegalagies
(e.g!Maccio et al. 2008). We discuss below few additioppliaa-
tions in more details.

Much effort has been invested in recent years in quantify-

ing the abundance of haloes of a given mass (i.e. the halo mass

function). The analytical model of Sheth & Tormen (1999 )eoéf

a significant improvement over the previous classical exgnof
Press & Schechier (1974). On the other hand, the ever-ggowin
dynamical range ofV-body simulations allows an accurate mea-
surement of the mass function with a negligible samplindgteca
or cosmic variance (e.g. Jenkins etlal. 2001; Warren|éet &6.20
Reed et al. 2007). However, deviations between the theatgiam
ulations still exist. For example, Tinker et &l. (2008) hak®wn
that deviations can increase as a function of redshift hiegdew
tens of percents at= 2.5. An accurate knowledge of the CMF can
predict how the halo mass function will change with redsHifte
benefit in using the CMF is that it includes much more infoiiorat
than the halo mass function, and the statistical noise lissstall
enough.

We will discuss a new methodology for scaling a given set
of merger-trees into a different cosmological model or mass
olution. Although this technique requires an existing bate of
merger-trees extracted from a givéftbody simulation, it offers
an easy transformation for merger-trees to different riéishass
resolution or cosmology. There are various advantages dimgu
this method over monte-carlo generated trees. It can bypass-
sue of non-markov features of the trees which correlatescad}
time-steps (Sheth & Tormen 2004; Neistein & Dekel 2008&),ian
may be extended to include substructures and halo locatsuch
a method can be very useful for semi-analytical modelingaddiay
formation, black hole growth, and dwarf galaxies assembly.

The usual line of thought in quantifying merger-trees start
with the definition of the CMF. This is the basic predictiontbé
EPS formalism, and it includes substantial informationtenttees
statistics. Once the CMF is known, more detailed statistams
be examined, such as main-progenitor histories and meages-
However, Neistein & Dekel (2008a, hereafter ND08a) havevsho
that a different path of reasoning is possible. These asitjoan-
tified the main-progenitor histories first, and then showrat it
allows a full construction of merger-trees. Moreover, isvelaown
that the main-progenitor statistics is very regular, aidfes a log-
normal distribution in an appropriate mass varial§iethe variance
of the smoothed density field). In this study we test this et
ogy for the set of simulations used here, and show that itvallo
an accurate description af-body simulations which is more sim-
ple than the standard CMF approach. However, additiona idat
needed in order to formulate this approach independentlthen
cosmological model.

It should be noted that the CMF does not include all the in-
formation needed for describing merger trees. There areriergl
many different subsets of trees that can accurately fit axgiwec-
tion. Nonetheless, we will show in this work that the scaliags
of the CMF can provide a good estimate for the full statisticthe
merger-trees, including main-progenitor histories andyeerates.

This paper is organized as follows. il we describe the

Table 1. A summary of thelV-body simulations used in this work, all with
flat cosmology and with a Hubble constant of 72 km/s/Mpc.i8larmass
is in units of =1 Mg, box size is in Mpc. Each simulation follows the
evolution3503 particles.

Name Qm os Particle mass  Box
wmap5 0.258 0.796  4.54 x 108 90
Icdm 0.258 0.915  4.54 x 108 90
scdm1l 1.0 0.77 1.76 x 10° 90
scdm2 @ = —2) 1.0 0.8 1.76 x 10° 90

constructed. Sectidd 3 is devoted to the conditional masstifon
where we study its scaling properties, and we provide anrateu
fitting function. In§4 we discuss an alternative description, using
main-progenitor histories. A simple prescription on howstale

a given simulation is developed it We summarize the results
and discuss them if6. Additional statistical properties of merger-
trees which are not critical for the body of the paper are ddde
Appendix(A. Throughout the paper we ulsg to designatéog,,
natural logarithm is written als.

2 THE SIMULATIONS

All simulations have been performed wilKDGRAV, a tree code
written by Joachim Stadel and Thomas Quinn (Stadel|20019. Th
code uses spline kernel softening, for which the forces ineco
completely Newtonian at 2 softening lengths. Individualdisteps
for each particle are chosen proportional to the squareabtite
softening lengthe, over the acceleratiom;: At; = n+v/¢/a;.
Throughout, we sey = 0.2, and we keep the value of the soft-
ening length constant in co-moving coordinates during each
(e=1.62h~'kpc). Forces are computed using terms up to hexade-
capole order and a node-opening anglehich we change from
0.55 initially to 0.7 atz = 2. This allows a higher force accu-
racy when the mass distribution is nearly smooth and théivela
force errors can be large. The initial conditions are gepéraith
the GRAFIC2 packagel (Bertschinger 2001). The starting redshifts
z; are set to the time when the standard deviation of the smalles
density fluctuations resolved within the simulation boxctess0.2
(the smallest scale resolved within the initial conditiamslefined
as twice the intra-particle distance). For each simulatverstored
more than 100 outputs from redshift 10 to redshift zero, deoto
construct detailed merger trees. The parameters of thdations
used in this work are describe in Tafle 1.

In all simulations, dark matter haloes are identified ushng t
FOF algorithm with linking length of 0.2 times the mean interpar
ticle separation. Only haloes which include more than 2@igles
are saved for further processing. For constructing mergest we
started marking all the particles within the virial radidfsaogiven
haloes az = 0 and we tracked them back to the previous output
time. We then make a list of all haloes at that earlier outpuét
containing marked particles, recording the number of nhpe-
ticles contained in each one. In addition we record the nurabe
particles that are not in any halo in the previous output tme we
consider them asmoothlyaccreted.

