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ABSTRACT

Clusters, filaments, sheets and voids are the building blocks of the cosmic web. Forming dark matter
halos respond to these different large-scale environments, and this in turn affects the properties of
galaxies hosted by the halos. It is therefore important to understand the systematic correlations of
halo properties with the morphology of the cosmic web, as this informs both about galaxy formation
physics and possible systematics of weak lensing studies. In this study, we present and compare two
distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established
than the identification of dark matter halos or voids. One method is based on the smoothed dark
matter density field, the other uses the halo distributions directly. We apply both techniques to one
high resolution N-body simulation and reconstruct the filamentary/sheet like network of the dark
matter density field. We focus on investigating the properties of the dark matter halos inside these
structures, in particular on the directions of their spins and the orientation of their shapes with
respect to the directions of the filaments and sheets. We find that both the spin and the major axes of
filament-halos with masses . 1013 h−1M⊙ are preferentially aligned with the direction of the filaments.
The spins and major axes of halos in sheets tend to lie parallel to the sheets. There is an opposite
mass dependence of the alignment strengths for the spin (negative) and major (positive) axes, i.e.
with increasing halo mass the major axis tends to be more strongly aligned with the direction of the
filament whereas the alignment between halo spin and filament becomes weaker with increasing halo
mass. The alignment strengths are stronger for halos in the neighborhood of massive cluster halos.
Overall, the two algorithms for filament/sheet identification investigated here agree well with each
other. The method based on halos alone can be easily adapted for use with observational data sets.
Subject headings: methods: data analysis - dark matter - large-scale structure of universe - galaxies:

halos

1. INTRODUCTION

Inspection of the galaxy distribution in redshift surveys
(e.g. in the Sloan Digital Sky Survey, York et al. 2000) or
of the distribution of dark matter particles in numerical
simulations (e.g. Millennium Simulations, Springel et al.
2005) reveals a striking ‘cosmic web’ (Bond et al. 1996),
composed of clusters, filaments, sheets and voids as pri-
mary building blocks. In the matter or galaxy distribu-
tions, one can clearly see large volumes of ‘empty’ re-
gions (voids) which are surrounded by thin denser sheet-
like structures (sheets). At even higher density contrast
a network of filaments dominates the matter or galaxy
distributions. Finally, the massive clumps at the inter-
sections of filaments typically correspond to rich galaxy
groups and clusters. The human eye is readily capable
of identifying these morphological features of the cosmic
large-scale structure, but for quantitative analysis objec-
tive techniques for structure analysis are needed.

The most commonly employed statistical measure for
the distribution of matter and galaxies are low-order
clustering statistics (e.g., the two-point correlation func-
tion and its Fourier transform, the power spectrum; Pee-

1 Key Laboratory for Research in Galaxies and Cosmol-
ogy, Shanghai Astronomical Observatory; the Partner Group
of MPA; Nandan Road 80, Shanghai 200030, China; E-mail:
yczhang@shao.ac.cn

2 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-
Strasse 1, 85748 Garching, Germany

3 Key Laboratory for Research in Galaxies and Cosmology, Cen-
ter for Astrophysics, University of Science and Technology of
China, 230026, P. R. China

bles 1980). Apart from these standard statistical tools,
one may also use other statistics, for example based on
higher-order correlation functions, or measures for the
abundance of halos as a function of mass or of voids of
different sizes, to characterize cosmic structure.

Since halos and voids are approximately spherically
symmetric structures and relatively easy to model, sev-
eral very successful methods to extract these structures
from simulations and observations have been developed.
In N-body simulations, halos are most commonly found
as groups of particles by the friends-of-friends (FOF) al-
gorithm with a linking length set equal to some fraction
(b ≈ 0.2) of the mean particle separation (e.g. Davis
et al. 1985). Halos detected in this way show a mean
enclosed density of about 180 times the average mass
density of the universe. Observationally, galaxy groups
can also be identified using the FOF method, but with
two linking lengths in order to take redshift distortions
into account (e.g., Eke et al. 2004). One may also use
models for the density profile and velocity dispersion of
dark matter halos to help extracting galaxy groups (e.g.,
Yang et al. 2005). There are numerous successful void
finders, many of them have been compared in detail in
a recent study by Colberg et al. (2009; and references
therein).

Compared to clusters and voids, filaments and sheets
are more complicated geometric structures. Both of them
are genuine 3-dimensional objects associated with a dis-
tinct orientation in space. Their density contrast is often
quite close to the mean cosmic density, making their iden-
tification difficult and sometimes ambiguous. We also
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note that from a dynamical point of view there exists
a sequence of transformations that can cast one of these
structures into another, which blurs any clear distinction
between these different morphological structures. Matter
tends to flow out of the voids, accretes onto the sheets,
collapses to the filaments, and finally accumulates onto
the large clumps at the intersection of the filaments.
These processes are expected to impact the properties
of the halos and the galaxies formed therein, leading to
correlation between halo properties and large-scale envi-
ronment. In a recent study, using high-resolution N-body
simulations, Gao et al. (2005) found that the halo clus-
tering strength not only depends on the masses of the
halos but also on their formation times (see also Sheth &
Tormen 2004; Wang et al. 2007). In addition to the age,
other halo properties such as concentration and spin have
also been found to correlate with the local environment
(Avila-Reese et al. 2005; Wechsler et al. 2005; Bett et
al. 2007; Gao & White 2007; Macciò et al. 2007).

