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ABSTRACT

We study galaxy mergers using a high-resolution cosmological hydro/N-body simulation with
star formation, and compare the measured merger timescales with theoretical predictions based
on the Chandrasekhar formula. In contrast to Navarro et al., our numerical results indicate, that
the commonly used equation for the merger timescale given by Lacey and Cole, systematically un-
derestimates the merger timescales for minor mergers and overestimates those for major mergers.
This behavior is partly explained by the poor performance of their expression for the Coulomb log-
arithm, ln(mpri/msat). The two alternative forms ln(1 + mpri/msat) and 1/2 ln[1 + (mpri/msat)

2]
for the Coulomb logarithm can account for the mass dependence of merger timescale successfully,
but both of them underestimate the merger time scale by a factor 2. Since ln(1+mpri/msat) rep-
resents the mass dependence slightly better we adopt this expression for the Coulomb logarithm.
Furthermore, we find that the dependence of the merger timescale on the circularity parameter
ǫ is much weaker than the widely adopted power-law ǫ0.78, whereas 0.94ǫ0.60 + 0.60 provides a
good match to the data. Based on these findings, we present an accurate and convenient fitting
formula for the merger timescale of galaxies in cold dark matter models.

Subject headings: dark matter — galaxies: clusters: general — galaxies: kinematics and dynamics —

methods: numerical

1. Introduction

Dynamical friction plays a crucial role in the
formation and evolution of galaxies. During the
merger of two dark matter halos, galaxies in a
less massive halo will become the satellite galaxies
of the more massive one. These satellite galaxies
gradually lose their energy and angular momen-
tum under the action of dynamical friction and
are predestined to sink to the center of the mas-
sive dark matter halo, if they are not disrupted by
the tidal force.

Dynamical friction takes effect through interac-
tion of galaxies with background dark matter par-
ticles. Chandrasekhar (1943) gave a description
for this phenomenon for an idealized case where a
rigid object moves through a uniform sea of col-
lisionless matter particles. This description can
be applied to the case of a satellite galaxy mov-

ing in a dark matter halo. The orbits of dark
matter are deflected by the galaxy, which pro-
duces an enhancement of dark matter density be-
hind the galaxy. Consequently, the galaxy suf-
fers a steady deceleration by the drag of the wake,
and will eventually merge to the central galaxy
of the dark matter halo. The merger timescale,
i.e. the time elapsing between entering the virial
radius of the dark matter halo and final coales-
cence of satellite and central galaxy, can be de-
rived using Chandrasekhar’s formula (see, e.g.,
Binney & Tremaine 1987). Additionally, taking
into account the dependence on the orbital circu-
larity Lacey & Cole (1993) derived the following
expression for the merger timescale of a satellite
galaxy orbiting around a massive halo with circu-
lar velocity Vc

TChandra =
1

2

f(ǫ)Vcr
2
c

CGmsat ln Λ
, (1)
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where ǫ is the circularity parameter of the satel-
lite’s orbit and rc is the radius of a circular or-
bit with the same energy as the satellite’s or-
bit. f(ǫ) describes the dependence of TChandra

on the orbital circularity, and is approximated by
f(ǫ) ∼ ǫ0.78 for ǫ > 0.02 (Lacey & Cole 1993). C
is a constant, approximately equal to 0.43, and
msat is the satellite mass. ln Λ is the Coulomb
logarithm, which is given ln(dmax/dmin), where
dmax is the maximum relevant impact parameter
at which background particles are scattered into
the wake and dmin is the minimum impact param-
eter (Chandrasekhar 1943; White 1976). It is ex-
pected to be applicable for cases where the satel-
lite mass is much smaller than that of the primary
halo.

There have been many works which used N-
body simulations to check the validity of Chan-
drasekhar’s formula and its application to the
merging of satellite and central galaxies, but no
consensus has been reached on the accuracy of
such applications. This is because a galaxy merger
is a more complicated process than a pure mo-
tion of a rigid body through an uniform collision-
less matter distribution as considered by Chan-
drasekhar. The primary halo has a density in-
creasing inward to the halo center, which makes it
nontrivial to choose the maximum impact param-
eter for the Coulomb logarithm (Hashimoto et al.
2003; Jiang & Binney 2000; van den Bosch et al.
1999). Because the satellites lose their mass due
to the tidal interaction by the primary halo, one
has to follow both the trajectory and the mass
evolution of the satellites to derive their merger
timescale. Unfortunately, there is still a con-
siderable amount of uncertainties in modeling
these processes (Tormen et al. 1998; Gao et al.
2004; Zentner et al. 2005). A further complica-
tion is that due to the similar orbits of the tidally
stripped mass and the satellite itself the tidal de-
bris will trail the satellite for a significant amount
of time which in turn will exert a drag force on the
satellite (Fujii et al. 2006; Fellhauer & Lin 2007).
Besides, the merger can alter the structure of
the primary halo which is another complication
for accurately computing the merger timescale
(Zaritsky & White 1988; Cora et al. 1997).

It is however very useful to give a simple
prescription for the merger timescale of the
satellites. Navarro et al. (1995) used an N-

body/hydrodynamics simulation with gas cooling
to determine the merger time scales. Their sim-
ulation didn’t include a recipe for star formation,
thus they used the cold gas at the cores of dark
matter halos as a proxy for galaxies. They found
a good agreement with the prediction of equa-
tion (1) if the satellite mass msat is taken to be
the sum of the cold gas core and the associated
dark matter halo at the moment when it crosses
the virial radius of the primary halo for the first
time. They further pointed out that the predicted
merger timescale is too long if only the cold gas is
taken for the satellite mass.

