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Abstract—Based on numerical simulations of a supernova explosion, we investigate the shock-wave
breakout through the stellar surface. The computations have been performed in a wide range of explosion
energies and presupernova masses. The results are compared with the classical Gandelman–Frank-
Kamenetsky self-similar solution. We have determined the dependence of an arbitrary coefficient in the self-
similar solution on the explosion energy and presupernova structure. The derived analytical approximation
formula for this coefficient can be used to estimate the supernova explosion energy from such parameters of
the ejected envelope determined from astronomical observations as its maximum expansion velocity and
the density distribution along its outer edge. The formula may prove to be also useful in studying the
X-ray and gamma-ray bursts that accompany the shock-wave breakout through the surface of compact
presupernovae.
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INTRODUCTION

A supernova (SN) explosion begins with the
breakout of a strong shock wave (SW) through the
stellar surface. Since the matter density decreases
rapidly with decreasing SW distance to the stellar
surface, the SW-transported energy is transferred to
a progressively smaller amount of matter. Thus, the
SW breakout through the stellar surface is cumula-
tive in nature and is described by a self-similar so-
lution of hydrodynamic equations under certain con-
ditions (Gandelman and Frank-Kamenetsky 1956;
Sakurai 1960). This solution contains an arbitrary
parameter K2 that defines the SW amplitude in the
outer stellar layers.

After the SW breakout, the stellar envelope under-
goes an additional acceleration in a rarefaction wave.
This stage also proceeds in a self-similar regime
(Sakurai 1960; Litvinova and Nadyozhin 1990), for
which the initial conditions are determined by the
previous SW breakout stage. Therefore, K2 also
enters into the description of this stage.

*E-mail: Nadezhin@itep.ru

The self-similar solution has been repeatedly ap-
plied in solving various problems related the SW
breakout, as, for example, in Bisnovaty-Kogan et al.
(1975), Imshennik and Nadyozhin (1988a, 1988b),
and Chevalier (1992), where simple power-law ap-
proximations were used for K2 as a function of the SN
explosion energy Eexp. However, how accurate these
approximations are in a wide range of Eexp and how
they depend on the presupernova model has remained
unclear up until now.

The main goal of this paper is to elucidate the
dependence of K2 on the SN explosion energy Eexp
and on the presupernova structure (in particular, on
its mass and radius), given the variations in all these
parameters over wide ranges characteristic of com-
pact core-collapse SNe.

We numerically simulated the propagation of a
SW from the stellar center to its breakout through
the surface. The dependence of the post-shock matter
velocity on the SW distance to the surface obtained
in our calculations is compared with that predicted
by the self-similar solution. This allows the numerical
value of K2 to be determined at a given explosion
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energy Eexp. The results are presented in the form of
easy-to-use (in applications) approximation formulas
for the function K2(Eexp) calculated for polytropic
gaseous spheres with indices n = 1.5 and 3 and for
the evolutionary model of the presupernova 1987A
computed by Woosley and Weaver (1992) and acces-
sible on the Internet.

The SW propagation in extended SN envelopes
was studied in detail by Matzner and McKee (1999).
Here, we consider a more modest problem—the prob-
lem on the parameters of the self-similar solution
that describes the SW propagation in the outermost
layer of a star with a thickness of 10–20% of its ra-
dius. In the self-similar solution, we neglect the small
corrections for the deviations from a plane geometry
(Kazhdan and Murzina 1992). This is justified by
the fact that applying these corrections would require
much more stringent constraints on the approxima-
tion accuracy of numerical calculations: we would
have to abandon the simple formula (24), with an
accuracy of ±5%, and to take into account the weak
dependence of the coefficient ξ on the stellar mass.

SN 1987A exploded in the Large Magellanic
Cloud had long remained the only SN whose optical
emission was recorded approximately one day after
the SW breakout. At present, there are several SNe
discovered immediately after or even at the time
of SW breakout (see, e.g., Soderberg et al. 2008;
Chevalier and Fransson 2008; Quimby et al. 2007).
Therefore, detailed studies of the SW breakout are of
special interest.

