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ABSTRACT

Aims. The question of the different oscillation periods for global modes of quiescent prominences is discussed.
Methods. Simple 1D prominence configurations are used to describe the magnetohydrostatic equilibrium and their oscillations for
small amplitudes.
Results. Three basic modes of oscillations were found and their periods as a function of the magnetic field configuration and the
assumed geometry are given.
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1. Introduction

Oscillatory motions of solar prominences have been observed
for a long time, going back to the early investigations of Harvey
(1969). The observed velocity amplitudes of the oscillations
range from a few km s−1 up to around 100 km s−1. Many the-
oretical investigations which try to model these oscillations have
been presented over the years. A summary of these theoretical
models can be found in the review of Ballester (2006), which
also gives in some detail the relevant observations.

As is well known, prominences are massive cool structures
in the solar corona which have to be supported against gravity by
a sufficiently strong upward force. The most obvious force is the
Lorentz force of the associated magnetic field. This aspect has to
be taken into account in the basic equilibrium models. Another
important point for the oscillation modelling is the fact that the
prominence can interact with its coronal surroundings; this will
have a non-negligible effect on the the different modes.

Most of the existing models do not fulfill all these requirem-
nts simultaneously. There is for example a paper by Oliver et al.
(1992) where the full magneto-hydrostatic (MHS) equilibrium is
properly treated. But only internal modes are considered by pre-
scribing vanishing velocities at the prominence-corona interface.
This then means that the effects of the surrounding corona are ig-
nored. On the other hand a study by Joarder & Roberts (1992)
allows both for internal and global oscillations (i.e. modes where
the prominence and the corona are involved). But in this investi-
gation gravity is completely neglected and the magnetic support
not treated correctly.

There are also a few models which aim at including the ef-
fects of gravity and of the surrounding corona simultaneously,
e.g. an investigation by Joarder & Roberts (1993a) and an-
other by Oliver et al. (1993). We postpone the comparison of
these models to our new results to Sect. 6. In the present in-
vestigation we look at oscillations of prominences which are in
MHS equilibrium and which also can interact with the surround-
ing coronal magnetic field. In order to make this rather complex
problem tractable for analytical investigations we have to make
some rather strong simplifications which will be described in

the following sections. In Sect. 2 we present our basic promi-
nence model and calculate the different oscillatory modes. In
Sect. 3 we mention some other types of modelling and in Sect. 4
we describe possible applications of our results. Sect. 5 briefly
outlines the consequences of magnetic shear. Sect. 6 gives the
conclusions.

2. Global oscillations

For our modelling we use the simplest configuration of a promi-
nence in MHS equilibrium. We take a 1D slab model of the type
proposed earlier by Kippenhahn & Schlüter (1957); more de-
tails of such slab models can be found in the paper by Heinzel &
Anzer (2005) and models that allow for vertical variations have
been discussed by Hood & Anzer (1990). But in the present in-
vestigation we adopt the most simple configuration. For the de-
scription we use Cartesian coordinates with x normal to the slab,
y along its axis and z pointing vertically upward. In this model all
physical quantities are assumed to vary only in the x-direction.
For the magnetic field inside the prominence we take the relation

B = (Bx, 0, Bz(x)), (1)

with Bx = const. and Bz(x) being antisymmetric with respect
to x = 0. The prominence boundaries are placed at the posi-
tions x = ±D/2. If we then denote by ρ(x) the density and by
g the solar gravity we obtain the following equation for vertical
equilibrium:

1
4π

Bx
dBz

dx
− ρg = 0, (2)

and the column mass, M, is obtained as

M =
∫ +D/2

−D/2
ρ(x)dx. (3)

Equation (2) can be integrated and leads to

BxBz1

2π
= Mg, (4)

where Bz1 = Bz(D/2) has been taken.
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Fig. 1. Sketch of the prominence configuration used for the present
modelling. Note that the true width of the prominence is much smaller
than drawn here.

Note: Eq. (4) holds for any temperature distribution present in-
side the prominence. More details about the internal structure of
the prominence can be found in Heinzel & Anzer (2005).

Outside of the prominence we have a low β plasma for which
we assume a potential magnetic field which is anchored in the
solar photospere. In order to make the equilibrium configuration
tractable for an analytical investigation we replace the photo-
sphere by two vertical solid boundaries placed at x = ±Δ. In this
case the coronal field is given by

B = (Bx, 0,±Bz1). (5)

This configuration is shown in Fig.1.
For this type of slab model one has 3 fundamental oscilla-

tory modes: horizontal motion in x-direction, horizontal motion
in y-direction and vertical oscillations. For all of the fundamen-
tal modes the prominence will move as a solid body without
any internal deformations. We now denote by ξ the displacement
in each of these modes and then obtain the general equation of
motion:

M
d2ξ

dt2
= F(ξ), (6)

where F(ξ) is the restoring force which has to be determined for
each of the 3 modes individually.

