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ABSTRACT

Various observations have showed that the hot atmosphigetaay clusters are magnetized.
However, our understanding of the origin of these magnetidgi their implications on struc-
ture formation and their interplay with the dynamics of thester atmosphere, especially in
the centers of galaxy clusters is still very limited. In pregttion to the upcoming new gener-
ation of radio telescopes (like EVLA, LWA, LOFAR and SKA), adpe effort is being made
to learn more about cosmological magnetic fields from theeplagional perspective. Here
we present the implementation of magneto hydrodynamichencbsmological SPH code
GADGET (Springel et al. 2001; Springel 2005). We discussitails of the implementation
and various schemes to suppress numerical instabilitieelss regularization schemes, in
the context of cosmological simulations. The performarfdd® SPH MHD code is demon-
strated in various one and two dimensional test problemghwhe performed if a fully, three
dimensional setup to test the code under realistic circamests. Comparing with solutions
obtained with ATHENA|(Stone et al. 2008), we find excellemntegnent with our SPH MHD
implementation. Finally we apply our SPH MHD implementatto forming galaxy clusters
within a large, cosmological box. Performing a resolutitrdy we demonstrate the robust-
ness of the predicted shape of the magnetic field profileslaxg&lusters, which is in good
agreement with previous studies.

Key words: (magnetohydrodynamics)MHD - magnetic fields - methods: eniral - galax-
ies: clusters

1 INTRODUCTION based on quite different numerical techniques they showdgoo
agreement in the predicted properties of the magnetic fields
galaxy clusters. When radiative cooling is included, sgramplifi-
cation of the magnetic fields inside the cool-core regionasgters
is found (Dubois & Teyssier 2008), in good agreement withvigre
ous work (Dolag 2000). Cosmological, magneto-hydrodymcaini
simulations were also performed using finite-volume andéfini
difference methods. Such simulation are used to eitheoviol
primordial magnetic field (Li et al. 2008) or the creation ohgn
netic field in shocks through the so-called Biermann battdry
fect (Kulsrud etal. 1997, Ryu etial. 1998), on which a subse-
guent turbulent dynamo may operate. The latter predict ei&gn
field strength in filaments with somewhat higher values (seg
Sigl et al. 2004) than predicted by simulations which folltve
evolution of a primordial magnetic seed field, but in linetwitre-
dictions of magnetic field values from turbulence (Ryu €28D8).
Therefore further investigations are needed to clarifystinecture,
evolution and origin of magnetic fields in the largest stwes of
the Universe, their observational signatures as well as ifer-
play with other processes acting in galaxy clusters and ahgel
scale structure.

Magnetic fields have been detected in galaxy clusters by @l
servations, sofar via the Faraday Rotation Signal of thermtired
cluster atmosphere towards polarized radio sources in lointhe
clusters (sez Carilli & Taylor 2002; Govoni & Fergtti 200z, fe-
cent reviews) and from diffuse synchrotron emission of thus-c
ter atmosphere (see Govoni & Feretti 2004; Ferrari et al8 %00
recent reviews). However, our understanding of their arigheir
implications on structure formation and their interplaytwthe dy-
namics of the cluster atmosphere, especially in the ceofalsis-
ters is still very limited.

In preparation to the upcoming new generation of radio tele-
scopes (like EVLA, LWA, LOFAR and SKA), a huge effort is
being made to learn more about cosmological magnetic fields
from the observational as well as from a theoretical perspec
tive. Non-radiative simulations of galaxy clusters witliasmo-
logical environment which follow the evolution of a primaatl
magnetic seed field have been performed using Smooth-leartic
Hydrodynamics (SPH) codes (Dolag etlal. 1999, 2002, 12005) as
well as Adaptive Mesh Refinement (AMR) codes (Briiggen et al.

2005;|Dubois & Teyssier 2008). Although these simulatiors a
The majority of the complexity of galaxy clusters comes from

their hierarchical build up within the large-scale struetwf the
* E-mail: kdolag@mpa-garching.mpg.de Universe. In order to study their formation it is necesstrypllow
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a large volume of the Universe. However, one must also d@scri
cosmic structures down to relatively small scales, thusisipg 5
to 6 orders of magnitudes in size. The complexity of the elust
atmosphere reflects the infall of thousands of smaller ¢bjacd
their subsequent destruction or survival within the clugtgential.
Being the source of shocks and turbulence, these proceissetiyd
act on the magnetic field causing re-distribution and ancgliion.
Therefore realistic modelling of these processes crljic#pends
on the ability of the simulation to resolve and follow cottgchis
dynamics in galaxy clusters.

Here we present the implementation of magneto hydrody-
namics in the cosmological SPH code GADGET (Springel et al.
2001;| Springel 2005) allowing to explore the full size and dy
namical range of up-to-date cosmological simulations. G&
also allows us to turn on the treatment of many additionalsphy
ical processes which are of interest for structure fornmagod
make interesting links with the treatment of magnetic fieflols
future studies. This includes thermal conduction (Jultseédal.
2004; | Dolag et all_2004), physical viscosity (Sijacki & Syl
2006), cooling and star-formation_(Springel & HernguistO2))
detailed modelling of the stellar population and chemicaich-
ment (Tornatore et él. 2004, 2007) and a self consisterthte of
cosmic raysl(EnRlin et al. 2007; Pfrommer et al. 2007). ThelMH
implementation presented here is fully compatible withth#se
extensions, but here we want to focus on non-radiative sitiouls.
This is to avoid the increased complexity and the complatateer-
play of all these additional processes with structure faimnaand
therefore its interplay with the evolution of the magnetéddi

The paper is structured as follows: In section 2 we present
the details of the numerical implementation, whereas ini@ec
3 we present various code validation tests, all performefilip
three dimensional setups. In section 4 we present the famat
a galaxy cluster as an example for a cosmological applicdie
fore we present our conclusions in section 5. In addition resgnt
a convergence test for the code in the appendix.

2 SPH-MHDIMPLEMENTATION

We have implemented the MHD equations in the cosmological
SPH codeGADGET (Springel et all 2001; Springel 2005). In this
section we present the relevant details of this implemamat
While developing the MHD implementation made us&aDGET-

1 (Springel et al. 2001) andADGET-2(Springe| 2005), all simula-
tions presented on this paper are based on the most recsitnver
of the code GADGET-3 (Springel, in prep). Note that the imple-
mentation therefore is fully parallelized and benefits fromany
optimizations within the general parts of the code, esfligdiae
calculation of self gravity and optimization in data stwres as
well as work-load balancing. Therefore, this implemewotatis an
ideal tool to follow the evolution of magnetic fields, allowgi to ex-
plore the full size and dynamical range in up-to-date cosgio&l
simulations.

2.1 SPH implementation in GADGET

The basic idea of SPH is to discretize the fluid in mass
elements #u;), e.g. particles at positionst; (Lucy [1977;
Gingold & Monaghan_1977). To build continuous fluid quanti-
ties, one starts with a general definition of a kernel smaoathi
method. The most frequently used kern&l(|z], k) is the Bs-
Spline (Monaghan & Lattanzio 1985), which can be written as

1-6(5)"+6(3)" 0<f<05
W(wh)=—54 2(1-2)° 0.5<2<1 (1)
0 1<z

It is worth stressing that, contrary to other SPH implemgoia
GADGET uses the notation in which the kern#l (x, h) reaches
zero atz/h = 1 and not atz/h = 2. The densityp; at each
particle positionz; can be estimated via

(pi) = Z m;W

where the smoothing length is defined by solving the equation

©)

A typical value forN is in the range of 32-64, which correspond
to the number of neighbors which are traditionally choseShRH
implementations.

In GADGET, the equation of motion for the SPH particles
are implemented based on a derivation from the fluid Lageangi
(Springel & Hernguist 2002) and take the form

(fl —fﬁhl)v (2)

—h pi = Nm,.

dz (hyd) N P
i - _ . 0 I W
(E) = Zlm][l Wi+ fS ; VW) | . @)
=
The coefficientsf; are defined by
—1
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o =1 5
fi [ +3piahi] : ®)

and reflect the full, self-consistent correction termsiagisrom
varying the particle smoothing length. The abbreviatidh =
W (|7 — 75, hs) andW; = W (|7; — 7|, h;) are the two kernels
of the interacting particles. The pressure of each particlven
by P, = Aip], where the entropic functiod; stays constant for
each particle in the absence of shocks or other sources bf hea

To capture shocks properly, artificial viscosity is usuaibed.
Therefore, IGADGET the viscous force is implemented as

N
- Z m;lli;ViWis,

dv; (visc)
(W) -
j=1

wherell;; > 0is non-zero only when particles approach each other
in physical space. The viscosity generates entropy at a rate

(6)

dA;
dt

_ly-1

T2t

ij ZJULJ VWLJ7 (7)

Jj=1

Here, the symboWij denotes the arithmetic mean of the two ker-
nelsW; andW;.