Based on semi-analytical galaxy evolution models,
Croton et al. (2007) showed that besides the properties of
the host halo the large scale environment has to be taken
into account to fully characterize the galaxies at halo cen-
ters (see also Reed et al. 2007). Observations indicate a
similar dependence of galaxy properties on environment.
Using a large galaxy redshift catalog, Yang et al. (2006)
showed that groups (of similar masses) with red central
galaxies are more strongly clustered than those with blue
central galaxies (see also Wang et al. 2008). Using the
same data set, Wang et al. (2009b) detected numerous
red dwarf galaxies which were isolated, i.e. which were
not belonging to any neighboring larger association or
group of galaxies. The origin of those red isolated dwarfs
still remains unknown (see also Cooper et al. 2007). To
shed some more light on the impact of large-scale struc-
ture on halo/galaxy properties we here adopt the follow-
ing strategy. We first identify and classify the large-scale
environment, then we determine whether a given halo
resides in a filament or sheet, and finally we try to find
correlations between the halo properties and their large-
scale environment.

Up to the present day, a number of different approaches
have been suggested to find filaments (and/or sheets)
in simulations as well as in observations. Among these
methods two different classes of techniques can be dis-
tinguished: the first uses discrete distributions of objects
(e.g., galaxies) and the second is based on continuous
density fields. In the following, we briefly summarize the
basic ideas of these two approaches (see also Aragón-
Calvo et al. 2007a; and references therein).

A discrete point set allows the use of a minimum span-
ning tree technique to link the points (Barrow et al. 1985;
Colberg 2007). However, cosmic structures identified by
this method often show web-like features and it is dif-
ficult to define sizes and directions of the extracted fil-
aments. Finding filaments joining neighboring clusters
has also been carried out. Pimbblet (2005) searched
the 2dF Galaxy Redshift Survey catalog for filamentary
structures using the orientations of inter-cluster galax-
ies. A related approach based on the inter-cluster dark
matter distribution derived from N-body simulations is
discussed in Colberg et al. (2005). More mathematically,
Stoica et al. (2005; 2007) used a so called Candy model
to locate the filaments in galaxy surveys. All these ap-

proaches have the advantage that they directly deal with
the original point sources and do not require the cre-
ation of continuous density fields. However, in general
these techniques incorporate a large number of free pa-
rameters and the specific assignment of these parameters
is, to a certain degree, arbitrary.

The second type of techniques usually require the cre-
ation of a continuous density field. These approaches
include the full characterization of the topology of the
matter distribution in terms of Minkowski functionals
(Mecke et al. 1994; Schmalzing et al. 1999), the genus
of the density field (Gott et al. 1986; Hoyle & Voge-
ley 2002) and the shape-finder statistics in three (Sahni,
Sathyaprakash & Shandarin 1998) and two dimensions
(Pandey & Bharadwaj 2008). A more rigorous clas-
sification of filaments and other structural elements is
obtained with the skeleton analysis of density fields by
Novikov et al. (2006) and Sousbie et al. (2008), where
the maxima and saddle points in the density field are
specified using the Hessian matrix (i.e. the second par-
tial derivative) of the density field. Recently, Hahn et
al. (2007a; b) have quantified the cosmic web using the
Hessian matrix of the potential field where according to
the number of positive eigenvalues a region was classified
as belonging either to a cluster, filament, sheet or void.
The only free parameter in this analysis is the smoothing
length of the density field. In a similar spirit, Aragón-
Calvo et al. (2007a; b) computed the Hessian matrix
based on the density field constructed with a Delaunay
Triangulation Field Estimator (Schaap & van de Wey-
gaert 2000).

The methods in this second category are mathemat-
ically more rigorous than the techniques based on dis-
crete point sets. Only a few (or even no) free parame-
ters are needed, and all halos (galaxies) can be classified
since essentially every volume element and hence the ob-
jects within it can be classified. However, a disadvantage
lies in the necessity for constructing a density (potential)
field, and in the difficulties in assigning points, halos, or
galaxies, to the appropriate volume element.

In this study, we compare two types of filament find-
ing algorithms, one using the overall matter distribution
and one just the halos obtained from a high-resolution
cosmological N-body simulation. Method I employs the
Hessian matrix of the mass density field, where halos
are differentiated into four types using a combination of
criteria from Hahn et al. (2007a) and Aragón-Calvo et
al. (2007a). Method II uses the halo distribution di-
rectly. Our development of this approach has been in-
spired by the Candy model approach suggested by Sto-
ica et al. (2005) and the connecting cluster technique de-
scribed in Colberg et al. (2005). Based on either method
we extract filaments and sheets from our high resolution
N-body simulation. We then correlate the characteristics
of the cosmic structures, like sizes and orientations, with
the spins and orientations of dark matter halos.

This paper is organized as follows. In Section 2, we
give a brief description of our N-body simulation and the
halo catalog we used. We present a detailed description
of the filament-finding methods based on either the dark
matter density field or the distribution of dark matter
halos, in Section 3. In Section 4, we analyze various
alignment signal measurements for halos with respect to
the filaments (and sheets). Finally, we summarize our
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results in Section 5.

2. N-BODY SIMULATIONS AND THE HALO
CATALOG

2.1. Simulation parameters and halo definition

In this study, we make use of a N-body simulation car-
ried out at the Shanghai Supercomputer Center using the
massively parallel GADGET2 code (Springel et al. 2001;
2005). The simulation evolved 10243 dark matter parti-
cles in a periodic box of 100 h−1Mpc on a side from red-
shift z = 120 to the present epoch. The particle mass and
softening length are 6.927×107 h−1M⊙ and 2.25 h−1kpc,
respectively. The cosmological parameters used in the
simulation are Ωm = Ωdm + Ωb = 0.25, Ωb = 0.045,
h = 0.73, ΩΛ = 0.75, n = 1, and σ8 = 0.9. In the
upper-left panel of Fig. 1, we show the distribution of
dark matter particles in a slice of thickness 4 h−1Mpc at
redshift z = 0. For clarity, only 0.15% of the dark matter
particles are plotted. This representation clearly shows
the well-known features of the non-linear cosmic density
field, in particular the prominent filamentary structures
that coined the term ‘cosmic web’ are nicely seen.

