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ABSTRACT

We study the effect of primordial non–Gaussianity on the development of large-scale
cosmic structure using high-resolution N -body simulations. In particular, we focus
on the topological properties of the “cosmic web”, quantitatively characterized by
the Minkowski Functionals, for models with quadratic non-linearities with different
values of the usual non–Gaussianity parameter fNL. In the weakly non-linear regime
(the amplitude of mass density fluctuations σ0 < 0.1), we find that analytic formulae
derived from perturbation theory agree with the numerical results within a few percent
of the amplitude of each MF when |fNL| < 1000. In the non-linear regime, the detailed
behavior of the MFs as functions of threshold density deviates more strongly from the
analytical curves, while the overall amplitude of the primordial non–Gaussian effect
remains comparable to the perturbative prediction. When smaller-scale information is
included, the influence of primordial non–Gaussianity becomes increasingly significant
statistically due to decreasing sample variance. We find that the effect of the primordial
non-Gaussianity with |fNL| = 50 is comparable to the sample variance of mass density
fields with a volume of 0.125(h−1Gpc)3 when they are smoothed by Gaussian filter
at a scale of 5h−1Mpc. The detectability of this effect in actual galaxy surveys will
strongly depend upon residual uncertainties in cosmological parameters and galaxy
biasing.

Key words: Cosmology: early Universe – large-scale structure of Universe – methods:
N-body simulations – analytical – statistical

1 INTRODUCTION

According to the standard scenarios for the formation of
large-structure in the Universe, the present-day cosmic den-
sity field evolves from small-amplitude initial fluctuations
which are described by Gaussian statistics. The hypothesis
of primordial Gaussianity is supported by present observa-
tions of the Cosmic Microwave Background (CMB), particu-
larly those from the Wilkinson Microwave Anisotropy Probe
(WMAP) (Komatsu et al. 2003; Spergel et al. 2007). These
results are consistent with an inflationary origin for the pri-
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mordial perturbations, since the simplest forms of cosmic
inflation produce nearly Gaussian fluctuations.

In order to understand the early Universe in more detail,
however, it is necessary to measure (or at least constrain)
the departures from non–Gaussianity that inevitably arise
at some level during the inflationary epoch. For example,
the simplest slowly-rolling single field inflation model pre-
dicts very small levels of primordial non–Gaussianity, while
multi-field inflation models and models with a non-standard
kinetic term for the inflation may yield larger effects which
could be detected in ongoing or next-generation observa-
tions (e.g. Bartolo et al. 2002; Bernardeau & Uzan 2002;
Lyth et al. 2003; Dvali et al. 2004; Arkami-Hamed et al.
2004; Alishahiha et al. 2004; Bartolo et al. 2004; Chen et al.
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2007; Battefeld & Battefeld 2007). Only when such phenom-
ena are detected will it be possible to distinguish between
the hundreds of currently viable variations on the theme of
inflation by understanding the dynamical behavior of the
inflation field.

In order to model the primordial non–Gaussianity
that might arise during inflation, the following simple
form including quadratic corrections to the curvature per-
turbation Φ (Bardeen 1980) during the matter era has
been often adopted (Gangui et al. 1994; Verde et al. 2000;
Komatsu & Spergel 2001):

Φ = φ + fNL(φ2 − 〈φ2〉), (1)

where φ represents an auxiliary random-Gaussian field and
fNL characterizes the amplitude of a quadratic correction
to the curvature perturbations in a dimensionless way. In
principle, fNL could be scale-dependent, but current obser-
vations are not sufficiently sensitive to detect any such vari-
ation, so a constant fNL remains a useful parametrization
of the level of non–Gaussianity. Recent analyses of the an-
gular bispectrum for WMAP provides strong constraints on
fNL to lie in the range from −54 to 114 at the 95 percent
confidence level (Komatsu et al. 2003; Spergel et al. 2007;
Creminelli et al. 2006).

