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ABSTRACT

We present the Millennium-II Simulation (MS-II), a very large N -body simulation
of dark matter evolution in the concordance ΛCDM cosmology. The MS-II assumes
the same cosmological parameters and uses the same particle number and output
data structure as the original Millennium Simulation (MS), but was carried out in
a periodic cube one-fifth the size (100 h−1 Mpc) with 5 times better spatial resolu-
tion (a Plummer equivalent softening of 1.0 h−1 kpc) and with 125 times better mass
resolution (a particle mass of 6.9 × 106 h−1 M�). By comparing results at MS and
MS-II resolution, we demonstrate excellent convergence in dark matter statistics such
as the halo mass function, the subhalo abundance distribution, the mass dependence
of halo formation times, the linear and nonlinear autocorrelations and power spectra,
and halo assembly bias. Together, the two simulations provide precise results for such
statistics over an unprecedented range of scales, from halos similar to those hosting
Local Group dwarf spheroidal galaxies to halos corresponding to the richest galaxy
clusters. The “Milky Way” halos of the Aquarius Project were selected from a lower
resolution version of the MS-II and were then resimulated at much higher resolution.
As a result, they are present in the MS-II along with thousands of other similar mass
halos. A comparison of their assembly histories in the MS-II and in resimulations of
1000 times better resolution shows detailed agreement over a growth factor of 100 in
mass. We publicly release halo catalogs and assembly trees for the MS-II in the same
format within the same archive as those already released for the MS.
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1 INTRODUCTION

In order to understand how galaxies form and evolve in their
cosmological context, we must understand the properties
of dark matter halos over a wide range of physical scales
and across virtually all of cosmic history. Numerical simula-
tions provide one of the best methods for approaching this
problem and have proven invaluable for studying the growth
of cosmological structure and, in particular, of dark matter
halos. Increasing computational power and improved algo-
rithms have led to a steady and rapid increase in the abil-
ity of N -body simulations to resolve the detailed internal

? e-mail: mrbk@mpa-garching.mpg.de

structure of dark matter halos over substantial cosmological
volumes.

Perhaps the most widely-used N -body simulation of
cosmological structure formation to date has been the Mil-
lennium Simulation (Springel et al. 2005, hereafter MS),
which followed more than ten billion particles within a sim-
ulation volume of (500h−1 Mpc)3. This provided sufficient
mass resolution to see the formation of halos hosting 0.1L?

galaxies and sufficient volume to obtain good statistical sam-
ples of rare objects such as massive cluster halos and lumi-
nous quasars. It also enabled the implementation of physical
models for the formation and evolution of galaxy/AGN pop-
ulations throughout a large and representative cosmological
volume (Croton et al. 2006; Bower et al. 2006). Since 2005,
when the first results from the MS were published, most new
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2 M. Boylan-Kolchin et al.

very large cosmological simulations have focused on larger
volumes1 (Lbox & 1000h−1 Mpc) in order to study topics
such as the statistical detection of baryon acoustic oscilla-
tions or weak lensing shear, or to build mock catalogs for the
next generation of galaxy surveys (Teyssier et al. 2008; Kim
et al. 2008). Moving to larger volume simulations reduces
computational cost at fixed particle number both because
resolved gravitational perturbations remain linear until later
times and because the number of simulation particles in a
typical nonlinear structure is smaller.

The opposite regime – smaller volumes with higher mass
resolution – is much more computationally demanding but
is also of great interest, especially for questions of galaxy
formation, where the relevant mass scales are substantially
smaller than for large-scale clustering. Understanding the
formation and evolution of low-mass galaxies requires ade-
quate resolution of the dark matter halos that host them,
and this, in turn, requires much smaller particle masses
than are currently feasible for Gigaparsec-scale simulations.
These objects are important for galaxy formation as a whole
because the first galaxies to form, which are low mass, pre-
pare the initial conditions from which more massive sys-
tems later form. Another topic of particular interest that
can be addressed by high-resolution simulations is the evo-
lution of substructure within dark matter halos. Such simu-
lations show that subhalos can lose considerable mass after
being accreted onto a larger halo – sometimes well over 99%
– without being completely disrupted (Hayashi et al. 2003;
Gao et al. 2004b; Kravtsov et al. 2004). This means that
as the resolution of a simulation is increased, so too is the
typical time between accretion of a subhalo onto a larger
system and its eventual tidal disruption.

Moving to substantially higher resolution in a large-
volume simulation is fraught with computational challenges,
however. Increasingly small simulation time-steps are re-
quired to accurately follow particle orbits in the dense cen-
ters of dark matter halos (Power et al. 2003), where the char-
acteristic time-scale tgrav ∝ 1/

√
Gρ is significantly shorter

than on large scales. While only a small fraction of simu-
lation particles reside in such dense regions, these particles
are the limiting factor in how quickly the simulation can be
evolved forward. The maximum resolved density contrasts at
z . 1 can be one thousand times higher than those at z ≈ 6;
as a result, almost all of the computational time needed for
such a simulation is spent at low redshift. Furthermore, the
strong clustering of matter within a few very massive clumps
can create serious problems with respect to parallelization:
it is much more difficult to split such a particle distribution
into optimal computational domains than is the case if the
matter distribution is more homogeneous.

In spite of these challenges, it is essential to have simu-
lations that probe the structure of galaxy-scale dark matter
halos with high mass resolution and over a large enough
region to include a sizable and representative sample of
objects. In this paper, we present such a calculation, the
Millennium-II Simulation (hereafter MS-II). Section 2 gives
details of the parameters which define this simulation and

1 Recent simulations with & 1010 particles within smaller vol-
umes (Lbox ≈ 100h−1 Mpc) have been used primarily for study-

ing cosmic reionization at redshifts & 6 (e.g., Iliev et al. 2006).

describes some of the post-processing we have carried out
on its output, in particular, substructure-finding and merger
tree-building. We present results on the evolution of the dark
matter power spectrum and the two-point correlation func-
tion in Section 3. In Section 4, we investigate the dark matter
halo mass function and the clustering bias of dark matter
halos. Section 5 focuses on halo formation times, including
the dependence of clustering on formation time (so-called
“assembly bias”; Gao et al. 2005). A discussion of the rela-
tion between the MS-II and the Aquarius Project (Springel
et al. 2008), as well as a comparison of the assembly histo-
ries of the halos common to the two projects, is presented in
Section 6. We summarize our results in Section 7. Through-
out this paper, all logarithms without specified bases are
natural logarithms.

2 THE MILLENNIUM-II SIMULATION

2.1 Simulation details

The Millennium-II Simulation follows 21603 particles within
a cubic simulation box of side length Lbox = 100h−1 Mpc.
This is five times smaller than Lbox for the Millennium Sim-
ulation. The volume sampled by the MS-II is thus 125 times
smaller than in the MS but the mass resolution is corre-
spondingly 125 times better: each simulation particle has
mass 6.885 × 106 h−1 M�. With this mass resolution, halos
similar to those hosting Local Group dwarf spheroidals are
resolved at our 20 particle mass limit, while halos of Milky
Way-mass galaxies have hundreds of thousands of particles
and halos of rich clusters have over fifty million particles.
The Plummer-equivalent force softening adopted for the MS-
II was 1h−1 kpc and was kept constant in comoving units;
this value corresponds to 0.06% (10%) of the virial radius
for the largest (smallest) halos at redshift zero.