The N-body study of Navarro et al. provides
a strong support for using equation (1) to de-
termine the merger timescale in both theoretical
and observational studies, if msat is taken to be
the total mass of the satellite at the virial radius
of the primary halo. For example, this equation
is an important ingredient in modeling mergers
of galaxies in analytical studies of galaxy for-
mation (e.g., Kauffmann et al. 1999; Cole et al.
2000; Monaco et al. 2000; Somerville & Primack
1999; Menci et al. 2002; Nagashima et al. 2002;
Hatton et al. 2003; Khochfar & Ostriker 2007;
Baugh 2006, for an excellent review) and in under-
standing the merger rates of galaxies in the cos-
mological context (e.g. Ostriker & Turner 1979;
Lin et al. 2004; Gill et al. 2005; Maller et al. 2006;
Conroy et al. 2007; White et al. 2007; Zheng et al.
2007). However, there are indications that the
Navarro et al. prescription underestimates the
merger time or overestimates the merger rate.
Springel et al. (2001) and Kang et al. (2005)
found that the luminosity of central galaxies in
rich clusters is reduced if the orbital evolution of
satellites is determined by high-resolution N-body
simulations compared to the luminosities based
on the Navarro et al. merger rates. We also note
that the N-body experiment by Colpi et al. (1999)
gave a merger timescale which is longer than what
Navarro et al. suggests. They even found an
much weaker dependence on the circularity with
the exponent only about 0.4 (instead of 0.78).
Therefore it is not yet clear what causes these
discrepancies, especially the one between Colpi et
al. and Navarro et al.. It would be helpful to
point out that Navarro et al. used a cosmologi-
cal hydro/N-body simulation with gas cooling and
included both major and minor mergers in their
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study, while Colpi et al. used N-body simulations
of galaxy mergers and considered minor mergers
only.

In this paper, we will use a high-resolution
hydro/N-body cosmological simulation to clarify
this situation. In the simulation, gas cooling and
star formation are included so that the galaxy
mergers can be identified unambiguously and the
merger timescale can be well measured. Our re-
sults can be directly compared with Navarro et
al., therefore, they will be used to study the ori-
gin of the discrepancies mentioned above. We will
show that the Navarro et al. prescription actually
underestimates the merger time for minor merges,
qualitatively in good agreement with Colpi et al.,
but overestimates it for major mergers. In light
of our simulation results, we will propose an accu-
rate fitting formula for the merger timescale that
accounts well for the dependences on mass and cir-
cularity of the individual satellites, and can there-
fore accommodate both, minor and major merger
events.

The paper is organized as follows. In Section
2, we describe our simulation and our method for
calculating the merger timescale in the simulation.
Section 3 gives a comparison between our simula-
tion result and the theoretical prediction. A new
fitting formula for the merger timescale is derived
in Section 4. Finally, we summarize our results in
Section 5.

2. Merger timescales in simulation

2.1. The simulation

A parallel version of the SPH code GADGET2
(Springel et al. 2001; Springel 2005) is used to sim-
ulate the structure formation and evolution in the
Universe. The cosmological parameters we use are
ΩΛ = 0.732, Ωm = 0.268, Ωb=0.044, σ8=0.85,
and a Hubble constant H0 = 100h km s−1Mpc−1

with h = 0.71. The box is 100 h−1Mpc on a
side, with 5123 dark matter particles and 5123

gas particles. The resulting mass resolution for
dark matter and gas particles is 4.6 × 108 h−1M⊙

and 9.2 × 107 h−1M⊙, respectively. The simula-
tion includes the physical processes of radiative
cooling and star formation. It also includes super-
nova feedback, outflows by galactic winds, and a
sub-resolution multiphase model for the interstel-
lar medium as detailed in Springel & Hernquist

(2003). The simulation has the same mass resolu-
tion and model parameters as the star formation
run of Jing et al. (2006), except that the soften-
ing length of the gravitational force is greatly re-
duced in the current simulation, where we use a
spline kernel (Springel 2005), roughly equivalent
to a Plummer force softening of 4.5 h−1kpc (co-
moving). There are a total of 88 snapshot out-
puts from z = 2.0 to the present time, z = 0,
with an equal logarithmic scale factor interval of
∆ ln a = 0.01 between two consecutive outputs.
The large number of outputs enables us to accu-
rately sample orbits of satellites within massive
halos. Both, the good force resolution and the
dense sampling of snapshots, are crucial for the
current study.

2.2. Construction of halo merger trees

Dark matter halos are identified using the
friends-of-friends (FOF) method, with a linking
length of 0.2 times the mean inter-particle sep-
aration. To obtain a sufficient number of halos
with reasonable mass resolution, we only focus on
the halos with masses mvir > 5 × 1012 h−1M⊙ at
the present epoch. The virial mass of a halo mvir

is defined as the mass enclosed within the virial
radius rvir within which the mean mass density is
∆(z) times the critical density of the universe at
redshift z. For ∆(z) we adopt the fitting formula
for flat universes provided by Bryan & Norman
(1998),

∆(z) = 18π2 − 82x − 39x2 , (2)

where x is the density parameter for the vacuum
density (the cosmological constant) at redshift z.