For the parameterization of the artificial viscosity, Stayt
with version 2 ofGADGET, a formulation proposed by Monaghan
(1997) based on an analogy with Riemann solutions of corapres
ible gas dynamics, is used. In this case, the resulting sigcterm
can be written as

—0.5avf;.guij
Pij

for 7, - ¥;; < 0 andIl;; = 0 otherwise, i.e. the pair-wise vis-

cosity is only non-zero if the particles are approachingheatber.

Hereu;; = ¥;; - 735 /|35 is the relative velocity projected onto the

separation vector and the signal velocity is estimated as

1 ®)

ij

UiE = i+ ¢ — By, 9
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with ¢; = /~P;/p: denoting the sound velocity. (BADGET-2the
valuesa = 1 and 3 = 3 are commonly used for the dimension-
less parameters within the artificial viscosity. Here weehalso
included a viscosity-limiteff;<** = (fs"**" + f5"°*") /2, which

is often used to suppress the viscosity locally in regionstafing
shear flows, as measured by

&), 1418 <), [ 7o

which can help to avoid spurious angular momentum and vortic
ity transport in gas disks (Balséra 1995; Steinmetz 1998, the
common choicer; = 0.0001¢; /h;.

This also leads naturally to a Courant-like hydrodynamical
time-step

fishcar _

(10)

Ccouranth
sxg)

©j
whereC.ourant iS @ NUMerical constant, typically choosen to be in
the range.15 — 0.2.

AtYD = (11)

max; (v

2.2 Co-moving variables and integration

The equation of motion are integrated using a leap-froggiate
tion making use of a kick-drift-kick scheme. Within this sche,
all the pre-factors due to the cosmological background msipa
are taken into account within the calculation of the kickdan
drift-factors (see_Springel 2005). For the integration lo¢ &n-
tropy within a cosmological simulation, a factoi a?) ™! = dt

is present in equatidni 7 to take into account that the mtenmmz
variable inGADGET is the expansion parameterAll the formula-
tion of the MHD equations withilGADGET have to be be adapted
accordingly to this choice of variables.

2.3 Magnetic signal velocity

A natural generalization of the signal veloc@g in the framework
of MHD is to replace the sound velocity by the fastest magnetic
wave as suggested by Price & Monaghan (2004a). Therefore the
sound velocitye; gets replaced by

2

B-2>

HopPa
2
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1
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As this new definition of the signal velocity also enters tineet
step criteria[(Tl1), no extra time-step criteria due to theymetic
field has to be defined. We note that we still see improvements i
the solution to the test problems, if we choose a more coaserv
tive settings within the Courant condition. Therefore waeally
use Ceourant = 0.075, which is halve the value usually used in
pure hydrodynamical problems. Different authors also psepto
use different values far and 8 within the artificial viscosity def-
inition (8). Whereas typicallyy = 1 is chosen, Monaghan (1997)
proposed to us@ = 3.|Price & Monaghan| (2004a,b) propose to
usel = 2 or § = 1 respectively. We find slight improvements in
our test problems when using = 2 and3 = 1.5, which we use
throughout this paper. We also note, that the viscosity iRg3on
switch f;“*" was introduced based on an earlier realization of the
artificial viscosity and it is not clear if it is still needeéls we note

Ui

c; (B -7 /17351)?
Lo pi

2+

K3

(12)

significant improvements in our test problems when negigadtiis
switch we do not use this switch throughout this paper. Atsdte
cosmological application presented in the last part of gaper,
this switch was always turned off.

2.4 Induction equation

The evolution of the magnetic field is given by the inductigua-
tion,
dB

I (B-V)0— B(V-17),

if ohmic dissipation is neglected and the constraint B = 0 is
used. The SPH equivalent reads

(13)

dB; 1 feo
dt Ha? p;
N
j=1
—28;, (14)
where(Ha?)~" = 4L takes into account that the internal time vari-

able iINnGADGET is the expansion parameter Note that here, by
construction, only the kernéV; and its derivative is used. The sec-
ond term—25; accounts for the dilution of the frozen in magnetic
field due to cosmic expansion. Both these terms are only prese
in the cosmological simulations and absent for the codeuatiain
presented in sectidd 3. In component form the induction Boua
reads

dBk 1 . v 1 OW: T

I kB! — Bfv g

a Ha2 ij v ) G ]
—2Bk, (15)

Note that, as also suggested |by Price & Monaghan (2004b), we
wrote down the equations including the correction fagfdrwhich
reflects the correction term%‘g) arising from the variable particle
smoothing length. Unfortunately it is not possibile to dite infer
the exact form the correction factors from first principles the
induction equation. However, Price & Monaghan (2004b) sttbw
that, if not chosen in the same way as for the Lorenz forcarinc
sistency between the induction equation and magnetic foroees.
The effect of these factors in the induction equation iseysihall,
but nevertheless one notices tiny improvements in testl@nub
when they are included. Therefore, we included them for afl o
applications presented in this paper.

25 Magneticforce

The magnetic field acts on the gas via the Lorenz force, whach ¢
be written in a symmetric, conservative form involving thagn
netic stress tensar (Phillips & Monaghian 1985)

MF = (Eféf _ %|]§Z~|25M) . (16)
The magnetic contribution to the acceleration of ikt particle
can therefore be written as

a7, (mag)

CO
7

LW
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M swy| .
p?

J

+ f5° 17)
Herea® = is needed to transform the equations to the inter-
nal variables {or cosmological simulations and is set to ionall
other cases. Als@, has to be chosen properly (see secfion 2.9).
The factorsf;° reflect the correction termsla%) arising from the
variable particle smoothing length as introduced already @lso
Price & Monaghan 2004b). In component form the equationgead

A\ e & o MF OW; 7
at T T & T Tou Ty
Jj=1
o M oW, T
+ £ 3 (18)
Pj Uu |T’LJ|

It is well known that this formulation becomes unstable
for situations, in which the magnetic forces are dominating
(Phillips & Monaghan 1985), The reason for this is that thegma
netic stress can become negative, leading to the clumpipgntif
cles. Therefore, some additional measures have to be taleipt
press the inset of this instability.

2.6 Ingtability corrections

There are several methods proposed in the literature tasspthe
onset of the clumping instability which is caused by the iempén-
tation of the magnetic force. However their ability was fduo

depend on the details of the simulation setup. In the nexicsec
we will briefly discuss the different possibilities in thentext of

building up a implementation for cosmological simulations

2.6.1 Adding a constant value

One method to remove the instability was pointed out by
Phillips & Monaghan|(1985), who suggested to calculate thgim
mum of the magnetic stress tensor and to subtract it globaiy &ll
particles. Or similar, as suggested_in Price & Monaghan 200
subtract the contribution of a constant magnetic field. Thsm-

ple and straight forward if there is a strong, external mégrield
contribution from the initial setup, which can be assodatgth

the term one subtracts. However, with cosmological sinadatin
mind, this approach is not very viable and therefore we diclse
this approach.

2.6.2 Anti clumping term

Monaghahn|(2000) suggested the introduction of an additimna

in the momentum equation which prevents particles from plum
ing in the presence of strong magnetic stress. Includirgtérim,
equation[(Ib) reads

MM = (éféf. _ %|§Z—|25“ - Riéféf) , (19)
whereR; is a steepened kernel which can be defined as
€ WZ‘ n
R, = - . 20
2 (W1) (20)

The modification of the kernel is made so that contributiores a
significant only at distances below the average particleisga.:,
soW; is defined a8Vy = W (uq). Typical values for the remaining
parameters are = 0.8 andn = 5. This method was also used in
Price & Monaghan| (2004a,b) whereas they found= 1.5k to

be a good choice for 1D simulations and switchedifo= 1.1A
for 2D simulations. In agreement with Price & Monaghan (2005
we find that in 3D and allowing the smoothing length to varis th
approach does not help to suppress the instabilities vécyestly.
We therefor did not use this approach within this work.