We used the two criteria suggested in Wechslerlet al. (2002)
for halo 1 at one output time to be labeled a “progenitor” dbha
2 at the subsequent output time. In our language halo 2 vt th
be labeled as a “descendant” of halo 1 if i) more than 50% of the

set of N-body simulations we use, and the way merger trees are particles in halo 1 end up in halo 2 or if ii) more than 75% ofchal
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Figure 1. Various shapes of (M) = o2(M) for the set of simulations

used in this work.S(M) is defined as the variance of the initial density
field, smoothed over spherical regions that include on geetlde masd/,
and linearly extrapolated o= 0. S(M) is corrected according to the ini-
tial condition density field used for each simulation. As f@rence we plot

S (M) that was used in the Millennium simulatidn (Springel et 8102).

1 particles that end up in any halo at time step 2, do end uplin ha
2 (this second criterion is mainly relevant during major gegs).
Thus a halo can have only one descendant but there is no timit t
the number of progenitors.

We found evidence for the so-called ‘backsplash’ subhalo
population (e.g. Knebe etlal. 2008). These haloes havesdiint
brought them inside the virial radius of their host at somdiera
time, but without them been really accreted (i.e. they madéag
come out from their host dark matter halo). We decided tottrea
them in two different ways according to their final fate: i)af-
ter have been inside the main halo, the backsplash halos/esras
isolated halo till the present time, than it is removed frdm pro-
genitor list of the parent halo (i.e. it is removed from therges
tree); ii) if the halo is accreted again (in a definite way) by imain
halo at a later time step then it is considered as accretefirghe
time it entered the main halo. We found that back splash baloe
roughly 8% of the total progenitor number but they only maadjiy
contribute (less than 2%) to the final halo mass.

According to the Extended Press-Schechter formalism tie st
tistical properties of merger-trees are fixed by the derfgtd at
early times when perturbations grow linearly. All the stadal
properties of this field are described by its varianSéj!) =
o?(M). Specifically, S(M) is the variance of the density field,
smoothed with a spherical top hat filter in space, and ligezx}
trapolated ta = 0 (for more details, see Lacey & Cale 1993). In
fig.[M we plotS (M) for all the simulations used in this work. This
comparison shows the predicted similarity between mergess of
different simulations: we have two simulations with vermaar
S(M) but differentQ., (Icdm & scdm2). One simulation has a low
value ofos (wmap5), and the scdm1 simulation has a very different
shape ofS(M).

In order to avoid deviations of (M) due to the small box size
and cosmic variance we measured it directly from the in@oaddi-
tion density field used for each simulation. The valuesggiven
in table[1 are those obtained by this calibration method.tRer
scale free simulation (scdm?2) the box size is important Bsnits
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contributions from large scales to the field variance (seetailéd
discussion in_Smith et al. 2003). This effect berftis\/) slightly
at the high mass end, in agreement with the theoretical gifedi

3 CONDITIONAL MASS FUNCTION

This section is devoted to a comparison of the conditionadsama

function (CMF) as extracted from our set df-body simulations.

The scaling laws of the CMF are important as they highly aairst

the behaviour of the full statistics of merger-trees. In Apgix[A

we show other statistical properties of trees, and dematesthat

they follow approximately the properties of the CMF foundehe
According to the Extended Press-Schechter formalism (EPS,

Bond et al! 1991; Bower 1991; Lacey & Cole 1993), the average

number of progenitors in the mass intery&, M + dM], which

will merge into a descendant hald, after a timestef\w, is given

by

j]\]\;(M|MO,Aw)dM _ %f AS, Aw) '— aM . ()
Herew = 6.(2)/D(z), whereé.(z) ~ 1.68 with a weak de-

pendence orz, and D(z) is the cosmological linear growth rate.
Aw = w — wo Where the progenitors are identifiedafz) and
the descendant halo at. We refer the reader to the appendix of
NDO8a for a detailed summary on how to computeand a simple
fitting function. The quantityf d.S describes the fraction of mass
(out of the descendant halo) that is included within progesiof
mass in the rangg, S + d.S]. According to EPS

1 Aw (AW)Q]

V2= (B P | aas

whereAS = S(M) — S(My), andf,s is the specific solution of
given by the EPS formalism. In what follows we will use the mam
‘CMF’ to designated N/d M only.

In the language of the EPS formalisfys does not depend
explicitly on the descendant halo mak% or on the background
cosmology. These parameters appear only in the transfinmat
of AS and Aw to mass and redshift. Even though the EPS for-
malism fails to produce accurate merger-trees (i.e.stepeof
fps is not accurate), in general it might be that the univengalft
fos still exist.|Sheth & Tormen (2002) and Cole et al. (2008) have
tested the behaviour gf using N-body simulations, both showing
non-negligible deviations from universality. Howeverese stud-
ies do not explore in detail the break in the universalityl ea not
test other models fof againstN-body simulations. For example,
Cole et al.|(2008) have studigfdonly for descendant haloes iden-
tified atz = 0 and showed deviations ef 50%for various values
of Aw and halo masses.