The Large-Scale Structure (LSS) of the distribution
of galaxies in the Universe provides another poten-
tially powerful probe of primordial non–Gaussianity
(Fry & Scherrerd 1994; Chodorowski & Bouchet 1996;
Verde et al. 2000; Scoccimarro et al. 2004; Hikage et al.
2006; Sefusatti & Komatsu 2007). The three-dimensional
spatial information arising from LSS is potentially a richer
source information about primordial non–Gaussianity than
the two-dimensional information arising from the CMB. For
example, constraints from upcoming cluster surveys should
be comparable with current CMB limits and those from
galaxy surveys, which could be as tight as |fNL| ∼ 10 for
the planned surveys and |fNL| ∼ 0.2 for an all-sky survey of
galaxies up to redshift z = 5 (Sefusatti & Komatsu 2007;
Dalal et al. 2007). A variety of large-scale projects of LSS
observation covering Gpc3 volumes are being proposed,
such as an extension of the Sloan Digital Sky Survey; APO-
LSS survey; The Hobby-Eberly Dark Energy Experiment
(HETDEX) (Hill et al. 2004); Wide-Field Multi-Object
Spectrograph (WFMOS) (Glazebrook et al. 2005); and the
Cosmic Inflation Probe (CIP) mission (Melnick et al. 2004).
It is consequently important to study the optimal way to
extract information about primordial non–Gaussianity from
such surveys.

The statistical analysis of non–Gaussianity has
been mainly performed through the calculation of the
bispectrum (Verde et al. 2000; Scoccimarro et al. 2004;
Sefusatti & Komatsu 2007). Strong motivation for this is
that the bispectrum is the simplest statistical function that
can measure quadratic non-linearity (e.g. Watts & Coles
2003). Although the quadratic model provides an extremely
useful benchmark for statistical analysis techniques, one
must always bear in mind that there are many different ways
for a random field to be non–Gaussian. In general, there is no
one statistic that completely characterizes the statistical na-
ture of a non–Gaussian random field, so a battery of higher-
order statistics must be deployed. In particular, when the
full nature of non–Gaussianity is virtually unknown, such as

is really the case for primordial perturbations, the theoreti-
cal model assumed should be validated before its parameters
are constrained. Different statistics reflect different aspects
of non–Gaussianity so the use of different statistics plays a
vital role in this kind of consistency check.

In this paper we use a set of invariant characteris-
tics of the topology of the cosmic web, known as the
Minkowski Functionals (MFs). These have already been
used to describe the morphological properties of cos-
mic density fields in a variety of contexts (Mecke et al.
1994; Schmalzing & Buchert 1997; Schmalzing & Górski
1998; Hikage et al. 2003). Four MFs are defined in three-
dimensional density fields such as LSS: the volume fraction
(V0); surface area (V1); mean curvature (V2); and Euler char-
acteristic (V3).

Using a perturbative approach, Hikage et al. (2006) de-
rived analytical formulae for the behavior of the MFs for
LSS including primordial non–Gaussianity (as a function
of fNL as given in equation [1]), in addition to the non–
Gaussianity due to non-linear gravity and galaxy biasing.
The validity of the perturbative analysis is, however, lim-
ited to the weakly non-linear regime. Smaller-scale modes
also contain rich information about the primordial density
fields, and this could help place more stringent constraints
on primordial non–Gaussianity. In this paper, we use high-
resolution N-body simulations to study the effect of pri-
mordial non–Gaussianity on the MFs from the mildly to
strongly non-linear regime. There are two reasons for us-
ing the full numerical analysis: one is to see how well the
perturbative formulae describe the simulated MFs to check
their applicability; the other is to study how the primor-
dial non–Gaussian effect behaves in the strongly non-linear
regime and thus to estimate the significance of the effect on
the MFs.

The paper is organized as follows. In Section 2, we re-
view the perturbative formulae for the MFs. The details of
the N-body simulations and the computing method of the
MFs are summarized in Section 3. In Section 4, we compare
the perturbative formulae of MFs with simulated results
to study the primordial non–Gaussian effect in non-linear
regime. Section 5 is devoted to the summary and conclu-
sions.