2.6.3 div(B) force subtraction

Bgarve et al. [(2001) suggested explicitly subtracting tHeatfof
any numerically non-vanishing divergence Bf Therefore, one
can explicitly subtract the term

dﬁk (corr) s 1 -a N B»
. = —a"—pB; my | fi— -
(45) 08> s [0

(21)

from the momentum equation. Here agaif) = j—f] and o are
introduced to transform the equation to the internal unstsdu To
be consistent with the other formulations, we inclugéd, which
are thedw T~ terms. In the original work (Bgrve etlal. 2()0]3) =1
was choosen. In component form this equation reads

dﬁk (corr)

oW,
ou |»,~”|

ﬂBk Zm] {ff" -

» Bt ow; Ffj
P2 Ou |13 |]
In principle, this term breaks the momentum conservatiomfof
the MHD formulation. However, in practice, this seems to Ibsia
nor effect. Barve et all (2004) argued that stability foehnwaves
in 2D can be safely reached even when not subtracting thesfoll
but choosing3 < 1; e.g. they suggested = 0.5 to further mini-
mizing the non-conservative contribution. However, ita$ cear if
this stays true for 3D setups and in the non-linear regimelithah-
ally,|Bgrve et al.[(2004) used a higher order kernel and fhereét
is also not clear if that is still true in our case. As the resir our
test problems seem unharmed by the possible violation ofenem
tum conservation due to the formulation of the correctiandain
the Lorenz force, we keep it in the form suggested in earliakw
(e.g/lBarve et al. 2001).

In Bgrve et al.|(2006) a more general formalism to obtain
for each particle was introduced with the aim to further miizie
the violation of momentum conservation in the formulatidrire
correction terms in the Lorenz force. Unfortunately, in kight of
cosmological simulation, this seems not to be very praktisat
contains a scan for a maximum value over all particles, winich
a cosmological context makes no sense as there is not a specifi
single object to which such characteristics can be tuned to.

In general we find that this correction term significantly im-
proves all results in our test simulations and effectivelymesses
the onset of the clumping instability. It was also alreadgcass-
fully used in previous, cosmological applications (e.gldacet al.
2004 Rordorf et dl. 2004; Dolag et/al. 2005).

+ fi° (22)

2.7 Regularization schemes

Beside instabilities, noise (e.g. fluctuations of the mégnigeld
imprinted by numerical effects when integrating the indhrct
equation) is a source of errors in SPH-MHD implementations.
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Here, the entropy conserving formalism of the underlyin¢gd$#-
plementation contributes to a significant improvement efNMHD
formalism compared to previous MHD implementations in SPH
by generally improving the density estimate and the catimraof
derivatives. It has to be noted, that this is not only due eo%H-
terms, but in large part also from the new formalism for clating

of the smoothing length. As described before, the smootleimgth

h; for each particle is no longer calculated by counting neigbb
within the sphere, but by solving equatidd (3) and thereftoe

a formal number of neighbor®’, there exist only one unambigu-
ous value ofi;. Note that, as this equation is solved iteratively, it is
usual to give some allowed range§f however in our case we can
choose the range smaller than 1 and typically weNise 64+0.1.
Regularization schemes therefore are either based onvingrthe
calculation of the interactions to reduce the creation o#lsin
regularities arrising from numerical effects or on remgvamall
irregularities.

2.7.1 Particle splitting

Bgarve et al.|(2001) developed a scheme to regularize theaiite
tion of particles in SPH based on a discretization of the ghing
length h; by factors of 2. In such cases, interactions between two
particles with different smoothing length can be realizgdsplit-
ting the one with the larger smoothing length irXd (wheren is
the dimensionality) particles, placed or2d sub-grid. Such split
particles then have the same smoothing length as the gartidth
which they interact. Originally this scheme was inventecvoid
the problems induced by a variable smoothing length (betoee
correction terms where properly introduced in SPH) and gawel
results in 1D and 2D (see Bgrve eilal. 2001, 2004, 2006). How-
ever, in 3D the step in neighbors is quite large when quaitiga
the smoothing length by factors of 2 and therefore the aatuiti
sampling noise by particles, especially those with smallyens of
neighbors which not yet reached the point at which the sniogth
length can be increased, is quite large. In fact, unforelpathis
effect is much larger than the gain in accuracy by the regaar
tion, at least when based on standard SPH formalism| (seBrael
2003). Also, as thé‘d% terms formally take care of all correction
terms induced in the formalism when allowing a variable sthoo
ing length, this splitting — and specifically the quantiaatof the
smoothing length — is no longer needed. This might be differe
when further improving the SPH (and specially the MHD) metho
For example when re-mapping techniges based on Voronaltess
lation are used (e.q. Barve etlal. 2006), or special cootetniike
spherical or cylindical are used (e.g. Omang €t al. 2006).

2.7.2 Smoothing the magnetic field

Another method to remove small scale fluctuations and to-regu
larize (e.g. to obtain a magnetic field which does not shoangtr
fluctuations below the smoothing length) the magnetic fisltbi
smooth the magnetic field periodicly. As suggested by Bared e
(2001), one can calculate a smoothed magnetic (iép} for each
particle,

() =

Then, in periodic intervals, one can calculate a new, remdd
magnetic field by

mi 3
. S BW;
J Pj
m; )
et

(23)

B = (B + (1 - q)B:.

Note that this, in principal, acts similar to the mixing pegss on
resolution scale present in Eulerian schemes. Howeveoduated

in this way, the amount of mixing (e.g. dissipation) of matime
field depends on the frequency with which this procedure is ap
plied and the value of chosen. Typically, we setto one and per-
form the smoothing at ever 1520'" main time-step. It is worth
to mention that implemented in this form, total energy is can-
served (as magnetic field fluctuations on scales smaller tti@an
smoothing length are just removed) and, as the time-stgpende
on the chosen resolution, this method is even resolutioprutdgmt.
Never-the-less it leads to improvements in the results oftest
problems, without strongly smoothing sharp features st alorks
without problem in 3D and has already been used in cosmalbgic
simulations|(Dolag et al. 2004, 2005).

(24)

2.7.3 Artificial magnetic dissipation

Another possibility to regularize the magnetic field wasserged
by |Price & Monaghanl (2004a), who suggested including afi-arti
cial dissipation for the magnetic field, analogous to thiéicidl vis-
cosity used in SPH. In Price & Monaghan (2004a) it was suggest
that the dissipation terms be constructed based on the iagne
field component perpendicular to the line joining the intérey
particles. However, to better suppress the small scaleufitions
within the magnetic field which appear due to numerical ¢ffec
especially in multi-dimensional tests, Price & Monaghaf04t)
suggested basing the artificial dissipation on the changfeedbtal
magnetic field rather than on the perpendicular field compisne
only. We also found this to work significantly better in oustte
cases and therefore only use the later implementation ghmu
this paper. Such an artificial dissipation term can be ireiLid the
induction equation as

déi (diss) 1 pias

dt Ha? 2

d

N
j=1
& takes into

As in the induction equation beforéHa*)~" = 4
account that the internal time variable for cosmologicaligations
and is set to one in all other cases. The paramejeis used to
control the strength of the effect, typical values are satggbto be
aroundag ~ 0.5. Similar to the artificial viscosity, this will create
entropy at the rate

518 -
mjv;; i)
52
’i'

Pij

-ViWi. (25)

(Bi - B))

|75

dAZ (diss) B ’Y—l aB

( dt ) o pr o
N m]qfig = .2 7‘-‘ o
S () S o9
= Pij |71

The pre-factor(y — 1)/(p] ") properly converts the dissipation
term to a change in entropy.

This method reduces noise significantly. However, dependin
on the choice ofvz, it can also lead to smearing of sharp features.
To avoid this outside of strong shocks (e.g. where this isledg
Price & Monaghanl (2005) proposed evolviag; for each parti-
cle, similar to the handling of the time dependent viscoagysug-
gested by Morris & Monaghan (1297). Such, evolutiomegf for
each particle will be followed by integrating



6 K. Dolag, F. Stasyszyn

1.2 2.5

Energy

0.4 ’
0.2 : Pressure

0.0 0.0
—20 =10 © 10 20 3

= = g
=] 3 =)

Pressure / Energy

o
o

1 1.5 =1

1.0

x
& 0.
~

B & 00 3
- .

