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ABSTRACT

In the standard fireball model of gamma-ray bursts (GRBs), the fireball starts with an
optically thick phase. As it expands, the fireball becomes optically thin at some stage.
The thermal radiation trapped in the originally opaque fireball then leaks out, produc-
ing a transient event. The appearance of the event is investigated in the framework of a
homogeneous, spherically symmetric, and freely expanding fireball produced instantly
by an explosive process without continuous injection of mass and energy. We find that,
generally, the event has a time-duration shorter than that of the main burst, which is
presumably produced by the internal shock after the fireball becomes optically thin.
The event is separated from the main burst by a quiescent time-interval, and is weaker
than the main burst at least in a high energy band. Hence, the event corresponds to a
GRB precursor. The precursor event predicted by our model has a smooth and FRED
(Fast Rise and Exponential Decay) shape lightcurve, and a quasi-thermal spectrum.
Typically, the characteristic blackbody photon energy is in the X-ray band. However,
if the distortion of the blackbody spectrum by electron scattering is considered, the
characteristic photon energy could be boosted to the gamma-ray band. Our model may
explain a class of observed GRB precursors—those having smooth and FRED-shape
lightcurves and quasi-thermal spectra.
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1 INTRODUCTION

A standard model for gamma-ray bursts (GRBs) has been
the fireball model (Goodman 1986; Paczyński 1986). In
this scenario, it is assumed that by whatever a process,
a radiation-dominated, optically thick, and baryon-poor
plasma fluid is suddenly produced in a compact volume.
The radiation field drives the fireball into relativistic expan-
sion, so that a significant fraction of the initial energy of the
radiation is converted to the kinetic energy of the fireball
(Paczyński 1990; Shemi & Piran 1990). At the end of accel-
eration, the fireball starts to expand freely with a constant
Lorentz factor & 100 (Kobayashi, Piran & Sari 1999). Later
on, the fireball becomes optically thin and the thermal radi-
ation trapped originally in the fireball starts to leak out. As
the fireball becomes sufficiently large, its kinetic energy is
converted to the prompt gamma-ray emission through the
internal shock and the afterglow emission through the ex-
ternal shock (Rees & Mészáros 1992, 1994; Paczyński &
Xu 1994). For a review on the fireball model and the in-
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ternal/external shocks, see Mészáros (2006), Piran (1999,
2004), and Zhang & Mészáros (2004).

In many ways a GRB fireball is like a cosmological
Big Bang (Peebles 1993). Both theories assume that the
event (the GRB and the Universe) starts with a state of
a radiation-dominated plasma of very high temperature, in
which the production of electron-positron pairs is important,
and the plasma is optically thick. The energy of the radiation
drives the expansion of the plasma. The plasma and the ra-
diation cool down as the fireball expands. At some moment,
the mass density of the plasma becomes low enough so that
the plasma becomes optically thin to the photons trapped
in it, and the fireball (of the GRB or of the Universe) un-
dergoes a transition from an opaque phase to a transparent
phase.

However, a GRB fireball also differs from the Big
Bang. The Universe is homogeneous and isotropic at a very
high degree. At the time of recombination the fluctuation
in the temperature of the cosmic microwave background
(CMB) radiation relative to the mean temperature is only
∼ 10−5 (Bennett et al. 1996; Smoot et al. 1992). In con-
trast, the GRB fireball could be highly inhomogeneous and
anisotropic. Indeed, the fluctuation in the Lorentz factor of
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the fireball is required for the internal shock model to work
(Rees & Mészáros 1994; Paczyński & Xu 1994). The Uni-
verse is a closed system so that the total energy in it must
be conserved. However, the GRB fireball interacts with the
surrounding matter and photons are radiated away from its
surface. The central engine of the GRB may also continue
pumping energy into the fireball even after the prompt GRB
emission has ended (Burrows et al. 2007, and references
therein). In addition, it is usually assumed that the Uni-
verse is infinite, but of course the GRB fireball has a finite
volume.

A remarkable success of the Big Bang theory has been
the prediction of the existence of a blackbody CMB of tem-
perature ≈ 3 K in today’s Universe (Gamow 1948a,b; Alpher
& Herman 1948) and its detection (Penzias & Wilson 1968;
Smoot et al. 1992). The CMB is in fact the cooled remnant
of the primeval fireball—an echo of the Big Bang. Because
of the expansion of the Universe, the temperature of the
CMB is redshifted and is hence very low as the CMB pho-
tons reach an observer of today. Similarly, we expect that
the GRB fireball has also a remnant of the radiation ini-
tially trapped in the fireball, and that the remnant would
have a quasi-thermal spectrum. However, because of the fact
that the surface of the fireball is assumed to be moving rel-
ativistically towards an observer who detects the GRB, the
temperature of the radiation as measured by the observer
would be significantly boosted by the Doppler effect.