Dark matter haloes were identified from the simula-
tion at redshift z = 0 using the standard friends-of-
friends (FOF) algorithm (Davis et al. 1985) with a link-
ing length of 0.2 times the mean interparticle separa-
tion. Haloes obtained with this linking length have a
mean over-density of ∼ 180 (Porciani, Dekel & Hoffman
2002). As an illustration, we show in the upper-right,
lower-left and lower-right panels of Fig. 1 the halo dis-
tributions for a sequence of decreasing lower mass limits:
≥ 1012.5, ≥ 1011.5 and ≥ 1010.5 h−1M⊙, as indicated in
the panels. The sizes of the dots are scaled to be propor-
tional to the virial radius of the dark matter halos. These
plots indicate that the distribution of halos with masses
≥ 1012.5 h−1M⊙ can only resolve the high density regions
at the nodes of the cosmic web, while halos with masses
≥ 1011.5 h−1M⊙ trace the filamentary structures quite
well. Including smaller halos down to ≥ 1010.5 h−1M⊙

can reveal subtle features even in void-like regions. As
discussed in Yang et al. (2009; Fig. 1), the SDSS ob-
servations can completely resolve the dark matter halos
with a mass limit of ≥ 1012.5 h−1M⊙ at redshift z ∼ 0.12,
and of ≥ 1011.5 h−1M⊙ at redshift z ∼ 0.05. Thus the
halo-based probe for filamentary structures investigated
in this paper can be reliably applied to the SDSS obser-
vations at low redshifts.

The main purpose of this paper is to probe the orienta-
tions and spins of dark matter halos with respect to the
filaments and sheets within the cosmic web. However, a
reliable measurement of these halo properties, in partic-
ular of the spin, requires high mass resolution. Therefore
we only retain halos with at least 500 particles for further
analysis, resulting in a catalog with 73068 halos.

2.2. Measuring the spin and orientation of the halos

The angular momentum J of a FOF halo containing
N particles is

J = m

N
∑

i=1

ri × vi, (1)

where m is the particle’s mass, ri is the position vector
of the i-th particle relative to the center of mass, and vi

is its velocity relative to the bulk velocity of the halo.
In order to determine the shape of a FOF halo, we use

the moment of inertia tensor4 I with

Iαβ = m
N

∑

i=1

xi,αxi,β , (2)

where xi,α denotes the component α of the position vec-
tor of particle i with respect to the center of mass. The
axis ratios a, b and c (a ≥ b ≥ c) are proportional to the
square roots of the corresponding eigenvalues, λ1, λ2 and
λ3, and the orientation of the halo is determined by the
corresponding eigenvectors.

3. FINDING FILAMENTS IN THE N-BODY
SIMULATION

In this section, we investigate two distinct methods to
find the filaments in the simulation: one using the mass
density field and the other using the distribution of dark
matter halos.

3.1. Density field Hessian matrix method

The first method we examine, hereafter referred to as
Method I, is based on the local Hessian matrix H of the
smoothed mass density field, defined as

Hαβ =
∂2ρs(x)

∂xα∂xβ
, (3)

where ρs(x) is the smoothed density field. α and β de-
note the Hessian matrix indices with values of 1, 2 or
3. Thus, at the location x of each halo we can quantify
the local “shape” of the density field by calculating the
eigenvalues of the Hessian matrix (e.g., Aragón-Calvo et
al. 2007a). The number of positive eigenvalues of Hαβ

can be used to classify the possible environments in which
a halo can reside into four regions, according to:

• cluster: a region with no positive eigenvalue;

• filament: a region with one positive and two neg-
ative eigenvalues;

• sheet: a region with two positive and one negative
eigenvalues;

• void: a region with three positive eigenvalues.

The direction of a filament can be identified with the
eigenvector corresponding to the single positive eigen-
value of the Hessian matrix in a filament region. We
note that this method has only one free parameter,
namely the smoothing scale Rs of the Gaussian filter em-
ployed in constructing the density field. Different from
the Multi-scale Morphology Filter (MMF) method dis-
cussed in Aragón-Calvo et al. (2007a), we follow Hahn
et al. (2007a) and adopt a fixed smoothing length of
Rs = 2.1 h−1Mpc.

Hahn et al. (2007a) pointed out that the relative vol-
ume fractions of the four categories depend on the choice

4 Actually, Eq. (2) represents the second moment of the mass
tensor. The correct definition of the moment-of-inertia tensor de-
viates from this expression (see e.g., Eq. 1 in Hahn et al. 2007a).
However, in the context of cosmological alignment studies it has
become a convention to call the second moment of mass tensor
inertia tensor.
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Fig. 1.— The dark matter (upper-left panel) and halo distributions in a slice of thickness 4 h−1Mpc through the full box (100 h−1Mpc
on a side). For the halo distributions, the halo mass range (lower limit) is indicated in each panel, and the sizes of the dots are proportional
to the virial radii of the halos.

of Rs. For Rs = 2.1 h−1Mpc (corresponding to halo
masses of ∼ 1013 h−1M⊙) they find a good agreement
between their orbit-stability criterion and a visual clas-
sification of the large-scale structure.5

In order to compute the Hessian matrix Hαβ , we first
construct a continuous density field from the discrete dis-
tribution of particles in the N-body simulation, using the
cloud-in-cell (CIC) technique with a 10243 grid. Then
the smoothed density field ρs is produced by smoothing
the CIC generated density field ρcic with a spherically

5 Note, however, that Hahn et al. compute the Hessian Matrix
based on the gravitational potential field, φ, which is derived from
the matter density distribution via Poisson’s equation,

▽2φ = 4πGρs(x) ,

where the Poisson’s equation is solved using a fast Fourier trans-
form on 10243 grid cells. As a consequence of that, their eigenvalues
have opposite signs compared to those based on the corresponding
density field that we use here.

symmetric Gaussian filter GRs
,

ρs(x) =

∫

dy ρcic(y)GRs
(y, x), (4)

where x corresponds to the location of a given halo and
the Gaussian filter with smoothing scale, Rs, is given by

GRs
=

1

(2πR2
s)

3/2
exp

(

−
|y − x|2

2R2
s

)

. (5)

From equations (3), (4) and (5), we find

Hαβ =
1

R4
s

∫

dy
[

(xα − yα)(xβ − yβ) − δαβR2
s

]

ρcic(y)GRs
(y, x), (6)

where δαβ is the Kronecker delta (Aragón-Calvo et al.
2007a). Finally, the eigenspace structure of the symmet-
ric Hessian matrix can be computed at the center of mass
of each halo.