-1 3 -0.5 \
& By
\ -1.0

-2 -1.5 —4
—20 =10 © 10 20 30 —20 =10 © 10 20 30 —20 -10 O

°
o
@
Log10(divB«HSML/IBI)
b

10 20 30

Figure 1. Test5A at timet = 7 with the MHD implementation similar to
that used in_Dolag et al. (1999. 2002), but already includimgginstability
correction due to subtraction of tdév(5) term in the force equation and in
a fully three-dimensional setup. Shown in the first row aeedbnsity (left
panel), total energy and pressure (middle panel) and:theomponent of
the velocity field (right panel). The second row shows gheomponent in
the velocity field (left panel), the three components of thegnetic field
(middle panel) and the measure of Hif@(é) error, see equatiof (B3), in
the right panel. The black lines with error bars are show thel gesults,
the red lines are the reference results obtained with Atiread D setup.

dap  (aB —a%’i“)

T = —f + 57 (27)
where the source teri$i can be chosen as
IV x B| |V- §|>
S = Somax | ——1, (28)
< VHop  \/lop

(see_Price & Monaghan 2005). The time-scaldefines how fast
the dissipation constant decays. Taking the signal vglamite can
translate this directly into a distance to the shock overcivtihe

dissipation constant decays. A useful choice @an be written as

T = hz

o C 'L}Sig7
where the constarit' typically is chosen to be around 0.2, allowing
the dissipation constant to decay within a time that coordp

to the shock travelling 5 kernel lengths (see Price & Monagha
20044),

(29)

2.8 Euler potential

A very elegant way to implement the MHD equations in La-
grangian codes is the usage of so calleder potentials(see
Rosswog & Priceé 2007,and references therein). They ard bsil
two independent variables and 3 and correspond to an implicit
choice of a gauge for the vector potential. They can be thioafghs
labels of magnetic field lines and will be advected with thevflim
this formulation, the magnetic field at any time can be regmted
as

B =Vax V. (30)
In principle, having obtained the magnetic field, one coudd this
magnetic field also in the equation of motion as before. Hanev
here we only use this simple description as a reference tkahe
effect of numerically non-zero divergence in the standangle-
mentation. The evolution of the magnetic field using Euleepe
tials can be seen as an upper bound on amplification procésses
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Figure 2. As figure [1), but including the magnetic waves in the sigral v
locity and turning of the shear viscosity suppression ata@xgd in the code
description. The main advantage are a significant redudtidhe noise,
specifically in the velocity, but also in the magnetic fieldsé\thediv(é)
errors are reduced by a factorsf2.

back reaction is neglected and no instabilities should leseot).
Therefore one can easily check the amount of artificial aioph
tion of magnetic field within cosmological simulations.

2.9 Unitsand co-moving variables

In GADGET-2the unit system is defined by settinfNGTH, MASS
and VELOCITY factors with respect to theGs system. Thereby
the internal units oENERGY andTIME are defined. The magnetic
field units are defined aSAUSS Thereforepo within the MHD
equations becomes to

[TIME]*[LENGTH]
4m[MASS]

Note that, for cosmological simulations, the parametéiona
of the units folLENGTH, MASS andTIME contain the Hubble con-
stanth and thereforgio has to be modified to be

[TIME]?[LENGTH]

Ho= T MASSTRZ (32)

po = (31)

3 TEST PROBLEMS

To test performance of the code and to infer the optimal nu-
merical settings for the regularization schemes, we peréor
the series of shock-tube problems as presented by Ryu & Jones
(1995). Specially the teshA, which is also used in_Brio & Wu
(1988) was used to show the effects of different numericttr
ments. Additionally we performed several 2D test casesudicl
ing the Fast Rotortest (Toth 2000;_Londrillo & Del Zannha 2000;
Balsara & Spicer 1999), &trong Blast(Londrillo & Del Zanna
2000; |Balsara & Spicer._1999) and th®rzang-Tang Vortex
(Orzang & Tang 1979; Dai & Woodwerd 1994; Picone & Dahlburg
1991; Londrillo & Del Zanna 2000). To obtain results undelie

tic circumstances, we performed all the tests by setting futlya
three-dimensional particle distribution. We also avoattitg from
regular grids but used glass-like (White 1996) initial pet dis-
tributions instead, to get a more realistic setup. For altsteve
used the same particle masses, independent of the initigitge
Therefore, typical initial particle distributions for thehock-tube
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Figure 3. As figure [2), but including the regular smoothing of the metgn
field as a regularuzation scheme. This MHD-SPH implememntdiasically
reflects the one usedlin Dolag et al. (2004, 2005). The maiaradges are
a further, significant reduction in the noise as well as angtreduction of
thediv(B3) errors by a factor ofs 10.

tests where based dri particles in low density and0® particles
in high density regions within unit volume. Usually, thesgtwol-
umes are then replicated 35 times along thdirection each. For
some test cases with strong (and therefore fast) shocks/oleed
the simulations longer. In such cases we doubled the sironlat
setup size in the-direction.

We assum ideal gas (e.g.= 5/3) and, as described before,
use an equivalent of 64 neighbors for calculating the SPHotimo
ing length. This ensures that, in the low density regions,3PH
particles get smoothed over a region corresponding to demngth.
The number of resolution elements corresponding to a ungtle
therefore ranges from 1 to 4, depending wether one asssdiae
smoothed region or the mean inter-particle distance wieffec-
tive resolution in SPH. In general, SPH converges somevibaes
compared to grid codes when comparing simulations withainees

number of grid cells as SPH particles (see Appendix A for an ex

ample).

For the SPH results we usually plot the mean within a 3D slab

corresponding to the smoothing length and (as error baadRMS
over the individual particles within this volume. The refece so-
lution was obtained using Athena (Stone et al. 2008) witlcilfy
10-20 resolution elements per unit length, depending orirthie
vidual test. As one criteria of the goodness of the SPH sitiwua
result we use the usual measure for the non-vanishing diveesy
of the magnetic field,

Egp= div(é)i.

(33)
|B|

3.1 Shock tube5A
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Figure 4. As figure [2), but including artificial magnetic dissipatias a
regularization scheme. Similar to the smoothing of the retigriield, sig-
nificant reduction in the noise as well as a strong reductichediv(3)

errors by a factor of 10 is obtained compared to tis¢andardimplemen-
tation.

in this case) are shown. The black lines with error bars shmv t
MHD-SPH result, the red lines are the reference result pbthi
with Athena in a 1D setup. Shown are (from upper left to the bot
tom right panel) the density, total energy and pressuregttend
z-component of the velocity field, thg-component in the veloc-
ity field, the three components of the magnetic field and tha-me
sure of thediv(ﬁ) error, obtaine from equatioh (33). Here we also
switched back to the old formulation of the artificial visitpsAl-
though the MHD-SPH results in general follow the solution ob
tained with Athena, there is a large scatter in the indivighaaticle
values within the 3D volume elements, as well as some irlstabi
ity, especially in the low-density part. But note that aligb the
mean values for the internal energy, as well as the velocityag-
netic field, can locally show some systematic deviationsnfthe
ideal solution, the total energy shows much better neatyased,
behaviour. This demonstrate the highly conservative padfithe
symmetric formulations in SPH-MHD.

Noticeable reduction of noise is obtained when using the
signal-velocity based artificial viscosity and includihgtmagnetic
waves in the calculation of the signal velocity. Therefohe, mag-
netic waves are directly captured for the time step calmnand
in the artificial viscosity, needed to capture shocks. Alsiiching
off the shear viscosity suppression again leads to signifiealuc-
tion in scatter. This can be seen in figuré (2), where the rigise
the velocity as well as in the magnetic field components isikig
icantly reduced. Values Qﬁv(é) are also reduced (by a factor of
~ 2) compared to before. In general, the MHD-SPH implementa-
tion gains from the new, entropy conservation formulatib8BH,
including the% terms and the new way to determine the SPH
smoothing length, both contributing to a reduction of ndqiaed
div(E)) in the general treatment of hydro-dynamics by the SPH

The most commonly used MHD shock-tube test is the one used byformalism. We will refer to this implementation of MHD-SPIS a

Brio & Wu (1988), e.g. tesbA in|Ryu & Jones|(1995). The reason

for this is that it involves a shock and a rarefraction of thene
family moving together. Therefore it allows simultaneoasting
of the code in different regimes.

standardfurther on in this paper.