2 PERTURBATION THEORY

We define the MFs of density fields for a given threshold
ν ≡ δ/σ0, where δ is the density fluctuation, which has zero
mean, and σ0 ≡ 〈δ2〉1/2 is its standard deviation. The k-th
MF Vk(ν) can be written separately with the amplitude Ak

and the function of ν, vk(ν), as

Vk(ν) = Akvk(ν). (2)

The amplitude part Ak, which depends only on the power
spectrum P (k, z) of the 3-dimensional fluctuation field δ at
redshift z, is given by

Ak =
1

(2π)(k+1)/2

ω3

ω3−kωk

(

σ1(z)√
3σ0(z)

)k

, (3)

where ωk ≡ πk/2/Γ(k/2 + 1) gives ω0 = 1, ω1 = 2, ω2 = π,
and ω3 = 4π/3. The quantity σ2

i characterizes the variance
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of fluctuating fields for i = 0 and that of their derivatives
for i = 1 given by

σ2
i (z) ≡

∫

∞

0

k2dk

2π2
k2iP (k, z)W 2(kR), (4)

where W represents a smoothing kernel. Throughout the
paper, we adopt a Gaussian kernel W 2 = exp[−(kR)2] where
R represents the smoothing scale.

Matsubara (2003) derives the second-order perturbative
formulae of the MFs using the multivariate Edgeworth ex-
pansion. According to the formulae, the function vk(ν) is

written with the Gaussian part v
(G)
k and the leading part of

the non–Gaussian term ∆vk as

vk(ν) = v
(G)
k (ν) + ∆vk(ν), (5)

v
(G)
k (ν) = e−ν2/2Hk−1(ν), (6)

∆vk(ν) = e−ν2/2
[

1

6
S(0)Hk+2(ν) +

k

3
S(1)Hk(ν)

+
k(k − 1)

6
S(2)Hk−2(ν)

]

σ0, (7)

where Hn(ν) denote the Hermite polynomials. The leading-
order non–Gaussian term ∆vk(ν) is calculated when the
three “skewness parameters” S(i) are given.

The three skewness parameters S(i)(i = 0, 1 and 2) are
computed by integrating the bispectrum B(k1, k2, k3, z) over
k1, k2, and µ ≡ (k1 ·k2)/(k1k2) with appropriate weights as
(Hikage et al. 2006)

S(0)(z) =
1

8π4σ4
0(z)

∫

∞

0

dk1

∫

∞

0

dk2

∫ 1

−1

dµk2
1k2

2 (8)

B(k1, k2, k12, z)W (k1R)W (k2R)W (k12R),

S(1)(z) =
1

16π4σ2
0(z)σ2

1(z)

∫

∞

0

dk1

∫

∞

0

dk2

∫ 1

−1

dµ

k2
1k2

2(k
2
1 + k2

2 + µk1k2)B(k1, k2, k12, z)

×W (k1R)W (k2R)W (k12R), (9)

S(2)(z) =
3

16π4σ4
1(z)

∫

∞

0

dk1

∫

∞

0

dk2

∫ 1

−1

dµ

k4
1k4

2(1 − µ2)B(k1, k2, k12, z)

×W (k1R)W (k2R)W (k12R), (10)

where k12 ≡ |k1 + k2| = (k2
1 + k2

2 + 2µk1k2)
1/2.

Throughout this paper, we neglect the non–Gaussianity
arising from the non-linearity in relationship between galaxy
counts and mass (i.e. galaxy biasing) so as to keep the anal-
ysis as simple as possible. The bispectrum B for the matter
density fluctuation is then given by

B(k1, k2, k3, z) = Bpri(k1, k2, k3, z) + Bgr(k1, k2, k3, z), (11)

where Bpri and Bgr represent the contributions from pri-
mordial non–Gaussianity and non-linearity in gravitational
clustering respectively:

Bpri(k1, k2, k3, z) ≡ 2fNL

D(z)

[

P (k1, z)P (k2, z)M(k3)

M(k1)M(k2)

+ (cyc.)] , (12)

Bgr(k1, k2, k3, z) ≡ 2 [F2(k1,k2)P (k1, z)P (k2, z)

+ (cyc.)] , (13)

where D(z) is the growth rate of linear density fluctuations
normalized such that D(z) → 1/(1 + z) during the matter
era. The function M(k) and F2(k1,k2) are time-independent
kernels describing mode-coupling due to non-linear cluster-
ing of matter density fluctuations in the weakly non-linear
regime. These are given by