According to the number of positive eigenvalues at the
locations of the dark matter halos we classify them into
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Fig. 2.— Halo distributions and environmental classifications. The left panel is similar to the lower-right panel of Fig. 1, but for halos
with at least 500 particles (i.e. ≥ 1010.54 h−1M⊙). The halos in four different environments are classified by different colors: clusters
(orange), sheets (blue), filaments (red), voids (green). The cyan arrow indicates the direction of the filament at the center of each halo.
The direction of the filament is given by the eigenvector corresponding to the single positive eigenvalue of the density Hessian matrix. The
right panel shows the environmental classifications of 2562 grid points in the middle plane of the slice. Black corresponds to clusters, dark
gray to filaments, clear gray to sheets, and white to voids.

four categories, as outlined above. The numbers of halos
in cluster, sheet, filament and void regions are, respec-
tively, 13803, 13230, 45755 and 280, corresponding to
18.89, 18.11, 62.62 and 0.38 per cent of the total num-
ber of halos. In the left panel of Fig. 2, we show the
distribution of halos in a slice of thickness 4 h−1Mpc,
indicating the classification according to their environ-
ments with different colors. In addition, the directions
of the filaments are marked with arrows for those halos
associated with them. The right panel of Fig. 2 shows
the environmental classification of 2562 grid point put
down regularly in the mid-plane of the slice. Accord-
ing to visual inspection, the general appearance of the
filamentary structures identified with this method is re-
markably good.

3.2. Segment extraction method

As shown in the previous section, filamentary struc-
tures can be well identified using the Hessian matrix of
the density field. However, this approach relies on an
accurate knowledge of the matter density field, which is
in many cases highly non-trivial to obtain. In particular,
for observational data one may wish to use the distribu-
tion of galaxies, groups or halos directly to identify the
filaments of the cosmic web. For this purpose, we now
present a halo-based method for filament finding which is
based on a slightly modified version of the ‘Candy model’
proposed by Stoica et al. (2005). The Candy model re-
constructs filaments by connecting individual segments
that are found in a basic point distribution (galaxies,
halos, etc.). In this study, we only aim to compare halo
shape orientations with the orientations of the segments
they are residing in, thus we do not discuss in detail
the problem of composing individual segments into long
connected filaments. Hereafter, the segment extraction
method derived from the Candy model will be referred
to as Method II.

Fig. 3.— Distribution of dark matter halos around the most
massive halo in our simulation, where only halos with at least 500
particles and within a (20 h−1Mpc)3 box centered at the most mas-
sive halo are plotted. In each panel, the colored halos are within
one filamentary segment: (blue: starting node halo; green: ending
node halo; red: member halos). Four segments in a total of six
associated with the most massive halo are shown in four panels.
For better visual quality, the distributions of halos are rotated so
that the segment is always displayed along the x-axis.

The requirements which a group of points has to fulfill
to be considered a candidate segment have to be adjusted
to the problem in question. Here we focus on dark mat-
ter halos as building blocks for the filamentary structure
of the cosmic web. Therefore, a candidate segment is
assumed to be a cylinder, with a length in the range of
[Lmin, Lmax] and a radius in the range [Rmin, Rmax]. The
mean mass density within the segment should be at least
Nρ times that of the average mass density of all halos,
ρ̄h = Mh,tot/V , where Mh,tot is the total mass of the ha-
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Fig. 4.— Similar to the left panel Fig. 2, but here shown for fila-
mentary structures identified using the segment extraction method
(Method II). The halos in the filaments (both node and member
halos) are plotted using red color. In addition, each member halo
is marked with an arrow indicating the direction of the filament it
resides in.

los with more than 500 particles and V is the volume of
the simulation. Finally, a segment should have at least
Nmin member halos. We set these free parameters as
follows:

Lmin = 3 h−1Mpc

Lmax = 10 h−1Mpc

Rmin = 1 h−1Mpc

Rmax = 3 h−1Mpc

Nρ = 5

Nmin = 5 (7)

Note that the values chosen for these parameters are
somewhat arbitrary, but the results are robust to sub-
stantial changes in these parameters. In particular, we
tested a number of different reasonable sets of parameter
values, all of them led to general agreement between the
results. Specifically, we found that changing any of the
above listed parameters (except for Nρ) by 50% will only
result in a less than 5% change in the number of halos
identified as belonging to filaments. If Nρ is varied to
Nρ = 2.5 or Nρ = 10.0, about 59% or 31% of the ha-
los, respectively, are classified as belonging to filaments.
Even for these two cases, the final results do not change
qualitatively, however.

In the following we describe the successive steps of the
segment extraction method.

Step 1. The dark matter halos are ranked according
to their masses.

Step 2. Starting from the most massive halo to ever
smaller ones, we search around each halo i (node) all
other halos j with distance in the range [Lmin, Lmax].
These halo pairs form candidates for our filament seg-
ments.