Then we trace these halos back to z = 2.0 to
construct the main branch of the merger tree for
each halo. For halo A at some snapshot, halo B at
an earlier snapshot which, among all its progen-
itors, contributes the largest number of particles
to A is defined as the main progenitor of A. All
the other progenitors of halo A, each of which is
required to have more than half its particles merg-
ing with A, are taken as satellite halos of halo B,
while B is called the primary halo. Note, we use
’satellite’ to represent the whole halo, including
both, dark and stellar matter.

We do not use the orbital energy as the crite-
rion to identify a satellite as being bound or un-
bound, since an orbit that starts out unbound will
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not necessarily remain unbound, because dynam-
ical friction may sufficiently reduce its energy, see
e.g., Benson (2005). They find that only about 2%
of all initially unbound orbits fail to become bound
and so escape from their primary halo. Further-
more, to reduce artificial effects caused by the fi-
nite numerical resolution we keep only those satel-
lites that have central galaxies more massive than
2.0×1010 h−1M⊙. Typically, these satellite galax-
ies are surrounded by a dark matter halo compris-
ing more than 1000 particles before entering the
primary halo.

2.3. Merging timescale of galaxies

The galaxies are also identified with the friends-
of-friends method applied to the star particles but
with a small linking length of 4.88 h−1kpc. Be-
sides the central galaxies of the primary halos we
only focus on those galaxies which have been the
central galaxies of the approaching satellite ha-
los. Throughout, the former will be referred to
as central and the latter as satellite galaxies. The
descendant of a galaxy, C, is the galaxy in a sub-
sequent snapshot which shares the most star par-
ticles with C. A galaxy merger is identified if the
satellite galaxy and the central galaxy begin to
have the same descendant at one snapshot, and
continue to have the same descendant for the fol-
lowing four snapshots (≥ half of the dynamical
time of a halo). We use this criterion to ensure
that the merger is a real merger not just a close
flyby.

The merger timescale is defined as the time
elapsed between the moment when the satellite
galaxy first crosses the virial radius of the pri-
mary halo and the final coalescence of satellite and
central galaxy. The computation of the merger
timescale from the simulation involves four dis-
tinct snapshots: snapshot a, the last snapshot for
which the satellite halo is identified as a single
halo; snapshots b and b+1, between snapshot b

and snapshot b+1 the satellite galaxy crosses the
virial radius of the primary halo for the first time;
and finally, snapshot c, beginning of the coales-
cence of satellite and central galaxy. To accurately
determine the point in time when the satellite
galaxy enters the primary halo, we assume that
the satellite galaxy moves with constant velocity
from its actual location, both measured at snap-
shot b, until it hits the virial radius, which has

been fixed at snapshot a. However, a substantial
fraction (∼ 14%) of the satellite galaxies do not
reach the virial radius within the time interval be-
tween snapshot b and b+1. This happens because,
in general, satellites are in accelerated motion. In
such cases, we choose snapshot b+1 as the time at
which the satellite reaches the virial radius. Due
to the dense time sampling by the large number
of snapshots this uncertainty constitutes only a
marginal source of error.

Finally, the merger timescale for each com-
pleted merger event is defined to be the interval
between the time when the satellite first enters the
virial radius and the middle point between snap-
shots c and c-1.

Some basic statistical properties of the mergers
are presented in Figure 1. There is almost an equal
amount of major mergers and minor mergers, if we
use the mass ratio mpri/msat = 3 as the dividing
line. Since we examine only snapshots starting
from redshift z = 2, the redshifts, at which the
eventually merging satellites first cross the virial
radius of the primary halo, span the range between
z = 0.4 and z = 2. (Satellites which approach
more recently than z = 0.4 do not have sufficient
time to merge with the central galaxy.) The ra-
tio of the stellar mass of a central galaxy to the
dark matter mass of the primary halo varies from
0.5% to 5% with an average of 2%. This ratio is
in reasonable agreement with the observed values
of galaxy groups(Gonzalez et al. 2007; Lin et al.
2003). The satellite sample has a wide spectrum
of orbital energies, as displayed by the distribu-
tion of rc/rvir, which ranges from 0.6 to 1.5 with
an average 0.8. Thus, we believe that our sample
represents a typical sample of galaxy mergers.

3. Comparison with theory

Equation (1) is only applicable for mergers with
mass ratios mpri/msat ≫ 1, where mpri and msat

stand for the mass of the primary and the satel-
lite halo, respectively (Binney & Tremaine 1987).
As mentioned above Λ in the Coulomb logarithm
ln Λ is defined as the ratio between maximal and
the minimal impact parameters (dmax/dmin) for
which encounters between the satellite and the
dark matter particles can be considered effective .
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An equivalent expression for Λ is given by

Λ ≡ dmaxVtyp
2

G(msat + mdm)
=

mpri

msat

, (3)

where Vtyp and mdm are the typical velocity and
mass of background dark matter particles. The
transition from the middle to the expression on
the right hand side is obtained by setting dmax =
rpri (the radius of the primary halo), Vtyp ≈ Vpri

(the circular velocity of the primary halo), and
assuming mdm ≪ msat.