The universality off,s is based on two ingredients: the dy-
namics of the spherical collapse model, and the properfi¢iseo
initial density field when smoothed by a top-hat filterirspace.
Many works have investigated variations of this formalisynuis-
ing the ellipsoidal collapse model, or smoothing filtershwdiffer-
ent shapes (Bond etlal. 1991; Sheth & Tormen 2002; Zentné&r; 200
Desjacques 2008). Such models predict thatay depend on the
descendant halo mass, breaking its simple universalityekam-
ple,[Moreno et &1/ (2008) have stressed the fact that wheg tise
ellipsoidal collapse modef, is universal if the variableS(A/) and
Aw are normalized byS(My) and \/S(My) respectively. In its
most general fornf may depend oi%y = S(Mp), wo, and on the
specific cosmology used. As will be shown below, neglecthngy t

Jor(AS, Aw) = exp |- @
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Figure 2. The self-similarity of the conditional mass function (CMFkith
time. Each panel shows the CMF measured from dhbody simulation
as indicated. The descendant halo is identifiedpat= 0, 1,2, 3 (solid,
dashed, dotted-dashed, and dotted lines respectivelg)th@nprogenitors
are identified at two lookback timeAw = 0.5,3 (blue and red lines
respectively). The distribution of the descendant mastes & selected
such that it produces the same distribution Mdf) values at allzp, and
1012 < Mp < 10'3 h=1Mg. In the appendix we provide several other
tests for the time self-similarity.

dependence o, and cosmology is possible, but the dependence
on Sy is essential for accurate description of the CMF.

3.1 Self-similarity in time

10

My =2.69 x 102

AN / dS

0.1

0.01

Figure 3. The self-similarity of the CMF for different expansion fises of

the universe. The two sets of CMF are computerhat 0, for descendant
mass in the range0'? < My < 103 h—1Mg, and forAw = 0.3,3
(blue and red lines respectively). The solid (dashed) Ims results ex-
tracted from the scdm2 (Ilcdm) simulation. The distributafrthe descen-
dant masses & is matched in order to produce the same distribution of
S(Mp) values. The average descendant halo mass is indicatedtiaini
h~1Mg. Note that we plot the number of progenitors per uniSofvhich

is given by eqJL timegl M /dS)|.

identified betweerz = 0 up to at leasz = 3 is an important re-
sult. Due to the change in the effective cosmological paterse
at largez (i.e. Qm, 24), the merger trees at higheorrespond to
a different cosmological model. Thus, the dependence ofemer
trees o2, 24 and on the Hubble constant should be all folded

According to eq[IL the CMF as predicted by EPS depends only on into the time variables = §./D. In fig.[3 we test this hypothesis

Aw and not on the redshifty where the descendant halo is defined.
This self-similarity implies that merger-trees extractdlifferent
redshifts are self-similar when using as the time variable. In-
deed, NDO8a and Genel et al. (2008) have verified this behavio
using merger-trees extracted from the large Millenniumusim
tion (Springel et gl. 2005). It was shown to work well for main
progenitor histories and merger-rates, with scatter of fencent
up toz ~ 5 (see also Fakhouri & Ma 2008, who found deviations
from this symmetry using a different definition of the halossia

In fig.[@ we show the level of self-similarity in time obtained
by our four N-body simulations. The scdm1 & scdm2 simulations
show small variations in the CMF between differemt consis-
tent with the sampling noise. The wmap5 and Icdm cosmologies
show larger deviations, up to a factor of two for small prages,
and for the time-stefA\w = 0.5. However, the data do not show a
monotonous trend withy, hinting that our small statistics may con-
tribute to the scatter. For example, the number of descemddmes
within a mass rangé0'? < M, < 10'® h~! Mg in the wmap5
cosmology is roughly (500,400,100,100) fr = (0, 1,2, 3) re-
spectively. It is also encouraging that better results vedatained
for the Millennium simulation (as described above) and &ogé
time-steps. Nonetheless, some deviation from self-symynmaay
be related to the halo mass definition (i.e. HwF linking length)
and its evolution with redshift. As explained in sectldn % oy
to correct the merger-trees for 'backsplash’ haloes. Thiigection
may introduce some additional asymmetry betwagn= 0 and
higher redshifts.

The fact that merger-trees are similar when the descendant i

by comparing the CMF from scdm2 and lcdm simulations. These
simulations have a similar shape (M) (see fig[l) but very dif-
ferent(),, values. The agreement is within the Poisson sampling
error-bars, proving that can scale properly different expansion
histories of the Universe.

3.2 Different power-spectrum

Following the EPS formalism (edl] 2) the fraction of mass in-
side progenitors fos(AS, Aw), depends only omw and AS.
As mentioned above, one could assume less universal form,
F(AS, Aw|Sop) that will enable accurate description of the CMF in
N-body simulations. In order to test this we pJotn fig. 4 for two
sets of power-spectra. The results of the first comparissfhgéan-
els), between Icdm and wmap5 simulations, is very good, stgow
no significant deviation of between the two models. This is ob-
tained when the same valuesidf, are selected in each cosmology,
or the same&y = S(Mp). The difference between these two selec-
tion criteria is negligible, so we actually samgleAS; Aw|So) for
a small range irb.

