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Abstract. We find that the modified sine–Gordon equation belonging to the class of

the soliton equations describes the propagation of extremely short transverse acoustic

pulses through the low-temperature crystal containing paramagnetic impurities with

effective spin S = 1

2
in the Voigt geometry case. The features of nonlinear dynamics

of strain field and effective spins, which correspond to the different kinds of acoustic

solitons, are studied.

PACS numbers: 05.45.Yv, 43.35.+d, 02.30.Ik

The development of physical acoustics has led to the appearance of technical tools

of producing and measuring acoustic pulses about 10–102 ps in duration [1, 2]. The

characteristics of such pulses are very perspective for diagnostics of fast processes

and spectroscopy of solids. This attracts large attention to theoretical study of

the interaction of picosecond acoustic pulses with paramagnetic crystals and other

nonlinear media [3–8]. Usually, the semiclassical approach is employed to derive

the equations governing the evolution of acoustic pulses. Some of these equations

occur to be integrable with the help of the inverse scattering transformation (IST)

method [9, 10]. In particular, the systems of integrable equations that generalize well-

known integrable models of nonlinear coherent optics [11] describe the propagation of

transverse-longitudinal picosecond pulses [6, 7].

The duration of picosecond acoustic pulses may be comparable with the oscillation

period of the quantum transitions involved into the interaction. Following well-known

parallels between the nonlinear phenomena in coherent optics and physical acoustics

[12, 13], one has to treat acoustic pulses in this case as extremely short pulses [11, 14].

However, it is necessary in so doing to take into account essential difference between

acoustic and optical waves. The linear velocities of the components of the former can

differ significantly [15]. Thus, the longitudinal component velocity is normally much

higher than the transverse ones. The nonlinear interaction of these components is

weak in that case, and, consequently, longitudinal and transverse picosecond acoustic

pulses propagate independently. At the same time, transverse components can interact
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efficiently since their linear velocities are equal under propagation along the acoustic

symmetry axis of the crystal.

In this paper we investigate the nonlinear dynamics of the acoustic extremely

short pulses in the low-temperature paramagnetic crystal in the external magnetic

field presence. In accordance with above mentioned parallels between coherent optics

and physical acoustics, we apply here the spectral overlap approximation [16]. This

approximation is based on condition

ε ≡ (ω0τp)
2 ≪ 1, (1)

where ω0 is the characteristic frequency of quantum transitions created by the external

field; τp is the pulse duration. The main aim of the present article is to clarify the role

of nonlinear interaction of the acoustic pulse components. We suppose for this reason

that the pulses are especially transverse.

Let a tetragonal (or cubic) crystal contain paramagnetic impurities with effective

spin S = 1

2
. Assume that the Cartesian axes x, y and z are aligned with symmetry

axes of the crystal. Let the transverse acoustic pulse propagate along the x axis and

the external magnetic field B be parallel to the z axis (Voigt geometry). Consider the

one-dimensional case with dynamical variables depending on coordinate x and time t

only. Then, the Hamiltonian Ĥ of the spin-elastic interaction has the form [13]

Ĥ = − h̄ω0

2
[σ̂z + F44Eyxσ̂y + F55Ezxσ̂z] . (2)

Here ω0 = gµBB/h̄ is the frequency of the Zeeman splitting of the Kramers doublets; g

is the Lande factor; µB is the Bohr magneton; B = |B|; Eyx = ∂uy/∂x and Ezx = ∂uz/∂x

are the components of the strain tensor; uy and uz are the Cartesian components of the

local displacement vector u; F44 = g−1(∂gyx/∂Eyx)0 and F55 = g−1(∂gzx/∂Ezx)0 are the

components of the tensor of the spin-elastic interaction (in Voigt notation; subscript

”0” means differentiation at the absence of acoustic pulse); gjk are the components of

the Lande tensor; σ̂y and σ̂z are the Pauli matrices; h̄ is the Planck constant. From the

microscopic point of view, the spin-elastic coupling appears in the case S = 1

2
due to

the modulation of the Lande tensor components by the strain field [13].