2.1. Oscillations in the x-direction

The restoring force in this case is the difference in magnetic pres-
sure on the right and left side of the prominence. Because of flux
conservation one has the relation

Bz = Bz1(1 ± ξ/Δ). (7)

With this one then obtains for F the expression

F(ξ) = − B2
z1

2πΔ
ξ. (8)

Making use of Eqs. (4) and (6) we arrive at the oscillation equa-
tion given by

d2ξ

dt2
= −Bz1

Bx

g

Δ
ξ (9)

and with this we obtain the period of the oscillations as

P = 2π

√
Bx

Bz1

Δ

g
· (10)

2.2. Oscillations in the y- and z-direction

For the oscillations in the y-direction the restoring force results
from the magnetic tension of the stretched field lines. We now
have

F(ξ) = − B2
x

2πΔ
ξ, (11)

leading to a period of

P = 2π

√
Bz1

Bx

Δ

g
· (12)

For the oscillations in the z-direction the restoration is again
achieved by field line stretching. In this case we obtain

Bz = Bz1 + B0
ξ

Δ
· (13)

Taking the MHS equilibrium as given in Eq. (4) into account
we then arrive for the restoring force at the same expression
as for the y-oscillations (i.e. F(ξ) is also given by Eq. (11))
and therefore the periods are the same. It is interesting to note
that although the physical situation is quite different for y- and
z-oscillations, the periods turn out to be identical. But for config-
urations with magnetic shear this is no longer the case (see the
discussion in Sect. 5).

2.3. Interpretations

Equations (10) and (12) are actually those of a swinging pendu-
lum which has a length of Δ(Bz1/Bx), respectively Δ(Bx/Bz1). At
first sight this result might seem somewhat surprising since the
restoring force in all cases is of magnetic origin and therefore
one would expect the field strength to be the determing factor.
But since in our MHS equilibrium the field is directly related to
gravity these results are very plausible. An alternative interpre-
tation based upon a model consisting of an isolated blob hang-
ing in a magnetic string has been proposed by Roberts (1991).
This modelling gives the same result as Eq. (12) for vertical
oscillations. Much more detailed discussions of the so-called
string modes can be found in Joarder & Roberts (1992, 1993a)
and Roberts & Joarder (1994). In our modelling the quantity
Δ(Bz1/Bx) entering Eq. (12) can be interpreted as the total depth
of the field line dips; the quantity Δ(Bx/Bz1) has no obvious
physical meaning. Both observations and prominence modelling
indicate that in general the field line inclination is rather small
and therfore Bz1/Bx � 1 will hold. From this we conclude that in
most cases the periods of the x-oscillations will be longer than
those of the other two modes. As a representative example we
take Bz1/Bx = 0.1 and Δ = 100 000 km and then obtain typical
values for the periods of 200 min for x-oscillations and 20 min
for the other cases. If the field lines are shorter, and Δ smaller,
then the periods will be reduced correspondingly.
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3. Pressure driven oscillations

One could also consider the alternative possibility that the coro-
nal magnetic field is so strong that the prominence cannot distort
this field by a large amount. If we further assume that the field
inside the prominence is basically horizontal (i.e. has only negli-
gible dips) then the only restoring force will be the difference in
coronal gas pressure between the left and right side of the slab.
This force is given by

F(ξ) = −2
pc

Δ
ξ (14)

and therefore one has

P = 2π

√
Δ

2pc
M, (15)

where pc is the unperturbed coronal pressure. Since in this par-
ticular case the pressure inside the prominence, and therefore
also the density because of an assumed constant temperature,
are uniform one obtains the relation

M = ρ0D, (16)

with ρ0 denoting the prominence density and D its full width.
For the equilibrium one also needs

p0 = pc. (17)

We also set

ρ0 =
p0

c2
s
, (18)

where cs is the sound velocity inside the cool slab. Making use
of these relations we arrive at the equation

P = 2π

√
ΔD
2

1
cs

(19)

for the period.
Note: this period is identical to that found by Joarder &

Roberts (1992) for the case of slow kink modes.
If we now take some typical values for the configuration

with pc = 0.03 dyn/cm2, M = 10−4 g/cm2 and T = 6000 K
we can derive the following numbers: ρ0 = 7 × 10−14 g/cm3,
cs = 6.5 km s−1 and D = 14 000 km. Together with the value
for Δ which we used in the previous section of 100 000 km
we get in this case an oscillation period of P = 430 min. This
value is much larger than any period observed in prominences.
The values for the period could be reduced by assuming higher
temperatures which will result in higher sound velocities and
also smaller column masses which correspond to smaller val-
ues of D (e.g. a temperature of 10 000 K and a column mass of
5 × 10−5 g/cm2 gives a period of 245 min.).

