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Abstract. We introduce and discuss the basic features of a new numerical
code designed to handle ideal MHD flows in dynamical spacetimes in general
relativity, and particularly designed to investigate the gravitational collapse of
the core of massive stars leading to neutron stars or black holes. After introduc-
ing the mathematical framework for the general relativistic MHD equations and
the Einstein equations (within the so-called conformal flat condition) we present
results from two representative simulations of magneto-rotational stellar core
collapse. Our simulations highlight the importance of genuine magnetic effects
such as the magneto-rotational instability on the dynamics of the process.

1. Introduction

Understanding gravitational stellar core collapse is a long-standing problem in
relativistic astrophysics (see e.g. Woosley & Janka (2005) and references therein).
It is a distinctive example of a field of research where essential progress has been
accomplished through numerical modelling with increasing levels of complex-
ity in the input physics and mathematics, regarding aspects as diverse as the
treatment of the hydrodynamics, gravity, magnetic fields, nuclear matter equa-
tions of state, transport, etc. Numerical studies based upon Newtonian physics
are vastly developed nowadays and state-of-the-art simulations are beginning to
generate successful supernova explosions. On the other hand, relativistic ap-
proaches have become routine in recent years aided by the development of con-
servative formulations of the general relativistic hydrodynamics equations and
numerically-stable formulations of the Einstein equations (see e.g. Font (2008)
and references therein). While such advances also hold true in the case of the
general relativistic MHD equations (GRMHD hereafter), the development is still
awaiting for a thorough numerical exploration.

In fact, it is only very recently that the first GRMHD codes able to follow the
evolution of matter flows in dynamical spacetimes have been developed (Duez
et al. 2005; Shibata & Sekiguchi 2005; Giacomazzo & Rezzolla 2007; Anderson
et al. 2008). Here, we display our contribution to this field by discussing a new
axisymmetric numerical code, comprehensively presented in Cerdá-Durán et al.
(2008), able to handle ideal MHD flows in dynamical spacetimes in general
relativity, and particularly designed to investigate gravitational core collapse.
This code is based on the hydrodynamics code described in Dimmelmeier et al.
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(2002a,b), and on its extensions discussed in Cerdá-Durán et al. (2005), Cerdá-
Durán & Font (2007), and Cerdá-Durán et al. (2007), to which the readers are
addressed. The Maxwell equations were already incorporated in the codes of
Cerdá-Durán & Font (2007) and Cerdá-Durán et al. (2007), but only in the
passive magnetic field approximation, where the contribution of the magnetic
field to the energy-momentum tensor is neglected yielding no impact on the
dynamics. In the new code this assumption has been relaxed and we incorporate
magnetic field effects on the spacetime dynamics and the self-gravity of the fluid
following the approach laid out in Antón et al. (2006).

In the remainder of the paper we present a brief summary of the mathe-
matical framework on which the code is based along with some of its essential
numerical aspects. Representative results for two magneto-rotational core col-
lapse simulations are also reported in the final section of the article. We stress,
however, that the interested reader is addressed to Cerdá-Durán et al. (2008)
for a much more ample discussion of all the topics considered here. In the few
equations that follow in Section 2 we use units where c = G = 1, Greek indices
run from 0 to 3, Latin indices from 1 to 3, and we adopt the standard Einstein
summation convention.

2. Framework

The evolution of a magnetized fluid is determined by the conservation law of
the energy-momentum, ∇µT

µν = 0, and by the continuity equation, ∇µJ
µ = 0,

for the rest-mass current Jµ = ρuµ, where ρ is the rest-mass density and uµ

the 4-velocity. As usual, symbol ∇µ is used to indicate the covariant derivative
operator. The energy-momentum tensor Tµν of a magnetized perfect fluid can
be written as the sum of the fluid part and the electromagnetic field part. In
the so-called ideal MHD limit (where the fluid is a perfect conductor of infinite
conductivity), the latter can be expressed solely in terms of the magnetic field bµ

measured by a comoving observer. Under this assumption and following Antón
et al. (2006), we choose a set of conserved quantities given by

D = ρW, (1)

Si = (ρh+ b2)W 2vi − αbib
0, (2)

τ = (ρh+ b2)W 2 −
(
P +

b2

2

)
− α2(b0)2 −D, (3)

where α is the lapse function of the spacetime metric, W is the Lorentz factor,
h the specific enthalpy, vi the 3-velocity, and P the thermal pressure. With the
above choice the system of conservation equations for the fluid and the induction
equation for the magnetic field can be cast as a first-order, flux-conservative,
hyperbolic system,