In order to achieve fairly efficient interaction between paramagnetic impurities and

strain field, the Zeeman splitting energy must exceed the thermal one. This implies that

paramagnetic crystal has to be at helium temperatures, as it was in the experiments on

acoustic self-induced transparency [12]. In that case the self-absorption of hypersound

with frequency 102 GHz (or the picosecond acoustic pulses) due to anharmonicity,

defects, etc. is appreciably lower than the acoustic absorption due to the presence

of paramagnetic impurities [13]. Hence, the self-absorption effect playing important

role under the room temperatures can be ignored in our case. Also, characteristic phase

relaxation time for transitions within the Zeeman multiplets is 10−5–10−6 s, and the

energy relaxation time is much longer under such conditions [12]. We neglect these

dissipative effects in what follows because the duration of the pulses considered is much

shorter than all the relaxation times.
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According to the general scheme of the semiclassical approach, we describe the

evolution of effective spins by the equation on density matrix ρ̂:

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂]. (3)

On the other hand, the elastic pulse field obeys the classical Hamiltonian equation for

continuous medium:

∂p

∂t
= − δ

δu

(

Ha +
∫

n<Ĥ>dr

)

, (4)

∂u

∂t
=

δ

δp

(

Ha +
∫

n<Ĥ>dr

)

, (5)

where p is the momentum density of the local displacement of the crystal;

Ha =
1

2

∫

[

p2
y + p2

z

ρ
+ ρa2(E2

yx + E2
zx)

]

dr (6)

is the Hamiltonian of the free strain field; ρ is the average density of the crystal; n is

the concentration of paramagnetic ions; <Ĥ> = Tr(ρ̂Ĥ) is the quantum average value

of Ĥ ; a is the linear velocity of transverse acoustic waves. The integration is carried out

over the crystal volume.

Let us introduce the Bloch variables

U =
ρ21 + ρ12

2
, V =

ρ21 − ρ12

2i
, W =

ρ22 − ρ11

2
,

where ρjk (j, k = 1, 2) are the elements of the density matrix. Then (3) gives

∂U

∂t
= (ω0 + Ωz)V + ΩyW, (7)

∂V

∂t
= −(ω0 + Ωz)U, (8)

∂W

∂t
= −ΩyU, (9)

where

Ωy = ω0F44Eyx, Ωz = ω0F55Ezx.

With (2), (4)–(6) we obtain

∂2Ωy

∂t2
− a2∂2Ωy

∂x2
= −nh̄ω2

0F
2
44

4ρ

∂2V

∂x2
, (10)

∂2Ωz

∂t2
− a2 ∂2Ωz

∂x2
=

nh̄ω2
0F

2
55

4ρ

∂2W

∂x2
. (11)

Equations (7)–(11) describe the interaction of the transverse strain field with the

paramagnetic crystal in the Voigt geometry case. As it is seen from (7)–(9), y-component

Ωy of the acoustic pulse causes quantum transitions between the Zeeman sublevels,

whereas z-component Ωz shifts dynamically their frequency. For transverse acoustic

pulse propagating along the z axis (Faraday geometry), both components of the pulse
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excite quantum transitions only. The spin-elastic interaction between the components

leads in this case to the rotation of the polarization plane of the pulse [4] (acoustic

Faraday effect).

If we put

S = W + iU,

then (7) and (9) yield

∂S

∂t
= i(ω0 + Ωz)V + iΩyS. (12)

Let us assume that τp ∼ 10 ps and the orders of ω0 and Ωz are comparable. Taking

ω0 ∼ 1010 s−1 (that is B ∼ 103 Gs) [4, 12, 13], we see that condition (1) is valid. In

that case the first term in the rhs of (12) can be neglected in the approximation of

zeroth-order with respect to ε [17]. Then we have

S = W0e
iθ,

or

U = W0 sin θ, W = W0 cos θ, (13)

where

θ =
∫ t

t0

Ωy dt′, (14)

W0 (|W0| ≤ 1/2) is the inversion of population of the spin sublevels in the acoustic pulse

absence. Substitution (13) into (8) gives

∂V

∂t
= −W0(ω0 + Ωz) sin θ. (15)

To simplify further the equations we deal with, let us carry out some numerical

estimations. Assuming W ∼ U , ∂/∂t ∼ 1/τp we find from (9) that Ωy ∼ 1/τp.