Because of the fact that the radiation in the fireball
has a finite energy, the remnant event must have a finite
duration. The event starts when the fireball is still optically
thick, while the main burst takes place when the fireball
is already optically thin. Hence, the remnant event must
occur before the main burst, with a smaller distance from
the GRB central engine than the main burst. As we will
see, the remnant event often has a shorter duration than
the main burst (due to the remnant event’s smaller distance
from the central engine), and is separated from the main
burst by a quiescent period of time. Since it is produced
by the emission from the photosphere of the fireball, the
remnant event should have a spectrum that is dominated by
a quasi-thermal component. Hence, at least in a high energy
band, the remnant event should look weaker than the main
burst. Therefore, the remnant event should be observed as
a precursor of the GRB.

The aim of the paper is to quantitatively investigate
the properties of the GRB precursors as the remnant of the
radiation initially trapped in the fireball and look for their
possible observational consequences.

In at least several cases, precursors of GRBs have been
unambiguously detected. GRB 030406, a burst that was
detected out side of the field of view of the International
Gamma-Ray Astrophysics Laboratory (INTEGRAL), had
a precursor that occurred ∼ 50 s before the main burst
(Marcinkowski et al. 2006). GRB 041219a, a burst that was
detected by the INTEGRAL Burst Alert System (IBAS),
had a precursor that occurred ∼ 260 s before the main
burst (Vestrand et al. 2005; McBreen et al. 2006). GRB
050820a triggered the Burst Alert Telescope (BAT) onboard
Swift by a precursor, and Konus/WIND by the main burst.
The precursor occurred ∼ 200 s before the main burst, and
the entire duration of the burst is ∼ 600 s (Cenko et al.
2006). GRB 060124, also detected by both BAT/Swift and

Konus/WIND, had a precursor that occurred ∼ 500 s be-
fore the main burst (Romano et al. 2006). The entire du-
ration is ∼ 800 s, making GRB 060124 one of the longest
bursts. Another interesting case is GRB 061121, detected
by BAT/Swift (also by Konus/WIND and RHESSI), which
had a precursor that occurred ∼ 60 s before the main burst
(Bellm et al. 2006; Fenimore 2006; Golenetskii et al. 2006;
Page et al. 2006, 2007).

These observed gamma-ray precursors have the follow-
ing characters: (1) The precursor is separated from the main
burst by a long period of quiescent time; the time separation
is comparable to the duration of the main burst. (2) The pre-
cursor is weaker than the main burst, and has a shorter time-
duration. (3) The precursor often has a smooth and FRED
(Fast Rise and Exponential Decay) shape lightcurve. (GRB
050820a is an exception, whose precursor has a lightcurve
with at least two peaks.) (4) The precursor has a much
softer spectrum than the main burst, and in at least two
cases (GRB 030406 and GRB 041219a) the spectrum can
be fitted by a blackbody or a blackbody plus a power-law.

On the other hand, Koshut et al. (1995) have found
that about 3 percent of the GRBs detected by the Burst
and Transient Spectrometer Experiment (BATSE) on the
Compton Gamma-Ray Observatory (CGRO) have precur-
sors. With a precursor definition different from that of
Koshut et al. (1995), Lazzati (2005) has found that about 20
percent of the long-duration BATSE GRBs have evidence of
precursor emission.1 Soft precursor activities in X-rays have
been detected in a number of GRBs by Ginga (Murakami et
al. 1991, 1992) and WATCH onboard GRANAT (Sazonov et
al. 1998). The precursors detected by Ginga have a thermal
spectrum with a temperature ∼ 1–2 keV.

On the thermal emission in GRBs, we would also men-
tion that Ryde (2004, 2005) has found that up to 30 percent
of long-duration GRBs detected by BATSE/CGRO have a
spectrum that can be interpreted as combination of a ther-
mal peak plus a power-law component. But his results refer
to the prompt gamma-ray emission in the main burst, not
the precursor emission.

In this paper, we consider a very simple model for the
GRB fireball. By assumption, the fireball is homogeneous
and spherically symmetric, and expands with a constant
and relativistic speed. The fireball contains a thermal ra-
diation field, but the energy density of the radiation is not
large enough to affect the dynamics of the fireball. The rest
mass and the kinetic energy of the fireball are conserved.
For the radiation field in the fireball, the change in the
number of photons is caused only by the emission from the
photosphere. Hence, the number of photons is an adiabat-
ically conserved quantity. The last condition requires that
the electron-positron pairs have already annihilated. Thus,
in addition, we assume that the opacity in the fireball is
given by the constant Thompson opacity.