The ΛCDM cosmology used for the MS-II is identical
to that of the MS and the Aquarius simulations:

Ωtot =1.0, Ωm =0.25, Ωb = 0.045, ΩΛ = 0.75,

h = 0.73, σ8 = 0.9, ns = 1 , (1)

where h is the Hubble constant at redshift zero in units of
100 km s−1 Mpc−1, σ8 is the rms amplitude of linear mass
fluctuations in 8h−1 Mpc spheres at z = 0, and ns is the
spectral index of the primordial power spectrum. Retain-
ing the cosmological parameters of the MS allows us to test
for convergence by comparing results in the regime where
objects are well-resolved in both simulations as well as to
extend the range of structures probed by combining, when
appropriate, results from the two simulations. In particu-
lar, this helps us understand the effects of resolution at low
particle number.

The initial conditions for the simulation were created at
redshift z = 127 using a “glass” initial particle load (White
1996); the initial particle positions and velocities were then
computed using the displacement field tabulated on a 40963

mesh and the Zeldovich approximation. The transfer func-
tion used for calculating the input linear power spectrum
was computed with the Boltzmann code CMBFAST (Seljak &
Zaldarriaga 1996).

The amplitudes and phases of the initial linear fluctua-
tion modes in the MS-II are identical to those in the simu-
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The Millennium-II Simulation 3

Name Lbox Np ε mp Mmin Mmax fgroup

[h−1 Mpc] [h−1 kpc] [h−1M�] [h−1 M�] [h−1M�]

Millennium-II 100 10,077,696,000 1.0 6.89× 106 1.38× 108 8.22× 1014 0.601
Millennium 500 10,077,696,000 5.0 8.61× 108 1.72× 1010 3.77× 1015 0.496

mini-MS-II 100 80,621,568 5.0 8.61× 108 1.72× 1010 8.29× 1014 0.502

Table 1. Some basic properties of the new Millennium-II Simulation are compared to those of the MS and to the lower resolution

version of MS-II (mini-MS-II). Lbox is the side length of the simulation box, Np is the total number of simulation particles used, and ε is
the Plummer-equivalent force softening of the simulation, in comoving units. mp gives the mass of each simulation particle, Mmin gives

the mass of the smallest FOF halos (corresponding to our choice of storing all halos with Np ≥ 20), and Mmax gives the maximum FOF

halo mass found in the simulation. fgroup is the fraction of all simulation particles in FOF groups of 20 or more particles at z = 0.

lation from which the Aquarius Project halos were chosen.
Specifically, all modes with a wave-vector whose maximum
component is less than 13.57hMpc−1 have amplitudes and
phases that match those of the Aquarius simulations; all
other modes were set at random to have the same under-
lying power spectrum. The Aquarius halos are thus present
in the MS-II. A discussion of the relationship between the
Aquarius Project and the MS-II is presented in Section 6.

The MS-II was run with GADGET-3, an updated version
of the GADGET code (Springel et al. 2001b; Springel 2005).
GADGET-3 is a TreePM code: long-range force calculations
are performed with a particle-mesh algorithm while short-
range forces are calculated via a hierarchical tree. While the
original MS was performed with a memory-optimized ver-
sion of GADGET-2, the extremely high level of clustering that
occurs in the MS-II results in somewhat different compu-
tational requirements; in particular, a more flexible domain
decomposition is necessary. GADGET-3 was developed specif-
ically for this situation.

The MS-II was performed on the IBM Power-6 com-
puter at the Max-Planck Computing Center in Garching,
Germany, using 2048 cores and approximately 8 TB of mem-
ory. A Fast Fourier Transform with 40963 cells was used for
the PM calculation. Particles were allowed to have individ-
ual, adaptive time-steps. The evolution of the simulation re-
quired approximately 1.4 million CPU hours and 2.77×1013

force calculations for the 22,142 simulation time-steps. The
mid-point of the simulation in terms of computational time
was z = 0.88; by contrast, evolving the simulation from
z = 127 to z = 6 took only 10% of the total CPU time.

Outputs were saved at sixty-eight epochs: sixty-five
snapshots spaced according to

log10(1 + zN ) =
N (N + 35)

4200
(0 ≤ N ≤ 64) (2)

and three high redshift outputs at z = 40, 80, and 127 . The
spacing scheme in Equation (2) is identical to that used in
the MS. We have extended the range of regularly-spaced
outputs to z ≈ 31.3, however, because the increased mass
resolution of the MS-II results in earlier-forming first struc-
tures.

For comparison purposes, we have also performed a ver-
sion of the MS-II with identical initial conditions and in the
same volume with the same outputs as the main run but
at the same mass and force resolution as the original MS
(so Np = 4323). This “mini-MS-II” simulation allows us to
test how numerical resolution affects our results. Some basic
details of all three simulations are listed in Table 1.

2.2 Halos and Subhalos

Dark matter halos were identified on-the-fly during the sim-
ulation for each snapshot using the friends-of-friends (FOF)
algorithm (Davis et al. 1985) with a linking length of b = 0.2;
all groups with at least 20 particles were retained for later
analysis. This process resulted in 1.17× 107 FOF groups at
z = 0, slightly fewer than the peak value of 1.53 × 107 at
z = 3.06. Just over 60% of the particles in the full simulation
belong to a FOF group at z = 0. A catalog with quantities
of interest for each FOF halo (e.g., position, velocity, num-
ber of particles), as well as a list of the particles composing
each halo, was saved at each snapshot.

The largest FOF group at z = 0, a cluster-mass dark
matter halo, has over 119 million particles. Figure 1 shows
images of the dark matter distribution in the MS-II on a
number of different physical scales, all centered on this halo2.
The large panel in the upper left shows a 15h−1 Mpc-thick
slice through the full simulation volume (100h−1 Mpc on
each side). The well-known cosmic web of filaments and
voids can be seen clearly. Starting in upper-right and mov-
ing clockwise, the other five panels zoom successively closer
into the halo. The bottom-right panel is 5h−1 Mpc on a side,
approximately the diameter of the halo. As has been long
known (e.g., Moore et al. 1998; Tormen et al. 1998; Ghigna
et al. 1998; Klypin et al. 1999a,b; Moore et al. 1999), FOF
halos in ΛCDM simulations are not monolithic objects but
rather are teeming with substructure; this substructure is
clearly evident even at 1/10th the radius of the halo (lower-
left panel).

During post-processing, every FOF halo was searched
for bound dark matter substructure using the SUBFIND al-
gorithm (Springel et al. 2001a). SUBFIND identifies substruc-
tures within a FOF halo by searching for overdense regions
using a local SPH density estimate, identifying substruc-
ture candidates as regions bounded by an isodensity surface
that traverses a saddle point of the density field, and testing
that these potential substructures are physically bound with
an iterative unbinding procedure. All self-bound structures
with at least 20 particles were deemed to be physical subha-
los and were stored in subhalo catalogs. Several properties
of each subhalo were also tabulated and saved, including ve-
locity dispersion, peak circular velocity Vmax and the radius
Rmax at which Vmax is attained, half-mass radius, spin, po-
sition, and velocity. The member particles of each subhalo

2 Images of individual panels and additional information related
to the MS-II are available at
http://www.mpa-garching.mpg.de/galform/millennium-II
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4 M. Boylan-Kolchin et al.

Figure 1. A sequential zoom through the Millennium-II Simulation. The large image (upper left) is a 15h−1 Mpc thick slice through
the full 100h−1 Mpc simulation box at redshift zero, centered on the most massive halo in the simulation. This FOF halo has MFOF =
8.2× 1014 h−1 M�, similar to the mass of the Coma cluster (Colless & Dunn 1996), is composed of 119.5 million particles, and contains
approximately 36,000 resolved subhalos spanning 6.7 decades in mass. Starting from the upper right and moving clockwise, subsequent
panels zoom into the cluster region and show slices that are 40, 15, 5, 2, and 0.5 h−1 Mpc on a side (with thicknesses of 10, 6, 5, 2, and

0.5 h−1 Mpc). Even at 0.5h−1 Mpc, which is approximately 1/10th the diameter of the halo, a rich variety of substructure is visible.

c© 2009 RAS, MNRAS 000, 1–16



The Millennium-II Simulation 5

Figure 2. Time evolution of the largest FOF halo at z = 0 in the Millennium-II Simulation. The halo is shown at three co-moving scales

(from left to right: 100, 40, and 15 h−1 Mpc, with thickness 15, 10, and 6 h−1 Mpc) and at four different cosmological epochs (from top
to bottom: z=6.2, 2.07, 0.99, and 0).

c© 2009 RAS, MNRAS 000, 1–16



6 M. Boylan-Kolchin et al.

were ranked according to binding energy and stored in that
order, which facilitates tracking subhalos across simulation
outputs. Note that with these procedures, we have two sep-
arate but related sets of dark matter structures: FOF halos
and subhalos.