BASIC EQUATIONS
AND THE COMPUTATIONAL METHOD

Equations of Radiation Hydrodynamics

We use the equations of spherically symmetric hy-
drodynamics with gravity in Lagrangian coordinates:

∂r
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= u, (1)
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P = ρT + BT 4, (5)

E =
3
2
T + 3B

T 4

ρ
, (6)

where r is the radius of the spherical layer that bounds
mass m; u is the matter velocity; P , ρ, and T are
the pressure, density and temperature, respectively; E
is the specific energy; Q is the artificial Neumann–
Richtmyer viscosity; and κ is the opacity, which is
determined by the Thomson scattering in our case,
κ = 0.2(1 + X). We took the hydrogen mass frac-
tion X in our calculations to be 0.7.

Equations (1)–(6) are written in the following
system of units (Nadyozhin and Frank-Kamenetsky
1964):

r −→ R, m −→ M, (7)

T −→ µ
mu
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R
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,
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√
GM

R
,

E −→ GM

R
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√
R
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,

where M is the total mass of the star, R is its radius,
G is the gravitational constant, mu is the atomic mass
unit, k is the Boltzmann constant, and µ is the mean
molecular mass. The viscosity Q is measured in the
same units as the pressure.

The equations of state (5) and (6) for completely
ionized matter and equilibrium radiation include the
dimensionless coefficient B:

B =
4πa

3G

(
muG

k

)4

(µ2M)2 (8)

= 0.78096
(

µ2 M

M�

)2

,

where a is the radiation density constant.
The coefficient C1 of the term that describes the

radiative heat conduction in Eq. (4) has the dimen-
sions of opacity κ (cm2 g−1) and is defined by the
expression

C1 =
1
3
16π2ac

(
µ

mu

k

)4
G5/2R5/2M1/2, (9)

where c is the speed of light.
The independent dimensionless Lagrangian coor-

dinate m varies over the range m1 � m � 1.

Boundary Conditions
Inside the star at m = m1: r = r1 and u = 0.
On the stellar surface at m = 1: ρ = 0 and

P = BT 4.
In addition, the following condition for the tem-

perature gradient should be used on a freely emitting
stellar surface (Imshennik and Nadyozhin 1964):

−C2
r2

κ

∂T 4

∂m
= T 4, m = 1, (10)
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where the coefficient C2, with the dimensions of opac-
ity, is defined by the formula

C2 =
8π
3

R2

M
. (11)

Initial Conditions

As the initial stellar structure models, we used hy-
drostatically equilibrium polytropic gaseous spheres
with indices n = 1.5 and 3 as well as the evolutionary
model of the presupernova 1987A by Woosley and
Weaver (1992), which was designated by them as
I22n2a_22111 (below referred to as the WW model).

For the polytropic gaseous spheres, we must set
m1 = 0 and r1 = 0. Thus, these models disregard the
presence of a compact iron core in core-collapse SNe.

The WW model has a mass and a radius of
22.12M� and 63.0R�, respectively. It contains an
iron core with a mass of 1.344M� and a radius
of 1.44 × 108 cm, whose gravitational collapse will
lead to the expulsion of the outer envelope during
a SN explosion. For our purposes, it will suffice to
associate precisely these values of m and r with the
inner boundary of the envelope. Therefore, we take
m1 = 6.076 × 10−2 and r1 = 3.286 × 10−5 for the
WW model. In addition, for our purposes, it turned
out to be necessary to make a modification in the
description of the structure of the outer atmosphere
for this model (see the next section).

At the initial instant (t = 0), the star is in hydro-
static equilibrium and, hence, the velocity u(m) =
0 everywhere inside it. We simulated the explosion
of the star in our computations through the release
of an energy ∆E at t = 0 due to an instantaneous
temperature rise in a small mass δm located either at
the stellar center (polytropic models) or immediately
adjacent to m1 in the WW model. The mass δm
occupies 15 computational mass zones and is only
3.6 × 10−7 for the polytropic models (an almost point
explosion) and 6.2 × 10−3 for the WW model (10%
of the iron core mass). We will call the total positive
energy of the star disturbed at t = 0 the explosion
energy Eexp. Obviously,

Eexp = ∆E + ET + Eg, (12)

where ET and Eg are the initial total thermal and
gravitational energies of a hydrostatically equilibrium
star for the polytropic models and a hydrostatically
equilibrium envelope (m1 � m � 1) for the WW
model. When t → ∞, the gravitational and thermal
energies become zero and, according to the energy
conservation law (which holds good in our numerical
calculations), the entire energy Eexp transforms into
the kinetic energy of the ejecta.