But a more serious problem with this type of models is the
fact that they require extremely large coronal magnetic fields.
In order to be able to neglect the effects of hydrostatic layer-
ing inside the slab the magnetic field has to be horizontal to a
high degree of accuracy. If we take for example this constraint
as Bz1 � 0.1Bx then Eq. (4) together with a column mass of
10−4 g/cm2 leads to the condition

Bx � 13 G. (20)

Therefore one has to conclude that only those prominences with
such very large magnetic fields will allow this kind of simplified
modelling.

4. Consequences for the diagnosing
of prominences

The study of prominence oscillations can give us detailed insight
into the physics of prominences. The present status of this field
of so-called prominence seismology has been summarised in the
reviews of Oliver (2004) and Ballester (2006). Interesting new
observations can be found in the papers of Régnier et al. (2001)
and Pouget et al. (2006). Our new modelling of of the global os-
cillations can then also be used to derive the basic parameters of
solar prominences. The important point is that both the periods
of normal and tangential oscillations must be measured. If we
denote by P1 the period of oscillations in the x-direction and by
P2 that of oscillations either in the y- or in z-direction we obtain
from Eqs. (10) and (12) the relation

Bz1

Bx
=

P2

P1
· (21)

We can determine in this way the field line inclination at the
prominence boundary. One also gets

Δ = 4π2gP1P2, (22)

which gives an estimate of the length of the coronal field lines.
In addition the observations of prominences on the limb seen

in the Hα line allow a determination of the column mass, M
(Gouttebroze et al. 1994). With this knowledge we can then also
calculate the strength of the magnetic field as

Bx =

√
2πMg

P1

P2
· (23)

This shows that for our models all global physical parameters
can be derived, in principle. But it is important to note that for
this procedure the knowledge of both P1 and P2 of the promi-
nence under investigation will be needed.

5. Effects resulting from magnetic shear

So far we have considered only unsheared prominence config-
urations in order to make our analysis as simple and transpar-
ent as possible. But the observations of quiescent prominences
indicate the presence of strong magnetic shear (see e.g. Leroy
et al. 1984). Therefore we shall now briefly outline what conse-
quences the magnetic shear has on our modelling.

We model this by adding a constant y-component, By, to the
equilibrium field. With this then the horizontal field strength is
given by

Bh =

√
B2

x + B2
y, (24)

and the shear is quantified by the parameterα = Bh/Bx. With this
definition the length of the horizontal field to the boundary now
amounts to Δ1 = αΔ and the column mass as measured along
the field is given by M1 = αM. With this modified configuration
we find the following three basic types of oscillations: motions
along the horizontal field direction, those perpendicular to it, and
verical ones. The first two modes correspond respecively to the
x- and y-oscillation of the unsheared case. We found that the
equations for the periods of the first two types of oscillations
are the same as previously calculated but with Bx replaced by
Bh and M replaced by M1. In the equation for the vertical mode
an additional factor

√
α has to introduced. If we keep the values

of Bx and Δ fixed we get the following scaling laws for the pe-
riods: the mode along the field is proportional to α, the vertical
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one to
√
α, and the perpendicular mode is unchanged. This re-

sult implies that the periods of the first two modes are increased
and the third one is not affected by the shear. Very long period
oscillations resulting from a strong magnetic shearing were also
predicted by Joarder & Roberts (1993b).

6. Conclusions

The prominence models considered in this paper are highly sim-
plified configurations. Still, they can be taken as reasonable first
order approximations to real prominence slabs. The assumption
that the slab is very extended along the direction of the promi-
nence axis is acceptable. But assuming also that the prominence
extension in height is very large is less appropriate. There is
in particular the aspect that the solar surface represents a solid
lower boundary. This can influence the vertical oscillations. If
we assume that the prominence does not extend down to the sur-
face then the magnetic field which crosses the region below the
prominence will provide some additional restoring force. This
means that the periods calculated from our Eq. (12) are actually
overestimates and the true periods of vertical oscillations will be
smaller. The reduction of the period will depend on the details
of the prominence geometry.