While each subhalo has a single well-defined mass as-
signed to it – the sum of the masses of its constituent parti-
cles – multiple mass definitions for FOF halos are common
in the literature (see White 2001 for a discussion of sub-
tleties associated with assigning masses to halos). The most
straightforward definition is MFOF, the total mass of all the
member particles. Another possibility is M∆, defined as the
mass contained in a spherical region (centered on the parti-
cle in the dominant subhalo with the minimum gravitational
potential) with average density a factor ∆ larger than the
critical density of the universe. For each FOF halo, we cal-
culated M∆ for ∆ = 200, 200 Ωm(z), and ∆v(z), where the
last value is taken from the spherical top-hat collapse model
(see, e.g., Bryan & Norman 1998). We refer to spherical over-
density masses as M200 [∆ = 200], M200m [∆ = 200 Ωm(z)],
or Mv [∆ = ∆v(z)] and to the corresponding virial radii as
R200, R200m, or Rv. At high redshifts, when the matter den-
sity is nearly equal to the critical density, all three definitions
give similar masses. At lower redshifts, M200m > Mv > M200

for a given halo.

2.3 Merger Trees

Merger trees were constructed at the subhalo level by re-
quiring subhalos to have at most one descendant. For many
subhalos, this descendant can be found trivially (if it exists):
all particles in a subhalo at snapshot Sn may belong to a
single subhalo at the subsequent snapshot Sn+1, in which
case this subhalo is clearly the descendant of the subhalo
at the previous snapshot. There is also the possibility that
particles belonging to one subhalo at Sn may be distributed
over more than one subhalo at Sn+1. We still require each
subhalo to have at most one descendant for these cases, so
a subhalo’s unique descendant is identified as follows. First,
the binding energy of each particle in the subhalo at Sn

is calculated and the particles are ranked by this binding
energy. Each potential descendant subhalo – that is, each
subhalo at Sn+1 containing at least one particle j from the
subhalo at Sn – is then given a score χ that is based on the
binding energy rank R of these particles: χ =

P
j R

−2/3
j .

The subhalo at Sn+1 with the largest value of χ is defined
to be the descendant subhalo3. Note that while descendants
are unique, a given subhalo may have many progenitors.

There is one slight complication to this process. Some-
times a subhalo passing through the dense center of a larger
system will not be identified by SUBFIND, simply because
the density contrast is not high enough. To mitigate this
problem, we also search for a descendant at snapshot Sn+2.
In the vast majority of cases, however, the descendant of a
subhalo is found at Sn+1.

Once all unique descendants are found, the subhalos
are linked across all snapshots to form merger trees. This is
done by taking a subhalo at z = 0 and linking all subhalos

3 This procedure weights the most bound regions of a subhalo

most heavily when determining its descendant.

with descendant pointers to this halo, then repeating with
all of those subhalos, and so on, until no more subhalos
can be joined. This process results in links between most,
though not all, of the subhalos in the simulation: subhalos
that are never connected to any z = 0 subhalo and that
are never connected to any progenitor of any z = 0 subhalo
are not included in the trees. We save several pointers for
each tree subhalo for later use. These include pointers to
the dominant subhalo of the subhalo’s FOF group, the next
most massive subhalo in the FOF group, the progenitor that
contains the largest fraction of the subhalo’s particles, the
subhalo’s descendant, and the next most massive subhalo
that shares the same descendant4.

The merger trees for the MS-II contain approximately
590 million subhalos in total (as compared to 760 million
subhalos in the MS). While the overall data volume of the
MS-II is similar to that of the MS (≈ 25 Terabytes, domi-
nated by the raw particle data), the highly clustered nature
of the MS-II means that the trees are markedly less homo-
geneous. There are only half as many trees in total in the
MS-II as in the MS, but the largest tree is much larger, with
over 90 million subhalos (compared to 500 thousand for the
largest tree in the MS).

2.4 An example of subhalo tracking

As an example of our merger trees and subhalo tracking,
we consider the main progenitor histories of the most mas-
sive halo at z = 0 and of two of its subhalos. We use both
the MS-II and mini-MS-II in order to highlight the effects
of resolution and to probe the convergence of the subhalo
identification and merger tree building algorithms. Objects
can be matched between the simulations because the initial
conditions are identical on all scales that overlap; any differ-
ences are due to force and mass resolution and to differing
discreteness effects.

The main cluster halo is trivial to find in both simula-
tions. At z = 0, the properties agree quite well between the
two: the FOF masses are the same to within 1% (MFOF =
8.22× 1015 h−1 M� for MS-II versus 8.29× 1015 h−1 M� for
mini-MS-II) and even the position of the halo, as deter-
mined by the gravitational potential minimum, agrees to
with 0.022h−1 Mpc = 4 ε (for mini-MS-II). Figure 2 shows
the main progenitor of this halo on three co-moving scales
(from left to right: 100, 40, and 15 h−1 Mpc) and at four
redshifts (from top to bottom: z = 6.2, 2.07, 0.99, and 0.0).
Using the merger trees, we track the main progenitor of the
most massive cluster back in time for each run until there
are no further progenitors. The top two curves in Figure 3
show the mass of the central subhalo of this main progenitor
branch5 for the MS-II (black) and mini-MS-II (magenta).
The two are in excellent agreement from z = 0 to z = 9,

4 see also figure 5 in the Supplementary Information of Springel

et al. (2005)
5 Note that the while the FOF masses of the halos agree to within
1% between the MS-II and mini-MS-II, the mass of the central
subhalo in the MS-II is slightly smaller because more distinct
subhalos are identifiable. Many subhalos that are resolvable in

the MS-II but not in mini-MS-II show up as extra mass in the
central subhalo in mini-MS-II.
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Figure 3. Subhalo assembly histories in the MS-II and mini-MS-

II. The upper set of curves shows the mass in the main progenitor
branch of the most massive z = 0 FOF group for the MS-II (black)

and mini-MS-II (magenta), while the lower set of curves shows

main progenitor histories for subhalos that are accreted onto the
FOF group of the cluster at z ≈ 2 (solid lines) and z ≈ 3 (dashed

lines). The horizontal dotted line shows the mass resolution of
MS and mini-MS-II, while the vertical dotted and dot-dashed

lines show the epochs at which the smaller halos joined the FOF

group of the main cluster in the MS-II.

at which point the main branch from mini-MS-II falls be-
low 100 particles and resolution effects become relevant (the
main progenitor in the MS-II can be traced back all the way
to z ≈ 18). Clearly, the assembly of the main progenitor is
very well converged between the two runs at z . 9.