The second comparison (right panels), shown infig. 4, is for
wmap5 and scdm1 cosmologies. As seen ir(fig. 1 istth/) and
its derivatived.S/dM are very different between these two simu-
lations. This is being translated into a large discrepancf\ivhen
the same values al/, are chosen from both simulations. How-
ever, selecting a sample with the safevalues leaveg invariant,
proving thatf = f(AS, Awl|So) (at least for our limited set of
data). For a givert, the values ofM, in both simulations differ
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Figure 4. The fraction of mass within progenitors for different power
spectrum shapes and cosmologies. In each panel we compates feom
two different simulations as indicated, withw = 0.3, 2, and descendant
haloes which are selectedzt = 0. For the comparison between wmap5
& ledm (left panels) we select haloes witlh1? < My < 10'* A= 1 Mg
from wmap5 simulation. For the second comparison (righefgnthe mass
range of10'2 < My < 10'3 h=1 My in wmap5 was used. Selection of
Moy at the other cosmologies were chosen to matthor Sy distribution
from wmapb, as indicated in each panel.

by a factor of~10, limiting the dynamical range for which we can
check thisf scaling.

The dependence gfon S, deserves a more careful test, prob-
ably with a larger set ofV-body simulations, spanning a larger
range of power-spectra. It is important to verify that suctepen-
dence is not related to thghapeof S(M), as was found here. If
this is true, itimplies that a modification to the normalieatof the
power-spectrumds) which changesSy, will induce a non-trivial
change to the CMF. Such a dependence gis different from the
simple scaling of the shapAw/+/AS that is used by EPS (see
below).

3.3 Global fitting function

The EPS formalism suggests that the mass$) and time QAw)
variables can be scaled into a new variables Aw/+v/AS. In
terms ofv, the function f(v) v dS/dv should be universal. As
shown above some dependence$nis required, so we can try
to use a function of the shapg&(v|Soy). This is tested in figl15
where we plotf(v|Sy) for a fixed value ofSy, and for various
Aw. The clear deviations from a unique line show that such a for-
mulation is too simple and incompatible with the resultsNof
body simulations. This figure is very similar to the one given
Sheth & Tormen|(2002) and Cole et al. (2008), and agrees with
these previous results. Thus, we are forced to use a moreajene
form f = f(AS, Awl|So).

We found that the fitting function below can fit the CMF
from our set of N-body simulations for all time-steps larger than
Aw ~ 0.5 and all.Sp values. We have looked for the simplest pos-
sible function that can fit the data, which is still similarttee EPS
original function. The function we adopt is:

w]+

A 2
{_b AS

®)
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ds

dv

fw)v

— Aw=0.5
— Aw=1
— Aw=3
---EPS

o Lognormal

0.01

Figure 5. The limitation of using a fit of the shapg(v|Sp). Simulation
results are plotted as histograms, and are taken from theZXsimula-
tion at zy 0 with Aw 0.5, 1, 3 and for average halo mass of
3 x 102 h~'Mg. The smoothed curves are derived from the global fit
(eq.[3), EPS prediction is plotted as a thin dashed line, hadagnormal
global fit to P, (eqs[® &) is plotted in circles (the latter is plotted ondy f
M > My /2 where it should be identical to the CMF, see sedfibn 4).

Aw? Aw?®
INEA T

where the parameters explicitly depend$in the following way:

a = 0.215+0.0037 So

b = 0414 +0.0013 53

¢ = 0.0746 + 0.0382 Sp (4)
d = 0.257 4 0.0568 Sy

a = —0.0141 S, + 0.0056 S5

In fig.[@ we compare our fitting function to the simulation data
showing that it accurately reproduces the trends found.abnee-
ment between the fit and data is at the level of the statigtioigle.
The dependence aofl, is mainly seen at lonAS (corresponding
to massive progenitors). We also show the EPS predictiortteand
fit derived by Cole et all (2008), both independentSgnEvidently,
our fit agrees well with Cole et al. (2008) for intermediatd amas-
sive haloes. This is encouraging because the fits are baséift on
ferent simulations and different merger-tree constructchemes.
However, our fit breaks the symmetry of using onlas was done
by Cole et al.|(2008), in this way it can capture the behaviafur
the data for low mass haloes, and across various time-stégs.
accuracy for differenfAw can be specifically seen in f{g. 5.

The integral off can be computed analytically only far= 2
(So ~ 2.5), for the whole halo mass range we computed the in-
tegral numerically, yielding 0.75 up to 0.9, depending oa de-
scendant mass and on the time-step. This predicts that taatibs
fraction of the mass is not included in any progenitors bthea
accreted from a ‘smooth’ component.

Throughout this work we mainly discuss the EPS formalism
in its standard version. However, as mentioned in the inicbdn,
versions of this formalism which use the ellipsoidal coflapnodel
are presumably more accurate, as is indicated by theirtyalbdli
predict accurate halo mass functions. We examine two suh st
ies, the pioneer work of Sheth & Tormen (2002) and a more tecen
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Figure 6. A global fitto f(AS, Aw|Sp) as defined in eqE]l 3l 4. Each panel shows the valugsiarf a givenSy as indicated, and for time-stepsAts = 0.5

& 3 (blue and red lines respectively). The simulation dataenextracted and averaged from all the simulations used hezg = 0 & 1, using descendant
mass with bin size of factor 3 ik —! M. The histogram lines show results from simulations, smeotid curves are plotted using our global fit, dashed
lines are the EPS prediction, and the dashed-dotted limefoBowing the fit ol Cole et al! (2008) (the latter are showrydfor Aw = 3). Note that the EPS

and Cole et al. (2008) are identical for all valuesSgt

work by/Moreno et &l.[(2008). Our interpretation of both $tsds
that the CMF as predicted by the spherical model is comparabl
in its accuracy to the one predicted by ellipsoidal collapiss
can be seen in figs. 7 & 8 of Sheth & Tormen (2002). More ev-
idently, figs. 3-5 ol _Moreno et all (2008) show that the sptadri
model gives better results for low mass descendant halaethib
trend changes for massive haloes, where the ellipsoidepss is
more accurate. A similar trend can be seen irfig. 6 here, vthere
deviations from EPS are shown to be larger for lowewalues.

