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ABSTRACT

Aims. Implement a matched filter (MF) cross-correlation algorithm in multipole space and compare it to the standard Angular Cross
Power Spectrum (ACPS) method. Apply both methods on a Integrated Sachs Wolfe (ISW) - Large Scale Structure (LSS) cross corre-
lation scenario and study how sky masks influence the multipole range where the cross correlation signal arises and its comparison to
theoretical predictions.
Methods. The MF requires the inversion of a multipole covariance matrix that, under non-full sky coverage (fsky < 1), is gener-
ally non-diagonal and singular. We choose a Singular Value Decomposition (SVD) approach that enables the identification of those
modes carrying most of the information from those more likely to introduce numerical noise, (that are dropped from the analysis).
We compare the MF to the ACPS in ISW-LSS Monte Carlo simulations, focusing on the effect that a limited sky coverage has on the
cross-correlation results.
Results. Within the data models= t +αm wheret is Gaussian noise andm is a known filter, we find that the MF performs compara-
tively better than the ACPS for smaller values offsky and scale dependent (non-Poissonian) noise fields. In the context of ISW studies
both methods are comparable, although the MF performs slightly more sensitively under more restrictive masks (smallervalues of
fsky). A preliminary analytical study of the ISW–LSS cross correlation signal to noise (S/N) ratio shows that most of it should be
found in the very large scales (50% of the S/N at l < 10, 90% atl < 40− 50), and this is confirmed by Monte Carlo simulations.
The statistical significance of our cross-correlation statistics reaches its maximum when consideringl ∈ [2, lmax], with lmax ∈ [5, 40]
for all values of fsky observed, despite of the smoothing and power aliasing that aggressive masks introduce in Fourier space. This
l-confinement of the ISW-LSS cross correlation should enablea safe distinction from other secondary effects arising at smaller (higher
l-s) angular scales.

Key words. (Cosmology) : cosmic microwave background, Large Scale Structure of the Universe

1. Introduction

Auto and cross-correlation analyses are crucial in the study
of the Cosmic Microwave Background (CMB) anisotropies.
This is due not only to the fact that the theory can only
predict statistical properties of the intrinsic intensityand
polarization anisotropies (and hence auto-correlation tests must
be conducted in order to compare theory to observations, see
Hu & Dodelson(2002) for a review), but also due to the presence
of secondary anisotropies and foreground emission that add
up to the measurements in the microwave range. These other
components must be identified and separated from the intrinsic
ones generated at the surface of last scattering, and therefore
cross-correlation analyses to other data sets probing the sources
of this secondary emission must be carried out. This has been
done practically for all CMB experiments, from COBE data
(Smoot et al.(1992), Bennett et al.(1996)) all the way to WMAP
data (Bennett et al.(2003), Spergel et al.(2007)). These cross
correlation techniques may be either based in real space (like the
angular two point correlation function), in Fourier space (like
the Auto and Cross Angular Power Spectrum), or in wavelet
space (Cayón et al.(2000), Larson et al.(2005)).

In the linear theory that characterizes the intensity and po-
larization anisotropies of the CMB, predictions are done inthe
Fourier space of the 2D sphere, that is, in multipole space. In this

space the statistical covariance matrices between different modes
are particularly simple, and so is the comparison of theory to ob-
servations. It is in this space where theoretical expectations for
other secondary effects present in the CMB are also displayed,
and where the constraints on the cosmological parameters are set
(e.g., Dunkley et al.(2008), Reichardt et al.(2008)). However,
there are two practical issues that tend to complicate this theory
to data comparison: the presence of Cosmic Variance in the
large angular scales (that is, the sample variance due to having
only one single sky to look at) and the coupling of different
Fourier modes whenevernot the entire sky is subject to analysis
(as it happens in practice for current and future CMB and LSS
surveys like ACT (Kosowsky(2003)), SPT (Ruhl et al.(2004)),
DUNE1, SNAP2 etc). These two effects are of particular
relevance in the study of the Integrated Sachs-Wolfe (ISW)
effect (Crittenden & Turok (1996)): the ISW arises in the large
angular scales, and since its frequency dependence is identical
to that of the intrinsic CMB fluctuations, it must be identified
via cross-correlation tests to Large Scale Structure surveys that
are likely to cover only a fraction of the sky.

In this work we generalize the matched filter cross-
correlation method to multipole space in the context of CMB

1 http://www.dune-mission.net/
2 http://snap.lbl.gov/
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studies. We compare it to the standard Angular Cross Power
Spectrum in different scenarios, and show that the former is ei-
ther equivalent or superior to the latter. We also perform this
comparison in Monte Carlo simulations of the ISW effect, with
similar results. The method is developed in Section (2), whereas
a first comparison to the Angular Cross Power Spectrum is given
in Section (3). A detailed analysis of the signal to noise ratio
of ISW cross-correlation measurements is provided in Section
(4), where the matched filter method is again compared to the
Angular Cross Power Spectrum. Finally, in Section (5) we dis-
cuss our results and conclude.

2. The matched filter method

2.1. A brief description

Our first goal is to estimate the level of presence of some known
signalm in some measured data arrays, which is therefore de-
composed ass = t + αm. We shall assume thatt is a Gaussian
vector (which will be regarded asnoise) whose covariance ma-
trix C is known. Given the Gaussian assumption,C completely
characterizest. As shown in, e.g., Górski et al.(1996), the mini-
mization of the quantity

χ2 ≡
∑

i, j

(s− αm)i(C−1)i, j(s− αm) j , (1)

yields the following estimates forα and its formal error:

α̂ =
t tC−1m
mtC−1m

, σ̂2
α =

1
mtC−1m

. (2)

Note that the superscriptt denotestranspose. The difficulty
usually lies in the inversion of the covariance matrix for
long data arrayst and/or for close-to-singular covariance
matrices C. The first scenario was already addressed in
Hernández-Monteagudo et al.(2006), where this techniquewas
applied in separated subsets of data, and then the covariance
among different subsets was computed separately. Here, we
shall also consider the case whereC is singular or close to
singular.