We also consider the evolution of two far less massive
subhalos within this FOF group: subhalo A (lower solid lines
in Figure 3) and subhalo B (dashed lines) are identified
in the MS-II at z = 0. They are not massive enough to
be identified at z = 0 in mini-MS-II, as subhalo A has 57
particles and subhalo B has 812 at the final snapshot (the
resolution limit of mini-MS-II corresponds to 2500 particles
from the MS-II and is marked by the horizontal dotted line).
Nevertheless, Figure 3 shows that by tracking subhalos A
and B backward (lower black curves), we find that both
were much more massive in the past: each exceeded 5 ×
1011 h−1 M� at one point in its history (92,431 particles for
A and 73,718 for B) and each was the central subhalo of its
own FOF group before falling into the main progenitor of
the cluster (this accretion happened at z ≈ 2 for subhalo A,
marked by the vertical dotted line, and at z ≈ 3 for subhalo
B, marked by the vertical dot-dashed line)6.

6 A and B are two of four subhalos in the main FOF cluster

at z = 0 that (i) have Np(z = 0) < 1000 and (ii) have over
1500 progenitor subhalos in their sub-tree. This selection picks out

halos that were massive at one point in their history but are not

at z = 0. We have also investigated the other two subhalos from
this sample and find similar convergence in the subhalo tracking
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Figure 4. The mean cumulative subhalo abundance per parent

halo in the MS-II (solid curves) and mini-MS-II (dashed curves)
in five parent halo mass bins. The curves for each simulation are

plotted down to the 20 particle resolution limit. There is a deficit

in subhalos at this limit in mini-MS-II relative to the MS-II due to
resolution. At 3-5 times the minimum resolution limit, however,

the two simulations agree very well, indicating that subhalos with
more than 100 particles are reliably resolved.

These maximum masses for A and B are easily resolv-
able in mini-MS-II, so we can hope to find the equivalent
subhalos there and compare their mass histories. It is in
general unrealistic to expect subhalos to have identical po-
sitions in runs of differing resolution: the gravitational force
is softened at different scales and there is a difference in the
‘graininess’ of the gravitational potential due to finite parti-
cle mass, both of which can cause orbital phase offsets that
accumulate over time7. Nevertheless, we are able to locate
A and B in mini-MS-II and we find them to be at almost
exactly the same positions as in the MS-II: the absolute po-
sitions for subhalo A (subhalo B) differ by only 0.015 (0.010)
h−1 Mpc at the times marked by the vertical lines, which is
only three times the force softening of the low resolution
run. Having located A and B in mini-MS-II, we then use the
merger trees to track the subhalos both forward and back-
ward in time and we compare to the results from the MS-II.

These subhalo mass histories are shown in the lower ma-
genta lines (solid for subhalo A, dashed for subhalo B) of Fig-
ure 3. Comparing the results from the MS-II and mini-MS-
II, we see that the subhalos can be tracked remarkably well
not only when they are the main FOF subhalo (to the right
of the vertical lines) but also when they are non-dominant

and mass identification between the two simulations; for clarity,

the results are not plotted in Figure 3.
7 See Springel et al. (2008) for a method to match subhalos in
simulations based on the positions of the subhalo particles in the
initial conditions.
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8 M. Boylan-Kolchin et al.

subhalos within a larger FOF group (to the left of the ver-
tical lines). This regime, where the subhalos are subjected
to strong tides that vary rapidly in time, can be extremely
difficult to capture accurately in simulations of differing res-
olution. The excellent agreement between the lower magenta
and black curves demonstrates that the subhalos have the
same dynamical histories, are assigned the same masses, and
are linked in the same way by the merger trees in the two
runs.

Figure 3 also illustrates resolution limitations. As tides
strip mass from the subhalos, they are lost from the mini-
MS-II catalog and are considered to have merged with the
dominant subhalo, while they persist as independent subha-
los to z = 0 at the significantly enhanced resolution of the
MS-II. The high resolution of the MS-II is required to study
the fates of subhalos hosting low mass galaxies within larger
structures: note that the maximum masses – approximately
6×1011 h−1 M� – of A and B are quite large, larger than the
halo masses of likely Milky Way progenitors at the redshift of
accretion into the massive halo. A and B are therefore likely
to host galaxies of stellar mass comparable to that of the
Milky Way. At mini-MS-II resolution (i.e. MS resolution) it
is not possible to follow the dynamics of these subhalos past
z ≈ 1.5 for subhalo B or z ≈ 0.5 for subhalo A, by which
redshifts their masses have dropped below 1011 h−1 M�. The
MS-II captures the later dynamical history of both subha-
los, even though subhalo A (subhalo B) retains only 0.06%
(1.1%) of its maximum mass at z = 0. Note that these fi-
nal masses are considerably smaller than the likely stellar
masses of the associated galaxies, so it remains unclear how
realistic the late-time dynamical evolution actually is in MS-
II.

We can also consider the statistical agreement between
the MS-II and mini-MS-II by comparing stacked subhalo
abundances as a function of host halo mass. Figure 4 shows
the mean number of subhalos per host halo in five host halo
mass bins for the two simulations. Resolution effects reduce
the number of subhalos at a given subhalo mass in mini-
MS-II (dashed curves) relative to the MS-II (solid curves) for
subhalos with few particles: at the minimum resolvable mass
of 20 particles in mini-MS-II, the abundance of subhalos is
reduced by approximately 30% relative to the MS-II. The
results from the two simulations are in excellent agreement
for more massive subhalos (Msub > 1011 h−1 M�), showing
that subhalos containing at least 50-100 particles are reliably
resolved.

3 STATISTICS OF THE DENSITY FIELD

3.1 Power Spectrum

At comoving position x and time t, the mass density field
can be expressed as

ρ(x, t) = ρ̄(t) [1 + δ(x, t)] . (3)

In the standard picture of structure formation in a cold dark
matter universe, the initial density fluctuation field δ(x, 0) is
taken to be a Gaussian random field. Its statistical proper-
ties are therefore fully specified by its power spectrum P (k)
or equivalently its dimensionless power spectrum ∆2(k),

∆2(k) ≡ k3

2π2
P (k) . (4)
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Figure 5. The power spectrum ∆2(k) measured from the MS-II

at redshifts 0.0 (black curves), 0.99 (magenta), 2.07 (green), and
6.20 (cyan), as well as the linear theory power spectrum at each

redshift (gray curves). Power spectra from the MS (dotted curves)

at the same redshifts are also shown for comparison. The dashed
lines correspond to the shot noise limit for the MS-II (right) and

the MS (left); the power spectra have not been corrected for shot

noise. The bottom panel shows the ratio of the power spectra.

∆2(k) measures the power per logarithmic interval in
wavenumber; ∆2(k) ≈ 1 therefore indicates that fluctua-
tions in density on scales near wavenumber k are of order
unity.

The dark matter power spectrum from the MS-II is
shown in Figure 5. We plot the results at four redshifts:
z = 0 (black curves), 0.99 (magenta), 2.07 (green), and 6.20
(cyan). On large physical scales (small wavenumber k), the
power spectrum follows the prediction from linear theory
(light gray lines). As time progresses, larger and larger phys-
ical scales become non-linear and the small-scale power ex-
ceeds the linear theory prediction. Results from the MS are
also included in Figure 5 for comparison (dotted curves).
The agreement between the two simulations is very good,
and the MS-II extends the measurement of ∆2(k) by a fac-
tor of 5 at large k. We have not performed a shot noise
correction in this figure, as it not clear that it is appropriate
to do so (see, e.g., Baugh et al. 1995; Sirko 2005). The shot
noise limit for each run is plotted as a dashed gray line.

The large dynamic range and uniform mass resolution
of the MS-II allows us to probe the dark matter power spec-
trum on a wide range of scales, including scales where ex-
isting fitting functions (Peacock & Dodds 1996; Smith et al.
2003) are uncalibrated and untested. Figure 6 compares the
power spectrum computed from the MS-II with the halo
model predictions of Smith et al. (gray lines). At redshift
2 and below, the Smith et al. model agrees with the cal-
culated power spectrum to within 10% for k < 5hMpc−1.
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Figure 6. A comparison of the MS-II power spectra at four red-

shifts to the halo model fit from Smith et al. (2003; gray curves).
The fit at z = 0 is accurate for k . 7hMpc−1 but underestimates

the power spectrum from the MS-II by 50% or more for k between

10 and 100 h Mpc−1. Redshifts one and two show similar results
but the agreement at z = 6 is poor.