Step 3. We calculate for each candidate segment the
filament strength (average mass density), Si,j , which is
defined as

Si,j =

N
∑

k=1

Mk/(πR2
sLi,j) . (8)

Here, Li,j is the length of the candidate segment (dis-
tance between the two halos i and j), N is the to-
tal number of halos within the cylinder around this
segment with radius Rs, and Mk is the mass of halo
k. The candidate segment radius, in the range Rs ∈
[max(Rmin, rvir,i), Rmax], is determined such that Si,j

reaches its maximum.
Step 4. For all the candidate segments, we rank their

strengths Si,j . The one with the largest strength, with at
least Nmin member halos and Si,j ≥ Nρρ̄h, is defined as
the first candidate segment associated with node halo i.

Step 5. We rank all the member halos within that
segment according to their masses, except the node halo
i. The most massive one l with at least Nmin − 2 halos
residing between halos i and l is defined as the second,
terminal node of the segment. We remove those member
halos that are between the two node halos (belonging to
segment i, l) from the halo list. Thus member halos can
only belong to one segment, while node halos can belong
to more than one segment. The direction of the segment
(filament) is defined to be the connecting line between
the two node halos.

Step 6. Once the segment (i, l) is determined, we
return to step 1 and search for other segments associated
with node halo i until no further segments can be found
for this node halo. As an illustration, we show in Fig. 3
the halo distribution in a (20 h−1Mpc)3 cube centered on
the most massive halo i = 1, together with the node and
member halos in segment (i, l) which are marked with
colored dots. The first four segments associated with
node halo i (6 in total) are illustrated using colored dots
in the four panels of Fig. 3.

Step 7. We turn to the next node halo to search for
its associated segments. We iteratively search the halo
catalog until no further segments can be found.

Applying the segment extraction method to our halo
catalog we find that 45% of all halos are classified as
members of segments, and 2% as node halos. These two
populations are substantially smaller than those obtained
with Method I, where we found 63% and 19% to be clas-
sified as filament and cluster halos, respectively. Note,
however, in a recent paper Forero-Romero et al. (2008)
introduced an additional threshold λth for the classifi-
cation of environment instead of just using the number
of positive (negative) eigenvalues. Increasing this barrier
from λth = 0 to some finite value greatly reduces the vol-
ume (mass) occupied by the identified filaments, and in
particular, reduces the number of ambiguous detections
of feeble or spurious filaments. The discrepancy may
hence just be a result of the higher detection threshold
of Method II compared with Method I.

Fig. 4 shows the distribution of halos within the fil-
aments obtained with Method II in a slice of thick-
ness 4 h−1Mpc. Compared to the filaments detected by
the Hessian matrix approach (Fig. 2), only strong fila-
ments are extracted by this method, while less promi-
nent structures are not identified. Yet, the advantage of
this method is that it does not require knowledge of the
density field. This is a significant advantage especially in
the context of observations, where density reconstruction
is often difficult.

4. ORIENTATIONS OF DARK MATTER HALOS
RELATIVE TO FILAMENTS AND SHEETS
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Fig. 5.— The probability distribution of the cosine of the angle
between the halo angular momentum vector and the direction of
the filament in Method I (left panel) and Method II (right panel).
The error bars are computed from 500 random samples in which we
randomize the orientations of the angular momenta of the halos. In
case the angular momenta are randomly oriented, we would expect
to find P (cos θ) = 1. Thus the error bars are plotted on top of this
P (cos θ) = 1 line. We also calculate the average value of cos(θ),
and its error, which are given in each panel.

To quantify the impact of filaments and sheets onto
halos, we investigate two types of alignment signals: one
based on a halo’s spin and the other on its orientation.
These two vectors correlate with the orientation of the
filament or the normal vector of the sheet in which the
halo resides. Finally, we also compare the results of the
two filament-finding methods considered here. For sim-
plicity, we will often use the terms ’shape’ and ’spin’, as
well as ’filament’ and ’sheet’, as an indication of direction
in the obvious sense.

4.1. Statistical methodology

In order to quantify the spin and shape orientations of
halos relative to filaments, we compute the probability
distribution function P (cos θ) (alignment signal), where
θ is the angle between the orientations of halo and fila-
ment or sheet.

P (cos θ) = N(cos θ)/〈NR(cos θ)〉 (9)

Here, cos(θ) is restricted to the range [0, 1], and cos(θ) =
1 implies that the halo orientations are parallel to the
filaments while cos(θ) = 0 indicates perpendicular ori-
entations. For the null hypothesis of random orienta-
tions of halos relative to the environment one expects
P (cos θ) = 1.

To assess the Poisson sampling errors in our align-
ment signals, we generate 500 random samples of the
halo spin and major axes orientations, respectively.
The significance of a deviation of P (cos θ) from unity
is assessed by the standard deviation of [NR(cos θ) −
〈NR(cos θ)〉]/〈NR(cos θ)〉 for the 500 random samples. In
addition, we also calculate the mean cosine 〈cos(θ)〉 of
the alignment angle. In the absence of any alignment,
〈cos(θ)〉 = 0.5. The significance of any alignment can
be assessed in terms of 〈cos(θ)〉 and σcos(θ), which is the
variance of 〈cos(θ)〉R for the 500 random samples.

4.2. Spin-filament alignment

We first examine possible alignment signals between
the spin of halos and the filaments they reside in. Method
I, which is based on the Hessian matrix, allows to dis-
tinguish cluster, sheet, filament and void halos. For fila-
ment halos, the eigenvector of the positive eigenvalue of
the Hessian matrix at the location of the halo indicates
the direction of the filament. Method II determines the

direction of the filament for each member halo in a seg-
ment as the connecting line between the two terminal
node halos of that segment.