Indeed, the use of the matched filter is very ex-
tended in CMB analyses (e.g., Rubiño-Martı́n et al.(2000),
Hernández-Monteagudo & Rubiño-Martı́n(2004),
Hernández-Monteagudo et al.(2004), Hansen et al.(2005)),
but it has been mostly restricted to real space. In works like
that of Hansen et al.(2005) it was also implemented in Fourier
(multipole) space, but only after approximating the covariance
matrix as diagonal, assumption that we shall avoid here.

2.2. The covariance matrix in multipole space

We will focus our analyses on real signals defined on 2D spheres.
These are usually decomposed on an spherical harmonic basisas
follows:

s(n̂) =
lmax
∑

l=lmin

l
∑

m=−l

al,mYl,m(n̂), (3)

with n̂ denoting a direction on the sky (or a position in the
sphere). Ifs is real, then the multipole coefficients verifyal,−m =

(−1)ma∗l,m, with the symbol ”∗” denoting complex conjugate.
This limits the number of degrees of freedom perl to 2l + 1.

The m = 0 multipole is by definition real, so the 2l remain-
ing degrees of freedom can be assigned to the real and imagi-
nary parts of theal,m multipoles with magnetic number ranging
from m = 1 to m = l. I.e., for a given multipolel, the multipole
arrayal,m will be decomposed into a 2l + 1 dimensioned array
(ul

0, u
l
1, ..., u

l
l, v

l
0, .., v

l
l), whereul

0 ≡ al,0, ul
1, ..., u

l
l contain the real

parts ofal,m=1,l, andvl
1, ..., v

l
l the imaginary ones. Since we will

simultaneously consider all multipolesl ∈ [lmin, lmax], we define
the multipole array

a = (u0, u, v), (4)

where

u0 ≡ (ulmin

0 , u
lmin+1
0 , ..., ulmax

0 ), (5)

u ≡ (ulmin
1 , ..., u

lmin

lmin
, ..., ulmax

1 , ..., u
lmax

lmax
), (6)

and

v ≡ (vlmin
1 , ..., v

lmin

lmin
, ..., vlmax

1 , ..., v
lmax

lmax
). (7)

The dimension ofu and v is given bynl,2 = lmax(lmax +

1)/2 + lmax + 1 − (lmin(lmin − 1) + lmin), whereas the dimen-
sion of u0 is simply nl,1 = lmax− lmin + 1, so the total dimen-
sion of a readsnl = nl,1 + 2 × nl,2. If s(n̂) is an isotropic,
Gaussian distributed signal over thewhole sphere (fsky = 1),
then the correlation matrix of theal,m coefficients is diagonal:
〈al,m(al′,m′ )∗〉 = Clδl,l′δm,m′ . (Note that due to isotropy there is
no dependence onm). Likewise, we have that (C)i, j ≡ 〈aia j〉

is diagonal in such case. This fact makes the inversion of the
covariance matrix in equation (1) trivial. Let us now relax the
assumption on havings(n̂) defined over the full sphere. In an as-
trophysical context, if some parts of the sky are lacking data, i.e.,
if fsky < 1, the covariance matrixC will no longer be diagonal
and for large enoughlmax it will also be singular. A traditional
matrix inversion is likely to either fail or provide inaccurate re-
sults. (Note that the accuracy of the inversion can be testedby
running Monte Carlo simulations and comparing the dispersion
of the recovered ˆα’s with the actual prediction of equation (2)).

In these circumstances, we perform a SVD decomposition of
the covariance matrix,

C = Rt
ΛR, (8)

whereΛ is a diagonal matrix (containing the eigenvalues ofC)
andR is a rotation orthogonal matrix (RtR = I ). Note that since
C is symmetric and positive definite, the eigenvalues should all
be positive3. The SVD decomposition sorts the eigenvectors
according to the magnitude of the eigenvalues, so the first
eigenvectors are those containing more information aboutC,
whereas the last ones are the most likely to introduce numerical
noise. Note that there is always some numerical error in our
estimates of the covariance matrix, since it is computed through
a finite number of Monte Carlo realizations (10,000 in this
work). Therefore, this decomposition provides a way to rotate
the vectora into its principal modes, and permits distinguishing
those having most of the information from those being more
affected by numerical error (which can be safelyprojected
out of the analysis). In practice, we neglected all eigenvectors
whose eigenvalues were smaller that a given fractionǫ of the
first (largest) eigenvalue. (For most cases, the choiceǫ = 10−8

yielded optimal results). The inversion ofC after the SVD
decomposition becomes straightforward, enabling an easy

3 In practice, we find that for dense and close to singular casesof C,
some eigenvalues (of small absolute value) were negative.
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implementation of the matched filter as given by equation (2).
Note that, unlike in Gorski(1994) or Mortlock et al.(2002),we
are not worried in building a new set of orthonormal functions
in the patch of the sky under analysis, nor we attempt to perform
component separation (Bouchet et al.(1999)). In all those works,
the techniques used were in some way close to ours, but their
goals were different.