4 MAIN-PROGENITOR HISTORIES

The “main-progenitor” history of a given merger-tree is €on
structed by following backward in time the most massive pro-
genitor in each merger event. This is a useful definition a8-it
lows us to follow a well defined branch of the tree. In additian
guantitative description of the main-progenitor histoigtty con-
strains the full statistics of trees. Properties of maiogenitor
histories were studied extensively, both analytically arging
N-body simulations| (Lacey & Cale 1993; Nusser & Sheth 1999;
Firmani & Avila-Reese 2000; Wechsler etlal. 2002; van dencBos

2002; Neistein et al. 2006; Li etial. 2007; Neistein & Deke028;
Zhao et all 2008). Let us also mention that the main-progeist
not always the most massive progenitor at a given time.

We define P, as the probability density to find a main-
progenitor of mass$'(M;) for a given descendant halo maks,
and a time-stef\w. As was found by ND08aP; can be well fitted
by a lognormal distribution,

1 (In ASy — pp)?
P (A Aw)= ———— S i S o P B
(A8, &) = v P 202 ©)
HereAS,; = S(M;)— S(My), the parametersr,, 11,,) depend on

So andAw, and as usuaby = S(My). By definition, the integral
over P; (AS7) equals unity for anysy and Aw.

Main-progenitor histories were constructed for all theidan
tions used in this work. Following NDO8a, we confirm that thg-I
normal distribution fits accurately the simulation resuiltkis was
tested for all possible ranges of halo masses, redshift tiaret
steps. As was mentioned by NDO08a the fit becomes inaccurate fo
small time steps, typically foAw < 0.5. Such a behaviour is found
here as well. One exception to the above, where the lognditmal
is somewhat innacurate, is for the scdml simulatiomyat= 0.
This may be due to the high sensitivity 4fS in this cosmological
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Figure 7. The full distribution of the main-progenitor in various coslogi-

cal models. Results are shown for descendant haloes defiggd=al, and
main-progenitor selected at two time-stepisy = 0.5, 3. The descendant
halo mass is in the ranged'? < My < 4 x 102 A= Mg, for wmap5
cosmology.Mj in the other cosmologies were selected in order to match
the same distribution il¥ (). Thin solid lines show the lognormal global
fit, eq.[8, as computed for lcdm & scdm1 cases.

model dS/dM is typically 7 times larger than other cases). The
fact that the fit works well foz 2 1 data using the same cosmo-
logical simulation is encouraging. In fig. 7 we plot main-geaitor
distributions for few cases of halo mags,and Aw, more exam-
ples can be found in Appendix B. The accuracy of the lognormal
fit as plotted here is typical for the rest of the cases.

For each cosmology we are able to use a global fit, similar to
the one suggested by ND@Barhe fit approximates the standard
deviation and average af AS; by

(a1 log So + a2) log Aw + aslog So + aa
(b1 log So + b2) log Aw + b3 log So + by .

Op

Hp

(6)

We provide numerical details for the values of these pararaén
AppendixB. For a giverby, the evolution with time o, and u,,

is simply linear inlog Aw. In fig.[H we show that this evolution
gives a very accurate fit to the relevant part of the CMF (the=CM
and main-progenitor distribution are identical fdf > My /2).
We recall that such time-evolution was obtained for the CidiRg
much more complicatedw dependence (see €. 3). Although both
approaches discuss only the fitting possibilities, it sedms the
main-progenitor gives a much simpler way to describe thegerer
history in an accurate way.

The simple behaviour oP; for each cosmology as seen in
eq.[6 and in fig[b calls for a more global fit, which predicts the
parameters of?; in other cosmological models. We compard
for our set of simulations and found a high level of self-sarity,
with the exception of the scdm1 case. Unfortunately we coold
find a general law able to combine scdml with the other cosmo-
logical models. For example, choosing haloes with the saathees
of Sy from scdml1 and other simulations does not yield the same
results. To summarize, our study indicates that the madgqoritor

1 Here we parameterize the fit accordingSg, and not according td/q,
as was done in NDO8a, eq. 2
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Figure 8. The conditional mass functiorlNV/dM, computed for differ-
ent cosmological models using a transformation of the tteg-Aw. In
each panel we compare results from two different simulatiand for the
same descendant halo mass as indicated (mass is in urits'at/ ). The
time-steps used for the lcdm cosmology &e = 0.5, 2. For the wmap5
(scdml) cosmology we used time-steps which are differera factor of
0.86 (1.8) inAw. It seems that time transformation allows reasonable scal-
ing of the merger-trees in these cases, although some idexgattill exist.

distribution as extracted fronV-body simulations has a univer-
sal lognormal shape. However, the dependence of the logilorm
parameters on cosmology is not clear, and there is no thealret
explanation to this phenomena yet.