Therefore, the ratio ηy of the rhs of equation (10) to the terms in its lhs is estimated

as ηy ∼ √
εnh̄ω0F

2
44/4ρa2. The value of similar parameter of (11) is estimated

as ηz ∼ √
εnh̄ω0F

2
55/4ρa2. For paramagnetic ions Co2+ in cubic crystal MgO at

helium temperatures we use the following experimental data [4, 13]: n ∼ 1019 cm−3,

ω0 ∼ 1010 s−1, ρ ∼ 1 g/cm3, a ∼ 5 · 105 cm/s, and F44 ∼ F55 ∼ 103. If τp ∼ 10−11 s, then

ηy ∼ ηz ∼ 10−2. Since parameters ηy and ηz are much less than unity, we shall reduce

the order of derivatives in (10) and (11) with the help of the unidirectional propagation

approximation [18].

Having introduced new independent variables τ = t − x/a and ζ = ηx, where

η = max(ηy, ηz), we obtain

∂

∂t
=

∂

∂τ
,

∂

∂x
= −1

a

∂

∂τ
+ η

∂

∂ζ
.

In the first order in η, we write

∂2

∂x2
≈ 1

a2

∂2

∂τ 2
− 2

η

a

∂2

∂τ∂ζ
,

∂2

∂x2
≈ 1

a2

∂2

∂τ 2
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for the lhs and rhs of equations (10) and (11), respectively. Integration of the wave

equations obtained in this way with respect to τ , substitution of expressions (13) and

taking into account (15) give us the following system in the terms of variables τ and x:

∂Ωy

∂x
= −βy(ω0 + Ωz) sin θ, (16)

∂Ωz

∂x
= βzΩy sin θ, (17)

where βy = −W0nh̄ω2
0F

2
44/(8ρa3), βz = βyF

2
55/F

2
44.

Equations (16) and (17) possess the integral of motion:

Ω2

z + 2ω0Ωz +
F 2

55

F 2
44

Ω2

y = f(τ), (18)

where function f(τ) is determined by the boundary conditions. The similar integral was

revealed in [7]. Defining new variables

τ ′ =
∫ τ

0

√

1 + f(τ̃ )/ω2
0 dτ̃ ,

Ω′

y =
Ωy

√

1 + f(τ)/ω2
0

,

Ω′

z =
ω0 + Ωz

√

1 + f(τ)/ω2
0

− ω0,

one can prove that f(τ) is supposed equal to zero without loss of the generality [7].

Then, we find from (18):

Ωz = −ω0

(

1 −
√

1 − τ 2
c Ω2

y

)

, (19)

where

τc =
F55

ω0F44

.

(It is seen that inequality |Ωz| ≤ 2ω0 is fulfilled.) Finally, using (14), (16) and (19), we

obtain

∂2θ

∂x∂τ
= −ω0βy

√

√

√

√1 − τ 2
c

(

∂θ

∂τ

)2

sin θ. (20)

This equation is reduced to the famous sine–Gordon (SG) equation [9, 10] if

τc = 0. Equation (20) with τc 6= 0 is known as the modified SG (mSG) equation

[19–22] and belongs to the class of equations integrable by the IST method. Its first

physical application was found recently in [23], where (20) was shown to describe the

propagation of electromagnetic extremely short pulses through the anisotropic media. In

[19–22], this equation was derived in the course of mathematical study of the Bäcklund

transformation of the SG equation.

Being integrable with the help of the IST method, (20) admits the zero curvature

representation

∂L̂

∂x
− ∂Â

∂τ
+ [L̂, Â] = 0, (21)
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where matrices L̂ and Â are defined as given

L̂ =
1

2λ





iλΩy

√

1 − τ 2
c Ω2

y − iτcΩy
√

1 − τ 2
c Ω2

y + iτcΩy −iλΩy



 ,

Â = −ω0βy

2





−iτc sin θ λeiθ

λe−iθ iτc sin θ



 ,

and λ is the spectral parameter. Equation (21) is nothing but the compatibility condition

of the following Lax pair


















∂ξ

∂τ
= L̂ξ,

∂ξ

∂x
= Âξ,

(22)

where ξ = ξ(λ, τ, x) = (ξ1, ξ2)
T .