As we shall see below, we may be interested in applying the
matched filter indifferent l-bins. One can readily find that, given
the outcome of the matched filter in two differentl-bins α̂p and
α̂q, their covariance is given by

(C̃)p,q ≡ 〈α̂pα̂q〉 − 〈α̂p〉〈α̂q〉 =
mt

pC−1
ppCpqC−1

qqmq

(mt
pC−1

ppmp)(mt
qCqqmq)

. (9)

Here,Cpp andCqq denote the covariance matrices of the noise
t for l-bins p andq, respectively, whereasCpq is the covariance
matrix for the noise in differentl bins4: Cpq = 〈tptq〉. For a set
of l-bins we shall obtain a vector of measured ˆαp-s, whose com-
binedχ2 will be given by

χ2 [α̂] =
∑

p,q

α̂p(C̃−1)p,qα̂q (10)

An overall detection level for a given set ofl-bins and ˆα-s will
be provided by thisχ2 statistic. Another statistic providing the
level of detection is the variance weighted average for the ˆαp’s,
here defined aŝβ:

β̂ ≡

∑

p

(

α̂p/σ̂
2
αp

)

∑

p 1/σ̂2
αp

. (11)

We will show below that, in ISW studies, the distribution of
the α̂p-s will be very close to Gaussian, and therefore Gaussian
will also be the distribution of̂β. (Note that the matched filter
method, as defined from a minimization of the statistic givenin
equation (1), is only optimal if the noise is actually Gaussian
distributed). The diagonal elements of the matrixC̃ can be com-
puted via equation (9) or via numerical simulations: the agree-
ment is very good (down to a few percent, compatible to the
number of realizations). However, this agreement is not satisfac-
tory for the non-diagonal elements when working under aggres-
sive masks: in this case (and also when computing the dispersion
of the statisticβ̂) we shall use the results obtained from 10,000
Monte Carlo simulations. This assures a fair estimation of the
correlation between differentαp estimates and hence an accu-
rate estimation of the overallχ2 statistic.

3. Comparison to the Angular Cross Power
Spectrum

In this Section we shall compare the matched filter (as defined
above) to the Angular Cross Power Spectrum (hereafter ACPS)
method. This comparison will be made within the model moti-
vated in the previous Section,

s= t + αm, (12)

4 Note that, according to our notation, (a)i = ai denotes thei-th com-
ponent of the arraya, whereap denotes thep-th array of some larger
group of arrays. Same for matrices: (C)i, j denotes the array element in
thei-th row andj-th column, not to be confused withCpq which denotes
the covariance matrix computed from arraysap andaq.

and will be restricted to the large angular scales. This choice
is motivated by the study of the Integrated Sachs-Wolfe (ISW)
effect that follows in subsequent Sections of the paper, and that
is typically restricted tol < 50. When studying small scales, one
has to be careful with the SVD decomposition, which might fail
for too large matrices. The matched filter in real space is, inmost
of those occasions, more adequate.

The Angular Cross Power Spectrum (hereafter ACPS) can be
viewed as a simplification of the matched filter presented here,
where the covariance matrix is approximated by a diagonal ma-
trix with identical non zero elements. Following the notation of
Section 2.1, the estimate ofα provided by this method is given
by

α̂ACPS =

∑

l,m ml,m(sl,m)∗
∑

l,m |ml,m|
2
, (13)

wheresl,m andml,m are the Fourier multipoles of the signalss
andm, respectively. Note that we shall refer to these signals in
Fourier space, and thus the vectorssandm will contain the com-
ponents of thesl,m andml,m multipoles as explained in Section
2.2.

In order to compare this method to the matched filter,
we have to definet and m and build s according to equa-
tion (12). Throughout this paper, we shall not use real data
but only Gaussian realizations generated from a given cosmo-
logical model. Fort, we choose CMB realizations for which
the ISW contribution has been subtracted. I.e., we simulate
the Fourier multipolestl,m-s from an angular power spectrum
computed using a modified version of the CMBFAST code
(Seljak & Zaldarriaga(1996)) with a cosmological parameter set
equal to that given in Spergel et al.(2007):Ωc = 0.1994,ΩΛ =
0.759,Ωb = 0.0416,ns = 0.958,σ8 = 0.75 andτ = 0.089. This
will be the reference cosmological model hereafter. The template
m is a Gaussian realization of a projection of the linear density
field as computed from the matter power spectrum obtained with
the same cosmological parameters. This density field is placed
within a shell centered atz= 0.8 with a total width of∆z∼ 0.8,
i.e., the redshift range where ISW contribution is maximal (this
will be addressed in detail in Section (4.1)). To each realiza-
tion of t we added the componentαm (for a given choice ofα,
α = 10−3), and applied the two methods. All maps were con-
volved with a Gaussian PSF of FWHM= 2◦. Let us remark that
by this exercise we do not attempt to simulate ISW observations,
but simply test the two methods in the context of equation (12).

In this comparison, we applied both the matched filter and
the ACPS under two different masks: the first one assumes full
sky coverage (fsky = 1), whereas the second one adopts the
mask provided by the fourth data release of Sloan Digital Sky
Survey (SDSS-DR4, Eisenstein et al.(2001)) combined with the
Kp0 mask used in WMAP data analyses, (Hinshaw et al.(2003);
see left panel of Fig. (1)). In Table (1) we display the results
after applying both methods to an ensemble of 10,000 simula-
tions. We consider two scenarios:(i) a uniquel-bin limited to
lmax = 15, l ∈ [2, 15], and(ii) a set of 16l-bins, ranging from
lmin = 2 to lmax = 50. We always find that the estimates of
α̃ are unbiased for both methods5, and that the matched filter
provides an estimate of the dispersion of ˜α (see equation (2))
that actually agrees with the value recovered from the Monte