Therefore, according to equation (1) a correct
estimate of the satellite mass is pivotal for the de-
termination of the dynamical friction timescale.
A satellite orbiting in the potential well of the
primary halo loses a large fraction of its initial
mass due to the exposure to the global tidal
field (e.g., Tormen et al. 1998; Gao et al. 2004;
Shaw et al. 2007) and due to high-speed encoun-
ters with other satellites (e.g., Moore et al. 1996;
Gnedin 2003). Based on a hydro/N-body simu-
lation Navarro et al. (1995) investigated the de-
pendence of the dynamical friction time scale on
the the Coulomb logarithm ln Λ = ln(mpri/msat)
by considering two extreme choices for msat: (1)
msat was considered to be the total virial mass
of the satellite before entering the primary halo,
i.e. the sum of the gas (representative for the stel-
lar component in their simulation) and the cold
dark matter within the satellite’s virial radius, (2)
msat only accounted for the cold gas associated
with the satellite galaxy at the center of the ap-
proaching dark matter halo. They found when
the total virial mass is chosen for msat equation
(1) gives a good prediction for the merger time
scale although the scatter is very large. If only the
cold gas is adopted for msat equation (1) signifi-
cantly overestimates the merger timescale because
the cold gas mass is always much smaller than the
virial mass. Based on this numerical investigation,
equation (1) with the initial satellite virial mass
for msat is widely used in galaxy formation stud-
ies (e.g., Cole et al. 2000; Kauffmann et al. 1999;
Kang et al. 2005). Here, we also follow this con-
vention for msat.

With the present analysis we aim to examine
the validity of equation (1) by means of a cos-
mological high resolution N-body/hydro simula-
tion. Figure 2 compares the merger timescale
TChandra computed according to equation (1) with

the merging time Tsimu measured in the simu-
lation. The solid diagonal displays TChandra =
Tsimu. The results indicate a qualitative agreement
between the prediction of equation (1) and the
time scales measured from the simulation. How-
ever, scatter between TChandra and Tsimu is ex-
tremely large. To see whether the large scatter
is caused by the failure of equation (1) for mass
ratios msat/mpri ≈ 1 we plot the median value of
Tsimu/TChandra as a function of msat/mpri in Fig-
ure 3 (the solid line). The figure clearly shows
that the time ratio increases monotonically with
decreasing mass ratios. That is, the time ratio is
significantly smaller than 1 (0.55 for the mass ra-
tio larger than 0.65) for the major mergers and
approaches 4 for minor mergers (for the mass ra-
tio smaller than 0.065). This implies that equation
(1), which is expected to be valid for minor merg-
ers, actually underestimates the merger time scale
for them. This result is in approximate agreement
with Colpi et al. (1999) who found that the fric-
tion timescale for msat/mpri ≈ 0.02 is underesti-
mated by a factor of 2 if equation (1) is used. On
the other side, our result points out that equation
(1) significantly overestimates the dynamical fric-
tion time scales for major mergers. Despite the
fact that the formula is not expected to be appli-
cable to major mergers, it is still widely used for
major mergers in the literature. Our findings do
not agree with Navarro et al. (1995) who advocate
a good agreement between their simulation result
and equation (1) for minor mergers with mass ra-
tios less than 0.5. In the next section, we will use
our simulation data to improve the description for
the merger timescale in the hierarchical clustering
scenario.

4. Fitting formula for the merger timescale

in cosmological context

First, because rc ≈ rvir we rewrite the formula
of TChandra as

TChandra =
1

2

f(ǫ)

C

mpri

msat

1

ln Λ

rc

Vc

(4)

where rc/Vc ∝ 1/
√

Gρ and ρ is the mean mass
density of the halo at that redshift. Thus rc/Vc

is proportional to the age of the Universe at the
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epoch being considered1, independent of primary
and/or satellite halo masses. Consequently, the
mass dependence of TChandra is solely accounted
for by the mass ratio between satellite and primary
halo, and its circularity dependence is included
by the function f(ǫ). It is suggesting to isolate
those two dependencies to find the cause of the dis-
crepancies between the merger time scales derived
from equation (1) and the simulation. Therefore,
in the following section we will focus on the depen-
dence of the merging time scales on the mass ra-
tios. Subsequently, we will examine the circularity
dependence in detail. Finally, these investigations
will lead us to a new description of merger time
scales in the cosmological context.

4.1. Dependence on the mass ratio and

Coulomb logarithm

The strong dependence of Tsimu/TChandra on the
mass ratio msat/mpri shown in Figure 3 (the black
solid line) indicates that the mass dependence
of TChandra as described by equation (1) is incor-
rect. Here, we first consider to revise the Coulomb
logarithm. In fact, in the original derivation of
the formula (see, Binney & Tremaine 1987), the
Coulomb logarithm should read as 1

2
ln(1 + Λ2).

Only if the satellite mass is much smaller than the
primary mass this expression can be written as
ln Λ. In the literature 1

2
ln(1+Λ2) is simply used to

include mergers that do not satisfy the condition
msat ≪ mpri (e.g. Somerville & Primack 1999).
But another version, namely ln(1 + mpri/msat),
is even more widely used for the same purpose
(e.g. Springel et al. 2001; Volonteri et al. 2003;
Kang et al. 2005) despite the fact that there is no
clear physical motivation for adopting it. Here
we examine the mass dependence using these two
alternative forms for the Coulomb logarithm.

The red dashed line and the green dotted
line in Figure 3 show the mass dependence of
Tsimu/TChandra for these two alternative forms of
the Coulomb logarithm. For mass ratios less than
0.1 the two curves are quite similar to that of
ln Λ (solid line). But, for mass ratios ∼ 1 they
display substantial differences. The mass depen-
dence becomes significantly smaller for these two
forms, especially for the form ln(1 + mpri/msat),

1
rc is about rvir but there is scatter, so the statement is

valid approximately

however, it does not disappear completely.