Fig. 5 shows the probability distribution P (cos θ) of
the cosine of the angle between the halo spins and the
filaments. The left and right panels display the results
for Methods I and II, respectively. We find that the halo
spins tend to lie parallel to the filaments. The results
are robust against the filament detection method. It
has been argued that the angular momentum of halos
originates from the tidal field exerted by the surround-
ing dark matter distribution (Peebles 1969; Doroshkevich
1970; White 1984). The spin directions are expected to
be preferentially aligned with the planes of the sheets
and the directions of the filaments (e.g., Lee 2004), al-
though hydrodynamical simulations have also suggested
that the spin axis may aline with the intermediate axis
at turnaround (Navarro et al. 2004).

In order to characterize the strength of the alignment
between angular momenta and filaments we calculate
their average cosine, 〈cos(θ)〉. These average values to-
gether with their errors are displayed in the panels of
Fig. 5. Although the alignment signals for the two meth-
ods are slightly different, the overall strength of the align-
ment detected with Methods I and II agrees well.

Another interesting question is whether the alignment
signal and strength depend on the mass of the fila-
ment halos. Fig. 6 presents the probability distribution
P (cos θ) for filament halos in different mass ranges. Re-
sults are shown for Methods I and II in the upper and
lower panels, respectively. The overall alignment signals
obtained from the two methods are very similar. There
is a weak mass dependence, in the sense that the align-
ment is somewhat weaker for massive halos. Accord-
ing to the values of 〈cos(θ)〉, filament halos with masses
M > 1012M⊙ are consistent with being randomly ori-
ented at a 2-σ confidence level.

In a recent study, Hahn et al. (2007b) reported that
the spin of halos with mass greater than the character-
istic halo mass tends to lie perpendicular to the host
filaments. This trend has been confirmed by Aragón-
Calvo et al. (2007b). In a study comparing simulations
and observations Paz et al. (2008) found an indication
of this behaviour based on SDSS data. The character-
istic mass for gravitational collapse at redshift z = 0 is
9.57 × 1012M⊙, calculated for the cosmological parame-
ters used in our simulation. Due to the small box size
of our simulation, we find less than 100 filament halos
with mass ≥ 1013 h−1M⊙, independent of the filament
finding method applied. Most of these massive halos
are classified as clusters or node halos. As shown in the
right panels of Fig. 6, the statistics is too poor to obtain
a robust measurement of the alignment signal for these
massive halos, especially with respect to a possible tran-
sition from alignment to anti-alignment. However, for
the well constrained halo mass ranges ≤ 1013 h−1M⊙,
our alignment signals and strengths are in very nice
agreement with those found by Hahn et al. (2007b), and
slightly larger than those predicted by Aragón-Calvo et
al. (2007b).

In Method II, the filaments are defined via segments
extracted from the distribution of dark matter halos. As-
sociated with each segment, there are two node halos, one
of which is the most massive one among all the associ-
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Fig. 6.— Same as Fig. 5 but for different mass ranges of halos in the filaments in Method I (upper panels) and Method II (lower panels).
The average value of cos(θ) and its error in each mass bin is indicated in each panel.

Fig. 7.— Same as Fig. 5, but for halos in different segments in
Method II, separated according to the mass of the most massive
halo in each segment.

ated halos. Thus we can probe the alignment signals sep-
arately for halos in filaments with different most massive
node halos. In Fig. 7, we show the results for four mass
bins. There is a hint for a very weak positive mass depen-
dence on the most massive halo in the segment, but this
is statistically not significant. In addition to the mass
dependence itself, we can further investigate the align-
ment signals at different separations to the most massive
halo. To this end, we have divided the member halos in
the segments into four roughly equal parts (in terms of
their total number). Fig. 8 displays the alignment signals
for halos within these four distance bins. We find that
the strength of the alignment is slightly enhanced if the
halos are close to the most massive node halos.

4.3. Shape-filament alignment

Fig. 8.— Same as Fig. 5, but for halos at different separations
to the massive node halos in Method II.

Fig. 9.— The probability distribution of the cosine of the an-
gles between the halo major axis vectors and the directions of the
filaments in Method I (left panel) and Method II (right panel).

Next, we probe another important structural parame-
ter, the orientation of the halo shape with respect to the
direction of the filament. Similar to the last section, we
measure the alignment signals between the shapes and
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Fig. 10.— Same as Fig. 9 but for different mass ranges of halos in the filaments in Method I (upper panels) and Method II (lower panels),
as indicated.

Fig. 11.— Same as Fig. 9 but for halos in different segments in
Method II, separated according to the mass of the most massive
halo in each segment.

filaments for filament halos.
In Fig. 9, we show the probability distribution of the

cosine of the angle between the halo major axis and the
direction of the filament. The left and right panels show
the results for Methods I and II, respectively. We find
significant alignment signals with both methods. In fact,
the shapes of dark matter halos tend to be parallel to the
filaments. Again, we use the average value of 〈cos(θ)〉
to quantify the strength of the alignment signal. From
Method I, we obtain an average cosine of 0.526 ± 0.001,
whereas Method II results in a slightly smaller value of
0.524 ± 0.002. Similar alignment trends are reported in
other recent studies (e.g., Altay et al. 2006; Aragón-
Calvo et al. 2007b; Hahn et al. 2007b).

In analogy to our investigation of spin-filament align-
ment, we now examine the dependence of the alignment
strength on mass and separation. Fig. 10 shows the re-

Fig. 12.— Same as Fig. 9 but for halos at different separations
to the massive node halos in Method II.

sults for the filament halos in four mass bins. The upper
and lower panels display results derived with Methods
I and II, respectively. The strength of the alignment
grows significantly with halo mass. Due to the sparse
number of halos with masses ≥ 1013 h−1M⊙ the statis-
tics in that mass range is poor, however. Interestingly,
the observed mass dependence shows an opposite trend
compared to the spin-filament alignment. These trends
agree well with results obtained by Hahn et al. (2007b)
and Aragón-Calvo et al. (2007b).