At larger k, however, the model significantly underestimates
the power, with errors exceeding a factor of 2. The Smith
et al. model was not calibrated for this range, so it is not
surprising that it fails to reproduce the simulation results.
Nevertheless, this is a reminder that extrapolating fitting
functions beyond their calibrated range can lead to serious
errors. At z = 6, the Smith et al. model fails to fit the data
over the range 1 < k < 10hMpc−1, where the MS-II and
MS agree very well.

At scales of k & 10hMpc−1, baryonic physics plays an
important role in determining the real dark matter power
spectrum (e.g., Rudd et al. 2008). Although a full modeling
of baryonic effects will be necessary to get accurate predic-
tions for ∆2 at these scales, understanding the underlying
dark matter-only power spectrum still provides a critical
baseline.

3.2 Two Point Correlation Function

The spatial two-point correlation function of the density
field is given by

ξ(r) = 〈δ(x)δ(x + r)〉 , (5)

or equivalently, by a Fourier transform of the power spec-
trum:

ξ(r) =

Z
∆2(k)

sin (kr)

kr
d log k . (6)

The correlation function is a useful measure of the spatial
clustering of dark matter: it gives the excess probability of
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Figure 7. Measurements of the two point correlation function

ξ as a function of comoving separation r from the MS-II. We
show four redshifts: z = 0.0 (black curves), 0.99 (magenta), 2.07

(green), and 6.20 (cyan) and we compare with ξ(r) from the MS

(dotted curves) at the same redshifts. On large scales, the correla-
tion functions from the two simulations agree quite well. On small

scales (. 0.020h−1 Mpc in physical units), the MS-II correlation

function amplitude is larger, reflecting structures that are not re-
solved in the MS. The bottom panel focuses on these differences

by plotting the ratio of the correlation function from the MS-II

to that from the MS.

finding pairs of particles at a given separation relative to
a Poisson distribution. Figure 7 shows ξ(r) at redshifts 0,
0.99, 2.07, and 6.20, with results from the MS at the same
redshifts also plotted for comparison. (Note that the scale
on the horizontal axis of Figure 7 is in co-moving units.)

The correlation function shows a prominent feature at
r ≈ 2h−1 Mpc (for z = 0). This is the well-known transi-
tion between the ‘one-halo’ and ‘two-halo’ contributions: on
smaller scales the correlation function is dominated by dark
matter particle pairs within the same halo, while on larger
scales it is dominated by pairs in separate halos (Peacock &
Smith 2000; Seljak 2000; Ma & Fry 2000; Cooray & Sheth
2002). At no redshift is the correlation function even roughly
approximated by a single power law. This is in stark contrast
to observations of galaxy correlation functions (Zehavi et al.
2002; Hawkins et al. 2003) and the stellar mass autocorre-
lation function (Li & White 2009) at low redshift, which
show a remarkably good power-law behavior ξ ∝ r−1.8 over
10−2 . r . 10h−1 Mpc (a gray line with this relation is also
plotted in Figure 7 for comparison).

From z = 2 to z = 0, the agreement between the MS-II
and MS results is quite good from 0.03 to 2h−1 Mpc. The
MS-II result lies approximately 10% below the MS ξ(r) on
scales of 2-10 h−1 Mpc; this is the range where the contribu-
tions from pairs in separate halos become important and is
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likely an indicator of cosmic variance in the two-halo term.
On small scales, the MS-II correlation function lies above
that of the MS. This is a result of the higher force and mass
resolution of the MS-II: low-mass halos that were not re-
solvable in the MS also boost the clustering on small scales.
The MS correlation function is noticeably lower in amplitude
than ξ(r) from the MS-II at z = 6 for r . 0.2h−1 Mpc. This
coincides with the mean interparticle spacing, 0.231h−1 Mpc
comoving for the MS, and is therefore most likely due to dis-
creteness in the glass-like particle load used for the initial
conditions.

4 DARK MATTER HALOS

Understanding how dark matter overdensities grow and ul-
timately virialize into highly non-linear structures is an ex-
tremely difficult problem from a theoretical perspective. No
rigorous analytic techniques are available for use in both the
linear and non-linear regimes. The most successful model for
dark matter halo formation (Press & Schechter 1974; Bond
et al. 1991; Lacey & Cole 1993; Sheth et al. 2001; see Zent-
ner 2007 for a recent review of extended Press-Schechter
theory) relates the abundance of halos at mass M and red-
shift z to the initial power spectrum of density fluctuations
and to the well-understood regime of linear growth. It con-
siders the linear overdensity field smoothed using a spherical
top-hat filter (in real space) containing mass M and extrap-
olated using linear theory to redshift z. The variance of this
smoothed field is:

σ2(M, z) = d2(z)

Z
∆2

lin(k)W 2(k;M) d log k , (7)

where d(z) is the linear growth factor at redshift z with
normalization d(z=0)=1, ∆2

lin(k) is the linear power spec-
trum extrapolated to z = 0, and W (k;M) is the Fourier
transform of a real-space spherical top-hat filter. Each dark
matter particle is assigned to a halo of mass M at redshift
z, where M is taken to be the largest filter scale for which
the smoothed linear overdensity at the particle’s position
(extrapolated to redshift z) exceeds a threshold value δc.8

A characteristic halo mass M? can then be defined at each
redshift via σ(M?, z) = δc. In this model, the halo multiplic-
ity function f(σ), which is related to the comoving number
density of halos via

f(σ) =
M

ρ̄(z)

dn(M, z)

d log σ−1
, (8)

takes on a universal form (for perspectives on universality of
the halo mass function, see Jenkins et al. 2001; Reed et al.
2007; Lukić et al. 2007; Cohn & White 2008; Tinker et al.
2008).

4.1 Mass Function

In Figure 8 we plot the halo multiplicity function f(σ) from
the MS-II at four redshifts: z = 0.0, 0.99, 2.07, and 6.20.

8 δc = 1.68647 at all redshifts for an Einstein-de Sitter universe.

For our ΛCDM cosmology, δc varies slightly, from this standard
value at high redshift to 1.6737 at redshift zero due to a weak

dependence on Ωm(z).
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Figure 8. The halo multiplicity function f(σ) as a function of

σ(M, z)−1 at four redshifts from the MS-II: z = 0 (black squares),
0.99 (magenta), 2.07 (green), and 6.2 (cyan). We compute the

multiplicity function both with the Warren et al. Np correction

(lower data points) and without the correction (upper points,
offset by 1 dex for clarity). Also overplotted is the Warren et al.

(2006) fit to the halo multiplicity function. The MS-II multiplicity
function shows universal behavior when scaling with respect to

redshift, with deviations at the 10% level. Halo masses here are

defined to be MFOF.

Here we define halo mass as MFOF and we include Poisson
error bars for all bins containing fewer than 400 halos. Re-
sults are plotted both using the Warren et al. (2006) correc-
tion9 for sampling bias in Np (lower set of data points) and
without this correction (upper data points, offset upward
by 1 dex for clarity). We exclude halos that have Np < 20
when using the corrected Np. The simulation has fixed mass
resolution but σ(M, z) evolves significantly with time, so by
comparing multiplicity functions at several redshifts we can
probe a large range in σ.