Our model corresponds to the post-acceleration phase
of the GRB outflow. This assumption is justified by the fact
that the radius of the fireball at the time of photosphere

1 Lazzati (2005) adopted a definition for a GRB precursor that
is in favor of weak precursor emissions and put no limit on the
time separation between the precursor and the main burst, hence
he found more precursors than Koshut et al. (1995).
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emission is much larger than the radius at the end of accel-
eration (Daigne & Mochkovitch 2002, and Section 5 in the
present paper). Our model is similar to that of Goodman
(1986) in several aspects: both models assume a freely ex-
panding and optically thick fireball in which an amount of
energy was generated instantly at a beginning time, and the
observable event is determined by the evolution of the fire-
ball and the radiation in it. There is no continuous injection
of energy or mass, unlike the steady wind model of Paczyński
(1986, 1990). However, our model also differs from that of
Goodman (1986). In the model of Goodman (1986), the fire-
ball is very hot and the process of pair production is very
important, and the photosphere was not explicitly included
in the calculation. While in our model, the fireball is rela-
tively cool and hence the process of pair production can be
ignored (see Section 5 for a justification of this assumption),
and the photosphere is calculated in details. In addition,
the model of Goodman (1986) [as well as that of Paczyński
(1986, 1990)] was aimed to interpret the prompt emission of
GRBs (the main bursts), while our model is aimed to inter-
pret the precursor emission of GRBs. This leads to a cooler
fireball since a GRB precursor usually has a spectrum that
is softer than the main burst.

The paper is organized as follows. In Section 2, we de-
scribe the geometry and the kinematics of a GRB fireball,
the kinematics of a radiation field in it, and the structure of
the photosphere. In Section 3, we describe a formalism for
calculating the properties of the precursor event of a GRB
arising from the emission by the photosphere, including the
luminosity, the blackbody spectrum, and the photon rate
observed by a remote observer. In Section 4, we present our
numerical results. In Section 5, we derive some scaling re-
lations for the characteristic quantities of the precursor, in-
cluding the characteristic time scale, the characteristic total
energy, and the characteristic photon energy. We also give
brief justification for some key assumptions in our model.
In Section 6, we discuss the effect of jet collimation, the de-
pendence of our results on the energy band of the detector,
and the effect of spectrum distortion by electron scatter-
ing. In Section 7, we summarize the results and draw our
conclusions.

In Appendix A, we present the simplified results for a
limiting case: a photosphere with a constant expansion ve-
locity, which applies to the beginning part of the precursor.

We remark that thermal precursors of GRBs in the in-
ternal shock model have been previously studied by Daigne
& Mochkovitch (2002). The thermal emission from a GRB
photosphere and its effect on the prompt spectrum of a GRB
have been investigated by Mészáros & Rees (2000); Mészáros
et al. (2002); Ramirez-Ruiz (2005); Rees & Mészáros (2005);
Pe’er, Mészáros & Rees (2006); Pe’er et al. (2007); and
Thompson, Mészáros & Rees (2007). The emission from a
photosphere of a Poynting flux dominated magnetized fire-
ball and its relation to the GRB precursor or the prompt
emission of the main burst has been discussed by Lyutikov &
Usov (2000); Giannios (2006); and Giannios & Spruit (2007).
Our model differs from that adopted in their papers. In their
work, they have assumed a steady wind model for the fire-
ball, in which mass and energy are continuously injected into
the wind at the center. And, the expansion of the fireball in
our model was driven by radiation, not by the Poynting flux
as in the magnetic models.

Bianco, Ruffini & Xue (2001) have calculated the ther-
mal emission from a fireball dominated by electron-positron
pairs arising from the quantum vacuum polarization process
around a charged black hole. The results have been applied
to interpretation of the precursor emission, the main burst,
as well as the afterglow of GRBs in a unified way (Ruffini
et al. 2001, 2002, 2005).

We also remark that thermal precursors produced by
the shock wave (or jet) breakout of the progenitor star in the
collapsar model of GRBs have been studied by MacFadyen
& Woosley (1999); MacFadyen, Woosley & Heger (2001);
Ramirez-Ruiz, MacFadyen & Lazzati (2002); and Waxman
& Mészáros (2003).

Finally, whenever an observer is referred to in the pa-
per, we ignore the cosmological effect. That is, we assume
that the Universe is Euclidean. The correction of the cosmo-
logical effect is straightforward, which mainly includes three
factors: cosmological redshift to the observed photon energy,
time dilation in the observed lightcurve duration, and that
the GRB distance appearing in our formulae should be in-
terpreted as the appropriate cosmological distance.

2 THE FIREBALL AS A MILNE UNIVERSE

A freely expanding, homogeneous, and spherically symmet-
ric fireball is like a Milne universe (see, e.g., Rindler 1977),
except that a fireball has a finite volume but the Milne uni-
verse has an infinite volume.

Let us denote the time in the GRB’s rest frame by t,
and the spherical coordinates in it by {r, θ, φ}. The center
of the fireball is at r = 0. Then, the Minkowski metric is

ds2 = −c2dt2 + dr2 + r2dΩ2 , (1)

where dΩ2 ≡ dθ2 + sin2 θdφ2 is the metric on a two-
dimensional sphere of a unit radius.