5 APPLICATIONS

An accurate fitting function for the CMF includes substdritia
formation on halo growth, and it has various interestingliapp
tions: it can shed more light on the evolution of the halo niass-
tion with redshift and cosmology (e.g. Tinker etlal. 2008)can
constrain dark energy models, it is useful for generatingntero
carlo merger-trees, and for predicting mass-accretiotofigs of
the main-progenitor. Here we focus on a new methodologyéer r
scaling a given set of merger-trees between different clusgioal
models. We also discuss briefly the possibility of genegatitonte-
carlo trees.

5.1 Re-scaling a given merger tree

There are many existing resources/éfbody simulations and re-
lated merger-trees which are publicly available. The mastful
one being the Millennium simulation (Springel etial. 200%}vits
web-based database (Lemson €t al. 2006). However, recamges
in the observed values of cosmological parameters (edpyeeigd
make these simulations innaccurate for predicting obbéguan-
tities in our Universe. Here we suggest a new methodologwatst
form merger-trees into a different cosmological modelptrahss,
and redshift. Such transformation can also be useful foaeth
ing the mass resolution of merger-trees. There are few hgriefi
this approach over the standard method of generating nuamte-
trees: (a) it can preserve the non-Markov behaviour of t(ses
e.g. ND08a) (b) it might be easily extended to handle substras
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(c) it might be extended to accurate transformation of hphtial
locations.

We define case as our reference data from a given merger-
tree,

{M; |Mo, Aw, C}r @)

The data is defined as a set of progenitbfsfor a given descendant
halo massM, time-stepAw and a cosmological modél'. Our
target case is defined as a different cosmologgnd descendant
massMy

{]\Z |M)7 Z&7 é}f . (8)
We are looking for a transformation of the kind
M; — M, ,  Aw — Aw 9)

that will yield a different set of progenitors, possibly odifferent
time-step, which will be consistent with the target case.dafne
the new transformed case as being consistent with the teaget
if the full statistical properties of the trees are simiBpecifically,
we will require that the transformed progenitors will yieldMF
which is consistent with\/y, Aw, andC. Note that our global fit
was done forf (AS, Aw|So), as seen from efj] 1 the CMF includes
two other components, the mass rafify /M and the derivative
dS/dM.

We start by searching for the most accurate transformation i
Aw which can compensate for the change in cosmol6gyr de-
scendant halo masd,. This means we use only the transformation
Aw — Aw. In fig.[8 we plot the CMF for two sets of cosmolo-
gies, whereAw is matched according to the global fit to the CMF.
This time transformation is relatively accurate, althoitgtan in-
troduce large transformation in time (almost a factor of 2@
for one of the cases tested here). The original differenebsden
the simulations can be seen in fig). 2 for reference. Althoeghilts
are relatively accurate, it seems that the transformatichd do
not provide a uniform accuracy for all descendant massei.[d
we show how scalindw can compensate for different descendant
halo masses. This indicates that enhancement of mass tiesolu
can be easily obtained. We emphasize thatthetransformations
used here are obtained from matching the CMF, using our bfibba
(eq[3).

This transformation in time is limited in few aspects: it i n
always accurate, it can lower the time resolution of a mengsar
significantly, and it will stretch the non-markov corretats be-
tween consecutive time-steps in a way that might be diftdrem
the behaviour of the simulations. Our statistical sample@atoal-
low to explore the last effect in detail, but we plan to purthis in
a future work.

A less trivial transformation is needed when the time scalin
cannot provide an accurate enough solution. In this caseane c
transform the mass of the progenitor haloes in order to ytiedd
same CMF. For any progenitor maks we defineM such that the
integral over the number of progenitors will be invariant,

170 |:dN:| dM_/MO {ﬂ} n
t M dM r .

W LdM
This equation can be used to find the transformatiédn— M
numerically using the global fitting function of E§.3. In 0 we
show that this transformation can yield perfect matchingvben
very different CMF’s. The only limitation in the accuracy tise
goodness of our global fit, which is used to find the mass toansf
mation above. As shown in fif. 110 ttsamemass transformation

M : (10)

M,=3x10", Aw=0.3, 1.95
- _M=3x10"%, Aw=0.38, 2.57 .
(=}
= 1 |
~
~
=
X
~
=
o0
S
< 01 ]
~
Z
)
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=2 -15 -1 -05 0
Log M /My

Figure 9. The conditional mass function (CMF) for different descartda
halo masses, computed at different time-steps. We showtftbatansfor-
mationAw = 1.3 x Aw can compensate accurately for changing the de-
scendant mass/y.

o
[N
:

dN/dLogM x M /Mo
b 2

o
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:

001 L L ~ L
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Log M /My

Figure 10. Scaling the mass in order to compensate for the change in
dN/dM. We use edJ0 to transform the mass of progenitors from wmap5
simulation (solid blue lines) into scdm1 (dashed red), lzdtthe same time
Aw. The mass transformatiaW; — M; was found according to the global

fit at a specifictime-step,Aw = 1. The same transformation is used to
transform the actual progenitor masses dfirtime-steps used here. The
dashed-dotted lines show the resulting histograms, whielsianilar to the
target case. The descendant halo maggig h—1Me.

is suitable for a large range of time-steps, so the deviatafrthe
CMF fit at small time-steps do not degrade the accuracy of tmsm
transformation.