M(k) ≡ 2

3

k2T (k)

ΩmH2
0

, (14)

F2(k1, k2) =
5

7
+

k1 · k2

2k1k2

(

k1

k2
+

k2

k1

)

+
2

7

(k1 · k2)
2

k2
1k

2
2

. (15)

We adopt the linear transfer function T (k) by
Eisenstein & Hu (1999). In comparison with numerical
simulations, we use the power spectrum of the simulations
(the details are explained in the next section) at z∗ = 76.97
for a theoretical input of the power spectrum P (k, z∗) and
then give the power spectrum at z as

P (k, z) =
D2(z)

D2(z∗)
P (k, z∗). (16)

3 METHODOLOGY

3.1 Numerical Simulations with Primordial

Non–Gaussianity

The N-body simulations with primordial non–Gaussianity
that we use for this analysis are those described in
Grossi et al. (2007). These simulations employ 8003 dark
matter particles in a periodic cubic box with a side length
of 0.5h−1Gpc. The cosmology of our simulations is a flat
ΛCDM model with mass density parameter Ωm = 0.3,
baryon density parameter Ωb = 0.04, Hubble parameter
h = 0.7, primordial power-law index ns = 1, and σ8 = 0.9.

The initial particles are perturbed from an initially ho-
mogeneous “glass-like” distribution. The primordial non–
Gaussianity is incorporated into a Gaussian-random field
with the above cosmology in the form of equation (1).
Grossi et al. (2007) explored 7 different scenarios with
fNL = 0,±100,±500 and ± 1000. We have analyzed all of
these simulations, but for brevity in this paper we only
present results for the Gaussian simulation with fNL = 0 and
the two extreme non–Gaussian cases fNL = ±1000; results
for the other simulations with fNL = ±100 are intermediate,
as expected.

After Fourier-transforming the primordial non–
Gaussian field, the dark matter particles are displaced on
the initial grid assuming the Zel’dovich approximation.
The simulations are started at z ≈ 100 and the subsequent
gravitational evolution is simulated with the GADGET-2
code (Springel et al. 2005). The Triangular-Shaped Cloud
method is used to assign densities onto 5123 grids. After
Fourier-transforming the grid data, we multiply by the
Gaussian kernel exp[−(kR)2], and then transform them
back to real space.

It is instructive first to examine the visual morphology
of the clustering pattern. Fig. 1 shows maps of slices of the
mass density field with fNL = 0 (middle-row panels) and the
relative residuals between fNL = ±1000 and fNL = 0 (left
and right panels). The residual for the map with fNL = x,
∆ρx, is calculated at each pixel as
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Figure 1. Slice maps of simulated mass density fields at z = 5.15 (top), z = 2.13 (middle) and z = 0 (bottom). The number of pixels
at a side length is 512 (500h−1Mpc) and that of the thickness is 32 (31.25h−1Mpc). The panels in the middle row show the log of the
projected density smoothed with a Gaussian filter of 10 pixels width, corresponding to 9.8h−1Mpc. The left and right panels are the
relative residuals for the fNL=±1000 runs (equation [17]). Each panel has the corresponding color bar and the range considered are
different from panel to panel.
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∆ρx = (ρx − ρ0)/ρ0 (17)

where ρx is the number density of mass particles for the
map with fNL = x. The field is smoothed with a Gaussian
filter 10 pixels wide (i.e. 9.8h−1Mpc). The redshifts of the
maps are 5.15, 2.13 and 0 from top to bottom respectively.
Similar density structures in the mass distribution appear
in the residual maps with their contrast at same (inverse)
sign for positive (negative) values of fNL. For example, a
large void structure at the right-center in the density map
also appears in the residual maps. This is because the higher
density region is initially more (less) enhanced in the positive
(negative) fNL, as predicted by the local model of primordial
non–Gaussianity in equation (1).