Define the coordinates η and ξ by

t = η cosh ξ , r = cη sinh ξ , (2)

the metric can then be rewritten as the Milne metric

ds2 = −c2dη2 + c2η2
(

dξ2 + sinh2 ξ dΩ2
)

. (3)

The trajectory of a particle with a constant radial ve-
locity v = βc is a straight line defined by

r = cβt , (4)

aside from that θ = constant and φ = constant. Equation (4)
demonstrates that, at any moment of constant t, we have v ∝
r. This profile of expansion velocity is typical for explosive
events, e.g. supernovae.

By equation (2) we have that, along the trajectory of
the particle,

ξ = arctanhβ , η = γ−1t , (5)

where γ ≡
(

1 − β2
)

−1/2
= cosh ξ is the Lorentz factor of

the particle.
Therefore, η represents the proper time of the particle,

and ξ measures the spatial velocity of the particle. The spa-
tial distance in the radial direction on a hypersurface Ση de-

fined by a constant η is, by equation (3), l = cη
∫ ξ

0
dξ = cηξ .

In Fig. 1, we show the spacetime diagram of the fireball.

c© 2006 RAS, MNRAS 000, 1–18



4 Li-Xin Li

t

Ηph

r

Ξ
=

co
ns

ta
nt

Η
=

co
nsta

nt

r =
RH

tL

Lig
ht

Con
e

Ξ = ΞphHΗL

Figure 1. The spacetime diagram of a fireball as a Milne universe.
Each point represents a two-sphere. The hypersurface ξ = ξph(η)
defines the photosphere (Sec. 2.3), within which (the shaded re-
gion) the photon optical depth is larger than unity. The photo-
sphere hypersurface becomes spacelike when η > η0/

√
2, and ends

at η = ηph.

The fireball has an outer boundary at r = R(t) = cβRt,
where the expansion velocity is vR = cβR, and the Lorentz

factor is Γ =
(

1 − β2
R

)

−1/2
.

2.1 The Kinematics of the Fireball

The comoving spatial volume of a sphere of a coordinate
radius ξ on the hypersurface Ση is

Vcom(ξ) = 4πc3η3

∫ ξ

0

sinh2 ξ dξ = πc3η3(sinh 2ξ − 2ξ) . (6)

For a constant ξ, the comoving volume is ∝ η3.
In the non-relativistic limit β2 ≈ ξ2 ≪ 1, we have

Vcom ≈ 4πr3/3. In the ultra-relativistic limit γ = cosh ξ ≫
1, we have

Vcom ≈ 2πγ2c3η3 ≈ 2π

γ
r3 . (7)

The fireball has a uniform comoving mass density ρ =
ρ(η) ∝ η−3. The total rest mass contained in the fireball is
then

M = ρVcom (ξR) =
M0

4
(sinh 2ξR − 2ξR) , (8)

where ξR ≡ arccoshΓ is the value of ξ at the outer boundary
of the fireball, and the constant reference mass

M0 ≡ 4πρη3c3 . (9)

The kinetic energy of the mass contained in a comoving
volume element dVcom bounded by two neighbored spheres
of constant radii ξ and ξ + dξ is

dEK = (γ − 1)ρc2dVcom = (cosh ξ − 1)M0c
2 sinh2 ξdξ , (10)

which is independent of η. Hence, the total kinetic energy of
the fireball is

EK =

∫ ξR

ξ=0

dEK

= M0c
2
(

1

3
sinh3 ξR − 1

4
sinh 2ξR +

1

2
ξR

)

. (11)

Equation (11) can also be derived as follows. The stress-
energy tensor of the particle fluid is Tab = ρc2dηadηb.
The energy density measured by a rest observer is
Tab (∂/∂t)a (∂/∂t)b = γ2ρc2. The total energy contained in a
hypersurface Σt defined by t = constant (i.e., a three-space
in the rest frame) is thus

E = 4π

∫ R

0

γ2ρc2r2dr =
M0

c

∫ R

0

γ2η−3r2dr , (12)

where the integral is evaluated on Σt. Substituting r = cβt
and η = γ−1t into equation (12) and treating t as a constant,
we get

E = M0c
2

∫ βR

0

γ5β2dβ =
1

3
M0c

2 sinh3 ξR , (13)

where β = tanh ξ and γ = cosh ξ have been used. From
equations (8) and (13), E − Mc2 is just the kinetic energy
EK in equation (11).

When β2
R ≪ 1 (Γ ≈ 1, the non-relativistic limit), we

have M ≈ M0β
3
R/3 ≈ 4πρR3/3 and EK ≈ M0c

2β5
R/10 ≈

3Mv2
R/10. As expected, all these results return to the New-

tonian values.
When Γ = cosh ξR ≫ 1 (βR ≈ 1, the ultra-relativistic

limit), we have

M ≈ 1

2
M0Γ

2 , (14)

and

E ≈ EK ≈ 2

3
ΓMc2 . (15)

In the comoving frame the fireball has a uniform den-
sity. However, in the rest frame of the GRB, the density
of the fireball increases with radius because of the Lorentz
contraction. This effect is particularly important near the
outer boundary of the fireball, where the Lorentz factor is
dramatically large in the ultra-relativistic case (Fig. 2).