In general, one might use transformationaf and mass ac-
cording to the specific case needed. Time transformatiomacd
more easy to perform, and should be preferred for cases \inere
resulting time resolution is not problematic. Mass transfation
can be done as a second step, to increase the accuracy dtthe st
tics by small variations in mass. For example, as testedahsing
the results of the Millennium simulation (Springel et al0zpwith
a transformatiomAw = 0.86Aw should give merger-trees which



are consistent with the cosmological model WMAPS5 for a large
range of halo masses. For this simple case, the time tranafmn
is consistent with the naive EPS prediction and scalesilike

5.2 Generating monte-carlo trees

Constructing monte-carlo merger-trees is doable once eauraie
knowledge of the CMF is given for all time-steps. There are va
ious algorithms that were applied to the EPS CMF, and can be
easily generalized for other CMF's_(Kauffmann & White 1993;
Neistein & Dekel 200&h; Zhang etlal. 2008). In this sense dur fi
ting function for the CMF might be very useful for construngfi
monte-carlo trees that fit the results §fbody simulations. How-
ever, there are some limitations to this approach which viieewi-
phasize here below.

As stated in the previous section, the quality of our glotias fi
poor for small time stepsXw < 0.5). On the other hand, the time-
step which is convenient for constructing monte-carlogieenuch
smaller, aroundAw = 0.1. Larger time-steps yield many progen-
itors in each merger event, and a large uncertainty in theiqtesl
merging time of the haloes. As a result, we do not have an ateur
fitting function for the CMF, which is appropriate for gentng
monte-carlo trees. More than that, an accurate fit for the GiVIF
small Aw will not provide a solution, because the behaviour of
merger-trees is highly non-markov at such small time-stépss
means that applying the CMF in consecutive time-steps witho
proper correlation between steps will generate large tenigin
the merger histories (ND08a).

A possible solution to these problems is to look for a new CMF
at small time-steps that will reproduce the CMF frévabody sim-
ulations at big time-steps. The CMF at smalb does not have to
match N-body simulations, it can only be tested by applying it on
few consecutive time-steps. Such a methodology was intextiby
NDO08a and found to produce good results. However, the iegult
trees are fully markov, differing fromV-body simulations. As a re-
sult of the above complications we think that this problersetee
more room than what is left here, and we postpone it to a future
work.

6 SUMMARY AND DISCUSSION

In this work we study merger-histories of dark-matter halas-
ing a set of N-body simulations. The cosmological models sim-
ulated use2,, = 0.26 & 1, along with various power-spectrum
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of N-body simulations. This demonstrates that studies of th&CM
may constrain the halo mass function in a more detailed way.

We found that the CMF depends on the mass of the descendant
halo, when written in terms of the field variane&(M). Using the
above findings we derive a global fit to the CMF which is accu-
rate for our set of simulations. We show that our fitting fotanu
behaves better than EPS estimates based on the ellipsoiidgqise
model (e.gl_Sheth & Tormen 2002; Moreno et al. 2008), and also
than other empirical fit (Cole et ial. 2008). Our global fit skade-
viation from the results ofV-body simulations only at relatively
small time-steps4z < 0.5). Recently| Zhao et al. (2008) studied
the behaviour of main-progenitor histories for differensmolog-
ical models. They provide a fitting procedure for estimatmne-
dian main-progenitor histories in any cosmological modtgw-
ever, these authors used onfedianvalues, so the full CMF cannot
be estimated from their results.

It was shown byl Neistein & Dekell (2008a) that main-
progenitor histories follow the lognormal distribution @rplotted
againsto?(M), this behaviour is also valid for our set of simula-
tions. In this language the parameters of the distributioth lole-
pend linearly orlog Aw. Such a time-dependence is more simple
than the dependence needed for an accurate CMF fit. Thusirthe s
ple lognormal behaviour indicates that it might be usefudxplore
its origin further. We plan to do this in a future work.

We discuss one specific application of this study, which is
to scale merger-trees given by afrbody simulation into a dif-
ferent cosmological model, mass range or redshift. We ptioat
these scalings yield merger-trees which are quite accunabee
than other approaches of constructing monte-carlo merges.
The scaling conserves the correlation of the progenitorsesmbe-
tween time-steps, an effect that would be hard to mimic intexon
carlo generated trees. There is still a need to study théngcal
substructures in a similar methodology. Substructuresldhm af-
fected mostly by the mass ratio of the subhalo to its host, fzadd
by the dynamical time-scale within the host. Once these tifiem
are conserved, substructures might be easily scaled ashhidlef-
fect should be studied with high resolution simulationsl eannot
be pursued here.
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APPENDIX A: ADDITIONAL STATISTICS
Al Self-similarity in time

In this section we provide more details on the accuracy os#ie
similarity in time, as discussed in section]3.1. In fig] A1 wetp
average main-progenitor histories for our set of simuteiol he
histories are plotted for descendant haloes identifigg at 0, 1, 2.
Comparing histories for differers, we see small deviations with
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Figure Al. Average main-progenitor histories at different times. $tho
lines show main-progenitor histories for descendant fAdlpidentified at

Zp = 0,1, 2 (zop = 2 was omitted for the high-mass bin due to a small
statistical sample). Symbols and error-bars are the pgreds of the EPS
formalism following the formula af Neistein etlal. (2006daare indepen-
dent onz,. The symbols shapes are diamonds, squares, trianglelescirc
and pluses for the scdm1, scdm2, lcdm, wmap5, and Millenrsimula-
tions respectively. It is evident that self-similarity ime is valid for all the
simulations. The deviations of the EPS formalism with respe /NV-body
simulations are similar in all cases, although slight teemith cosmology
and halo mass can be seen.