To investigate the nonlinear dynamic of the transverse strain field components and

effective spins, we construct the soliton solutions of (20). It is well known that the multi-

soliton solutions of the integrable equation can be found using the algebraic methods.

Here we apply the Darboux transformation (DT) technique [24]. Let ϕ = (ϕ1, ϕ2)
T

be a solution of (22) with λ = τp. The Lax pair (22) is covariant with respect to DT

{ξ1, ξ2, θ} → {ξ̃1, ξ̃2, θ̃} of the form

ξ̃1 = (λξ1 − τpϕ1ξ2/ϕ2) exp[i(θ̃ − θ)/2],

ξ̃2 = (λξ2 − τpϕ2ξ1/ϕ1) exp[i(θ − θ̃)/2],

θ̃ = θ + i ln
τpϕ

2
1 − τcϕ1ϕ2

τpϕ2
2 − τcϕ1ϕ2

. (23)

This implies that relation (23) gives us new solution θ̃ of the mSG equation (20) if θ is

its known solution and ϕ is a solution of the Lax pair.

In the zero background case (i.e., θ = 0), we obtain from (23) the following

expression for the one-soliton solution of the mSG equation:

θ = 2 arccos
q − tanh χ√

∆
,

where q = τc/τp, χ = (t− x/v)/τp, ∆ = 1− 2q tanhχ + q2. Velocity v of the soliton and

its free parameter τp defining the duration are connected by the relation

v−1 = a−1 + ω0βyτ
2

p .

The corresponding formula for y-component of the transverse strain field is

Ωy =
2 sech χ

τp

1 − q tanhχ

∆
. (24)

For ”time area” Ay ≡ ∫

∞

−∞
Ωy dt of this component of the acoustic pulse we find

Ay =







±2π for |τp| > τc

0 for |τp| < τc

.
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The last formula indicates that the acoustic extremely short pulses are divided into

two families. The family with Ay = ±2π exists for the SG equation also and corresponds

to unipolar 2π-pulses (kinks and antikinks). The pulses of the family with Ay = 0 are

bipolar 0π-pulses. Unlike the breathers of the SG equation (for them Ay = 0 as well),

these pulses are steady-state. The solitons of this kind were called as neutral kinks in

[23].

In the cubic crystal, one has |F55| = |F44|. Then |τp| < τc due to condition (1), and

neutral kinks exist only in such a crystal. In the crystals with tetragonal symmetry,

both types of the solitons are possible.

Let us discuss in details the properties of the acoustic solitons. In the case

|τp| >
√

2τc, component Ωy (24) of the unipolar one-soliton solution has a single

maximum, whose value is smaller than 1/τc. Accompanying dynamics of effective spins

is very similar to that of the SG equation: the leading edge of the pulse of y-component

inverts completely the populations of the Zeeman sublevels, and the trailing one returns

them to the initial state. The z-component is small as compared to ω0, and its role is

insignificant.

Under τc < |τp| <
√

2τc, component Ωy has two symmetric peaks (see solid line in

figure 1a) with the largest possible amplitude 1/τc determined by (18). The peaks are

separated by the time interval

2|τp| arcsinh

√

q2

1 − q2
− 1.

The first peak inverts the populations of the spin sublevels while the component Ωz

grows in amplitude and reaches the absolute value 2ω0 in the center of the soliton

(figures 1b and 1c). The component Ωz has an asymmetry on polarity: it decreases

the transition frequency (Ωz < 0) and shifts the Zeeman sublevels so that the ground

sublevel becomes excited. On account of this, the paramagnetic ions are in the ground

state between the peaks. (The positions of the spin sublevels 1 and 2 of the Kramers

doublet under the pulse passage are pictured in figure 1c.) When the second peak has

come, the z-component vanishes reverting the mutual position of the sublevels to the

initial state. Finally, the second peak of y-component causes the back transitions from

excited sublevel to the ground one.