In Fig. 11, we show the alignment signals for halos
in segments with most massive halos in four mass bins
(note that this can only be done for Method II). An ob-
vious mass dependence of the alignment signals is vis-
ible. Halos in segments with more massive node halos
exhibit stronger alignment signals. Fig. 12 displays the
alignment signals for halos at different separations to the
most massive node halos in their segments. One can see a
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Fig. 13.— Left panel: the probability distribution of the cosine
of the angle between the halo angular momentum vector and the
vector perpendicular to the sheet in Method I. Right panel: same
as the left panel but for the halo major axis vector.

pronounced distance dependence. Halos at smaller sepa-
rations to the most massive node halos have significantly
stronger alignment strength. This dependence, if not re-
stricted to the filament members, is in general agreement
with the alignment signals measured by Faltenbacher et
al. (2008) for central and satellite halos as a function of
radius.

4.4. Spin-sheet and Shape-sheet alignment

Method I differentiates between four cosmic environ-
ments: clusters, filaments, sheets and voids. Filaments
are distinguished by the condition that their Hessian
matrix has only one single positive eigenvalue, and the
corresponding eigenvector determines a unique direction.
Sheets on the other hand are defined by having only one
single negative eigenvalue. The associated eigenvector
also determines a unique direction, which can be identi-
fied with the normal to the sheet.

The alignment signal for the angle between the halo
spin and the normal of the sheet is shown in the left
panel of Fig. 13. We obtain an anti-alignment signal,
which means that there is a trend for sheet halos to have
their angular momentum vector parallel to the plane of
the sheet. The alignment strength, quantified by the
average of the cosine is 〈cos(θ)〉 = 0.473 ± 0.002. This
alignment strength is in very good agreement with that
obtained by Aragón-Calvo et al. (2007b).

The right panel of Fig. 13 shows the probability dis-
tribution of the cosine of the angle between the halo
major axis vector and the vector perpendicular to the
sheet. The major axes of halos in sheets are strongly
aligned with the sheet planes. The average of the co-
sine is 0.466 ± 0.002. A similar tendency has also been
found in the shells of voids, as reported by Brunino et al.
(2007).

4.5. Spin-Shape alignment

Having specified the spin and shape (major axis) align-
ments with respect to the large-scale environments (fila-
ments and sheets), we now proceed to examine the spin-
shape alignment within the halos themselves. Fig. 14
shows the alignment signals between the spin-major axes
(left panel), spin-middle axes (middle panel) and spin-
minor axes (right panel), respectively. Measurements of
these signals in different environments are displayed with
different line styles: results are given for clusters (or-
ange dotted), filaments (red dash-dotted), sheets (blue
dashed), voids (green dash-dot-dot) and for all halos
(black solid). In each case, the average of the cosine
of the alignment angle is also indicated in each panel.

We find no significant environmental dependence of the
alignment signal between the spin and shape of halos.
The halo spin vector appears to be preferentially perpen-
dicular to the halo major axis, and has a strong tendency
to be parallel to the halo minor axis. This behavior is
in good agreements with previous findings obtained, e.g.,
by Faltenbacher et al. (2002), Bailin & Steinmetz (2005);
Allgood et al. (2006) and Bett et al. (2007). We have
also separately investigated the alignment signal for halos
with mass ≤ 1011.0 h−1M⊙ and ≥ 1012.5 h−1M⊙, and ba-
sically found no dependence on mass besides a marginal
enhancement of the alignment signal for the ≥ 1012.5 ha-
los.

According to our analysis above, both the spin and the
major axes of halos are preferentially aligned with the di-
rections of the filaments or the planes of the sheets. On
the other hand, within halos the spin axes are strongly
aligned with the minor axes of the halos. At first glance,
these two results seem contradictory. In case of a per-
fect alignment between halo spin and minor axes, an
alignment between halo orientations and filaments would
cause an anti-alignment between spin axes and filaments.

To have a better understanding of these two sets of
‘contradictory’ results, we perform the following addi-
tional test. We first rank all the (member) halos within
the filaments according to the cosine of their angles
between the major axes and the filament directions,
cos(θ1)

6. These halos are then split into four bins with
equal numbers according to the values of cos(θ1). We
then measure the cosines of the angles between the spin
axis and the filament directions for the halos in each
cos(θ1) bin. The results are shown in Fig. 15, with upper
panels for Method I and lower panels for Method II. Each
panel in Fig. 15 from left to right corresponds to results
for 1/4 of the halos in the filaments within a different
cos(θ1) range, as indicated.

The most right hand panels of this figure clearly
demonstrate that a strong alignment between the ma-
jor axes and the directions of the filaments produces an
anti-alignment between the spin axes and the filaments.
This result is in agreement with simple geometric con-
siderations. Note however, theoretically a strong anti-
alignment between the major axes and the directions of
the filaments, as addressed in the left hand panels of
Fig. 15, does not guarantee an alignment between the
spin axes and the filaments. In the case of θ1 = 90o

and perfect alignment between minor axis and spin, the
angle between the spin (minor) axis and the filament di-
rection can assume any value within 0 − 90o. The very
strong alignment signals apparent in the most left hand
panels must be induced purely by the influence of the
filaments. Combining the signals from the four panels,
one would obtain the alignment signals shown in Fig. 5.
On the other hand, note the range of the cos(θ1) in each
panel, the average cos(θ1) for all halos in the four pan-
els is larger than 0.5, again indicating an alignment be-
tween the major axis and filament directions (as shown in
Fig. 9). Thus we conclude that the two sets of alignments
are indeed not contradictory, and that the large-scale en-
vironment, i.e. the filaments and the sheets, can impact

6 To avoid the duplicated use of notation θ, here we use θ1

to represent the angle between the major axis and the filament
directions.
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Fig. 14.— The probability distribution of the cosine of the angle between the angular momentum and major (left panel), middle (middle
panel) and minor (right panel) axis vectors of the halos in clusters (orange dotted), filaments (red dash-dotted), sheets (blue dashed), and
voids (green dash-dot-dot). The black solid line indicates the values for all the halos in our halo catalog.