Computational Method

The computations were performed using a cross-
type difference scheme with an explicit calculation of
the new radius, velocity, and density in Eqs. (1)–(3)
and an implicit calculation of the new temperature in
Eq. (4) (sweep method).

When computing the SW propagation in the poly-
tropic models, we divided the star into 1000 mass
zones. The variable dimensionless mass step ∆m was
chosen to be small near the center (the total mass
of the first twenty zones is only ∼10−6). In the outer
part of the star, ∆m decreased from 1.4× 10−3 for the
J = 650 zone to ∼10−12 near the surface (J = 1000).
Note that these 350 outer zones contain 2.2% of the
stellar mass and occupy 35 and 12% of the radius for
the n = 3 and 1.5 polytropes, respectively.

The WW model contains 432 mass zones, 109 of
which are accounted for by the iron core located out-
side the region of our computations. Unfortunately,
the division of the outer part of this model is too coarse
for our purposes — the outer layer 0.77 < r � 1 is
accounted for by only five mass zones. Therefore,
in the range of radii 0.67 < r � 1, we supplemented
the WW model by a polytropic atmosphere with a
peripheral polytropic index n = 3 by dividing it into
300 mass zones corresponding to a uniform division
in radius. The zone mass gradually decreases from
∆m = 1.2 × 10−3 at r = 0.67 in the WW model to
∆m = 4.5 × 10−13 at r = 1. As a result, the WW
model modified in this way contains 616 mass zones
within our computational range m1 � m � 1.

This modification is based on the fact that the
decrease in mass with depth in the atmosphere can be
neglected with a high accuracy in the extended outer
stellar layers. Thus, for example, only ∼2% of the total
stellar mass is contained in the outer layer 0.65 < r <
1 of the n = 3 polytrope. Under such circumstances
and the additional condition P = Aρ1+1/n, the hydro-
static equation has the well-known analytical solu-
tion

ρ = K1

(
1
r
− 1

)n

, K1 ≡ [(n + 1)A]−n , (13)

P =
1

n + 1
K1

(
1
r
− 1

)n+1

. (14)

Approximation (13) for the WW model is shown
in Fig. 1. The short vertical line corresponds to r =
0.67, while the solid line to the left of it (r > 0.67)
corresponds to law (13) with n = 3, A = 0.3092,
and K1 = 0.5286 used in our calculations. For a
polytropic gaseous sphere with n = 3, we have A =
0.15654 and K1 = 4.073.
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SELF-SIMILAR SOLUTION

Constancy of the adiabatic index γ behind the front
of a strong SW (in our case of a radiation-dominated
SW, γ = 4/3) and a power-law dependence of the
density on the SW distance to the stellar surface,
which follows from (13) at r close to unity,

ρ = K1x
n, x ≡ 1 − r (15)

are required for the existence of a self-similar solution.
According to the self-similar solution, the SW

front velocity D increases indefinitely with decreasing
SW distance xsw to the stellar surface:

D =
drsw

dt
= −dxsw

dt
= K2x

−λ
sw , K2 > 0, (16)

where λ > 0 depends only on n and γ and is defined as
an eigenvalue when finding the self-similar solution
and K2 is an arbitrary constant.

Grasberg (1981) provided a wide spectrum of
λ values calculated for various n and γ. Here, we
will need λ for γ = 4/3 and n = 3 and 1.5, which
are 0.5572 and 0.2863, respectively.

The matter velocity u at the front of a strong SW
is related to D by

u =
2

γ + 1
D =

2
γ + 1

K2x
−λ
sw . (17)

At the time of SW breakout through the stel-
lar surface (xsw = 0), the velocity at the SW front
becomes infinite, while all physical quantities in the
inner layers of the envelope are power functions of the
distance to the stellar surface at this time, which we
will denote by x0:

ρ(x0) = K1x
n
0h∞, (18)

P (x0) = K1K
2
2xn−2λ

0 g∞, (19)

u(x0) = −dx

dt
= K2x

−λ
0 f∞, (20)

where the coefficients h∞, g∞, and f∞ were tabulated
by Grasberg (1981) for various n and γ.