Zy, reaching~ 20% at Aw = 5 (for the scdm1 & lcdm simu-
lations). It should be kept in mind that cosmic variance is-no
negligible in this plot. We also plot the EPS prediction foet
main-progenitor histories, as given by Neistein etlal. £)00The
difference between the analytical EPS prediction and thelteof
N-body simulations seem to change slightly with halo masss€&h
results are sometimes different from the study of Zhao|¢2808).
We note that these authors compareedianvalues from simula-
tions againsaveragevalues from the EPS formalism, as estimated
bylvan den Bosch (2002). This makes their comparison less acc
rate than what is done here.

The full distribution of the main-progenitoR; (AS|So, Aw),
is plotted in fig[A2 for descendant haloes selected at @iffez,.
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lcdm‘

Figure A2. The full distribution of the main-progenitor mass at diéfet
times. In each panel we plot the results from one simulat®imdicated,
where the descendant halo mags is between0'? and10'3 A= M),
and it is selected &, = 0,1, 2, 3 (solid, dashed, dashed-dotted, dotted
lines respectively). Main-progenitors are followed baekss in time until
Aw = 0.5 & 2 (blue and red curves respectively).

Here as well, self-similarity in time is shown to be accuraith
the exception of the scdm1 simulationzat= 0.

In figs.[A3 &[A4] we plot the mutual distribution of the two
most massive progenitors. We show two dimensional histogra
for descendant haloes selectedzgt= 0, 1,2. The results for
scdml & scdm2 simulations show accurate similarity forediff
entz,. However, the lcdm and wmap5 show deviations a the leve
of 10-20% in mass. These deviations decrease at larger teps,s
so they might be connected to non-markov effects at smaé-tim
steps, and their variation with redshift. In addition, orgatment
of ‘blacksplash’ haloes may affect the results (see theudision in

sectior 3.11).

A2 Scaling merger trees

In this section we further examine the scaling of mergezdre
as it was applied in section_A2. We only show mutual distri-
butions of the two most massive progenitof3/1, M), as the
main-progenitor distribution is highly constrained by tG&F
(see e.gl_Neistein etlal. 2006). In f[g. JA5 we examine the time-
transformation which was used to generate[flg. 8. The resfilts
the mass scaling as applied in fig] 10 are shown here infig. A6.

APPENDIX B: AGLOBAL FIT TO THE
MAIN-PROGENITOR DISTRIBUTION

In sectior[# we claim that the lognormal distribution can bsily
described for all time-steps and descendant masses usitig éq

[6l. This is shown in figlB1, where full distributions of the mai
progenitor mass are plotted. In tables B{_& B2 we summariee th
parameters of the fits.
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Figure A3. The mutual distribution of the two most massive progenitors
(M1, M>). Each panel shows results from one simulation as indicatee
descendant hald/y is identified atzy = 0, 1, 2 (plotted as solid, dashed,
dashed-dotted lines respectively). The contour lines latéed for 7 & 30%

of the maximum histogram values. Descendant mass is betw@énand
1013 h=1 Mg, andAw = 0.3 in all cases.
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Figure A4. Same as fig_ A3 but witthw = 0.8.

Table B1. The coefficients used for the global lognormal fit, dds. B1& 6.
The standard deviation éfi AS obeys the equatios, = (a1 log So +
a2) log Aw + a3 log So + a4, Wherea; are given below for each cosmol-

ogy.

Simulation a1 as as aq

wmap5 -0.333 -0.321 0.0807 0.622
scdml -0.0344 -0.608 0.185 0.697
scdm?2 0.760 -1.085 0.184 0.668
lcdm -1.209 0.205 0.245 0.571
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Figure A5. The mutual distribution of the two most massive progenitors Figure B1. The full distribution of the main-progenitor for differenbs-
(M1, Ms), for Aw matching. The samAw transformation is done as in mologies and time-steps. Descendant haloes are selecsgd=at1 with
fig.[B. The contour lines are plotted for 13 & 50% of the maximbis mass betweemn0'? and10'3 A1 M. Main-progenitor mass is followed
togram values. Descendant mass is indicated in units 0f M, Aw = 1. backward in time untiAw = 0.5, 2, 4. Histograms show the simulation
data, smooth lines are generated using our global fit.
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Figure A6. The mutual distribution of the two most massive progenitors
(M1, Ms), for mass matching. Mass transformation for wmap5 was done
in the same way as in fil l&w = 0.3, Mp = 102 A~ 1 Mg

Table B2. The coefficients used for the global lognormal fit, éds. E1& 6.
The mean ofn AS obeys the equatiop, = (b1 log So + b2) log Aw +
b3 log So + b4, whereb; are given below for each cosmology.

Simulation by bo b3 by

wmap5 0.132 2.404 0.585 -0.436
scdml -0.8105 3.179 0.988 -0.513
scdm2 0.418 2.366 0.999 -0.647

lcdm 0.0788 2.418 0.671 -0.434
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