As a trial to improve the description for the
mass dependence, we replace rc in equation
(1) by rvir for the two forms of the Coulomb
logarithm mentioned above. Figures 4 and 5
show Tsimu/TChandra for 1

2
ln(1 + Λ2) and ln(1 +

mpri/msat), respectively. The plot based on either
of the two forms does not differ much. Here, we
want to emphasize two points. First, the scat-
ter in the plots is much smaller than in Figure 2.
Second, the value of TChandra is systematically
smaller than that of Tsimu. Although the scat-
ter is smaller, it nevertheless will provide some
deeper insight to examine if the scatter depends
on the mass ratio. In analogy to Figure 3, we
plot in the Figures 6 and 7 the median value of
Tsimu/TChandra as a function of the mass ratio, for
1
2

ln(1 + Λ2) and ln(1 + mpri/msat), respectively.
While there is a moderate dependence on the mass
ratio when the form 1/2 ln[1 + (mpri/msat)

2] is
used, it is very interesting to recognize that the
dependence of Tsimu/TChandra on the mass ratio
for ln(1 + mpri/msat) is strongly reduced. This
implies that the mass dependence of the merger
time scale can be well represented by the form
ln(1 + mpri/msat), though many previous works
using this form actually systematically underes-
timate the merger time scale or overestimate the
merger rate by a factor 2.

In the following discussion, we will always use
the form ln(1 + mpri/msat) for the Coulomb loga-
rithm. We prefer to use this form with rc replaced
by rvir as this gives a much tighter correlation be-
tween TChandra and Tsimu and can effectively ab-
sorb the dependence on the mass ratio. Moreover,
in many practical applications, it is usually easier
to use rvir than to use rc.

4.2. Dependence on circularity and the re-

vised form of f(ǫ)

Now we check the dependence of the merger
time on the initial circularity parameter ǫ. This
parameter is determined from the velocity and po-
sition of a satellite when it first crosses the virial
radius of the primary halo. As in the literature, we
assume that the halo is an isothermal sphere when
determining the circularity. In Figure 8 (upper
line), we show the median value of Tsimu/TChandra

as a function of circularity, where we have used
ln(1 + mpri/msat) for the Coulomb logarithm and
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f(ǫ) = ǫ0.78 when we calculate TChandra. The fig-
ure shows that the satellites on very eccentric or-
bits tend to merge in a much longer timescale com-
pared to the theoretical prediction. If we still use
an exponential form to represent f(ǫ) = ǫα, the ex-
ponent α should be smaller than the widely used
value 0.78 advocated by Lacey & Cole (1993).

Here we explore the form of f(ǫ) as a function of
initial circularity ǫ. Substituting the merging time
in equation (1) with what we measure in the sim-
ulation, rc with rvir, and the Coulomb logarithm
with ln(1 + mpri/msat), we obtain the values of
f(ǫ) for each merged satellite. Subsequently, we
pick the median value of f(ǫ) in each circularity
bin in our merged satellite sample. Computing
the median value, however, demands some cau-
tion. Because there is considerable scatter in Tsimu

even for the same circularity and the same mass
ratio (which owes to fact that internal structure
and merger history of the primary halo may in-
troduce some scatter into the merger time scale),
there may exist a selection (or incompleteness)
bias against those satellites of long Tmerger. Those
mergers would happen after our fifth last snap-
shot and thus be missed in our study. This effect
gets more severe at larger ǫ, because the merger
times become systematically longer on more cir-
cular orbits. As a result, only those mergers with
smaller Tmerger (for the same ǫ) are selected into
the merger sample, which will artificially lower the
estimate of f(ǫ) for large ǫ. In order to avoid such
selection bias for the determination of f(ǫ), we
construct a complete merger sample of primary
halos and satellites at the first 14 snapshots (red-
shift 1.55 ∼ 2.0) with mass ratio greater than 0.1
(152 pairs). In this sample, all these satellites but
2 are found to have merged with the central galax-
ies of the primary halos before the fifth last snap-
shot. Therefore, our sample is complete for mea-
suring f(ǫ) except for the bin at ǫ = 0.50 where
the completeness is 98% and the bin at ǫ = 0.70
with the completeness of 97%.

In Figure 9 we present our estimate of f(ǫ)
from this complete sample. We first fit the data
with f(ǫ) = aǫα and find the best fitting values
a = 1.48 and α = 0.27. The fitting curve is dis-
played by the dashed line. If we use all mergers
identified instead of the complete sample, the func-
tion f(ǫ) would be underestimated at larger ǫ as
shown by the triangles in the figure, which in turn

would lead to an even smaller α . However, the
degree of the underestimation becomes less seri-
ous, since the dependence on ǫ as shown by the
complete sample is much weaker than the original
function f(ǫ) = ǫ0.78. To check if the circular-
ity dependence in Figure 8 is fully accounted for
by this fitting formula, we plot the median value
of Tsimu/Tfit as a function of the circularity pa-
rameter (dotted line in Figure 8). Compared with
the dashed line (f(ǫ) = ǫ0.78) the dependence on
ǫ is strongly reduced. However, we note that the
new time ratio is still a little higher for the small-
est circularity bin. This can be contributed to
the artificial effect of the pure exponential fitting
form which falsely results in a vanishing merger
timescale for ǫ = 0. If we consider two merging ha-
los with equal masses and assume they will merge
within a free fall time scale rvir/Vc, equation (4)
gives f(ǫ) = 0.60. Therefore, to avoid the artifi-
cial effect at ǫ = 0 due to the pure exponential
form and to reduce the somewhat too high time
ratio in the smallest circularity bin we fit our sim-
ulation data with f(ǫ) = aǫα + 0.60. The best
fitting results are a = 0.94 and α = 0.60. The
solid line in Figure 9 shows the best fitting curve
which matches the data very well. The solid line
in Figure 8 demonstrates that the Tsimu/Tfit in the
first circularity bin has moderately decreased, now
approaching to a value of 1.