5 A mask in real space involves a convolution of differentα values
in Fourier space, which may generate a bias ifα is not constant versus
l.The case considered in this Section observes a constantα for every
multipole, but in subsequent sections this will not be the case and a bias
will appear.
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Fig. 1. Three different masks used in this paper:Left: Mask corresponding to the product of the SDSS-DR4 mask times the Kp0
mask used in Hinshaw et al.(2003)Middle: Mask assigned to the future PAU-BAO galaxy survey times theKp0 mask.Right: Mask
of the NVSS times the Kp0 mask.

lmax= 15 lmax = 50
MF ACPS MF ACPS
〈α̂〉/σα̂ 〈χ2

N〉 〈β̂〉/σβ̂ 〈χ2
N〉 〈β̂〉/σβ̂

All sky 25.70 16.50 2,312 192 2,316 192
SDSS DR4 34.68 6.44 271 63 201 55

Table 1. Under two different masks (SDSS-DR4 mask and all sky), we compare the performance of the matched fil-
ter (MF) and the ACPS when trying to estimate the amplitudeα from a data sets = t + αm given s, m and
the power spectrum of the Gaussian noiset, which is taken from a CMB power spectrum. In case(i) we con-
sider a single l-bin containing all multipoles in l ∈ [2, 15], whereas in case(ii) we consider 16 l-bins: l ∈

[2, 3], [4, 5], [6, 8], [9,14], [15, 25], [26,28], [29, 31], [32,34], [35, 37], [38,40], [41, 43], [44,45], [46, 47], [48,49] and [50, 51]. We
are quoting the results for the ˆα statistic in case(i), and for theχ2 andβ̂ statistics in case(ii) . Note that, in this case, theχ2 statistic
has been normalized by the number of degrees of freedom, i.e., the number ofl-bins.

Carlo simulations. In case(i) we obtain that the matched fil-
ter works better than the ACPS under the two masks consid-
ered. Note that the noise signal in these analyses corresponds
to the CMB (after having the ISW component subtracted), and
that therefore the noise power spectrum scales as〈|tl,m|2〉 ∝ l−2.
On the other hand, the angular power spectrum of our density
template scales roughly as〈|ml,m|

2〉 ∝ const at l < 50. This
means that for the low-l range considered in(i), the matched fil-
ter is going to weight more the high-l end multipoles: this effect
makes this method superior to the ACPS (which weights all mul-
tipoles equally) in the all sky case. For the SDSS-DR4 mask, the
matched filter also accounts for the coupling among mutipoles,
and this enlarges the difference between the two methods. One
obvious question that arises is: how can the matched filter per-
form better under the SDSS-DR4 mask than in the all sky case?
The lowl modes aredegenerateunder the SDSS-DR4 mask, that
is, they are not orthonormal as forfsky = 1 and are decomposed
onto other modes corresponding to smaller angular scales. I.e.,
the noisiest (lowl) modes under the full sky mask are noteigen-
modesanymore and they are partially dropped from the analysis
(the matched filter method handles 176 different modes under
the SDSS-DR4 mask, as opposed to 252 modes iffsky = 1).
This means that under the SDSS-DR4 mask we have a different
statistic (since it handles a different number of degrees of free-
dom) that is more concentrated in angular scales where the noise
amplitude is smaller. This provides this new statistic a better S/N
ratio.

In case(ii) and fsky= 1, it turns out that, given the scaling of
the power spectra ofm andt, most of the S/N ratio is in the few
higher l bins, centered at multipolesl = 45, 46, ..., 50. Indeed,
these last multipoles are dominating the sums in equation (13).
For these few high-l bins carrying most of the information, the
change of the noise properties is very small, and therefore each

of these bins is roughly equivalent to the rest. The weighting ap-
plied by the matched filter introduces very little difference, and
both methods perform similarly, yielding almost identicalval-
ues ofχ2. But again, under the SDSS-DR4 mask the coupling
among multipoles is observed by the matched filter, and this in-
troduces a difference between the two methods. However, it is
clear that the matched filter proves comparatively better when
when a singlel-bin is considered, (case(i)).

4. Application to ISW Studies

The Integrated Sachs Wolfe (ISW) effect arises as a consequence
of a late time variation of the gravitational potentials in the
large scales. If there is a net change in the depth of the poten-
tial wells while they are being crossed by CMB photons, then
this radiation field will experience a gravitational red/blueshift.
Crittenden & Turok (1996) pointed out that gravitational poten-
tials should be traced by the Large Scale Structure (LSS), and
proposed the cross-correlation of CMB maps to LSS surveys to
unveil this signal. However, in most plausible models the time
variation of the potentials occurs at late times (or low redshifts,
z< 2), and the angle subtended by the linear scales for which the
ISW effect is important is rather large (θ > 3− 5◦). This means
that there will be room for relativelyfew independent ISW spots
on the sky, i.e., this effect will be considerably limited by Cosmic
Variance. Further, it is in this large angular range where the
Galactic emission is more important, and errors in its subtraction
might be more relevant. For this reason, it becomes necessary the
use of masks that project out regions where this galactic contam-
ination is large and cannot be removed accurately. Furthermore,
when doing a cross-correlation analysis between CMB maps and
LSS maps, the latter may not likely cover the whole sky, but also
be restricted to a given limited region. In this context, it becomes
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Fig. 2. (a) The dot-dashed line displays the cross power spec-
trum of the projected density field through a shell centered at
z= 0.8 (dashed line) times the ISW component (thin solid line).
The thick solid line displays the total CMB angular power spec-
trum. (b) Normalized signal to noise ratio (as given by equation
(21)) versus multipolel: the solid line corresponds to a density
probe in a shell centered atz = 0.8, whereas for the dotted and
dashed lines the central redshifts are 0.4 and 1.3, respectively. In
both panels, the width of each density shell is equal to 20% of
the comoving distance to the central shell redshift.

particularly important the implementation of as sensitiveas pos-
sible cross-correlation tools that are able to handle optimally the
limitations imposed by the sky masks.