3.2 Computation of Minkowski Functionals

The computational method we use for calculating MFs of
data defined on a grid is based on ideas from integral geom-
etry, rather than the alternative more cumbersome approach
of using the differential properties of bounding surfaces. In
our case the calculation reduces to counting the numbers
of vertices, edges and sides of the elementary cells cover-
ing the structure (Coles et al. 1996; Schmalzing & Buchert
1997). The range of ν is from −3.6 to 3.6 with an equal
binning width of 0.2. The MFs measured from numerical
simulations often deviate from analytical predictions even
for Gaussian realizations due to subtle pixelization effects.
However, as pointed out by Hikage et al. (2006), pixelization
effects become negligible when computing the difference be-
tween Gaussian and non–Gaussian MFs. Therefore we focus
on ∆vk(νi) (i denoting the binning number of ν) that we
compute as follows:

(i) We compute the MFs for non–Gaussian simulation
data Vk and then divide them by their amplitudes Ak

(equation [3]) to obtain normalized MFs vk. The σ0 and
σ1 in Ak are computed from the density fields of the
simulations.

(ii) The MFs for Gaussian fields are computed in the
same way and then divided by their amplitudes Ak where
the values of σ0 and σ1 are computed from each realization.
The same cosmological parameters as the N-body simula-
tions are adopted. The normalized MFs v

(G)
k are estimated

by averaging MFs over 10 Gaussian realizations.

(iii) The difference ratio ∆vk is computed by

∆vk = vk − v
(G)
k . (18)

4 RESULTS

In this section we explore two different but related issues.
The first is whether the non-linear behaviour seen in nu-
merical simulations matches the predictions of analytical
approaches. The second is whether it is possible to sepa-
rate the effects of non-linear evolution from primordial non-
Gaussianity to a sufficient extent for this method to be useful
in practice.

4.1 Agreement with perturbative formulae in the

weakly non-linear regime

Fig. 2 shows examples of MFs Vk (left panels) and the dif-
ference ratio ∆vk (right panels) for simulated mass distribu-
tions in the weakly non-linear regime. We smooth on a scale
R = 10h−1Mpc which, at z = 3.96, marks the transition
to the non-linear regime since the variance of the smoothed
density fluctuation σ0 ≃ 0.1. The different symbols show the
different fNL of 0 and ±1000. The error-bars represent the
sample variance estimated from 1000 Gaussian realizations
with the same R, z and box-size as the simulations. The
perturbative formulae discussed above are plotted with lines
for comparison. Results for the simulations with fNL = ±100
and ±500 are found to be linearly scaled between those with
fNL = 0 and ±1000.

The theoretical curves reproduce the features of the
simulated MFs very well. We quantitatively estimate the
agreement between the simulation results ∆v

(SIM)
k (νi) and

the perturbative formulae ∆v
(PT)
k (νi) by calculating the

root-mean-square (rms) differences averaged over i. Table 1
lists the differences for each MF at different redshifts z (but
R is fixed to be 10h−1Mpc). The differences are less than
a few percent relative to the amplitude of each MF (equa-
tion [3]) when σ0 < 0.1 and remains at the 10-percent level
when σ0 ∼ 0.2. We also estimate the rms differences divided
by the rms of ∆v

(SIM)
k (νi) averaged over i. These quantities

represent the extent to which the theoretical predictions im-
prove going from linear theory to (2nd-order) perturbation
theory. The differences between the 2nd-order perturbative
predictions and the numerical simulations is 0.15 ∼ 0.41
times smaller than those corresponding to linear theory at
σ0 < 0.1. These results are consistent with the previous
analysis by Nakagami et al. (2004).

The differences between theory and simulations are
quite small compared to the sample variance. However, there
is a systematic feature, seen in the asymmetry of V0 and V2

with respect to ν = 0; the perturbative predictions are sym-
metric. There are three possible explanations for this effect.
One is that higher-order contributions - i.e. beyond 2nd-
order - are significant. Another possibility arises from the
use of the Zel’dovich approximation to set the initial con-
ditions of the simulations, which may be responsible for an
extra contribution to higher-order statistical properties of
clustering arising from transients (Crocce et al. 2006). The
other reason is the fact that the multivariate Edgeworth
expansion which is the basis of perturbation formulae has a
limited range of validity, especially at values of ν larger than
unity (Bernardeau & Kofman 1995). These effects must be
considered carefully when comparing with real survey re-
sults.