The multiplicity function within the MS-II does seem to
have a universal form: where the data overlap, the agreement
in f(σ) is quite good. It thus appears possible to compute
the multiplicity function at any redshift simply by combin-
ing the linear growth factor d(z) with the rms amplitude
of fluctuations as a function of mass at redshift zero. This
agreement is at least as good for the uncorrected points, ex-
cluding bins containing halos with fewer than 100 particles.
(We note, however, that Warren et al. used a minimum of
400 particles per halo in deriving their fitting parameters; in
this regime, both the corrected and uncorrected points seem
to exhibit ‘universality.’) The multiplicity function does not
agree precisely with the Warren et al. fit (gray line) in ei-
ther case; however, the volume of the MS-II is not sufficiently
large to obtain statistically precise results in the high σ−1

regime due to cosmic variance.

9 This correction is Np → Ncorrected = Np (1−N−0.6
p )

c© 2009 RAS, MNRAS 000, 1–16



The Millennium-II Simulation 11

108 109 1010 1011 1012 1013 1014 1015 1016

M [h−1M�]

106

107

108

109

1010
M
d
n
/d

ln
M

[h
2
M
�

M
p

c−
3 ]

z = 6.20

z = 0.0

Millennium-II
Millennium

Figure 9. FOF mass function for the MS-II (solid blue squares)

and for the MS (open red squares) compared at redshift 6.2 and
0. The redshift zero mass functions are in excellent agreement

over the entire range where the two simulations overlap. At red-

shift 6.2, the MS-II points lie systematically above those from the
MS. The shaded gray region shows the range of mass functions

obtained from subdividing the MS into 125 cubes with volume
equal to the MS-II and computing a mass function for each sub-

volume. The MS-II points are well within the scatter, indicating

that the difference is likely due to the small volume of the MS-II.

Figure 9 compares the FOF mass function at redshifts
0 and 6.2 determined from the MS-II (solid blue squares)
with the MS mass function (open red squares). Poisson er-
ror bars are included for all bins with fewer than 400 halos
and the data points do not include the Warren et al. correc-
tion for the sampling bias in Np. At z = 0, the agreement
between the two simulations is excellent for all halo masses
(excluding bins containing halos with fewer than 100 par-
ticles). Combining the two allows for a consistent measure-
ment of the halo mass function over seven decades in halo
mass. At z = 6.2, the MS-II mass function lies systemati-
cally above that of the MS. The most likely explanation of
this difference is cosmic variance: the halos probed by ei-
ther simulation at z = 6.2 are inherently rare objects, as the
characteristic mass M? is 4.5 × 105 h−1 M� at that time10.
Furthermore, the MS-II probes only 1/125th the volume of
the MS, making statistical fluctuations much more likely.

In order to estimate the effects of cosmic variance on
these mass functions, we divided the MS into 125 disjoint
sub-cubes, each with the same volume as the MS-II, and
we measured the scatter in mass functions and in the mean
matter densities ρ̄m computed from these sub-volumes at
z = 6.2. The full range of these mass functions is plotted as
a gray shaded region in Figure 9, while the rms values at each

10 The minimum halo mass in the MS, 1010 h−1 M�, corresponds
to a peak height ν ≡ δc/σ(M, z) of 1.5 at z = 6.2, which is

equivalent to a mass of 7× 1013 h−1 M� at z = 0.
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Figure 10. Halo bias at redshift zero. We combine results from
the MS-II (filled circles) and the MS (open squares) to explore

bias from 10−4 to 10M?. As expected, the bias decreases as the

halo mass decreases, reaching b(M?) ≈ 1. At very low masses
(Mv/M? . 2×10−2 or ν . 0.55), the bias reaches an asymptotic

value of 0.65.

mass are shown as black error bars on the MS data points.
The MS-II points typically lie slightly outside of the rms
region but well within the full distribution of mass functions,
indicating that they are fully consistent with the MS when
the volume of the MS-II is taken into account. We emphasize
that the variation in the mass functions between the 125
MS sub-cubes is not due to differences in the mean matter
density, as the rms scatter in ρ̄m is only 2% while the rms
scatter in the mass function exceeds 8% (the full range of
the scatter exceeds ±20%) for all of the data points.

4.2 Bias

Dark matter halos do not cluster in the same way as the
underlying mass density field but rather exhibit a bias rela-
tive to the dark matter. Mo & White (1996), building on the
earlier work of Efstathiou et al. (1988) and Cole & Kaiser
(1989), showed that the two-point correlation function of
halos should be simply related to that of the mass density
field. According to the excursion set model, on large scales
one should find that

ξhh(M, z; r) = b2(M, z) ξmm(z; r) , (9)

where the bias factor b is given by

b(M, z) = 1 + δ−1
c (ν2 − 1) . (10)

Massive halos (M & M?) are therefore predicted to cluster
more strongly than the underlying mass density field while
low-mass halos should cluster less strongly. This basic pic-
ture has been extensively validated, with newer models mak-
ing improved quantitative predictions for bias (Jing 1998;
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Sheth & Tormen 1999; Sheth et al. 2001; Seljak & Warren
2004).

The bias of low-mass halos (M � M?) remains an un-
resolved issue. In the Mo & White model, b→ 1−δ−1

c ≈ 0.4
for M �M?. Sheth & Tormen (1999) and Seljak & Warren
(2004), on the other hand, find b ≈ 0.7 in this same regime.
The mass resolution of the MS-II allows us to study bias
for M � M?: halos with 200 particles, whose number den-
sities and spatial distributions are certainly well-resolved,
correspond to 2× 10−4 M? at z = 0.

Halo bias at redshift zero is shown in Figure 10 for
masses down to 2 × 10−4 M?. The bias for Mv � M? is
constant at b ≈ 0.65 over approximately two decades in
mass, from Mv/M? = 2×10−4 to 2×10−2. In terms of peak
height ν (shown on the upper horizontal axis of Figure 10),
the bias is constant for ν < 0.55. Above 0.1M?, the bias
rises rapidly with mass, reaching b = 1 at M slightly greater
than M? and b ≈ 1.5 for 10M?.

Figure 10 also shows the predictions for b(M) from three
fitting formulae: the original Mo & White prediction (solid
curve), the Sheth & Tormen model (dashed), and the fit
from Seljak & Warren (their eq. 5; dotted). The Seljak &
Warren fit clearly agrees best with the data over the range
plotted, though it slightly underpredicts the bias atM > M?

and slightly overpredicts it at M < M?. These differences
are only at the 5% level, however.

5 HALO FORMATION

5.1 Formation Times

The hierarchical nature of ΛCDM models means that the
typical formation redshift zf of halos with mass M is a de-
creasing function of M . The form of the relation between zf

and M and its intrinsic scatter are important for a number
of applications, such as understanding how well galaxy prop-
erties can be predicted by halo mass alone, and how well a
halo’s history can be predicted from its present-day proper-
ties. Such characterizations are complicated by the fact that
the most useful definition of formation time depends on the
question one is asking11. For example, the innermost region
of a halo – where the galaxy resides – typically assembles
much earlier than the outer regions which contain most of
the mass (Zhao et al. 2003b; Gao et al. 2004a).

One of the simplest definitions of formation redshift is
the time at which a halo’s main progenitor reaches a fixed
fraction of its present-day mass. We use the merger trees
described in Section 2.3 to trace each FOF halo back in
time and define its formation redshift zf as the first redshift
at which one of the halo’s progenitors reached half of the
halo’s redshift zero mass (we interpolate between snapshot
redshifts to obtain zf ). This ‘half-mass’ formation time is the
most common choice of formation time in the literature. We
use Mv as the definition of halo and progenitor mass when
estimating such formation times (we have checked that the
following results are insensitive to halo mass definition).