4.1. The S/N ratio in ISW Studies

In this Subsection we briefly describe the ISW – LSS cross-
correlation in the frame of the WMAP3 cosmogony. Unlike
Douspis et al.(2008), we refrain from addressing the dependence
of this correlation under different Dark Energy models. We con-
centrate on a single LSS survey, and search for its optimal red-
shift in terms of ISW detection. We study the amount of S/N
that arises in those cases, and the angular scales where it isgen-
erated. This sets the scenario for our cross-correlation method
comparison.

The ISW – LSS cross correlation arises from the fact that
both LSS probes and gravitational potentials are tracing the un-
derlying matter density field. The expression for the temperature
anisotropies introduced by a gravitational blue/redshift reads
(Sachs & Wolfe(1967), Martinez-Gonzalez et al.(1990))
(

δT
T0

)

IS W

(n̂) =
−2
c3

∫

dt φ̇(n̂, t). (14)

The symbolφ̇ denotes the time derivative of the gravitational
potentialφ. In linear theory, this expression can be rewritten as
(e.g., Cooray(2002))

aIS W
l,m = (−i)l(4π)

∫

dk
(2π)3

Y⋆l,m(k̂) ×

∫

dr j l(kr)
−3ΩmH2

0

k2

d(D/a)
dr

δk . (15)

The multipole coefficientsaIS W
l,m are related to the ISW temper-

ature anisotropies by equation (3). In this equation,r denotes
comoving distance,k comoving wavevector,j l(x) denotes the
spherical Bessel function of orderl, H0 is the Hubble parame-
ter,a(r) is the scale factor andD(r) is the standard linear growth
factor. The 3D Fourier mode of the density contrast is denoted
by δk . Note that for an Einstein-de Sitter Universe (D = a) the
whole integral vanish. In a similar way, the multipole coefficients
for the angular number density of a matter density probe (which
will be taken to be galaxies in what follows) read

ag
l,m = (−i)l(4π)

∫

dk
(2π)3

Y⋆l,m(k̂) ×

∫

dr j l(kr) r2 ng(r)b(r, k) D(r) δk , (16)

with ng(r) the average number density of galaxies. The bias func-
tion b(r, k) accounts for usual probes of the LSS actually being
biased tracers of the underlying mass distribution (b > 1). This
expression neglects the presence of shot (Poisson) noise inthe
galaxy number. Note that the coordinater here is being taking
as a look-back time coordinate, equivalent to conformal time or
redshift (z). For the sake of clarity, in what follows we shall usez
as look-back time coordinate. We have that a given galaxy survey
will probe the redshift range given by the productΠ(z) ≡ b Ng,
with Ng(z) ≡ r2(z) ng(z)D(z). Note that, at this stage, we are ig-
noring thek dependence of the bias functionb. For simplicity,
we shall rewrite equations (15,16) as

aIS W,g
l,m = (−i)l(4π)

∫

dk
(2π)3

Y⋆l,m(k̂) × ∆IS W,g
l (k, z), (17)

with the∆IS W,g
l (k, z) being referred to as transfer functions of the

ISW and the galaxy fields, respectively. In real space, the cross
correlation function between ISW temperature anisotropies and
LSS probes reads

CIS W⊗g(θ) =
∑

l

2l + 1
4π

CIS W⊗g
l Pl(cosθ), (18)

with CIS W⊗g
l the cross power spectrum,

CIS W⊗g
l =

(

2
π

)
∫

k2dk∆IS W
l ∆

g
l Pm(k), (19)

andPm(k) is the linear matter power spectrum. The symbol ”⊗”
denotes cross correlation. The theory makes actual predictions
on this cross-power spectrum, and its covariance matrix is diag-
onal if fsky = 1, and in general is simpler than that of the corre-
lation function, (see the detailed analysis of Cabré et al.(2007)).
As an example, we show a cross power spectrum (dot-dashed
line) in the top panel of Fig. (2). The total CMB contribution
(for the chosenΛCDM model) is given by the thick solid line,
and its ISW component is displayed by the thin solid line. The
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angular power spectrum corresponding to the projection of the
galaxy field whose window functionΠ(z) is centered atz = 0.8
is displayed by the dashed line. The total width in redshift space
is roughly∆z≈ 0.80, so it is a thick shell. The cross power spec-
trum peaks at scales at aroundl ∼ 30− 50, but its amplitude at
l ∼ 200 is roughly equal to that atl ∼ 2. This might suggest that
the there is so much cross-correlation signal at large (l < 10) as
in small (l > 100) scales, but indeed most (90%) of the signal
comes from the large scales (l < 40) if fsky= 1, as we will show
below. Note that the amplitude of the density power spectrum
(and hence the cross power spectrum) are taken arbitrary. The
signal-to-noise (S/N) ratio for the measurement of a given mul-
tipole l of the cross power spectrum can be computed once one
takes into account that theal,0 multipoles are real defined, and
that the real and complex components of theal,m (m > 0) mul-
tipoles, besides being equivalent and independent, must satisfy
the constraint for the total amplitude〈|al,m|

2〉 = Cl . We obtain

(S
N

)2

l
=

fsky

(

CIS W⊗g
l

)2
(l + 1)2

[

CCMB
l Cg

l + (CIS W⊗g
l )2

]

(l/2+ 1)
. (20)