4.2 Non-linear evolution and primordial

non–Gaussianity

In Fig. 3, we focus on the differences between ∆vk with
fNL = 1000 and that with fNL = 0 at z = 0. The per-
turbative predictions are also plotted for comparison. The
deviation from the perturbative predictions becomes signif-
icant as the smoothing scale R is smaller (σ0 increases) due
to the primordial non-Gaussian effect coupled with non-
linear gravity. The increase of deviations at larger σ0 are
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Figure 2. Four Minkowski Functionals Vk (left) and their difference ratios ∆vk (right) for the simulated mass density fields at z = 3.96,
with fNL = 0 (filled circles), 1000 (open triangles) and −1000 (crosses). The simulated fields are smoothed with a Gaussian window
function at the scale R = 10h−1Mpc. The error-bars denote the sample variance estimated from 1000 Gaussian realizations with same
z, R and box-size as the simulations. For comparison, the theoretical expectations from perturbation theory (equations [2] and [7]) are
plotted with lines.
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Table 1. Root-mean-square differences between simulated MFs and perturbative formulae at different z and fNL with the corresponding
σ0. The smoothing scale is fixed at R = 10h−1Mpc.

√

〈(∆v
(SIM)
k

− ∆v
(PT)
k

)2〉

√

〈(∆v
(SIM)
k

− ∆v
(PT)
k

)2〉/〈(∆v
(SIM)
k

)2〉

z fNL σ0
V0 V1 V2 V3 V0 V1 V2 V3

5.15 0 0.080 0.003 0.006 0.009 0.024 0.15 0.27 0.24 0.41

5.15 1000 0.080 0.005 0.008 0.013 0.029 0.17 0.27 0.24 0.38
5.15 −1000 0.080 0.003 0.006 0.012 0.024 0.33 0.44 0.40 0.54
3.96 0 0.099 0.003 0.006 0.009 0.023 0.14 0.24 0.20 0.37
3.96 1000 0.099 0.006 0.010 0.014 0.031 0.20 0.34 0.26 0.41
3.96 −1000 0.099 0.003 0.004 0.008 0.020 0.14 0.20 0.23 0.41
2.13 0 0.16 0.007 0.014 0.021 0.044 0.18 0.34 0.29 0.44
2.13 1000 0.16 0.011 0.021 0.029 0.057 0.23 0.40 0.34 0.48
2.13 −1000 0.16 0.004 0.010 0.017 0.034 0.15 0.31 0.27 0.40
0.96 0 0.24 0.015 0.030 0.043 0.081 0.26 0.48 0.41 0.58
0.96 1000 0.24 0.020 0.039 0.055 0.10 0.31 0.54 0.48 0.65
0.96 −1000 0.24 0.010 0.023 0.034 0.065 0.22 0.43 0.36 0.51
0 0 0.38 0.035 0.067 0.095 0.17 0.40 0.68 0.63 0.86
0 1000 0.38 0.042 0.078 0.11 0.19 0.44 0.73 0.69 0.93
0 −1000 0.38 0.028 0.058 0.083 0.15 0.36 0.64 0.58 0.80
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Figure 3. The difference of ∆vk with fNL = 1000 from those obtained with Gaussian initial conditions ∆vk(fNL = 0) at z = 0 for
different smoothing scales R = 20h−1Mpc (σ0 = 0.17), 10h−1Mpc (σ0 = 0.38), and 5h−1Mpc (σ0 = 0.74). Simulated results averaged
over three bins are plotted with symbols and the perturbative formulae are also plotted with lines.

also seen quantitatively in Table 1. The shape of the devi-
ation is skewed to the positive side of ν with a higher peak
at ν = −1/σ0 (the number density is zero) while the overall
amplitude of the deviation ∆vk is roughly the same as that
from the perturbative predictions.