The exponent α we find here is much smaller
than the widely used value α = 0.78. At this
point it is worth recalling that α = 0.78 was ob-
tained by Lacey & Cole (1993) analytically for the
case where a rigid satellite falls into an isother-
mal sphere. The fact that our f(ǫ) always ex-
ceeds ǫ0.78 can be interpreted as an indication
for the mass loss of satellites in the simulation
(cf., Colpi et al. 1999). Satellites on radial or-
bits lose their mass much faster than those on
circular orbits, which implies that satellites on
the radial orbits show relatively prolonged merg-
ing time scales compared to satellites on circu-
lar orbits. Therefore, one expects higher val-
ues for f(ǫ) or equivalently lower values for α
for small ǫ. In a future paper(Faltenbacher et al.
2007, in preparation), we will explore this qualita-
tive explanation using an analytical model sim-
ilar to those of Zentner & Bullock (2003) and
Zentner et al. (2005) (see also, Bullock et al. 2000;
Taylor & Babul 2001, 2004).
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4.3. Taking into account both the mass

and circularity dependencies

Combining our results on the mass and circular-
ity dependencies, we write the merger time scale
as

Tfit =
0.94ǫ0.60 + 0.60

2C

mpri

msat

1

ln[1 + (
mpri

msat
)]

rvir

Vc

.

(5)
In Figure 10 this equation is compared with the
merger time scale of all mergers measured in the
simulation. Remarkably, the scatter in the plot is
much smaller than that in Figures 4 and 5, indicat-
ing that Tfit describes the merger timescale much
better than equation (1). To assess the scatter in
more detail Figure 11 displays the distribution of
Tsimu/Tfit. The solid histogram shows the distri-
bution based on the early complete merger sam-
ple as described in §4.2 and the dotted histogram
gives the distribution for all mergers identified in
our simulation.

The distribution for the sample of all mergers
is shifted towards the left relative to the complete
sample. This is caused by the lack of long time
mergers among recently infalling satellites in the
sample of all mergers. These long time mergers
would be included in the sample if the simulation
were evolved beyond the present time z = 0. This
also leads to the trend of the data points to lie
slightly above the solid diagonal in Figure 10.

The distribution of x = Tsimu/Tfit is well fitted
by the log-normal distribution

p(lnx)d ln x =
1√
2πσ

exp

[

− (lnx)2

2σ2

]

d lnx (6)

with σ = 0.4 (the smooth solid line in Figure 11).
This distribution function combined with the fit-
ting function (5) provides a description for the
merger time in a statistical sample.

From Figure 8 we have learned that the cir-
cularity dependence is accounted for by equation
(5). Now, we examine the mass dependence when
equation (5) is applied. Therefore, we plot the me-
dian value of Tsimu/Tfit as a function of the mass
ratio in Figure 7 (solid line). Strikingly, we find no
dependence on the mass ratio which indicates that
the dependencies of the merger time on mass and
circularity are completely reproduced by equation
(5).

4.4. Distribution of circularity

Once the distribution of circularity is known for
a population of infalling satellites, one can deter-
mine how many of the satellites will merge into
central galaxies at a certain epoch in a statisti-
cal way by using equations (5) and (6). Various
authors (e.g., Tormen 1997; Zentner et al. 2005;
Khochfar & Burkert 2006) have studied this dis-
tribution, with similar conclusions that orbits with
intermediate ǫ are common while those at both
ends (ǫ ≈ 0 or 1) are rare. Figure 12 shows our
result for all resolved satellite halos, with an aver-
age value of ǫ about 0.51, which is consistent with
0.53 ± 0.23 in Tormen (1997). The distribution
can be well described by

p(ǫ)dǫ = 2.77ǫ1.19(1.55 − ǫ)2.99dǫ (7)

which is shown as the solid line in Figure 12.
The circularity distribution is independent of the
mass ratio of the primary halo and the satellite,
as shown by Figure 13.

It is worth noting that in semi-analytical mod-
els, the circularity parameter was often ran-
domly drawn from a uniform distribution be-
tween 0 and 1 (e.g., Kauffmann et al. 1999;
Somerville & Primack 1999). According to our
findings such an approach biases the estimate for
the input dynamical friction timescales.

5. Conclusions and discussion

In this paper, we have analysed galaxy mergers
in a SPH/N-body simulation and compared the
merger time scale with the theoretical prediction
based on the Chandrasekhar formula. We have
obtained the following main conclusions.