After the SW breakout, the matter expands into
a vacuum and accelerates in a rarefaction wave until
the phase of a free inertial expansion begins, when
the velocity u of each mass layer initially located
at distance x0 from the surface at the time of SW
breakout no longer changes with time and its radius r
is proportional to the time: r = ut. The initial phase
of expansion into a vacuum is described by a differ-
ent self-similar solution (Sakurai 1960; Litvinova and
Nadyozhin 1990). According to the latter, the velocity
of each mass layer increases by the same factor by the
time of transition to the state of a free expansion:

u = β(n, γ)u(x0). (21)
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Fig. 1. Approximation of the density distribution in the
outer part of the envelope in the WW evolutionary model
(filled circles) by a polytropic law with an index n = 3 (to
the left of the short vertical line). The density distribution
in a polytropic gaseous sphere with n = 3 is shown for
comparison.

Given the mass conservation law and the relation r =
ut, an expression for the density distribution in a freely
expanding envelope can be derived from Eqs. (18),
(20), and (21):

ρ =
B

r3us
=

Bts

r3+s
=

B
t3u3+s

, (22)

r = ut, s ≡ n + 1
λ

,

B =
1
λ

h∞K1 (βf∞K2)s . (23)

Equations (22) and (23) are written in our dimen-
sionless units. Their detailed derivation can be found
in Nadyozhin (1994). Unfortunately, the factor 4π,
which was replaced by unity in Eq. (23), is present
by mistake in the final expression for B (Eq. (1.25))
from the above paper. Since K1 and K2 have the
dimensions of density and velocity, respectively (see
Eqs. (15) and (16)), the right-hand side of (23) can be
multiplied by R3 (R is the presupernova radius) and
Eqs. (22) and (23) will then be valid for any system
of units if, of course, K1 and K2 are measured in the
same units as ρ and u, respectively.

NUMERICAL CALCULATIONS

For both polytropic models (n = 1.5, 3), we per-
formed computations at 13 explosion energies Eexp,
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Fig. 2. Matter velocity at the SW front versus distance
to the stellar surface located to the left for a polytropic
model (n = 3) with a mass of 2 − M� and a dimension-
less explosion energy Eexp = 10.

in the range from 1 to 100 in dimensionless units
(GM2/R serves as the natural unit of energy). The
dimensionless gravitational energies of the initial
hydrostatically equilibrium polytropic models are
−1.5 and −6/7 for n = 3 and 1.5, respectively. At
each Eexp, we also performed a series of computations
for eight stellar masses M in the range from 10M�
to 50M�.

These computations revealed that the effect of ra-
diative heat conduction on the SW propagation for
compact presupernovae (with radii R � 100R�) is
noticeable only in the outermost layers of the enve-
lope with a thickness of several percent of the stellar
radius, where the SW directly breaks out through
the stellar surface (see the next section). Therefore,
for our purpose (determining K2), we can restrict
ourselves to the adiabatic approximation by setting
C1 = 0 in the energy equation (4). Most of the com-
putations for the polytropic models were performed
precisely in this approximation.

For the WW evolutionary model, we performed
computations at six values of Eexp = 6.64, 14.8, 23.9,
43.1, 77.5, 128 (all with radiative heat conduction).
Since GM2/R = 2.95 × 1049 erg for the WW model,
this corresponds to a change in explosion energy in
the range (0.2–3.8) × 1051 erg.

It should be noted that the system of equa-
tions (1)–(6) in the adiabatic approximation not only
does not contain the constant C1 but also does not
need the boundary condition (10). Only one arbitrary
parameter remains, µ2M , which determines the con-
stant B in the equation of state. If the initial condi-
tions written in the system of units (7) contain no ar-
bitrary parameters (except the explosion energy Eexp),
then the solution of the problem in dimensionless
units depends only on µ2M and Eexp and does not

depend on the stellar radius R. This case applies to
the polytropic models. Therefore, the dimensionless
values of K2 for the n = 1.5 and 3 polytropic models
obtained in our computations do not depend on R and
are weakly sensitive to variations in the stellar mass,
which enters into the problem via the parameter µ2M .
This result tested in our numerical calculations can
be explained by the fact that the equilibrium radiation
pressure exceeds considerably the matter pressure in
the entire shocked region. If the pressure and specific
energy of the matter are neglected altogether, then
the two equations of state (5) and (6) merge into one,
E = 3P/ρ, and the parameter µ2M drops out of the
system.