It is interesting to estimate the sensitivity of the MFs
to primordial non-Gaussianity in the non-linear regime, be-
cause the effect of primordial non–Gaussianity on the MFs

should become increasingly significant as the sample vari-
ance decreases, i.e. at smaller smoothing scales. The MFs
are, however, strongly correlated with each other among
different bins of the threshold ν and it is therefore neces-
sary to take into account their covariance when estimating
the significance of the primordial non-Gaussian effect with,
e.g., chi-squared statistics. If the covariances among differ-
ent bins were not considered, one would overestimate the
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value of chi-square as the total number of bins increases.
When the field follows nearly Gaussian statistics, the covari-
ance matrix is well approximated with the one numerically
estimated from a large number of Gaussian realizations.
(Komatsu et al. 2003; Hikage et al. 2006). When the field is
non-linearly evolved, it is an exceptionally time-consuming
process to generate enough number of realizations to com-
pute the inverse matrix of the covariance (the number of
realizations must be larger than the degree-of-freedom at
least).

Instead of calculating the covariance matrix directly,
therefore, we instead estimate the amount of information
contained in each MF as a function of ν. For this purpose,
we calculate the effective number of bins Neff for each MF
and for all MFs combined as follows:

Neff = Nbin

∑Nbin

i,j
∆v

(PT)
i (C−1)ij∆v

(PT)
j

∑Nbin

i
∆v

(PT)
i C−1

ii ∆v
(PT)
i

(19)

where i and j denote the binning number of different ν and
different kinds of MFs and Nbin denotes the total number
of bins. The covariance matrix Cij = 〈∆vi∆vj〉 is computed
from 1000 Gaussian realizations with the same cosmological
parameters and the same box-size as those of the N-body
simulations. As Nbin is increased in a fixed range of ν from
−3.6 to 3.6, the values of Neff converges to 2, 6, 8, and 12 for
each MF from k = 0 to 3 and then 12 for all MFs combined.
The results indicate that the correlations among different
bins of ν is very strong for V0 and that higher k-th MFs
have more independent information as a function of ν.

Applying the value of Neff for non-linearly evolved sim-
ulations, we calculate the chi-square values of the primordial
non-Gaussian effect on MFs as a function of fNL as

χ2(fNL) =
Neff

Nbin

Nbin
∑

i

(∆v
(SIM)
i (fNL) − ∆v

(SIM)
i (fNL = 0))2

〈∆v
(SIM)
i (fNL = 0)2〉

(20)

The variance 〈∆v
(SIM)
i (fNL = 0)2〉 is estimated from 10 real-

izations of N-body simulations with Gaussian initial condi-
tions (the cosmological parameters and simulation box-size
are the same as for the N-body simulations). The normal-
ized MFs ∆vk(fNL) at arbitrary fNL is linearly interpolated
using the simulation results with fNL = 0 and 1000. We
confirm that the linear interpolation works well using simu-
lations with |fNL| = 100 and 500.

Table 2 lists the value of fNL at different R when
the effect of the primordial non-Gaussianity is compara-
ble to the sample variance, that is χ2 = 1. The volume
of the simulation box-size is 0.125(h−1Gpc)3, which is less
than half the volume of the SDSS main galaxy sample
0.3(h−1Gpc)3. As the smoothing scale decreases, the primor-
dial non-Gaussianity becomes significant. At R = 5h−1Mpc,
the primordial non-Gaussianity with fNL = 50 is compa-
rable to the sample variance and then corresponds to the
current observational constraints from WMAP. Note that
the detectability of primordial non–Gaussianity from actual
observations is, however, strongly dependent on the uncer-
tainty of the cosmological parameters and the galaxy bias-
ing, which we have not attempted to model in detail.

Table 2. The values of fNL at χ2 = 1 when the effect of the
primordial non-Gaussianity is comparable to the sample variance
of mass density field for different smoothing scale R (equation
[20]). The values of Neff for each MF Vk are 2, 6, 8, and 12 from
k = 0 to 3 and 12 for all MFs combined. The volume of the density
field is a cube at a length 0.5h−1Gpc and the redshift is 0. The
other cosmological parameters are fixed to be fiducial values. The
effective number of bins Neff (equation [19]) is also listed in last
line.

fNL at χ2 = 1
R[h−1Mpc]

V0 V1 V2 V3 All MFs

30 770 480 520 370 350
20 420 300 310 210 210
10 190 180 140 150 110
5 90 80 90 60 50