In the rest frame, the number density of the fireball
particles is ∝ γρ ∝ γ4 on Σt. The total energy density is
γ2ρc2 ∝ γ5. Hence, in the rest frame both mass and en-
ergy are concentrated to a thin spherical shell at the outer
boundary. If we consider a thin spherical shell defined by
R − ∆R < r < R with a thickness (in the rest frame)

∆R =
R

2Γ2
≪ R , (16)

then by equations (14) and (15), half of the total mass and
64.6 percent of the total kinetic energy are contained in the
shell.

2.2 The Radiation Field in the Fireball

Assume that the fireball contains a uniform radiation field
with a comoving energy density er and a pressure pr = er/3.
From the conservation of energy, er ∝ η−4. The total energy

c© 2006 RAS, MNRAS 000, 1–18
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Figure 2. The Lorentz factor of particles in the fireball as
a function of radius, at any moment of constant t: γ =
[

1 − r2/(ct)2
]

−1/2
. At the outer boundary of the fireball (the

dotted line), the Lorentz factor γ = Γ = 100.

of the radiation is not larger than the kinetic energy of the
fireball, so that the assumption of a freely expanding fireball
is valid (λ < 1, eqs. 24 and 69).

The total energy of the radiation defined in the comov-
ing frame is

Er,com = erVcom = πerc
3η3 (sinh 2ξR − 2ξR) . (17)

Since er ∝ η−4, we have Er,com ∝ η−1. As the fireball ex-
pands, the total energy of the radiation decreases, caused
by the fact that the pressure of the radiation does work.
However, since the number density of photons nr ∝ η−3,
the total number of photons in the fireball is conserved.2

The stress-energy tensor of the radiation field is Tab =
(er + pr) dηadηb +

(

pr/c2
)

gab, where gab is the spacetime
metric. The energy density in the rest frame is then
Tab (∂/∂t)a (∂/∂t)b = γ2er +

(

γ2 − 1
)

pr =
(

4γ2 − 1
)

er/3.
The total energy of the radiation measured in the rest frame
is then

Er =
1

3

∫

Σt

(

4γ2 − 1
)

er4πr2dr . (18)

Using er ∝ η−4, η = γ−1t, and r = cβt, we get

Er =
4π

3

(

erη
4
)

c3t−1

∫

Σt

(

4γ2 − 1
)

γ4β2dβ . (19)

Since β = tanh ξ and γ = cosh ξ, we can work out the inte-
gral and obtain

Er =
4π

3

(

erη
4
)

c3t−1 cosh ξR sinh3 ξR . (20)

2 Strictly speaking, the number of photons is an adiabatically
conserved quantity since the emission of photons by the photo-
sphere reduces the number of photons in the fireball gradually.

t

r

t

Η

St

S Η

R

Figure 3. The hypersurface on which the total energy of ra-
diation is defined. The energy in the comoving frame, Er,com, is
defined on Ση (η = constant). The energy in the observer’s frame,
Er, is defined on Σt (t = constant). Σt and Ση intersect at r = R
(the outer boundary of the fireball), so that Er and Er,com are
related by equation (21). (The diagonal dashed line represents the
light cone.)

Hence, Er ∝ t−1.
If we define Ση with the requirement that Ση intersects

Σt at r = R (i.e., η = t/Γ = t/ cosh ξR; see Fig. 3), we can
compare the Er defined on Σt and the Er,com defined on Ση .
We have then the effective Lorentz factor of the radiation
field

Γr,eff ≡ Er

Er,com
=

4

3

sinh3 ξR

sinh 2ξR − 2ξR
. (21)

When Γ ≈ 1, we have Γr,eff ≈ 1, and Er ≈ Er,com ≈
(4π/3)erR

3. When Γ ≫ 1, we have Γr,eff ≈ 2Γ/3 and

Er|Σt
≈ 2

3
Γ Er,com|Ση

≈ 4π

3
erR

3 , (22)

where er = er(η) is evaluated on Ση, and R ≈ ct is the radius
of the fireball at time t (Fig. 3).

At any moment of constant t, we have Er|Σt
∝ er ∝

η−4 ∝ γ4. Hence, 75 percent of the total radiation energy
(defined in the rest frame of the GRB) is contained in the
thin shell at the outer boundary of the fireball with a thick-
ness given by equation (16).

We can also compare the total energy of radiation on
Σt to the total kinetic energy of particles, in the ultra-
relativistic limit. By equations (7), (8), and (15), we have

EK ≈ 4π

3
ρR3c2 , (23)

where ρ is defined on the Ση in Fig. 3. Hence, by equation
(22), we have

λ ≡ Er

EK

∣

∣

∣

Σt

=
er

ρc2

∣

∣

∣

∣

Ση

. (24)

c© 2006 RAS, MNRAS 000, 1–18
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To make the model self-consistent, we must require that
λ < 1. In our model, ρ ∝ η−3 but er ∝ η−4, and so λ ∝
η−1 ∝ t−1. Hence, if the condition λ < 1 is satisfied at some
moment, it will remain being satisfied afterwards. As η → 0
we have er/ρc2 → ∞ and λ → ∞. Hence, there must exist a
transition time ηacc defined by λ(ηacc) = 1. When η < ηacc,
the fireball is accelerated by the radiation field. Our model
only applies to the free-expansion phase of η > ηacc.