In Figure 11, we show the mean relation between halo
mass Mv and formation time zf . In order to determine
what mass is required for converged results, we compute

11 See, e.g., Li et al. 2008 for several possible definitions of zf
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Figure 11. Mean half-mass formation redshift as a function of

mass for halos from the MS-II (filled blue squares) and the MS
(open red squares). We also show the relation for the 16% earliest

and latest forming halos (dashed lines) and the best-fitting linear

relation between log(1 + zf ) and logMv (black dotted line; see
Equation (11) for the fitting parameters). This fit deviates from

the mean relation by less than 2% over the entire range of masses
plotted.

zf from the MS and compare with the MS-II. We find that
the two simulations are in excellent agreement above a red-
shift zero mass of 1011 h−1 M�, corresponding to approx-
imately 150 particles in the MS. This is the convergence
limit we adopt, so we consider all halos with masses greater
than 109 h−1 M� in the MS-II. We only include halos that
SUBFIND determines to be bound, although in practice, this
restriction makes almost no difference as the fraction of
subhalos with Np > 100 that are unbound is very small.
Over the entire range where halo formation can be resolved
(9 ≤ log10(Mv/h

−1 M�) ≤ 14.7), a simple linear fit in
log(1 + zf ) versus log(Mv) provides an excellent description
of the data:

1 + zf = 2.89

„
Mv

1010 h−1 M�

«−0.0563

. (11)

The maximum deviation between the binned data and Equa-
tion (11) is 1.8% over the entire region where: (1) there are
at least 100 halos per bin; and (2) halos have at least 125
particles. The 1-σ scatter in the relation, defined as the log-
arithmic difference between the 84th and 16th percentiles of
the data (which are shown in dashed lines in Figure 11), de-
creases gradually from σlog 1+z = 0.6 to 0.4 as Mv increases
from 109 to 5× 1014 h−1 M�.

Neto et al. (2007) previously studied the relation be-
tween median zf and halo mass for a set of relaxed halos
from the MS. Their fit is similar to ours although the pa-
rameters differ slightly (their exponent is -0.046 and their
normalization is approximately 2.74 using our form of the
fitting formula) due presumably to the selection criteria used
for the halos they studied, their use of M200 rather than
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Figure 12. Assembly bias from the MS-II (open symbols) and

the MS (filled symbols). We plot the bias of the oldest 20% of
halos (red points) and the youngest 20% of halos (blue points), as

well as the bias of the full halo sample (black points), as a function

of halo mass. The oldest halos cluster much more strongly than
the youngest, a ratio of 2.85 in the bias (which is over a factor

of 8 in correlation amplitude). At low masses, the bias for each
subset reaches an asymptotic value (≈ 0.4 for the young halos,

≈ 1.15 for the old halos).

Mv, and the difference between the median and the mean
relation. McBride et al. (2009) have also recently computed
the formation times of massive halos from the MS and fit-
ted to the relation zf = a log10(M/1012 M�) + b. This gives
very similar results to ours over the range of the data they
used (M & 1012 h−1 M�), with differences at the 5% level
after an empirical normalization correction due to a differ-
ent mass definition. Their formula underestimates zf from
the MS-II at lower masses: at 109 h−1 M�, the difference is
approximately 20%.

5.2 Clustering and Formation Times

In the simple version of the excursion set model of struc-
ture formation, which is based on top-hat k-space filtering,
halo formation is governed by Markov random walks of the
(linearly-extrapolated) mass density field δ(x;M). A direct
consequence of this aspect of excursion set theory is the pre-
diction that properties such as the clustering of halos depend
on halo mass alone and not on halo assembly history. Recent
N -body simulations have produced results that contradict
this prediction, however. Gao et al. (2005) used the MS to
show that clustering depends strongly on formation time at
masses M . M?: they found that early-forming halos clus-
ter much more strongly than late-forming halos, indicating
an “assembly bias”. Subsequent work confirmed these find-
ings and extended the results to the M & M? regime and to
halo properties other than formation time, including concen-
tration, substructure content, and spin (e.g., Harker et al.

2006; Wechsler et al. 2006; Wetzel et al. 2007; Jing et al.
2007; Bett et al. 2007; Gao & White 2007; Dalal et al. 2008)

With the MS-II, we are able to investigate assembly
bias at much lower masses than was previously possible:
M ≈ 10−4 M? or equivalently ν ≈ 0.32. We split each mass
bin into the oldest and youngest 20% of halos and com-
pute the bias factor b(M) in the same manner described in
Section 4.2. Our results for the dependence of clustering on
formation time are presented in Figure 12. We plot the bias
of halos as a function of mass at redshift zero for the entire
sample of halos (black symbols) as well as for the oldest 20%
(red symbols) and youngest 20% (blue symbols) of halos at
each mass. We show results for the MS-II (filled circles) for
M . 2 × 1011 h−1 M� and for the MS (open squares) at
higher masses in order to maximize statistical significance.

Over virtually the full range of masses probed by the
MS-II, the biases of the oldest and youngest halos are ap-
proximately constant. The bias of young halos is substan-
tially lower than that of old halos, however, in agreement
with previous work. The oldest 20% of halos at a given mass
have a slight positive bias with respect to the dark matter
distribution. The youngest 20% have a bias that is approx-
imately b = 0.4; interestingly, and perhaps coincidentally,
this is the value of 1 − δ−1

c ≈ 0.4 predicted in the ν � 1
regime by Press-Schechter and excursion set models (Cole &
Kaiser 1989; Mo & White 1996; see also Dalal et al. 2008).

Li et al. (2008) have suggested that the magnitude of
assembly bias depends on the adopted definition of for-
mation time. To investigate whether our definition of for-
mation redshift, M(zf ) = 1

2
M(z = 0), influences our re-

sults, we have repeated our analysis with a new definition:
M(zf ) = 1

4
M(z = 0). We have also tested whether comput-

ing the half-mass formation time relative to MFOF rather
than to Mv affects our results. Neither of these changes has
any detectable influence, so the results we obtain using the
standard half-mass formation time appear robust.

6 ‘MILKY WAY’ HALOS IN MILLENNIUM-II

The Milky Way can provide us with a unique variety of in-
sights into galaxy formation, so it is extremely interesting
to study the formation of Milky Way-mass halos for com-
parison with available and forthcoming observations of the
detailed structure of our Galaxy. Cosmological simulations
of representative volumes of the universe can provide large,
statistically complete samples of Milky Way-mass halos, but
they cannot resolve the full range of observable structures
within the Milky Way. Even at the mass resolution of the
MS-II, for example, the halos of dwarf spheroidal galaxies
are just barely resolvable. An alternative tack is to focus all
of one’s computational resources on the formation of a single
galaxy-mass halo, thus allowing substantially enhanced mass
resolution (Diemand et al. 2007, 2008; Springel et al. 2008;
Stadel et al. 2008). With this method, one sacrifices statis-
tical understanding of a representative sample for detailed
analysis of one or a few objects. Here we discuss how these
two approaches may be combined to extract maximum in-
formation about the formation and evolution of galaxy-scale
dark matter halos.

c© 2009 RAS, MNRAS 000, 1–16
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Halo M200m Vmax Rmax Vmax, sub

[h−1M�] [km/s] [h−1 kpc] [km/s]

Aq-A 1.842× 1012 208.49 20.54 60.42
MS-II-A 1.826× 1012 210.20 21.87 61.68

Aq-B 7.629× 1011 157.68 29.31 48.31
MS-II-B 7.470× 1011 156.21 27.98 45.87

Aq-C 1.641× 1012 222.40 23.70 87.07
MS-II-C 1.682× 1012 222.03 23.88 89.70

Aq-D 1.839× 1012 203.20 39.48 90.63
MS-II-D 1.944× 1012 204.39 42.28 91.43

Aq-E 1.130× 1012 179.00 40.52 40.87
MS-II-E 1.187× 1012 184.15 43.00 45.36

Aq-F 1.107× 1012 169.08 31.15 78.33
MS-II-F 1.152× 1012 167.18 34.47 81.53

Table 2. Comparison of Aquarius level 2 halos (Aq-X) and
Aquarius halos in the MS-II (MS-II-X). M200m is the mass of

the dark matter halo, Vmax is the maximum value of the circular

velocity curve, Rmax is the radius at which the circular velocity
curve attains its maximum, and Vmax, sub is the circular velocity

curve maximum for the largest subhalo in each halo; all values

are quoted at z = 0.