• In contrast with Navarro et al. (1995), we
find that the widely used equation (1) with
the satellite’s total mass at its first cross-
ing of the host virial radius taken for msat,
systematically underestimates the merger
timescale for minor mergers and overesti-
mates it for major mergers;

• We show that the two alternative forms
ln(1+mpri/msat) and 1/2 ln[1+(mpri/msat)

2]
for the Coulomb logarithm, which also are
widely used in literature, account for the
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mass dependence of merger timescale suc-
cessfully. However, both of them underes-
timate the merger time scale by a factor 2
if the satellite’s total mass at its first cross-
ing of the host virial radius is used for msat.
Of these two forms, the former does slightly
better in accounting for the mass depen-
dence;

• With ln(1+mpri/msat) taken for the Coulomb
logarithm, we find the dependence on cir-
cularity parameter ǫ is much weaker than
ǫ0.78, and can be accurately represented by
0.94ǫ0.60 + 0.60;

• Combining our findings on the mass and cir-
cularity dependencies, we present an accu-
rate fitting formula (eq.5) for the merger
timescale. Together with the distribution
functions (eqs.6 and 7), one can use this
equation to predict for mergers of galaxies
in LCDM models.

Our results do not necessarily mean that Chan-
drasekar’s theory is not applicable for mergers of
galaxies. Instead our results do indicate that many
previous applications of this theory led to incor-
rect results because some simplified assumptions
were adopted. We believe that the mass loss of
satellites and the steep density gradient of host
halos are two of the key reasons that make the
problem complicated. In a future paper, we will
investigate if our simulation results can be repro-
duced with the Chandrasekhar theory by properly
taking into account of these two factors.

In the following we will discuss how potential
shortcomings in the treatment of the baryonic
physics at the core of the primary halo may af-
fect our results. It is well known that current hy-
drodynamic simulations suffer from the so called
’overcooling’ problem, i.e. the gas at the core of
massive dark matter halos cools too rapidly result-
ing in too massive central galaxies compared to
observations (e.g., Borgani et al. 2004; Saro et al.
2006; Naab et al. 2007). In turn, adiabatic con-
traction (e.g., Gnedin et al. 2004) may also change
the dark matter properties at the central parts of
the halo in an unphysical manner.

However, we think that this process does not
substantially alter our results for two reasons: (1)
With exception of very radial orbits, which are

rare, the satellite galaxies spend most of their time
during the merging process at the outer parts of
the primary halo where dynamical friction is mod-
erate. If, however, the satellite is once migrated
towards the central parts of the primary halo dy-
namical friction becomes very efficient and the re-
maining lifetime of the satellite galaxy is short.
Consequently, the merger time scale is set by the
conditions at the outer parts of the primary halo
(c.f., Navarro et al. 1995). (2) The findings of
Springel et al. (2001) and Kang et al. (2005) are
in qualitative agreement with our results. Since
both of these studies are based on pure N-body
simulations they obviously do not suffer from the
overcooling problem. This is an further indication
that our results are accurate and are not affected
by the potential shortcomings in the treatment of
the baryonic physics in the simulations. These ar-
guments are supported by the left panel of Figure
14, which shows that there is no dependence of
Tsimu/Tfit on mstellar/mpri, the ratio of the central
galaxy’s stellar mass to the dark matter mass of
the surrounding primary halo.

We have also checked if our result is affected by
the growth of the primary halo during the merger
course. The middle panel of Figure 14 shows the
ratio Tsimu/Tfit as a function of the mass growth
rate of the primary halo, which is defined as the
ratio of its dark matter mass at the time of merger
to its mass at the time of the first crossing. The re-
sult indicates that the merger time scale is not af-
fect by the growth of the primary halo. A possible
explanation is that the internal density structure
does not change significantly during this course.
Of course, violent major mergers may change the
internal structures and bring about large fluctua-
tions in the merger time.

To keep the fitting formula simple to use, we
prefer not to include the dependence on the energy
of the satellite’s orbit, that is, on rc. We have ex-
amined this dependence in the right panel of Fig-
ure 14, which shows there is a weak dependence
on rc/rvir. We can include this dependence in
our fitting formula by replacing rvir with

√
rvirrc.

Thus, the fitting formula with the rc-dependence
included reads as

Tfit =
0.90ǫ0.47 + 0.60

2C

mpri

msat

1

ln[1 + (
mpri

msat
)]

√
rvirrc

Vc

,

(8)
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and Figure14 shows that the rc dependence is fully
accommodated by this simple heuristic correction.
We have checked the dependence on the mass ra-
tio mpri/msat as well as the scatter in Tsimu/Tfit,
and found that they are nearly the same as when
equation (5) is used. The better performance of
equation (8) is achieved at the expense of com-
puting the energy of the individual satellite or-
bits. Since the accuracy of the fitting formula is
improved only slightly by including the rc depen-
dence compared with the scatter in Tsimu/Tfit, the
simpler formula (5) is preferred for most applica-
tions.

As concluding remark, we once again focus our
attention on equation (5) which can be consid-
ered as the distillate of our analysis. This fit-
ting formula allows to predict the merger timescale
Tfit for the two central galaxies within a satel-
lite and a primary halo. The merger timescale
for the satellite galaxy is defined as the time
which elapses between its first crossing of the pri-
mary’s virial radius and its final coalescence with
the central galaxy. The computation of accurate
merger timescales is a crucial ingredient for semi-
analytical modeling of galaxy formation.