2.3 The Photosphere of the Fireball

To calculate the photon optical depth in the fireball, we need
to consider the geodesics of a photon. Assume that a photon
is emitted from a point on a sphere of a comoving coordinate
radius ξ = ξ1 at comoving time η1, moving outwards in the
radial direction. The geodesics of the photon is described by
r = r1 + c(t − t1) in terms of {t, r}, where t1 and r1 are
related to η1 and ξ1 by equation (2). In terms of {η, ξ}, the
geodesics can be written as

η = η1e
ξ−ξ1 . (25)

Assume that the opacity in the fireball, κ, is a constant.
Then, the optical depth along the trajectory of the photon
is (Novikov & Thorne 1973)

τ = κ

∫

ρdl =
κM0

4πc2

∫ ξR

ξ1

η−2dξ , (26)

where dl = cηdξ is radial distance element in the comoving
frame, and the integral is along the geodesics of the photon.

Submitting equation (25) into equation (26), we get

τ =
κM0

8πc2η2
1

[

1 − e−2(ξR−ξ1)
]

. (27)

When ξ1 = 0 and βR ≪ 1, we get τ ≈ 3κM/4πR2,
returning to the Newtonian result.

When ξ1 = 0 and Γ ≫ 1, we get

τ ≈ κM0

8πc2η2
1

≈ κM

4πR2
1Γ

2
, (28)

where R1 ≡ cη1 is the radius of the fireball at the time when
the photon is emitted.

Since τ ∝ η−2
1 , at very early time we must have τ ≫

1 and the fireball must be optically thick. We define the
photosphere of the fireball as a hypersurface determined by
τ = 1. Then, by equation (27), we get the equation for the
photosphere

ξph = ξR +
1

2
ln

(

1 − η2

η2
0

)

, (29)

where

η0 ≡
(

κM0

8πc2

)1/2

=
(

3κEK

8πc4Γ3

)1/2

. (30)

The photosphere hypersurface is shown in Fig. 1. It
starts from η = 0 as a timelike hypersurface, becomes space-
like when η > η0/

√
2 and ends at η = ηph, where

ηph ≡ η0

(

1 − e−2ξR
)1/2

. (31)

By the time η = ηph, the radius of the photosphere shrinks
to zero. At η ≪ η0, we have ξph ≈ ξR.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4. The fractions fEr
(eq. 35, two upper lines) and fNr

(eq. 36, two lower lines) as functions of η—the comoving time on
the photosphere. The solid curves are for Γ = 100. The dotted
curves are for Γ = 1000. The maximum of η is ηph ≈ η0, defined
by equation (31) and marked by the dot. At η = ηph, we have
fEr

= fNr
= 1/8.

Submitting equation (30) into equation (27), we get

τ =
η2
0

η2
1

[

1 − e−2(ξR−ξ1)
]

. (32)

In the ultra-relativistic limit Γ = cosh ξR ≫ 1, we have
that ηph ≈ η0

(

1 − 1/8Γ2
)

≈ η0, and τ ≈ η2
0/η2

1 when ξ1 = 0.

Although the mass and the energy are concentrated in a
thin shell at the outer boundary of the fireball (Sections 2.1
and 2.2), for a photon emitted from the center of the fireball
the dominant contribution to the total optical depth comes
from the central region. By equation (27) (with ξ1 = 0 and
eξR ≫ 1), the optical depth is τ/2 at ξ = ln 21/2 ≈ 0.3466,
where γ = 3

√
2/4 ≈ 1.0607. This is caused by the fact that

the mass density decreases quickly as the fireball expands
and the optical depth is Lorentz invariant.

For a photon to arrive at the photosphere at a coor-
dinate radius ξph and comoving time η, the photon must
leave the center of the fireball at time η1 = ηe−ξph ,
by equation (25). The photon arrives at a radius ξ′ at

time η′ = η1e
ξ′ = ηeξ′−ξph . The total energy of ra-

diation contained in the spheres that have been passed
by the photon, evaluated along the geodesics of the pho-
ton, is

∫

erdVcom ∝
∫

η′−1 sinh2 ξ′dξ′ ∝
∫

e−ξ′ sinh2 ξ′dξ′.
The total number of photons contained in the spheres is
∫

nrdVcom ∝
∫

sinh2 ξ′dξ′.