1√−g

[
∂
√
γU

∂t
+
∂
√−gF i

∂xi

]
= S, (4)

for a state vector U, flux vector F i, and source vector S whose explicit expres-
sions can be found in Cerdá-Durán et al. (2008). Symbols g and γ indicate the
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determinants of the metric and of the induced spatial 3-metric, respectively. The
hyperbolic structure of Eq. (4) and the associated spectral decomposition (into
eigenvalues and eigenvectors) of the flux-vector Jacobians are given in Antón
et al. (2006). This information is required for numerically solving the system
of equations using the class of high-resolution shock-capturing (HRSC) schemes
that we have implemented in our code.

In our work Einstein’s field equations are formulated and solved using the
conformally flat condition (CFC hereafter), introduced by Isenberg (2008). In
this approximation, the 3-metric in the ADM gauge is assumed to be conformally
flat, γij = φ4γ̂ij . Under the CFC assumption the gravitational field equations
can be written as a system of five nonlinear elliptic equations for the set of vari-
ables (φ, αφ, βi) (see e.g. Cerdá-Durán et al. (2008) for the explicit expressions).
In the previous set βi denotes the spacetime shift vector.

As mentioned before our code solves the coupled time evolution of the equa-
tions governing the dynamics of the spacetime, the fluid, and the magnetic field
in general relativity. The equations are implemented using spherical polar coor-
dinates {t, r, θ, ϕ} and axisymmetry and equatorial plane symmetry is assumed.
The evolution of the matter fields is handled with a HRSC scheme which updates
the variables (D, Si, τ). We have implemented various cell-reconstruction pro-
cedures which are either second-order or third-order accurate in space, namely
minmod, MC, and PHM (see Toro 1999, for definitions). The time update of
the state vector U relies on the method of lines in combination with a second-
order accurate Runge–Kutta scheme. The numerical fluxes at cell interfaces
are obtained using either the HLL single-state solver of Harten et al. (1983) or
the symmetric scheme of Kurganov & Tadmor (2000). The solenoidal condition
of the magnetic field is ensured with the use of the flux constraint transport
method, which has been adapted to the spherical polar coordinates used in the
code, and uses cell interface-centered poloidal and (because of the assumption of
axisymmetry) cell-centered toroidal magnetic field components. The time dis-
cretization of the induction equation is done in the same way as for the fluid
equations. Correspondingly, we use a fix-point iteration scheme in combination
with a linear Poisson solver to solve the CFC nonlinear elliptic equations (for
further details see Cerdá-Durán et al. (2005) and Dimmelmeier et al. (2002a)).
Furthermore, the code incorporates several equations of state, ranging from sim-
ple analytical expressions to tabulated microphysical equations of state.

The interested reader is addressed to Cerdá-Durán et al. (2008) for details
on the various tests passed by the code. We here simply point out that the test
calculations performed demonstrate the ability of the code to properly handle all
aspects appearing in the astrophysical scenarios the code is intended for, namely
relativistic shocks, strongly magnetized fluids, and equilibrium configurations of
magnetized neutron stars.

3. Magneto-rotational core collapse simulations

We show results from simulations of two different initial models, namely a weakly
magnetized model B10 with a central magnetic field of |B|c = 1010

√
4πGauss,

and a strongly magnetized model B12 with |B|c = 1012
√

4πGauss. In either case
the progenitor is the 20M⊙ model of Woosley et al. (2002), to which we add a
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Figure 1. Radial profiles of the angular velocity Ω at the equator for model
B10 (left panel) and B12 (right panel). The different lines correspond to
different times after bounce: t − tb = 0, 8, 34, 45 and 59 ms. The black line
displays the profile of Ω at the end of the simulation for the corresponding
unmagnetized model, and is shown for comparison.

rotation profile with angular momentum j = A2(Ωc−Ω) with A = 5×104 km and
Ωc = 4.035 s−1. Therefore, both initial models are rotating almost rigidly. The
magnetic field is the one generated by a circular current loop (see Jackson (1962))
at a radius of 400 km. This field has a dipolar structure far away from the center.
The structure and strength of the field is fixed by two parameters, the radius of
the loop and the magnetic field at the center (r = 0). The models are evolved
with the tabulated equation of state of Shen et al. (1998) and an approximate
deleptonization scheme (Liebendörfer 2005) as described in Dimmelmeier et al.
(2007) and Cerdá-Durán et al. (2007). Further discussion on these results can
be found in Cerdá-Durán et al. (2008).