In this equation,CCMB
l is the CMB angular power spectrum and

Cg
l is the LSS probe auto power spectrum. The quantity

sl ≡

√

√

∑l′=l
l′=2 (S/N)2

l′
∑l′=lmax

l′=2 (S/N)2
l′

(21)

is displayed versusl in the bottom panel of Fig. (2). I.e., this
figure shows the ratio of the signal to noise ratio contained be-
low some givenl. The thick solid line corresponds to the galaxy
survey centered atz = 0.8 mentioned above, whereas the dot-
ted line for a galaxy survey with a window function centered at
z= 0.4. The dashed line corresponds to a case where the galaxy
survey is probed atz = 1.3. In all cases we are taking a shell
width equal to 20% of the comoving distance to the peak of the
window functionΠ, and we are assuming thatfsky = 1. We see
that regardless whereΠ(z) peaks,practically half of the total sig-
nal is contained at multipoles l< 10, whereas its 90% fraction
is typically contained at l< 40− 50. (Had we considered thin-
ner shells -width equal to 2% of the comoving distance-, then
all those shells belowz = 0.8 would have still shown a pat-
tern very close to that given by the solid line). This suggests
that by dropping all multipoles abovel = 50 (or by neglecting
scales smaller thanθ ≈ 3◦– 4◦) one should recover practically
the same ISW detection significance. This sets a useful con-
sistency check, given the number of other physical phenomena
(Rees-Sciama effect (Rees & Sciama(1968)), kinetic Sunyaev-
Zel’dovich effect (Sunyaev & Zeldovich(1972)), intrinsic source
emission, etc) that arise at smaller angular scales and that, a pri-
ori, correlate with the spatial position of LSS probes.

In Fig. (3) we show how the total signal to noise ratio de-
pends on the central redshift for the galaxy survey window func-
tionΠ(z). For the thick solid line, the width is taken to be roughly
20% of the comoving distance to the central redshift. In redshift
space, it implies a width of∆z≈ 0.7 for central redshiftz= 0.3,
∆z ≈ 0.84 for central redshiftz = 0.8, and∆z ≈ 0.99 for central
redshiftz= 1.3. The thin solid line observes a width of only 2%
the comoving distance to the central redshift, and this translates
into ∆z ≈ 0.07, 0.08 and 0.1 for central redshiftsz = 0.3, 0.8
and 1.3 respectively. We should obtain the larger detection lev-
els for thick shells (large∆z’s) andz = 0.8, and this motivates

Fig. 3. Total signal to noise ratio of the cross power spectrum
detection as given by the numerator of equation (21) with re-
spect to the central redshift of the density probe shell. Thethick
solid line displays the case when the shell containing the density
probes has a width equal to 20% of the comoving distance to the
shell. For the thin solid line, this width is only 2%.

our choice of a thick survey centered at this redshift6. Note that
our assumption that the bias is independent of scale might not be
accurate, but it has less impact in the large scales (lowls) where
most of the effect is coming from. We do not expect significant
changes after introducing a scale dependent bias in our galaxy
survey description, although we shall address this issue indetail
when applying our method to real CMB and LSS data. Note that,
a priori, this method can be applied the same on multiple redshift
shells, and is affected in exactly the same way than the ACPS by
realistic aspects such as the redshift or scale dependence of the
bias, survey incompleteness, etc.

We next compare the performance of the matched filter to
that of the ACPS. We use one Gaussian realization of our chosen
density shell, and compute a single Gaussian realization ofan
ISW map compatible to it. Ifag

l,m are the Fourier multipoles of
our density 2D template, then they can be related to those of a
compatibleISW map via (e.g., Cabré et al.(2007))

aIS W
l,m = αla

g
l,m+ βl,m =

CIS W⊗g
l

Cg
l

ag
l,m+ βl,m. (22)

The Gaussian signalβl,m is the part of the ISW component that
is uncorrelated to the LSS 2D template, verifying〈|βl,m|

2〉 =

CIS W
l −(CIS W⊗g

l )2/Cg
l , whereCg

l denotes the angular power spec-
trum of the LSS probe. Note that this is a correct way to ex-
press the ISW field in terms of the galaxy density field as long
as both fields are Gaussian and their are completely determined
by the first and second order momenta. The ratioCIS W⊗g

l /Cg
l is

explicitly identified withαl , which is precisely the output of our
matched filter technique. According to the theory,αl shows a
strong dependence onl, and therefore our method must be ap-
plied in separatel-bins. Gaussian simulations of the CMB were
built from the addition of ourfixed ISW template plus realiza-
tions of a CMB angular power spectrum for which the ISW
component had been subtracted, just as for thet component

6 It has been noted elsewhere (e.g. Afshordi(2004)) that by combin-
ing different LSS surveys at different redshifts one can obtain larger
S/N ratios. We shall avoid that discussion here and focus our method
comparison on one single survey.
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in Section (3). The realizations from the modified CMB angu-
lar power spectrum were computed upto a maximum multipole
l = 160, and convolved with a Gaussian beam of 2◦of FWHM.
The fixed ISW and the LSS maps were also convolved with the
same PSF, and all maps were produced under the HEALPix7

(Górski et al.(2005)) resolution parameterNside= 64.

4.2. Performance under Different Masks

The simulated maps were cross-correlated to the projected
density map (hereafter denoted asm) with both the ACPS
and the matched filter methods, according to the multipole
decomposition given in Section 2.2. Their performance was
compared under three different masks shown in Fig. (1): the
left panel shows the mask corresponding to the sky cover-
age of the fourth data release of the Sloan Digital Sky Survey
(SDSS-DR4, Eisenstein et al.(2001)). This mask was multi-
plied by the Kp0 mask used in the analysis of WMAP data
(Hinshaw et al.(2003)), and therefore the combined mask ob-
serves a bit less than 10% of the total sky. In the middle panelwe
consider the fraction of the sky covered by the upcoming survey
PAU-BAO 8. This survey is planned to cover∼ 10,000 square
degrees of the celestial northern hemisphere, and in this work
we have assumed that it is limited to the regionb > 20◦ outside
the Kp0 mask, in such a way thatfsky ≃ 0.26. Finally, the right
hand side panel displays the product of the Kp0 mask with the
mask corresponding to the NVSS survey (Condon et al.(1998)).
In this case,fsky≃ 0.65.