Let us define

η ≡ 1

2
(η + η1) , ξ ≡ ln

[

1

2

(

1 + eξph
)

]

, (33)

on the geodesics of the photon. By equations (29) and (32),
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the optical depth at
{

η, ξ
}

is

τ =
η2
0

η2

(

1 − η2

η2
0

)







4e2ξR

(

1 + eξR

√

1 − η2/η2
0

)2
− 1







. (34)

The fraction of the energy of radiation contained in the
spheres that have been passed by the photon as it arrives
at
{

η, ξ
}

, to the total energy of radiation contained in the
spheres that have been passed by the photon as it arrives at
the photosphere, is

fEr =

∫ ξ

0
e−ξ′ sinh2 ξ′dξ′

∫ ξph

0
e−ξ′ sinh2 ξ′dξ′

=
3eξ + 6e−ξ − e−3ξ − 8

3eξph + 6e−ξph − e−3ξph − 8
. (35)

Similarly, the fraction of the number of photons con-
tained in the spheres that have been passed by the photon
as it arrives at

{

η, ξ
}

, to the total number of photons con-
tained in the spheres that have been passed by the photon
as it arrives at the photosphere, is

fNr =

∫ ξ

0
sinh2 ξ′dξ′

∫ ξph

0
sinh2 ξ′dξ′

=
sinh 2ξ − 2ξ

sinh 2ξph − 2ξph
. (36)

In Fig. 4, we plot fEr and fNr as functions of η on the
photosphere. The solid curves are for Γ = 100. The dotted
curves are for Γ = 1000. The values of 1 − fEr and 1 − fNr

give, respectively, the fraction of the total radiation energy
and the fraction of the total number of photons contained in
the spheres that have been passed by the photon on its last
half journey to the photosphere. When η . 0.999ηph, these
fractions are respectively about 50 percent and 75 percent.
As η → ηph, the fractions approach 87.5 percent.

Inside the photosphere, the radiation has a thermal
spectrum with a comoving temperature T ∝ η−1. The ef-
fective temperature of the radiation emitted by the photo-
sphere, measured in the particle’s comoving frame at the
photosphere, can be approximated by

Teff = Tτ−1/4 , (37)

where T is evaluated on the photosphere. Submitting equa-
tion (34) into equation (37), and letting T = T0η0/η where
T0 is the comoving temperature of the radiation at η = η0,
we get

Teff = T0

(

η

η0

)

−1/2(

1 − η2

η2
0

)

−1/4

×







4e2ξR

(

1 + eξR

√

1 − η2/η2
0

)2
− 1







−1/4

. (38)

At η = ηph (where ξph = 0), we have τ = 1 and Teff =

T0 [1 − exp(−2ξR)]−1/2. When η ≪ η0, we have τ ≈ 3η2
0/η2

and Teff ≈ 3−1/4T0(η/η0)
−1/2.

3 THE QUASI-THERMAL PRECURSOR

In Section 2.3, we have seen that the total optical depth for
a photon emitted from the center of the fireball is ∝ η−2,

where η is the comoving time when the photon is emitted
(eq. 32). When η > ηph, where ηph is defined by equation
(31), the whole fireball is transparent to photons. When η <
ηph, the fireball has a photosphere, within which the plasma
is optically thick. The emission from the photosphere has a
quasi-thermal spectrum. As we will see, since the emission
has a finite amount of energy, it produces a transient event
corresponding to the precursor of a GRB.

The photosphere is determined by equation (29). From
this section onward, we assume the ultra-relativistic limit
Γ ≫ 1. Then, we have ηph ≈ η0 and eξR ≈ 2Γ. Using the co-
ordinates {t, r}, the photosphere hypersurface is determined
by the functions of parameter η

rph = Γcη

(

√

1 − η2/η2
0 − 1

4Γ2
√

1 − η2/η2
0

)

, (39)

tph = Γη

(

√

1 − η2/η2
0 +

1

4Γ2
√

1 − η2/η2
0

)

, (40)

where 0 < η < ηph.
The velocity of a particle on the photosphere is βphc =

rph/tph. The Lorentz factor is γph = tph/η.
The specific flux density of the radiation emitted by

the photosphere as measured by a remote observer, whose
distance to the fireball is much larger than the radius of the
fireball, is

FEobs
=

∫

IEobs
dΩobs , (41)

where Eobs is the observed photon energy, IEobs
is the ob-

served specific intensity of the radiation, and dΩobs is the
element of the solid angle subtended by the image of the
photosphere on the observer’s sky.

Because of the fact that IElocal
/E3

local is invariant along
the path of a photon, where Elocal is the energy measured by
any local observer on the path (Misner, Thorne & Wheeler
1973), we have IEobs

= IEemE3
obs/E3

em, where Eem is the
energy of the photon at its point of emission on the pho-
tosphere as measured by an observer comoving with the
particle emitting the photon, and IEem is the specific in-
tensity measured by that observer. Then, equation (41) can
be rewritten as

FEobs
=

∫

g3IEemdΩobs , (42)

where

g ≡ Eobs

Eem
=

1

γph (1 − βph cos θ)
(43)

is the Doppler factor of the photon, where θ is the angle
between the photon’s wave vector and the velocity of the
particle emitting the photon (Jackson 1999).