3.2 Thegeffect of regularization

Figure [3) shows the result for a code implementation simila As described in sectiofi(2.7), there are several suggesitionegu-

to the first implementation used to study galaxy clusters. @e
Dolag et all 1999, 2002). In addition, the instability catien due

—

to subtraction of theliv(B) term was used in the force equation.

Various hydro-dynamical variables at the final time (g.g= 7

larization to the magnetic field. Here we will show resultsaited
by two regularization methods, namely smoothing the magnet
field in regular intervals and including an artificial dissfion.

For the first method, the magnetic field is smoothed using
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Left Right
TESTNr. v B P ) v B P
—1A— 1.00 [10.0, 0.0, 0.0] [5.0,5.0,0.0]/(4m)? 200  1.000 [-10.0,0.0,0.0] [5.0,5.0,0.0]/(47)?>  1.00
—1B— 1.00 [0.0,0.0,0.0] [3.0,5.0,0.0]/(47)2 1.0 0.100  [0.0,0.0,0.0] [3.0,2.0,0.0]/(47)2  10.0
—2A— 1.08 [1.2,0.01,0.5] [2.0,3.6,2.0]/(4m)? 0.95  1.000  [0.0,0.0,0.0] [2.0,4.0,2.0]/(4m)%  1.00
—2B— 1.00 [0.0,0.0,0.0] [3.0,6.0,0.0]/(47)2 1.0 0.100  [0.0,2.0,1.0] [3.0,1.0,0.0]/(47)2  10.0
—3A— 1.00 [50.0, 0.0, 0.0] —[0.0,1.0,2.0]/(4m)? 0.4 0.100  [0.0,0.0,0.0] [0.0,1.0,2.0]/(4mw)2  0.20
—3B— 0.10 [~1.0,0.0,0.0] [0.0,1.0,0.0] 1.0 1.000  [1.0,0.0,0.0] [0.0,1.0,0.0] 1.00
—4A — 1.00 [0.00,0.0,0.0] [1.0,1.0,0.0] 1.0 0.200  [0.0,0.0,0.0] [1.0,0.0,0.0] 0.10
—4B— 0.40 [—0.669,0.986,0.0]  [1.3,0.0025293,0.0]  0.5247 1.000  [0.0,0.0,0.0] [1.3,1.0,0.0] 1.00
—4C— 0.65 [0.667,—0.257,0.0] [0.75,0.55,0.0] 0.50  1.000 [0.4,—0.94,0.0] [0.75,0.00001,0.0]  0.75
—4D— 1.00 [0.0,0.0,0.0] [7.0,0.001,0.0] 1.0 0.300  [0.0,0.0,0.0] [7.0,1.0,0.0] 0.20
—BrioWu—  1.00 [0.0,0.0,0.0] [0.75,1.0,0.0] 1.0 0.125  [0.0,0.0,0.0] [0.75,—1.0, 0.0] 0.10

Table 1. Summary table with the initial conditions of the left andhigide of the shock tubes.
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Figure 5. As figure [2), but including time dependent artificial magmet
dissipation as a regularization scheme. No significanceawgment is ob-
tained. Note that here in the lower right panel the artifidiakipation con-
stant @g) is shown. The effect of suppressing the dissipation isriglea
visible, and the maximum value is only reached in peaks &ssacwith
the region of strong shocks. However the improvement in theasing of
sharp features is not very significant.

the same kernel as used for the normal SPH calculations.idn th

In the second method, the magnetic field can be dissipated in
the same way as artificial dissipation works in the hydrodyica.
Here the numerical parameter one has to chose is the strehgth
this artificial, magnetic dissipationp in equation[[25) and (26).
Figure [4) shows the result for the same shock-tube testfasebe
usingap = 0.1. Similar to the first method presented, the noise
in the individual quantities is strongly reduced and alsodtror in
div(]§) is reduced by one order of magnitude. Again, the error bars
are smaller than the line width nearly everywhere. Also,semall
effects of smearing sharp features are visible as well ag Sonall
but systematic deviations from the exact solution. In gainehis
method works slightly better than the smoothing of the m#gne
field, but the differences are generally small.

One idea to reduce the unwanted side effects of such regular-
ization schemes was presented in Price & Monaghan (2005kand
based on a modification of the artificial, magnetic dissgration-
stantag. Thereby, every particle evolves its own numerical con-
stant, so that this value can decay outside the regions deetut
therefore the effects of the artificial dissipation are sapped out-
side the regions where it is needed. Fiddre 5 shows the sataste
before, but this time where s evolves for each particle, as shown
in the lower right panel. Clearly, the values are stronglyuczd
outside the regions associated with sharp features (eagksh but
the effect of smearing sharp features and the small offssbwfe
states are not significantly reduced. This is because irediien in

case, there are two numerical parameter one can choose.sOne iwhich these side effects originate, the dissipation i$ wtirking

q in equation [(24), which quantifies the weight with which the
smoothed component enters into the updated magnetic fie@l\W

ways use; = 1 here, which means that we completely replace the

magnetic field by the smoothed value. The seconfigis, which
is the time interval at which the smoothing is done. Here we us
a value corresponding to a smoothing every/*3global time step.

with its maximum numerical value.

3.3 Shock tube problems
As can be seen in figurds| (3) afidl (4), the side effects of srimgpth

This correspond to the SPH-MHD implementation used to study features by the different regularization methods depenthemnle-

the magnetic field in clusters and large scale structureinvitie
local universe, see Dolag et al. (2004, Z005). Figlle (3jvshbe
result for the same shock-tube test as before. Clearly, tiigen
in the individual quantities is strongly reduced. Also theoein

—

div(B) is reduced by more than one order of magnitude. Note that
the error bars for the MHD-SPH implementation are of the size

of the line width or smaller in most of the cases and therefare
longer clearly visible. However, one can notice some snffdce

of smearing sharp features. Additinal, some states — li&eebion
with the negativc-component of the velocity behind the the fast rar-
efaction wave propagating to the right — converge to valueistw
have small but systematic deviations from the exact saiutio

tails of the underlying structure of the shock-tube teserEmore
interesting, the states where one can see small deviations f
the ideal solution are different for the two different reayigation
methods. Therefore we performed the full set of differertcgh
tube tests as presentedlin Ryu & Jories (1995) to test thellovera
performance as well as the different implementations udiffar-
ent circumstances. The four test families deal with différeom-
plexities of velocity and magnetic field structures, leadim differ-
ent kind of waves propagating. A summary of the results afehe
tests can be found in figurg](6). Plotted are the total endedfy (
panels), the velocity along thedirection (middle panels) and the
magnetic field along thg-direction (right panels). The red lines re-
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Figure 6. Representative plots of the additional 10 shock-tube femts Ryu & Jones (1995). Shown for each test are the totabgr(éeft panels), the velocity
along thez-direction (middle panels) and the magnetic field alonguttirection (right panels).

flects the ideal solution obtained with Athena, the blackdimvith
error bars mark the results from the SPH-MHD implementati®n
ing the magnetic field smoothing every 30th main time stegeNo
that the error bars in most cases are smaller than the linthwid
The initial setups for the shock-tube tests can be foundlile,
which lists the state vector of the left and right states ffier differ-
ent shock tube tests.

The first family of tests YA/1B) has no structure in the tan-
gential direction of the propagating shocks in magnetia feahd
velocity, e.g.B. = v. = 0. As we expect, in théAtest, the strong
shock (large jump im.) leads to some visible noise in the magnetic
field componenB,, also translating into significant noise in the to-
tal energy. The regularization method here suppressesertmafion
of the intermediate state iB, in the SPH-MHD implementation,
as can be seen in figyre §(a). The second casdBhest, the weak

shock is captured well. Again in some regions some smeafing o
sharp features due to the regularization method is cleésigle.