As the collapse proceeds both the density and the magnetic energy grow
very similarly for both models, because even in the highly magnetized progenitor
model B12 the strength of the magnetic field is not large enough to affect the
collapse dynamics. After core bounce, however, both models behave differently.
On the one hand, for model B10 the magnetic field is far from saturation and
grows linearly with time at the end of the simulation, while model B12 shows
a saturation of the magnetic field energy shortly after core bounce. Its central
density continues to grow beyond bounce, and the model eventually approaches
an equilibrium configuration with a central density about 10% larger than in the
weakly magnetized model.

The behavior of the central density can be understood by analyzing the
profiles of the angular velocity Ω, which are plotted in Fig. 1. At the time of
bounce those profiles are very similar for all models, since the magnetic field
is still unimportant for the dynamics: the innermost 10 km of the core rotate
rigidly, while further out Ω follows a power law with an exponent ∼ −1.2. During
the subsequent evolution the central region spins down, and the central density
rises, the effect being more prominent in the strongest magnetized model B12
(right panel in Fig. 1). In the region 10 km ≤ r ≤ 30 km the magnetic field
is strongest as differential rotation winds up the magnetic field more efficiently
there (Cerdá-Durán et al. 2007). On a time scale of about 50 ms, the angular
velocity decreases by about a factor 10, and the innermost few kilometers of
the core even acquire retrograde rotation, an effect already observed in the
Newtonian simulations of Obergaulinger et al. (2006) (see also Müller (1979)).
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Figure 2. Structure of the magnetic field 51ms after core bounce for both
models, weak field (left panel) and strong field (right panel).

The spin down of the core may be understood by means of the magneto-
rotational instability (MRI hereafter; see Balbus & Hawley (1991)). In unstable
regions the MRI grows exponentially for all length-scales larger than a critical
length-scale λcrit ∼ 2πcA/Ω, where cA is the Alfvén speed. The fastest growing
MRI mode develops at length-scales near λcrit on a typical time scale of τMRI =
4π[̟∂̟Ω]−1. Therefore, one needs to resolve length-scales of about the size
of λcrit in order to numerically capture the MRI. For model B12 such critical
length-scale at bounce is λcrit ∼ 1 km . . . 5 km inside the unstable region (10 km
≤ r ≤ 30 km). This region is covered with 60 radial and 30 angular zones,
which corresponds to a resolution (∆r, r∆θ) of 125 m× 500 m at r = 10 km, and
900 m × 1500 m at r = 30 km. This resolution is marginally sufficient to resolve
the length-scale of the fastest growing mode of the MRI at bounce (5 − 10
radial zones, and 2− 3 angular zones). The strong redistribution of the angular
momentum observed for model B12 might therefore be caused by the MRI. On
the other hand, for model B10 the critical length-scale at bounce is about a
factor of 100 smaller, ie λcrit ∼ 10 m . . . 50 m, and thus the fastest growing mode
of the MRI cannot be resolved with our grid resolution.

Finally, we show in Fig. 2 the magnetic field topology for both models at
the end of the simulation. In the low magnetized model B10 (left panel) the
(transient) prompt convection developing after bounce twists the magnetic field
outside the so-called neutrino-sphere, which is assumed to be located at about
30 km. In model B12 the magnetic field grows to values near equipartition, and
a distinctive, strongly magnetized outflow propagates along the axis behind the
shock front. Between 10 km ∼< r ∼< 30 km, where the MRI is predominantly
growing, axisymmetric channel flows form, which are morphologically similar to
the flows found in the accretion disk simulations of Hawley & Balbus (1992).

4. Summary

We have briefly discussed a new numerical code which solves the GRMHD equa-
tions coupled to the Einstein equations for the evolution of a dynamic spacetime.
Our new numerical code is based on high-resolution shock-capturing schemes
to solve the flux-conservative hyperbolic GRMHD equations, and the flux con-
straint transport method to ensure the solenoidal condition of the magnetic field.
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The Einstein equations are formulated in the conformal flatness condition ap-
proximation, and the resulting elliptic equations are solved using a linear Poisson
solver. The first application carried out with this code has been the simulation
of general relativistic magneto-rotational core collapse using a realistic stellar
progenitor model and a microphysical equation of state. In the near future we
plan to extend the code to incorporate a simplified scheme for neutrino trans-
port (in order to explore the post-bounce evolution of collapsing magnetized
cores more reliably) along with the implementation of resistive MHD.
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Cerdá-Durán, P., Font, J. A., & Dimmelmeier, H. 2007, A&A, 474, 169
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