Fig. 15.— The probability distribution of the cosine of the angle between the halo spin axis vectors and the directions of the filaments
in Method I (upper panels) and Method II (lower panels). Each panel from left to right corresponds to 1/4 of the halos in the filaments,
ranked according to the cosine of the angle between the halo major axis and the direction of the filaments, cos(θ1). In each panel, the
corresponding range of cos(θ1) and the average value of 〈cos(θ)〉 are indicated.

both the orientation and the spin of halos while allowing
still for an internal correlation of these quantities within
halos.

5. SUMMARY

Using the dark matter and halo distributions from a
high resolution N-body simulation, we have identified the
filamentary structures in the cosmic web using two dif-
ferent filament-finding algorithms. The first method is
based on the Hessian matrix of the density field (Method
I), where the halos are classified into four categories ac-
cording to the signs of the three eigenvalues of the Hes-
sian matrix: clusters, filaments, sheets and voids. The
advantage of this method is that the large-scale environ-
ments of the halos can be characterized unambiguously,
and that there is only one free parameter in the analysis.
However, this method needs detailed information about
the local density field, which is difficult but not impos-
sible to obtain based on observations. Indeed, some re-
cent studies are devoted to density field reconstructions
based on galaxy and halo distributions (e.g. Erdogdu et

al. 2006 from 2MASS Redshift Survey; and Wang et al.
2009a from halo distribution in simulations).

On the other hand, Method II directly uses the dis-
tribution of halos. Thus it eliminates the need for a re-
construction of the local mass density field, at the price
of a larger number of tunable parameters. Filamentary
structures are here traced by connecting single segments
which are identified according to their relative mass over-
density. In this study we were not interested in explicitly
reconstructing long coherent filaments, rather we only
explore the orientations of the segments relative to the
halos orientations associated with them. The main short-
comings of Method II are the relatively large number of
parameters and a lack of sensitivity for the detection of
less prominent filaments. Nevertheless, Method II is easy
to implement on top of observational data, including also
galaxy group catalogs such as that of Yang et al. (2007).
This makes it a highly useful approach in practice, pro-
vided its results are consistent with those obtained with
Method I. This is indeed the case, as we have demon-
strated in this study.
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Based on the classification of the large-scale environ-
ment around halos that we obtained, we examined the
spin-filament and the shape-filament alignments, as well
as the corresponding quantities for halos and sheets.
Overall, we find a tendency for halo spins and shapes
to be oriented parallel to filaments and perpendicular to
the normal vector of sheet like structures. This trend be-
comes obvious and is clearly significant when compared
to results from isotropic (randomized) orientations. Both
the spin and shape alignment strengths are stronger for
halos close to more massive node (cluster) halos, and at
smaller separations to the node halos. Yet, the spin and
shape alignment strengths show an opposite mass de-
pendence: smaller halos display stronger (weaker) spin
(shape) alignments with the filaments.

For the halos in different environments, we have also
investigated their intrinsic spin-shape alignment. We
found that the spin axes are preferentially aligned with
the minor axes of halos, and are perpendicular to the ma-
jor axes, independent of the halo environments. At first
glance, this result seems to be at odds with our finding
that both the spin and major axes tend to align with the
filament directions. However, there is not really a con-
tradiction here, because the alignments are not perfect
in both cases. In fact, the distributions of the alignment
angles are sufficiently broad that both of these seemingly
contradictory alignment signals can coexist.

Our results are in good agreement with recent N-body
studies where different filament finding methods have
been employed. Hahn et al. (2007b) applied a Hessian
matrix approach to the gravitational potential field (in-
stead of the density field), and also found an opposite

mass dependence for the alignment strengths of spin- and
shape-filament alignments. Moreover, they found that
the spin axes of halos with mass ≥ 1013 h−1M⊙ are pref-
erentially perpendicular to the filament directions, which
we cannot confirm in this study because of the limited
volume of our simulation. A similar behavior has been
detected by Aragón-Calvo et al. (2007b) using a multi-
scale morphology filter method for the classification of
the large-scale environments.

The general trends found from our N-body simulation
reveal a substantial interplay between the large-scale en-
vironments and the internal properties of the dark mat-
ter halos. It would be interesting to see whether similar
trends can be observed in real galaxy samples (e.g., Lee
& Pen 2001; Lee & Erdogdu 2007). The two methods
outlined in this study should be straightforwardly appli-
cable to observational data sets (e.g. SDSS). This should
provide for interesting tests of galaxy formation models,
and of cold dark matter cosmologies.

The simulation was done at Shanghai Super-
computer Center. This work was supported by
the One Hundred Talents project, Shanghai Pu-
jiang Program (No. 07pj14102), 973 Program
(Nos. 2007CB815401, 2007CB815402), 863 program
(2006AA01A125), the CAS Knowledge Innovation Pro-
gram (Grant No. KJCX2-YW-T05) and grants from
NSFC (Nos. 10533030, 10673023, 10373012, 10633049,
10821302, 10873027).

REFERENCES

Allgood, B., Flores, R. A., Primack J. R., Kravtsov, A.V., Wechsler,
R.H., Faltenbacher, A., Bullock, J.S., 2006, MNRAS, 367, 1781

Altay, G., Colberg, J.M., Croft, R.A.C. 2006, MNRAS, 370, 1422
Aragón-Calvo M.A., Jones B.J.T., van de Weygaert R., van der

Hulst J.M., 2007a, A&A, 474, 315
Aragón-Calvo M.A., van de Weygaert R., Jones B.J.T., van der

Hulst J.M., 2007b, ApJ, 655, L5
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