The second class of shock&(/2B) involve three dimensional
velocity structures, where the plane of the magnetic fietdtes.
All features (e.g. fast/slow shocks, rotational discamtiy and
fast/slow rarefaction wave, for details see Ryu & Johes%)p@re
well captured, see figufe 6]c) apd @(d). Some of the features a
clearly smoothed by the regularization method.

The third class of tests32/3B shows handling of magne-
tosonic structures. The first has a pair of magnetosonickshaith
zero parallel field and the second are magnetosonic ratieinac
Although there is slightly more noise present, all statesaptured
extremely well, except the numerical feature left at thetposdi-
viding the two states initially, see figyre §(e) and6(f).

The fourth test family4A/4B/4C/4D) deals with the so-called
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switch-on and switch-off structures. The tangential maigrfeeld
turns on in the region behind switch-on fast shocks and &watt
slow rarefractions. Conversely, in the switch-off slow ek and
switch-off fast rarefractions the tangential magnetiaffigirns off.
Again, all structures are captures well with the exceptitone fea-
ture in figurg  6(H), where clearly the regularization leaslsvash-
out’s one state. Otherwise the regularization leads to simagp of
some structures similar to the tests presented before.

In general, figur€lé demonstrates that all these differénasi
tions have to be included when trying to measure the perfocma
and quality of different implementations of regularizatimethods.

3.4 Finding optimal numerical parameters

To optimize, we performed all these 11 shock-tube tests veth

ous different settings for the parameters in the regulicizaneth-

ods and evaluated the quality of the result obtained witiMhiD-

SPH implementation. To measure this, we used two estimators
First, we have chosen the mean ofdil (B) errors within the sim-
ulation region shown in the plots, as definde by
h > . (34)

1B
Second, we measured the discrepance of the MHD-SPH result fo

the magnetic field relative to the results obtain by Athertzere-
fore we calculate first

o (Bien(@) — Biena(@))”
o (@) = RMSZ, (2)

DBy = <diV(]§)

(35)

for each componentof the magnetic field3 within each 3D slab
corresponding to the smoothing length. The RMBb6freflects the
noise ofB; within the chosen slab. We then calculate

Agi = (Z Spi (:c)) (Z RMS? i(x)> ,

for each component of the magnetic field. This includes both ¢
tributions, the deviation of the MHD-SPH from the ideal s@n as
well as the noise within each 3D slab of the MHD-SPH implemen-
tation. To judge the improvement of the regulatization rodthwe
sum up all three components and further relate this measunteim
the value obtained with thetandardimplementation, e.g.

_ ZZ AB'L

Astd

Zi ABET?

We will use these two error estimatory,;;, 5, andAp, to mea-
sure the quality of the individual MHD-SPH implementations

(36)

Ap

@7

3.4.1 Regularization by smoothing the magnetic field

Choosing the time interval between smoothing the magnetid fi
is a compromise between reducing the noise in the magneiic fie
components (as well as reducidgv(ﬁ)) by smoothing more of-
ten and preventing sharp features from smearing out by raoeéyr
smoothing. FigurEl7 shows a summary of the results of theithdi
ual shock-tube test computed with different smoothingriraks.

As expected, when using shorter smoothing intervals thar @nr
div(B) reduces. For the quality measure of the SPH-MHD imple-
mentation the situation changes. Short smoothing interyaher-
ally increase the discrepancy, many of them even to largeesa

40
Timesteps betwen B-SMOOTH

Figure 7. Shown are the mean error in divergence (upper pannel) and the
measure of the quality (lower panel) as defined in equéfi@hqBtained by

the MHD-SPH implementation for different values of the siaog inter-

vall. The different lines are for the 11 different shock€ubsts as indicated

by the labels.

than thestandardrun. Specifically4B and4C show strong devia-
tions due to smearing of sharp features. Note that the noromon
tonic behavior shown in some tests usually relates to sosiéual
resonances between the magnetic waves and the smoothémng int
vals in the noise. Some tests show a minima in the differeates
smoothing intervals around 20. The t&% seems to prefer even
shorter smoothing intervals. In general, values aroun8®8eem

to be a good choice.

3.4.2 Artificial dissipation

As before, choosing the value for the artificial magneticsigia-
tion constaninp is a compromise between reducing the noise in
the magnetic field components (as well as redutd'an%)) and
preventing sharp features from smearing out due to theteffebe
dissipation. FigurEl8 shows a summary of the results of ttigith

ual shock-tube tests computed with different values foettiéicial
magnetic dissipation. As expected, using larger valuescesithe
error indiv(ﬁ) significantly. Similar to before, using larger values
also generally results in an increase of the discrepaneydegt the
SPH MHD implementation and the true solution, again usually
even larger values than in tltandardrun. As before, especially
the shock-tube tegtB and4C show strong deviations due to smear-
ing of sharp features. Note that here less non-monotoniavieh

is visible (except for tes#B). The main reason is that dissipation
is a continuous process, so resonances between dissipatiche
magnetic waves cannot be very pronounced. Taking all tasts i
account, a good choice farg seems to be around 0.1.

3.4.3 Time dependent artificial dissipation

One idea to reduce the effect of the artificial dissipatioi imake
the artificial magnetic dissipation constars time dependent. The
idea here is that, if the evolution afg is properly controlled, dissi-
pation will happen only at the places where it is needed awlit
be suppressed in all other parts of the simulation volume.é&vo-
lution of ap is controlled by the two parametéf (source term)
andC (decay term) where we have chos€§™ anda/3™* as 0.01
and 0.5 respectively. Figuré 9 shows the result for varyhegé two
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Figure 8. Similar to figure[¥ but for different values of the artificialagy
netic dissipation constant.

parameters. As before, generally, the larger the dissipasi (e.g.
large source term or small decay time) the smaller the noise a

20 T T T T

Figure 11. Diagonal ¢ = y) cut through theéFast Rotoratt = 0.1 show-
ing the density. In black result obtained with ATHENA. Thalpiine with
the red error bars show the GADGET solution using stendardMHD
implementation. Also here the red error bars reflect theed@pn of the
values among individual particles within a slab correspogdo the lo-

the error indiv(é) becomes. However, as soon as these parametercal smoothing length. In general, the SPH MHD result showsxaellent

have values which drive s in the shocks to the maximum allowed
value, there is marginally no gain in quality, although th&res for

ap outside the shocks can still be quite small. Therefore,ithe t
dependent method does not improve the results significasithe
regions, in which the artificial dissipation constant is gssed

do not significantly contribute to the smearing of sharp fess.
This is driven in regions, where the artificial magnetic igiaton

is anyhow needed to regularize the magnetic field and canaot b
suppressed there.

3.5 Multi dimensional Tests- Planar Tests

Besides the one dimensional shock tube test described ioréhe
vious section, two dimensional (e.g. planar) test problemesa
good test-bed to check code performance. Such higher diomes
tests include additional interaction between the evoldngipo-
nents with non-trivial solution. These can be quite comieith
several classes of waves propagating in several diregtsarth as
the Orszang-Tang Vortex or simple (but with strong MHD disco
tinuities) such as Strong Blast or Fast Rotor.

3.5.1 FastRotor

This test problem was introduced by Balsara & Spicer (1969),
study star formation scenarios, in particular the strongiomal
Alfvén waves and is also commonly used to validate MHD im-
plementations (for example see T6th 2000; Londrillo & DehAa
2000;! Price & Monaghah 2005; Bgrve etlal. 2006). The test con-
sists of a fast rotating dense disk embedded in a low dess#tic
and uniform media, with a initial constant magnetic fieldragjdhe
x-direction(e.g.B, = 2.57~'/2). In the initial conditions, the disk
with radiusr = 0.1, densityp = 10 and pressuré® = 1 is spin-
ning with an angular velocity = 20. It is embedded in a uniform
background wittp = P = 1. Again we setup the initial conditions
by distributing the particles on a glass like distributiar8D, using
700 x 700 x 5 particles and periodic boundaries in all directions
for the background particles. The disk is created by rengpaiih
particles which fall inside the radius of the disk and repigchis
space with a denser representation of particles of the saass.m

agreement in all the features (peaks, valleys and edgesgveo there is a
visible over-smoothing at one of the the edges in the GADGEsTilt.

Again we are mimicking realistic conditions as expect innsos
logical simulations. As an ideal solution to compare witle, again
used the result of a simple, two dimensional ATHENA run with
400 x 400 cells.