When |τp| < τc and the interval between the peaks of neutral kink surpasses its

duration, the dynamics of the strain fields and effective spins is similar to the second

case described above. The only difference is that the peaks of Ωy are opposite in sign.

The time interval between the peaks is

2|τp| arccosh

√

1 +
q2

q2 − 1
.

If we take duration of such a soliton to be shorter, then the peaks are brought closer

together and the degree of excitation of the paramagnetic ions decreases (see dotted

lines in figure 1).

When |τp| → τc, the interval between the peaks grows indefinitely large, and y-

component (24) consists of a single peak with amplitude equal to 1/τc and with absolute
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(a)
1

−1

τcΩy

(b)
0

−2

Ωz

ω0

(c)
1

0

ρ11

χ
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1
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ssss
2

1

ssss
1

2

Figure 1. Profiles of the components of the strain field and the population ρ11 for

the one-soliton pulses with τc < |τp| <
√

2τc (solid lines) and |τp| < τc (dotted lines)

value of time area Ay equal to π. This case stresses especially the role of the component

Ωz of the acoustic pulses considered. The peak of Ωy inverts almost completely the

population of the spin sublevels. This state of the effective spins is unstable in the

absence of the strain field. But, the z-component, whose amplitude tends to 2ω0, shifts

the levels of the Kramers doublets in a such manner that the energy of the excited

sublevel becomes lesser than the energy of the ground one. Owing to this, the state of

effective spins after the passage of the y-component peak becomes stable.

The form of the acoustic solitons in the case f(τ) 6= 0 (see integral (18)) tends to

their form in the case f(τ) = 0 at t → ∞ since the pulse velocity v differs from linear

velocity a of the transverse waves. As it follows from the previous consideration, this

means in particular that the amplitude of the pulses is bounded, and the component of

the strain field parallel to the external magnetic field has the asymmetry on polarity.
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In this paper we considered the propagation of the transverse acoustic extremely

short pulse through paramagnetic crystal in a direction perpendicular to external

magnetic field. It was shown that the dynamics of the strain field and effective spins

is governed by the modified sine–Gordon equation (20). The soliton solutions of this

equation reveal strong nonlinear coupling between the components of the acoustic pulse.

As a result of this, the behaviour of paramagnetic impurities and elastic fields during

the interaction exhibits new features.

Acknowledgment

This work is supported by the Russian Foundation for Basic Research (Grant #05–02–

16422).

References

[1] Naugolnykh K and Ostrovsky L 1998 Nonlinear Wave Processes in Acoustic (Cambridge:

Cambridge University Press)

[2] Hao H-Y and Maris H J 2001 Phys. Rev. B 64 064302

[3] Adamashvili G T 1999 Physica B 266 173

[4] Sazonov S V 2000 JETP 91 16

[5] Voronkov S V and Sazonov S V 2001 JETP 93 236

[6] Zabolotskii A A 2003 JETP 96 1089

[7] Zabolotskii A A 2003 Phys. Rev. E 67 066606

[8] Sazonov S V and Ustinov N V 2006 JETP 102 741

[9] Zakharov V E, Manakov S V, Novikov S P and Pitaevskii L P 1984 Theory of Solitons: The

Inverse Scattering Method (New York: Consultants Bureau)

[10] Newell A C 1985 Solitons in Mathematics and Physics (Philadelphia: SIAM)

[11] Maimistov A I and Basharov A M 1999 Nonlinear Optical Waves (Dortrecht: Kluwer Acad. Publ)

[12] Shiren N S 1970 Phys. Rev. B 2 2471

[13] Tucker J W and Rampton V W 1972 Microwave Ultrasonics in Solid State Physics (Amsterdam:

North–Holland)

[14] Casperson L W 1998 Phys. Rev. A 57 609

[15] Kittel C 1976 Introduction to Solid States Physics 5th ed. (New York: Wiley)
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