Our simple analytical results given by Eqs. (10) and (12) can
also be compared with other approaches given in the literature.
Joarder & Roberts (1993a) investigated oscillations that occur
in the prominence model of Menzel. They obtained periods for
the different modes ranging from 4 min up to 48 min. But these
results have to be taken with caution since the Menzel model is
not a realistic model for prominences and a comparison with our
results is not so meaningful. The only other investigation which
takes both gravity and the coronal surrounding into account is
that of Oliver et al. (1992). Because of the large complexity they
had to treat the problem numerically and thus could only cal-
culate the oscillations for one prominence. For the fundamental
modes they found P = 70 min for horizontal oscillations and
P = 13 min for vertical ones. Using our Eqs. (10) and (12)
and taking their prominence model we get 78 min, resp. 15 min
for the basic modes. Therefore our simple, but analytical, model
gives similar results. From this we conclude that if one is inter-
ested in the oscillations of the prominence as a whole our simple
treatment is fully adequate.

In addition we have the problem of prominence fine struc-
ture. But as long as these fine structures are small compared to

the prominence extensions one can consider all the quantities
used here as mean values. With this then the global aspects of
the oscillations will be described appropriately. But if one con-
siders localised modes of oscillations then the fine structures are
of primary interest. Such a fine structure modelling has recently
be done by Joarder et al. (1997).

The other crucial point is that the coronal magnetic field
is assumed to have straight field lines which are anchored in
two vertical rigid boundaries. In reality the field has to bend
over to connect to the solar surface. This bending is completely
ignored in our modelling, whereas the photospheric line-tying
is included. Therefore our estimates for the magnetic restor-
ing forces are only approximations. Unfortunately the modelling
based upon more realisic curved field configurations cannot be
done in a simple analytic way.

We also want to point out that our modelling concentrates on
the global modes and therefore it will give us information on the
overall magnetic field structure as well as the total prominence
mass. For complementary information concerning the interior
of the prominence the internal modes of oscillation which were
briefly lined out in the introduction should be used.

Acknowledgements. I would like to thank the referee, Bernie Roberts, for his
comments which helped to improve the paper considerably.

References

Ballester, J. L. 2006, Phil. Trans. R. Soc. A 364, 405
Gouttebroze, P., Heinzel, P., & Vial, J. C. 1994, A&AS, 99, 513
Harvey, J. 1969, Ph.D. Thesis, University of Colorado, USA
Heinzel, P., & Anzer, U. 2005, in Solar Magnetic Phenomena, ed. A. Hanslmeier,

A. Veronig, & M. Messerotti (Springer) ASSL, 320 115
Hood, A. W., & Anzer, U. 1990, SP, 126, 117
Joarder, P. S., & Roberts, B. 1992, A&A, 261, 625
Joarder, P. S., & Roberts, B. 1993a, A&A, 273, 642
Joarder, P. S., & Roberts, B. 1993b, A&A, 277, 225
Joarder, P. S., Nakariakov, V. M., & Roberts, B. 1997, SP, 173, 81
Kippenhahn, R., & Schlüter, A. 1957, Z. Astrophys., 43, 36
Leroy, J. L., Bommier, V., & Sahal-Bréchot, S. 1984, A&A, 131, 33
Oliver, R. 2004, in Proc. of SOHO 13, Palma de Mallorca, ESA SP-547, 175
Oliver, R., Ballester, J. L., Hood, A. W., & Priest, E. R. 1992, ApJ, 400, 369
Oliver, R., Ballester, J. L., Hood, A. W., & Priest, E. R. 1993, ApJ, 409, 809
Pouget, G., Bocchialini, K., & Solomon, J. 2006, A&A, 450, 1189
Régnier, S., Solomon, J., & Vial, J. C. 2001, A&A, 376, 292
Roberts, B. 1991, Geophys. Astrophys. Fluid Dyn., 62, 83
Roberts, B., & Joarder, P. S. 1994, in Proc. of 7th ESP meeting on Solar Physics,

ed. G. Belvedere, M. Rodonò, & G. M. Simnett, LNP, 432, 173


	Introduction
	Global oscillations
	Oscillations in the x-direction
	Oscillations in the y- and z-direction
	Interpretations

	Pressure driven oscillations
	Consequences for the diagnosing of prominences
	Effects resulting from magnetic shear
	Conclusions
	References 