Figurd 11 presents a more quantitative comparison. Shoan is
diagonal cut through thast Rotorat¢ = 0.1 showing the density.
The different lines show the result obtained with ATHENAg(tk
line) and for thestandardMHD implementation in GADGET (pink
line). The very small, red error bars reflect the RMS of the val
ues held by the individual particles within the 3D slab tigouhe
three dimensional simulations corresponding to the losalath-
ing length. The results show remarkable agreement betwe=n t
two simulations and also compare well with results quotethin
literature (e.g. Londrillo & Del Zanmna 2000)

Note that although we perform our calculations in three di-
mensions and without a regularization scheme, the impléatien
produce a result, which has the same quality as other schieames
two dimensions with regularization (elg. Price & Monagh@0%,
Barve et all 2006).

3.5.2 Strong Blast

The Strong Blasttest consists of the explosion of a circular hot
gas in a static magnetized medium and is also regularly used
for MHD code validation (see for example Londrillo & Del Zann
2000;| Balsara & Spicer 1999). The initial conditions cohsisa
constant density = 1 where a hot disk of radiug, = 0.125

is embedded, which is hundred times over-pressured, e jorése
sure in the disk is set t&#; = 100 whereas the pressure outside
the disk is set taP, = 1. Additional there is initially an overall
homogeneous magnetic field in thedirection, with a strength of
B, = 10. The system is evolved until time= 0.02 and a outgo-
ing shock wave is visible which, due to the presence of theneigg
field, is not longer spherical but propagates preferegtating the
fieldlines. Figuré T2 shows the density at the final time, carimg
the ATHENA results with the results from tiséandardSPH MHD
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Figure 9. Similar to figure Y but for different values of the source te$m(left panels) and the decay tenf (right panel) of the time dependent, artificial

magnetic dissipation.

Figure 10. The magnetic pressurédf /2) in the Fast Rotortest att = 0.1. The ATHENA solution of the test problem is shown in the lefinpl whereas
the righ panel shows the result obtained with GADGET. All thain features are reproduced in the GADGET run. The shapgtigpes and amplitudes
correspond quite well, although the GADGET run appearsitjignore smoothed (see also Fighre 11).

implementation in GADGET. Although the setup is a strongsbla
wave, there is no visible difference of the SPH MHD implenaent
tion with the ATHENA results. This is quantitatively confied in
figure[I3 which shows a horizontal cut ¢at= 0.5) of the density
through theStrong Blastest, comparing the ATHENA (black line)
with the GADGET (pink line with red error bars) results. Bies
very small variations there is no significant differencenssn the
two results and all features are well reproduced by the SPHDMH
implementation. Note that the error bars of the GADGET rssul
again are almost in all cases smaller than the shown linéhwidt

3.5.3 Orszang-Tang Vortex

This planar test problem, introduced by Orzang & Tang (1979)

is well known to study the interaction between several esss
of shock waves (at different velocities) and the transition
MHD turbulence. Also this test is commonly used to vali-

date MHD implementations (for example dee Dai & WoodWward
[1994; | Picone & Dahlburg 1991: Londrillo & Del ZadriLbOO
IPrice & Monaghan 2005%; Barve et al. 2006). The initial coiodis
for an ideal gas withy = 5/3 are constructed within a unit-length
domain (e.gx = [0,1],y = [0, 1]) with periodic boundary con-
ditions. The velocity field is defined by, = —sin(27y) and

vy = sin(27x). The initial magnetic field is set to B, = Bov,
and By = Bysin(4mrz). The initial density isp = P and the
pressure is set tB = vB3. This system is evolved untill= 0.5
Figure[I4 shows the final result for the magnetic pressuré¢hfer
ATHENA run (left panel) and thetandardMHD SPH implemen-
tation in GADGET (right panel). Visually the results aretgutom-
parable, however the GADGET results look slightly more smeéa
which is the imprint of the underlying SPH method. This imgpre
sion is confirmed in figurg_15, which shows two cugs=£ 0.3125
andy = 0.4277) through the two simulations. Again, the black
line shows the ATHENA result, the pink line with the red error
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Figure 12. Shown is the resulting density distribution for tBgong Blastest att = 0.02. The left panel shows the results obtained with ATHENA, tyétr
panel the results obtained with teandardSPH MHD implementation in GADGET. There is no differencevizetn the two results visible (see also figure

1.
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Figure 13. Horizontal cut through th8trong Blastest ¢ = [0.0; 1.0],y =
0.5) showing the density. The black line is from the ATHENA sition,
the pink line with the red error bars (see figlré 11) refleatss@GADGET
result. The overall behavior is excellent, with only veryahdifferences
between the two solutions.

Lagrangian region selected from a cosmological, lowerlutisem
DM-only simulation (Yoshida et al. 2001). This parent siatidn
has a box—size o884 Mpc, and assumed a flatCDM cosmol-
ogy with ©,, = 0.3 for the matter density parametdiy = 70

for the Hubble constantf,,. = 0.13 for the baryon fraction and
os = 0.9 for the normalization of the power spectrum. The clus-
ter has a final mass df.5 x 10'* My and was re-simulated at 3
different particle masses for the high resolution regiosing the
“Zoomed Initial Conditions” (ZIC) technique (Tormen el|4897),
these regions were re-simulated with higher mass and fesmu-
tion by populating their Lagrangian volumes with a largemtner

of particles, while appropriately adding additional higlequency
modes drawn from the same power spectrum. To optimize the set
of the initial conditions, the high resolution region wasngted
with a 16® grid, where only sub-cells are re-sampled at high res-
olution to allow for quasi abritary shapes of the high resolu
region. The exact shape of each high-resolution regionsiteras
ated by repeatedly running dark-matter only simulatiomsi] the
targeted objects are clean of any lower—resolution boyngar-
ticle out to 3-5 virial radii. The initial particle distriltions, be-
fore adding any Zeldovich displacement, were taken fronexes
glass configuratior (White 1996). The three resolutionsl use-

bars shows the GADGET result. In general there is a reasenabl respond to a mass of the dark matter particles.6fx 10° M,
agreement, however the SPH MHD results clearly smooth some 2.5 x 1080 and 1.6 x 10 M, for the 1x, 6x and 10x simu-

of the features. Also the SPH results seems to converge ierglen
slower, the adaptive nature of the SPH MHD implementation al
lows the central density peak to be resolved whereas in ATAEN
is can only be resolved by increasing the resolution. Névetless

lation. The gravitational softening corresponds7{a.9 and 3.2
kpc respectively. For simplicity we assumed an initiallyrepe-
neous magnetic field afdo "' G co-moving as also used in previ-
ous work (Dolag et al. 1999, 2002). We also apply the regzdari

the SPH MHD implementation seems to converge slower when in- tion by smoothing the magnetic field in the same way than we did

creasing the resolution (see Appendix).

4 COSMOLOGICAL APPLICATION

The cluster used in this work is part of a galaxy cluster sampl
(Dolag et al., in preparation) extracted from a re-simolatof a

in previous work|(Dolag et al. 2004, 2005).

Figure[I6 shows a zoom-in from the full cosmological box
down to the cluster. The structures in the outer parts getpes-
nounced due to the decrease in resolution towards the vagg la
scales of the box. Each panel shows (in clockwise order) enzao
by a factor of ten. Finally the elongated box in the lower fefhel
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Figure 14. The magnetic pressurB? /2 distribution in theOrszang-Tang Vorteatt = 0.5. Left panel shows the ATHENA solution and the right panel
shows thestandardSPH MHD implementation in GADGET. Some of the sharp feataressmoothed in the SPH MHD implementation but overall tealts

compares very well (see also figlird 15)
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Figure 15. Two ¢ = 0.5 cuts throught the pressure in t¥szang-Tang Vorteaty = 0.3125 and aty = 0.4277 (left and right panels, respectively).
As before, the black line reflect the results obtained wittHENA and the pink line with the red error bars is obtained whke standardSPH MHD
implementation in GADGET. The cuts are choosen for companith results from the literature, elg. Bagrve €tlal. (2006)

marks the size of the observational frame shown on the left. F
comparison we produced a synthetic Faraday Rotation map fro
the simulation and clipped it to the shape of the actual alasiens

to give an indication of the structures resolved by such kitians.