Equation (5) requires two input values: mpri/msat,
the mass ratio of primary and satellite halo (be-
fore they start merging) and ǫ = J/J(E), the
satellites initial circularity which is defined as the
ratio of the satellites actual angular momentum
J and the angular of a circular orbit with the
same energy J(E). rvir is the virial radius of the
primary halo just before the satellite merges with
it. The factors C and rvir/Vc are constants and
do not depend on the specific constellation. If ǫ
is not known it can be randomly drawn from the
distribution provided by equation (7) which we
have derived directly from the simulation data,
see Figure 12. This random process can be ap-
plied for arbitrary mass ratios (mpri/msat) since
the distributions of ǫ are nearly independent of
mass as shown in Figure 13.

Finally, it remains to mention that due to
stochastic processes during a merger event, like
close encounters with other substructures or the
occurrence of multiple mergers at the same time,
there arises substantial scatter among the merger
time scales with equivalent initial conditions. This
can be taken into account if the values for Tfit ob-
tained from equation (5) are spread according to

the log-normal distribution given in equation (6)
which is also displayed in Figure 11. With the fit-
ting formula (5) we provide a robust estimate of
the merger timescale pivotal for all kinds of ana-
lytical modeling of galaxy evolution within dark
matter halos.

After we submitted our paper both to the jour-
nal and to the astro-ph electronic library, an inde-
pendent work by Boylan-Kolchin et al. (2007) on
the same subject had appeared on the electronic li-
brary. Their paper is qualitatively consistent with
ours in that the time scale given by equation (1)
is underestimated. But quantitatively, their re-
sults are rather different from ours. Both the de-
pendencies on the mass ratio and the circularity
parameters are much stronger in their paper. In
particular, the strong dependence on the circular-
ity they found, which is even stronger than ǫ0.78

at ǫ = 0.5−1, is not consistent with our data. The
dependence on the mass ratio is also stronger than
ours. This discrepancy may mainly come from the
difference between the simulations: they present
a series of pure N-body simulations of two halo
mergers, whereas our results are based on a cos-
mological hydro/N-body simulation with star for-
mation. While our fitting formula is accurate for
mergers in the cosmological frame, future work is
still needed to find out the specific causes of this
discrepancy.

We would like to thank Volker Springel for
providing the Gadget Code with star forma-
tion and Liang Gao for his help with using
the code. This work is supported by NSFC
(10533030, 0742961001, 0742951001), by Shanghai
Key Projects in Basic research (No. 04JC14079
and 05XD14019), and by the Knowledge Inno-
vation Program of the Chinese Academy of Sci-
ences, Grant No. KJCX2-YW-T05. AF is sup-
ported by the CAS Research Fellowship for In-
ternational Young Researchers. The simulation
was performed at the Shanghai Supercomputer
Center.
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Fig. 1.— Basic characteristics of all mergers (solid
histograms) and the mergers in the complete sam-
ple (dashed histograms). The panels from the top
left to the bottom left clockwise show the distri-
butions of the mass ratio of the primary halo to
the satellite, the first crossing redshift, the mass
ratio of the stellar mass of the central galaxy to
the primary, and the ratio of rc to the virial radius
rvir respectively.
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Fig. 2.— Comparison of the merger timescale
Tsimu in the simulation with theoretical dynami-
cal friction timescale TChandra from equation (1).
The solid line is TChandra = Tsimu. The Coulomb
logarithm is in the form ln Λ = ln(mvir/msat), and
f(ǫ) = ǫ0.78.

Fig. 3.— Mass dependence of the median value of
Tsimu/TChandra, when different forms are used for
the Coulomb logarithm.

Fig. 4.— The same as Figure 1, but we replace
ln Λ by 1

2
ln(1 + Λ2), while Λ is unchanged, and

replace rc by rvir.

Fig. 5.— The same as Figure 1, but we replace
ln Λ by ln(1 + Λ), and replace rc by rvir.
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Fig. 6.— The ratio of Tsimu to TChandra as a func-
tion of mass ratio for the merger points in Figure
4.

Fig. 7.— The ratio of Tsimu to TChandra as a func-
tion of mass ratio for merger points in Figure 5
(the upper dashed line) and for those after apply-
ing equation (5) (the lower solid line).

Fig. 8.— The ratio of Tsimu to TChandra as a func-
tion of ǫ for merger points in Figure 5 (the upper
dashed line) and for those after applying equation
(5) (the lower solid line). The lower dotted line is
for f(ǫ) = 1.48 ∗ ǫ0.27 with equation (5).

Fig. 9.— Fitting function of f(ǫ). f(ǫ) = 0.94 ∗
ǫ0.60 +0.60 is represented by the solid curve, while
f(ǫ) = 1.48 ∗ ǫ0.27 is denoted by the dashed line.
The squares are from the complete sample of merg-
ers, and the triangles are from all mergers.
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Fig. 10.— Comparison of the merger time scale
from simulation with our fitted merger time scale
(equation 5). The data points lie slightly above
the solid line, because the sample missed a mall
fraction of relatively long mergers.

Fig. 11.— Distribution of Tsimu/Tfit for the whole
merger sample(the dotted line) and for the com-
plete sample(the solid line). The left shift of the
whole merger sample is mainly due to its lack of
those relatively long mergers.

Fig. 12.— Distribution of circularity parameter
ǫ for all resolved satellite halos having more than
half their masses entering the primary halos.

Fig. 13.— The mean circularity as a function of
the mass ratio.
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Fig. 14.— The ratio Tsimu/Tfit as a function of the
mass ratio mstellar/mpri (left), the growth rate of
the primary halo (middle), and rc/rvir (right) for
the complete sample.
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