A total of 10,000 simulations were run in order to perform
the method comparison, and results are given in Table (2). The
sensitivity of both methods is measured by theχ2 and theβ̂
statistics for different choices of the maximum multipolelmax
considered in the analyses. We see that, unlike in the previous
Section (where the matched filter was in general significantly
more sensitive under the data models = t + αm), in this ISW
context both filters perform very similarly. There seems to be
however a slighter better sensitivity of the matched filter under
the most aggressive masks, but the difference is small (at least
in terms of the output of theχ2 andβ̂ statistics). We remark that
the ACPS is the Legendre transform of the angular cross cor-
relation function, and that both methods should, a priori, show
similar sensitivities. Of the two statistics considered inTable (2),
β̂ provides the largest significance of the ISW detection (its dis-
tribution is very close to Gaussian, and the number of sigmas
yield smallerchance probabilities), but is remarkable that for
both of them this significance finds a maximum atl ∼ 5−40, and
then starts dropping again.According to this result, by merely
observing multipoles below l= 40 we should recover practi-
cally all the ISW-LSS cross correlation significance. This points
in the direction of oursl estimates in Subsection (4.1), which
predicted most of the S/N ratio to be confined at lowl-s, and
should prevent confusion with other secondary effects (giving
rise to correlations of other nature such as Rees-Sciama effect,
kinetic Sunyaev-Zel’dovich effect, etc).

One advantage of the correlation methods implemented here
is that they conduct analyses inseparateranges of angular
scales, enabling a direct comparison with theoretical predictions.
This is explicitly shown in Figs. (4) and (5). In all panels ofFig.
(4), solid lines display the theoretical prediction for thecorrela-
tion coefficientαl = CIS W⊗g

l /Cg
l versus multipolel. Our choice

for the density and ISW templates is such that full sky analyses

7 http://www.healpix.jpl.nasa.gov
8 http://www.ice.csic.es/research/PAU/PAU-welcome.html

should yieldαl estimatesexactlyon the solid lines. Filled circles
and triangles display average estimates ofαl for the matched
filter and the ACPS methods, respectively. Error bars denote
the rms scatter for each of them. Let us first note that, accord-
ing to the error bars displayed in Fig. (4) , most of the infor-
mation seems again to be restricted to the large angular scales
(l < 30− 40), as it has been quoted above.

Let us now address the issue of the impact of the mask on
the methods’ output. A clear low bias can be seen in the es-
timates ofαl for low l-s, specially under the SDSS-DR4 and
PAU-BAO masks. This is a direct effect of the mask: a multi-
plication of the full sky map by the actual mask in real space
translates into a convolution in Fourier space, which involves a
wider range of multipoles the smaller the mask is. Therefore,
theαl estimates for the SDSS-DR4 mask will be the result of an
average or smoothingof theαl values in a wide space ofl mul-
tipoles. Since at lowl-s, the values ofαl are falling steeply, the
convolution will provide a value that is smaller than the actual
theoretical value, as it is displayed in the left panel of Fig. (4).

At the same time, the mask introduces another bias in the
large l range, for which the actual recovered values ofαl are
above the theoretical expectation. This is showing the factthat
the aliasing introduced by the mask is shifting some large scale
(low l) power into the small (largel) angular range. We at-
tempted to quantify this aliasing by performing the following
exercise: we generated one ISW map by using multipoles re-
stricted to the rangel ∈ [2, 10]. We multiplied this map by the
SDSS-DR4 mask used in this work, and computed the power
spectrum of the resulting map. We measured the aliased vari-
ance contained above somelmin > 10 by usingσ2[lmin] =
∑

lmin
(2l + 1)/(4π)Cl. We found that about 30% of the total rms9

was contained abovelmin = 30. I.e., the ISW power aliasing from
large to small scales is indeed significant. Let us remark as well
that this effect is more present for the matched filterαl estimates,
as we shall discuss next.

A direct visual comparison of the two methods can be found
in Fig. (5), where the S/N ratio for each multipole bin is shown.
The matched filter (solid circles) performs more accuratelythan
the ACPS method (filled triangles), specially under the SDSS-
DR4 and PAU-BAO masks, although this has a limited impact on
the final detection significance quoted by theχ2 andβ̂ statistics
(see next Section).

5. Discussion and Conclusions

In order to assess the sensitivity of the two methods to the ISW,
we have defined two different statistics: theχ2 statistic uses a
quadratic combination of the method’s output (in a similar way
as in Tegmark(1997)), and thêβ statistic, which instead is lin-
ear in the ˆαl ’s and for our purposes is Gaussian distributed. Both
statistics pick up the information of the cross-correlation in dif-
ferent ways. Theχ2 statistic is more sensitive to the presence of
ISW at the very large angular scales only, and rapidly gets de-
graded as smaller angular scales are considered, i.e., it seems to
be particularly affected by the inclusion of modes that have a low
S/N ratio. On the other hand, thêβ statistic is more sensitive to
the actual signal to noise ratio even at scales where such ratio is
below unity, and, as mentioned above, seems to be more efficient
in terms of detection of the ISW-LSS cross-correlation.