As the initial value of the magnetic field is arbitrary choser®
used a linear color scale matched to the minimum/maximuoegal
present in the individual maps. The dynamical range of thrusi
lation spawns more than five orders of magnitudes in spaiial d
mension, and the size of the underlying box is 6 and 5 timggfar
than the AMR simulations presented in Dubois & Teys$sier £300
and| Briiggen et all (2005), respectively. Still the resofubf the
underlying dark matter distribution is, respectively, 2ldtimes
better than these AMR simulations and the cluster is regdohith
more than one million dark matter particles within the Viredius

at thelOxresolution. To perform the simulation, th@xresolution
run neededx 730 CPUh on an AMD Opteron cluster. This again

is demonstrating the advantages of the underlying SPH seliem
making large, cosmological zoomed simulations possible.

In figure[17, the radial magnetic field profiles are shown for
the three resolutions comparing the results obtained \wighnor-
mal configuration for cosmological simulations with reswithere
we just used th&uler Potentialto follow the evolution of the mag-
netic field ignoring back reactions. As already noted inieawork
(Dolag et al. 2002), the left panel shows the dependenceeddrii
plification of magnetic fields with resolution. In additicthe solu-
tion obtained with théEuler Potentialagrees nicely with thetan-
dard runs in the outer part of the profiles. In the central parts, th
standardsimulation falls below the solution obtained using khe
ler Potential This is easy to understand, becauseEhter Poten-
tial are free from any numerical magnetic dissipation. Addaion
the magnetic field is strongest in the cluster core and thexein-
cluding the magnetic force in the normal runs will lead to p-su
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684 Mpc

Observation Simulation

3C449
Feretti et al. 1999

Figure 16. Zoom into the cluster simulated within the cosmological Holockwise, each panel displays a factor 10 increase inimgagagnification, starting
from the full box (684 Mpc) down to the cluster center (680 k2n the very large scale, the density of the dark matteighestare shown, whereas in the
high resolution region the temperature of the gas is red@remphasize the presence and dynamics of the substruthedast zoom extracts a region of
the same size of an observed radio jet (3C449) with measotatian measur 99). Both, the simulatetitae observed map are displayed
using a linear color-scale based on the minimum and maximaloes in the maps. The synthetic RM map is clipped to the sbijhe observations. Clearly,

the simulations are still lacking in resolution, howevegtido come quite close.

pression of the amplification. In general the comparisomefttvo
methods demonstrate that the amplification of the magnetitifi
the standardimplementation is not significantly influenced by the
non-zerodiv(B). In addition, although the absolute value of the
amplification is not converged with resolution, the shapthefpre-
dicted magnetic field profile appears to be converged. Tisisaan

in the right panel of figure_17, where the profiles are nornealiar-
tificial at large radii to demonstrate the self similar stapsote
that this convergence, as usual for all hydro dynamical tities)

is only reached at radii significant larger than the size efgtravi-
tational softening, indicated as dashed lines for the Ib¢e2g.1X)
and highest (e.dLOX) resolution runs.

The situation changes when using artificial magnetic dissip
tion, as shown in figurd (18). The left panel shows the magneti
field profiles for several values afs compared with the profiles for
the standardrun and that usinguler Potentials Clearly a normal
value for artificial magnetic dissipation leads to a largesifiation
of magnetic field over the simulation time (e.g. close to tlubble

time). The right panels show the profiles artificially norinedl at
large radius. Clearly the self similarity of the profilesast. There-
fore it looks like that the use of artificially dissipation asegular-
ization scheme is not a good choice for cosmological sirarat
Additional it points out that physical dissipation mighaplan im-
portant role in determining the shape of the magnetic fietdiler
in galaxy clusters.

5 CONCLUSIONS

We presented the implementation of MHD in the cosmological,
SPH code GADGET. We performed various test problems and dis-
cussed several instability correction and regularizasohemes.
We also demonstrated the application to cosmological sitimuls,
the role of resolution and the role the regularization saeplay
in cosmological simulations.

Our main findings are:
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Figure 18. The magnetic field profiles obtained for the galaxy clusténgislifferent regularization methods. In Addition the rigsdor using theEuler
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e The combination of many improvements in the SPH im-
plementation, like the correction terms for the variableosth-
ing length (Springel & Hernquist 2002) as well as the usage of
the signal velocity in the artificial viscosity (Monaghan919 to-
gether with its generalization to the MHD case (Price & Mdmey
2004a) improve the handling of magnetic fields in SPH signifi-
cantly.

e Correcting the instability by explicitly subtracting thertri-
bution of a numerical non-zero divergence of the magnetid fie
to the Lorenz force from the Maxwell tensor as suggested by
Bgarve et al.|(2001) seems to perform well. Specifically iréhdi-
mensional setups it seem to work much better than other sugge
tions in the literature.

e The SPH MHD implementation performs very well on simple
shock tube tests as well as on planar test problems. We pextbr
all test in a fully three-dimensional setup and find excelbgree-
ment of the results obtained with the SPH MHD implementation

compared to the results obtained with ATHENA in one or two di-
mensions.

e With a convergence study we demonstrate that the SPH MHD
results when increasing the resolution are converging é¢otrtine
solution, especially in the sharp features. However, inespegions
it seems that small but systematic differences convergge ety
slowly to the correct solution, which most likely is relatediases
in the underlying density estimation.

e Regularization schemes help to further suppresses notse an
div(B) errors in the test simulations, however one has to carefully
select the numerical parameters to avoid too strong snraptbii
sharp features. Performing a full set of individual shodbettests
allows one to tune the numerical schemes and to determimaalpt
values.

e The SPH MHD implementation allows us to perform chal-
lenging cosmological simulations, covering a large dyrcami
range in length-scales. For galaxy clusters the shape oprie
dicted magnetic profiles is, (with the exception of the calnpart
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of clusters) converged in resolution and in good agreeméittt w
previous studies. Also the structures obtained in syrtt&traday
Rotation maps are in good agreement with previous findings an
compare well with observations.

The results obtained with artificial dissipation in cosngio
cal simulations indicate that physical dissipation couky cru-
cial role in determining the exact shape of the predictedymatic
field profiles in galaxy clusters. Future work, especiallyewtfin-
cluding more physical processes at work in galaxy clustes eaa
be done easily with our SPH MHD implementation — will reveal a
interesting interplay between dynamics of the cluster aphere
and amplification of magnetic fields. Thus having the potért
shed light on many, currently unknown aspects of clustenmatg
fields, their structure and their evolution.
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Figure Al. A cut throgh the density for the Orszang-Tang Vortex test (se
Figure 13/14). Shown in black is the result obtained with Bespcompared
to the results obtained with Athena using 3 different resons.
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Figure A2. Same than figur€ (A1), but showing the results obtained Wéh t
standardSPH-MHD implementation at two different resolutions comgaa
to the results obtained with Ramses.

APPENDIX A: CONVERGENCE

Numerical experiments are normally restricted by the regmh
once can technically (in terms of computing/memory reqo@ets)
achieve. Therefore tests as presented in section 3 arelyusaal
nominal better resolution than can be obtained in releviarth{s
case cosmological) simulations. Never-the-less an istieigques-
tion is, how good do the numerical methods used convergeci on
further increase the resolution strongly? Figurd Al hAaws
this for Athena and thetandard SPH-MHD implementation re-
spectively. We repeated the Orszang-Tang Vortex test @noktith
Athena on al1922, 4002 and 800 grid. Figure[Al shows a cut
through the density of the Orszang-Tang Vortex, compariitg w
the result obtained with the AMR code Ramses (Teyssier2002)
Clearly, the results obtained with Athena when increasigres-
olution approaches the results obtained with Ramses. €igdr
shows the same for setups with0? x 5, 700% x 5 and1400% x 5
particles. The SPH-MHD implementation also converges tds/a
the Ramses results with increasing resolution. But althoting
central feature is better resolved in the SPH-MHD impleraton
than in the Athena run with comparable resolution, somerdtze
tures can be seen to converge slower in the SPH-MHD implemen-
tation when increasing the resolution. Specifically, in sovery
smoothed features it looks like that there are small buesyatic
differences between the SPH and the true solution. Here Rtt¢ S
results seems to converge only extremely slow (if at allisTé
most likely related to systematics in the underlying dgnsgtima-
tion.
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