Figure 2 shows an example of the calculation
(without radiative heat conduction) of K2 for the n =
3 polytropic model at an explosion energy Eexp =
10 and a mass of 20M�. The points indicate the
velocity at the SW front obtained in our hydrody-
namic computation at consecutive instants of time
as the SW approached the stellar surface. The solid
curve represents dependence (17) at γ = 4/3 and
λ = 0.5572 from the self-similar solution. The value
of K2 is chosen from the condition that the curve
corresponds most closely to the calculated velocities.
Such a procedure of determining K2 was used for all
our computations: all values of Eexp and M and, when
the radiative heat conduction is taken into account, R
and for all of the models considered here. It turned out
that the dependences K2(Eexp) found in this way for
all three models could be approximated by the same
law

K2 = ξ
√

Eexp, (24)

where the coefficient ξ depends on the model,

ξ(n = 1.5) = 0.722, (25)

ξ(n = 3) = 0.921, ξ(WW ) = 1.62.

The uncertainty in the coefficients ξ for the n =
1.5 and 3 polytropes is ±5%. It arises mainly from
the weak dependence of the calculated K2 on the
stellar mass M and is the price to pay for neglecting
this dependence when the computational data are
approximated. The approximation formula (24) for
the WW model has an accuracy of at least 5% for
dimensionless explosion energies in the range 10 �
Eexp � 130. At Eexp < 10, the accuracy of approxi-
mation (24) deteriorates. Thus, for example, the cal-
culated value of K2 for Eexp = 6.64 exceeds the value
that follows from (24) by 20%. This small deviation
from dependence (24) for the WW model probably
results from an additional SW acceleration due to the
energy transfer by radiative heat conduction into the
outer stellar layers. This effect does not manifest itself
in the polytropic models, since the density in their
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Fig. 3. Dimensionless matter velocity versus radius at various instants of time for a polytrope (n = 3) with a mass of 20M�,
an initial radius of 50R�, and explosion energy Eexp = 100 (3.04 × 1051 erg).

envelopes (at 0.5 � r < 1) is much higher than that
in the WW model (Fig. 1).

After the passage to dimensional quantities,
Eq. (24) takes the form

K2 = ξ0

√
Eexp

M
. (26)

If Eexp and M are measured in units of 1051 erg and
M�, respectively, then the coefficient ξ0 in units of
cm s−1 is

ξ0(n = 1.5) = 5.1 × 108, (27)

ξ0(n = 3) = 6.5 × 108, ξ0(WW) = 1.15 × 109.

Note that Eq. (26) for the WW model virtually coin-
cides with the K2 estimate that was used by Imshen-
nik and Nadyozhin (1988a) to interpret the observa-
tions of SN 1987A.

MAXIMUM VELOCITY

The self-similar solution is inapplicable in the out-
ermost stellar layers, where the density is so low that
the characteristic time of energy outflow from the SW
due to radiative diffusion is shorter than the time left
before the SW breakout through the stellar surface.
This effect restricts the increase in the velocity at the
SW front, which in the self-similar solution formally
tends to infinity as the distance between the SW front
and the stellar surface decreases. As a result, the final
velocity of the outer edge of the expanding envelope
turns out to be limited from above.

The optical width of the front of a radiation-
dominated SW is known (see Imshennik and Na-
dyozhin (1988a, 1988b) and references therein) to be
defined by the relation

δτsw ≈ c

D
. (28)

The optical distance from the SW to the surface is
defined by the integral

τsw =

R∫
rsw

κρdr, (29)

where rsw is the radius of the SW front. When τsw
approaches δτsw, an outward flux “breakout” occurs
and the self-similar solution becomes inapplicable.
Thus, the applicability condition for the self-similar
solution can be written as

τsw � δτsw. (30)

Using Eqs. (15), (16), (17), and (26), we can write
inequality (30) as

xsw � xmin, (31)

where xsw ≡ 1− rsw/R is the dimensionless distance
from the SW to the stellar surface. For xmin, we have

xn+1−λ
min = 1.53 × 10−10 (32)

× (n + 1)[(n + 1)A]n

1 + X

c

ξ0

R2√
MEexp

,

where M and R are given in solar units and Eexp is
given in 1051 erg.
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Fig. 4. Same as Fig. 3 for the explosion energy Eexp = 10 (3.04 × 1050 erg).

Figures 3 and 4 show the velocity distributions in
radius in the outer SN layers for the n = 3 polytropic
model that were computed by taking into account
the radiative heat conduction for the dimensionless
explosion energies Eexp = 100 and 10, respectively.

The dashed curve represents the locus of points
that correspond to the velocities at the SW front
(Eq. (17)). The parameter K2 was calculated from
Eq. (24) for the corresponding dimensionless explo-
sion energy Eexp.