This connects to the multipole or range where most of the
correlation is arising. Of the two methods, the matched filter

9 The total rms was computed by takinglmin = 2, and was less than
10% off the estimate obtained from the map in real space.

http://www.healpix.jpl.nasa.gov
http://www.ice.csic.es/research/PAU/PAU-welcome.html
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lmax = 5 lmax= 14 lmax= 31 lmax = 40 lmax = 51
MF ACPS MF ACPS MF ACPS MF ACPS MF ACPS

SDSS-DR4
〈χ2

N〉 1.79 1.31 2.04 1.56 1.61 1.48 1.46 1.40 1.33 1.30
〈β̂〉/σβ̂ 1.24 0.65 1.87 1.35 1.74 1.70 1.57 1.61 1.46 1.22

PAU-BAO
〈χ2

N〉 2.93 2.02 2.94 2.45 2.12 2.29 1.87 2.02 1.61 1.74
〈β̂〉/σβ̂ 1.69 1.28 2.48 2.22 1.93 2.33 1.90 2.33 1.69 1.98

NVSS 〈χ2
N〉 6.27 7.03 5.30 6.04 4.15 4.71 3.47 3.91 2.75 3.06

〈β̂〉/σβ̂ 3.24 3.37 3.51 3.70 3.44 3.62 3.43 3.56 3.19 3.19

Table 2. Comparison of the matched filter (MF) to the ACPS in the context of ISW studies. We quan-
tify the sensitivity of each method by two statistics:χ2 (which has been normalized by the num-
ber of degrees of freedom) and̂β, for different choices of lmax. In total, we considered 21l-bins: l ∈

[2,3],[4,5],[6,8],[9,14],[15,25],[26,28],[29,31],[32,34],[35,37],[38,40],[41,43],[44,45],[46,47],[48,49],[50,51],[52,53],[54,55],[56,57],[58,59]
and [60,61].

Fig. 4. Recovered values ofαl = CIS W⊗g
l /Cg

l with the matched filter (filled circles) and the ACPS (filled triangles) under the three
masks considered:(a) SDSS-DR4× Kp0, (b) PAU-BAO × Kp0 and(c) NVSS× Kp0.

seems to be more confined inl-space than the ACPS when look-
ing at the output of thêβ statistic: it quotes the maximum signifi-
cance atlmax= 14 and always drops at largerlmax-s, whereas the
ACPS seems to peak at aroundlmax = 30− 40. In this case, the
exception is the NVSS-like survey, for whichβ̂ yields the max-
imum detection significance atlmax = 14. This different behav-
ior suggests that aliasing induced by SDSS-DR4 and PAU-BAO
masks is indeed shifting some S/N into the smaller scales (larger
l-s), but this effect is not perceptible beyondlmax= 30−40. This
is also visible in Figs.(4 and 5): under the most aggressive masks,
there is less information in the firstl-bins (l ∈ [2, 3], [4, 5]),
whereas for the NVSS-like survey these contain the largest val-
ues of the S/N ratio.

These two figures also show that, in almost everyl-bin, the
matched filterαl estimates seem to be more accurate than the
ACPS method, and that, at the same time, they seem to be more
affected by aliasing. These two facts are connected: the matched
filter tends to pick up the signal from those modes having largest
S/N ratio within eachl-bin. For smallfsky and moderately high
l-bins, these modes are actually aliased components of lowl
modes whose power has been shifted by the mask into smaller
scales. This makes the matched filter provide more accurateαl

values in these highl-bins, but these estimates are actually highly
correlated to those found at lowerl-s. This limits the amount of
information that high-l bins actually add, and partially explains

the high bias of theαl estimates at largel-s in the left panel of
Fig.(4).

In this work, we have generalized the implementation of the
matched filter into the Fourier space of the 2D sphere, and ap-
plied it in the context of CMB analyses and ISW studies. The
matched filter provides a tool to estimate the level of presence
of some templatem in some measured signals containing a
noise componentt. This tool is optimized for the case oft be-
ing isotropic and Gaussian distributed, and hence is particularly
suited for cross-correlation tests where the CMB is the back-
ground (noise) signal. In Fourier (or multipole) space, thecorre-
lation properties of the CMB are particularly simple (specially,
but not only, in the full sky casefsky = 1). For fsky < 1, the
covariance matrix of the CMB multipoles can be inverted via
a SVD approach: this permits simultaneously identifying those
Fourier modes containing more information and dropping those
other modes that introduce numerical error. After all modeshave
been sorted in terms of their S/N ratio, the matched filter al-
gorithm weights them accordingly in order to produce an op-
timal (minimum variance) output for the cross-correlationtest.
We have compared this method with the standard Angular Cross
Band Power Spectrum (ACPS), and found the the matched filter
to be either superior or equivalent to the ACPS.

In the context of ISW analyses, the matched filter provides
estimates of the level of cross-correlation of CMB maps with
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Fig. 5.Recovered signal to noise ratio for each multipole bin with the matched filter (filled circles) and the ACPS (filled triangles),
under the three masks considered in Fig. (4).

LSS probes at separate multipole ranges, and this enables a di-
rect and clean comparison to theoretical predictions . Whenap-
plying both the matched filter and the ACPS methods to three
mock surveys having distinct values offsky, we find that both
methods perform similarly (the matched filter is slightly more
sensitive under aggressive masks, the ACPS more accurate un-
der the NVSS mask). The masks introduce some power aliasing
from large into small angular scales, but this does not prevent
most of the S/N ratio of the ISW-LSS cross correlation from
being confined into the large angular scales (l < 40). This l-
confinement may result particularly useful when distinguishing
this effect from other secondary anisotropies that, while tracing
the LSS distribution, arise at smaller angular scales.

Natural extensions of this work involve large angle compo-
nent separation in future CMB maps when tracers or templates
for the signal to be distinguished are available, such as galactic
or extragalactic radio, synchrotron or dust maps, large scale 1/f
noise component, local kSZ or tSZ contributions, etc.
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