6.1 The Aquarius Project and Millennium-II

The Aquarius project (Springel et al. 2008) is a suite of cos-
mological simulations of the formation of Milky Way-mass
dark matter halos. Six halos (denoted ‘Aq-A’ through ‘Aq-
F’) were simulated at up to five different levels of mass res-
olution (levels 5 through 1). The highest resolution simu-
lation, Aq-A-1, used a particle mass of 1.25 × 103 h−1 M�,
resulting in approximately 1.5 billion particles within R200m

at z = 0. The halos resimulated in the Aquarius project were
selected from the cosmological simulation ‘hMS’ (Gao et al.
2008), which followed 9003 particles in a 100h−1 Mpc box.
Both the cosmological parameters of hMS and the ampli-
tudes and phases of modes used to generate its initial con-
ditions are identical to those in the MS-II. As a result, all
the structures present in hMS are also present in the MS-
II, but with a mass resolution that is a factor of 13.8 times
better. Since the Aquarius halos were selected from hMS,
they are also present in the MS-II and we can compare their
properties in the MS-II and in the much higher resolution
Aquarius resimulations.

6.2 Comparing Aquarius and Millennium-II halos

As a first test, we compare some basic properties of the
Aquarius halos in the Aquarius level 2 simulations – where
the particle mass is (0.5−1)×104 h−1 M� – and in the MS-
II, where the mass resolution is approximately 1000 times
lower. Table 2 contains such a comparison, with halos from
the Aquarius simulations in the upper of each set of two rows
(labeled ‘Aq-X’) and halos from the MS-II in the lower of
each set of rows (labeled ‘MS-II-X’). The first data column
compares M200m values for the halos, showing that their
masses agree very well: each M200m measured from the MS-
II agrees with the corresponding Aquarius resimulation to
better than 6% and, for 3 of the 6, to better than 3%. The

1 3 6 10
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Figure 13. Mass accretion histories for the six Aquarius level

2 resolution halos (dashed lines) and for the corresponding MS-
II halos (dotted lines). Even though the mass resolution of the

Aquarius simulations is one thousand times better than that of

the MS-II, the individual mass accretion histories of the Aquarius
halos are captured quite well in the MS-II.

measured Vmax values all agree within 3% and, for 5 of the
6, to better than 1.5%. The radius at which the circular ve-
locity curve peaks, Rmax, typically agrees within 5%, with a
maximum deviation of 10%. Table 2 also lists the maximum
circular velocity of the largest subhalo in each simulation.
In all cases this is the same subhalo in the MS-II and the
Aquarius resimulation, and the circular velocities typically
agree to within a few percent.

A more stringent test is to consider the mass accretion
history12 for each Aquarius halo and to compare results from
the Aquarius resimulations and from the MS-II. For the MS-
II Aquarius halos, we use the merger trees described in Sec-
tion 2.3 to determine the main progenitor of each halo at
each redshift, and we define the mass accretion history of a
halo as the mass of its main progenitor M(z) at each red-
shift z. Merger trees have also been built for the halos in
the Aquarius resimulations, and we use these in an identical
manner to define the corresponding mass accretion histories.

The results are compared in Figure 13, where we plot
mass accretion histories over the redshift range 0 ≤ z ≤ 9.
We use dashed lines for the Aquarius resimulations and dot-
ted lines for the MS-II. The assembly histories of all the
halos are reproduced remarkably well at MS-II resolution.
This is a highly non-trivial test, as the mass resolution of
the Aquarius level 2 simulations is one thousand times bet-
ter than that of the MS-II: at z = 0 the Aquarius level 2
halos have on the order of 1.80× 108 particles within R200m

12 for a discussion of the statistical properties of mass accretion
histories, see Lacey & Cole (1993); Wechsler et al. (2002); van den

Bosch (2002); Zhao et al. (2003b,a, 2008); McBride et al. (2009).
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while their MS-II counterparts have approximately 1.80×105

particles within this radius.
This agreement is a testament to the integration accu-

racy of the GADGET-3 code and shows that the properties
of Milky Way-mass halos and their most massive subhalos
are well converged in the MS-II. As a result, the MS-II will
be very useful for understanding the statistical properties of
Milky Way-mass halos since it contains over six thousand
halos with 11.5 < log10(Mv/h

−1 M�) < 12.5. These halos
can be used for a detailed statistical investigation of the
growth, internal structure and subhalo populations of halos
similar in mass to that of our own Galaxy (Boylan-Kolchin
2009, in preparation). This will test the extent to which the
six Aquarius halos are representative of the full halo popu-
lation at this mass, thereby allowing results obtained from
the ultra-high resolution Aquarius resimulations to be inter-
preted in their full cosmological context.

7 DISCUSSION AND SUMMARY

Understanding galaxy formation in a ΛCDM universe re-
quires knowledge of physical processes over a wide range of
scales, from sub-galactic to cosmological. Simulations with
volumes large enough to probe the statistics of large-scale
structure and resolution high enough to resolve subhalo dy-
namics within galaxy halos are thus critical for this quest.
We have presented initial results from a new simulation, the
Millennium-II Simulation, that can resolve all halos down to
mass scales comparable of the halos of Local Group dwarf
spheroidal galaxies.

Furthermore, the Millennium-II Simulation is closely
connected to two other very large computational endeav-
ors, the Millennium Simulation and the Aquarius Project.
Throughout this paper we have shown that MS-II results
agree extremely well with those from the MS, so we can
combine the two simulations to cover an even broader range
of physical scales. We have also shown that the properties of
the resimulated Aquarius halos agree precisely and in con-
siderable detail with those of their counterparts in the MS-II,
even though the resimulations have 1000 times better mass
resolution. This gives us confidence not only that the assem-
bly histories of Milky Way-mass halos are well resolved in
the MS-II, but also that the properties of their more massive
subhalos are converged. As a result, we will be able to use
the MS-II to make statistical statements about an ensemble
of galaxy-scale halos where the Aquarius Project provides
much higher resolution results for a limited but well under-
stood subset.

There is much to do with the MS-II, both from a dark
matter perspective and from the point of view of galaxy
formation. There are four cluster-size halos in the MS-II
with over 60 million particles at z = 0; investigating den-
sity profiles and substructure abundances for these objects,
and comparing with state-of-the-art galaxy-scale simula-
tions such as Aquarius, will shed light on whether dark mat-
ter structures are self-similar as a function of scale. Subhalo
survival times and merger rates, which are crucial ingredi-
ents in galaxy formation models, can be checked in untested
regimes. Furthermore, directly resolving much smaller halos
means that semi-analytic models initially developed for the
Millennium Simulation (Springel et al. 2005; Croton et al.

2006; Bower et al. 2006; De Lucia & Blaizot 2007) can now
be updated and extended to much lower galaxy masses (Guo
et al. 2009, in preparation). With this paper, we publicly
release the FOF halo and subhalo catalogs and the sub-
halo merger trees in a searchable database structured in the
same way as has already been done for the Millennium Sim-
ulation13 (Lemson & The Virgo Consortium 2006). As work
progresses, we plan to make MS-II semi-analytic galaxy cat-
alogs available as well. This will allow others to use the MS-II
data for their own research purposes.
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