We see that the self-similar solution describes the
SW propagation with an adequate accuracy up to the
distance to the stellar surface xmin defined by Eq. (32),
0.020 and 0.027 for Figs. 3 and 4, respectively.

In Fig. 4, we clearly see the SW transformation
in the outer layer of thickness xmin into a rarefaction
wave.

We can now estimate the maximum matter veloc-
ity umax at the SW front immediately before the SW
transformation into a rarefaction wave, i.e., at xsw =
xmin. Substituting xmin from (32) into (17) yields

umax =
2

γ + 1
K2x

−λ
min (33)

=
2

γ + 1
ξ0 (M/M�)−0.5

×
(
Eexp/1051 erg

)0.5
x−λ

min.

It follows from (32) and (33) that umax is a power
function of Eexp, M , and R:

umax ∝ E
0.5 n+1

n+1−λ
exp M−0.5n+1−2λ

n+1−λ R
−2λ

n+1−λ (34)

= E0.581
exp M−0.419R−0.324, n = 3.

The dimensionless mass δm of the outer layer 0 <
x < xmin accelerated to umax can be determined from
the relation

δm ≈ K1

n + 1
xn+1

min . (35)

For the polytropic model (n = 3) shown in Fig. 4,
the dimensionless value of umax = 18.6 defined by
Eqs. (17), (24), and (25) is in good agreement with
this figure. In dimensional units, umax = 5100 km s−1.

For the WW model at an explosion energy of
1 × 1051 erg, we obtain xmin = 0.0397 and umax =
12700 km s−1. After the additional acceleration in
the rarefaction wave, the velocity increases to βumax
(Eq. (21)). At β ≈ 1.6 (Litvinova and Nadyozhin
1990), the maximum velocity of the outer edge of the
SN 1987A envelope can reach ≈20 000 km s−1. It
follows from (35) that δm ≈ 3.3 × 10−7 and, hence,
the mass of the matter with a velocity close to umax is
Mδm ≈ 7.3 × 10−6M�.

The most detailed hydrodynamic model for the
SN 1987A explosion was developed by Utrobin (1993,
2004). Immediately before its explosion, the star
had a mass of 19.58M� and a radius of 46.8M�.
In the outer envelope of this model, the hydrogen
mass fraction is X = 0.55 and the density distri-
bution can be approximated by a polytropic law
(n = 3) with a dimensionless parameter A ≈ 0.49
in Eq. (13). The values of ξ ≈ 2.12 and ξ0 ≈ 1.5 ×
109 cm s−1 in Eqs. (24) and (26) correspond to
the hydrodynamic computation shown in Fig. 12
from Utrobin (2004) and designated there as N1o.
Using these data, we obtain xmin ≈ 0.048, umax ≈
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16 000 km s−1, βumax ≈ 25 000 km s−1, and Mδm ≈
3.5 × 10−6M� for Utrobin’s model, which agrees
with the hydrodynamic picture presented in the men-
tioned Fig. 12 to within ≈10%.

CONCLUSIONS

Our main result is the elucidation of the depen-
dence of the parameter K2 in the self-similar solu-
tion on the explosion energy Eexp and presuperno-
va structure. We showed that when using dimen-
sionless variables, K2 is proportional, with an ade-
quate accuracy, to the square root of Eexp (Eq. (24)),
with the proportionality factor ξ being independent of
the presupernova radius R and virtually independent
of its mass M . In dimensional form, K2 is propor-
tional to the mean velocity of the expanding envelope
(Eq. (26)).

Our results apply to compact SNe with R �
100R�. Equations (24) and (26) for K2 are applicable
when the explosion energy exceeds considerably the
gravitational binding energy of the SN envelope,
Eexp � 10GM2/R. Otherwise, the calculated values
of K2 turn out to be slightly higher than those
obtained from Eqs. (24) and (26).

Our results make it possible to estimate in prin-
ciple the SN explosion energy from the maximum
velocity of the outer edge of the envelope (Eq. (34))
and the density ρ in the regime of a free expansion
(Eq. (22)) determined from astronomical observa-
tions. The latter possibility is particularly favorable
due to the strong dependence of ρ on Eexp, ρ ∝ Eα

exp,
where α = 3.59 and 4.37 for n = 3 and 1.5, respec-
tively.
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