5 SUMMARY AND CONCLUSIONS

We have studied the imprint of primordial non–Gaussianity
on the topological properties of LSS using the MFs. Charac-
terizing primordial non–Gaussianity as a quadratic correc-
tion to the primordial potential fluctuation with constant
amplitude fNL, we compare the MFs with different values of
fNL from the mildly to the strongly non-linear regime using
high-resolution N-body simulations. Perturbative formulae
of the MFs based on the multivariate Edgeworth expansion
well reproduce the MFs of simulated mass density fields in
the weakly non-linear regime. When the amplitude of the
density fluctuation σ0 < 0.1 and |fNL| < 1000, the devia-
tions of the perturbative formulae from simulations are less
than a few percent of the amplitude of each MF. They are
also 10 ∼ 40 percent in respect to the non-Gaussian contri-
butions alone.

As the fluctuations become more strongly non-linear,
the simulated MFs begin to deviate significantly from the
perturbative predictions owing to non-linear gravitational
evolution. In order to include small-scale information in re-
alistic cosmological data sets, detailed numerical analysis is
therefore essential.

When we include information from smaller scale fluc-
tuations, the effects of primordial non–Gaussianity are in-
deed significant. Using χ2 statistics, we find that the pri-
mordial non-Gaussianity with fNL = 50 has a significance
level corresponding to 1σ, considering the sample variance
of mass density fields at R = 5h−1Mpc with a volume of
0.125(h−1Gpc)3. This implies that measuring the MFs in
a SDSS-like survey could constrain fNL at a level compa-
rable with current CMB limits. This is an interesting re-
sult, since other observations, like the cluster abundance,
that can effectively constrain fNL at high redshifts, become
useless at z = 0 when non–Gaussian features generated by
non-linear dynamics completely obliterate primordial ones
(Grossi et al. 2007; Kang et al. 2007).

The actual detectability of the primordial non–
Gaussianity is, however, strongly dependent on the degen-
eracy between the cosmological parameters and the primor-
dial non–Gaussian effect. Understanding the properties of
the galaxy biasing is also very important in determining the
primordial non–Gaussianity accurately. We will consider this
issue in a forthcoming paper.



Primordial Non–Gaussianity and Large-Scale Structure 9

ACKNOWLEDGMENTS

We thank the anonymous referee for helpful comments. We
thank Takahiko Matsubara for useful discussions. C.H. ac-
knowledges support from the Particle Physics and Astron-
omy Research Council grant number PP/C501692/1. Com-
putations have been performed on the IBM-SP5 at CINECA
(Consorzio Interuniversitario del Nord-Est per il Calcolo
Automatico), Bologna, with CPU time assigned under an
INAF-CINECA grant and on the IBM-SP4 machine at the
“Rechenzentrum der Max-Planck-Gesellschaft” at the Max-
Planck Institut für Plasmaphysik with CPU time assigned
to the MPA. We acknowledge financial contribution from
contracts ASI-INAF I/023/05/0, ASI-INAF I/088/06/0 and
INFN PD51.

REFERENCES

Alishahiha M., Silverstein E., Tong D., 2004, Phys. Rev.
D., 70, 123505

Arkani-Hamed N., Creminelli P., Mukohyama S., Zaldar-
riaga M., 2004, JCAP, 4, 1

Bardeen J. M., 1980, Phys. Rev. D., 22, 1882
Bartolo N., Komatsu E., Matarrese S., Riotto A., 2004,
Phys. Rept., 402, 103

Bartolo N., Matarrese S., Riotto, A., 2002 Phys. Rev. D
65, 103505

Battefeld D., Battefeld T., 2007, JCAP, 5, 1
Bernardeau F., Kofman L., 1995, ApJ, 443, 479
Bernardeau F., Uzan, J.-P., 2002, Phys. Rev. D., 66, 103506
Chen X., Richard E, Eugene A. L., 2007, JCAP, 6, 23
Chodorowski M. J., Bouchet F. R., 1996, MNRAS, 279,
557

Coles P., Davies A. G., Pearson R. C., 1996, MNRAS, 281,
1375

Creminelli P., Nicolis A., Senatore L., Tegmark M., Zaldar-
riaga M., 2006, JCAP, 0605, 004

Crocce, M., Sebastián, P., Scoccimarro, R., 2006, MNRAS,
373, 369
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