The local specific intensity of the blackbody radiation
emitted by the photosphere has a Planck spectrum

IEem =
1

h3c2

2E3
em

exp (Eem/kBTeff) − 1
, (44)

where kB is the Boltzmann constant, h is the Planck con-
stant, and Teff is the effective temperature measured in the
comoving frame (eq. 38). Substituting equation (44) into
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equation (42), we get

FEobs
=

2E3
obs

h3c2

∫

dΩobs

exp (Eobs/gkBTeff) − 1
, (45)

where Eem = Eobs/g has been used.
Without loss of generality, we assume that the observer

is located on the polar axis of the fireball (θ = 0), having
a distance D from the center of the fireball. At time tph,
a photon is emitted by a particle on the photosphere. The
velocity of the particle has an angle θ from the polar axis.
If the photon is emitted in the direction of the observer, it
will arrive at the observer at time

tobs = tph − rph

c
cos θ , (46)

where we have shifted the origin of the observer’s time so
that tobs = 0 if the photon is emitted when the fireball has
a zero radius. To arrive at the observer at the same time,
photons with different polar angles on the photosphere must
be emitted at different time.

In Section 2.3 we have seen that the photosphere hy-
persurface becomes spacelike when η > η0/

√
2. That is, af-

ter η = η0/
√

2, the photosphere shrinks superluminally. At
η = η0/

√
2, we have γph = tph/η ≈ Γ/

√
2, rph ≈ ctph =

Γcη0/2. and tph − rph/c ≈ η0/2Γ. As we will see, because
of the relativistic beaming effect, the dominant contribution
to the observed radiation comes from a very small region
on the photosphere around θ = 0. Hence, by equation (46),
η = η0/

√
2 corresponds to tobs ≈ η0/2Γ, and

t0 ≡ Γ−1η0 =
(

3κEK

8πc4Γ5

)1/2

(47)

is a critical time parameter of the model.
By equations (39) and (40), equation (46) can be trans-

formed to a cubic equation

x3 −
(

2µ sec2 θ

2

)

(

x2 + 1
)

+
(

1 + 4Γ2 tan2 θ

2

)

x = 0 , (48)

where

x ≡ η
√

η2
0 − η2

, µ ≡ tobs

t0
. (49)

Since 0 6 η 6 ηph, we have 0 6 x 6 xph, where

xph ≡ ηph
√

η2
0 − η2

ph

=
(

e2ξR − 1
)1/2 ≈ 2Γ . (50)

Equation (48), which can be solved analytically, has up
to three real roots of x in the range of 0 6 x 6 xph, de-
pending on the values of θ, µ, and Γ. From these roots, we
can calculate the corresponding η by the inverse of the first
equation in (49). Hence, we can get the comoving time when
the photon is emitted from the photosphere

ηem = ηem (µ, θ) , (51)

for a given Γ ≫ 1.
The element of the solid angle, after integration over

the azimuthal angle φ, can be written as a function of θ and
tobs

dΩobs =
2πr2

ph

D2
sin θ cos θdθ . (52)

As usual, the azimuthal angle φ spans a range of 0–2π.
However, the polar angle θ that contributes to the emissions

received by the remote observer spans only a range of 0–θm,
where (Rees 1966; Bianco et al. 2001)

θm ≡ arccos βph = arcsin
1

γph
<

π

2
. (53)

This is caused by the following fact. Because of the rela-
tivistic beaming effect, the radiation emitted by a particle
on the photosphere into the hemisphere of a solid angle 2π
around the normal to the photosphere in the particle’s co-
moving frame, spans only a solid angle 2π(1 − βph) around
the normal in the rest frame. Photons emitted to the outside
of this solid angle will hit the optically thick interior of the
photosphere and be absorbed and hence cannot reach the
observer (Rees 1966; Bianco et al. 2001).

Then, substituting equation (52) into equation (45), we
get

FEobs
=

4πE3
obs

h3c2D2

∫ π/2

0

r2
phϑ(θm − θ) sin θ cos θdθ

exp (Eobs/gkBTeff) − 1
, (54)

where ϑ(θm − θ) is a step function. That is, ϑ(θm − θ) = 1
if θ < θm; = 0 otherwise.

After solving for ηem as a function of tobs and θ (eq.
51), we can evaluate rph and tph (and hence βph and γph)
as functions of tobs and θ by equations (39) and (40), g by
equation (43), Teff by equation (38), and θm by equation
(53). Then, the integral in equation (54) can be evaluated.

We remark that, when equation (48) has multiple roots,
the contribution of each root to the spectrum integral in
equation (54) (as well as to the luminosity and photon rate
integrals in eqs. 55 and 56 below) should be summed.

The luminosity as measured by the observer is then

L = 4πD2

∫

∞

0

FEobs
dEobs

= 8πσSB

∫ π/2

0

g4T 4
effr2

phϑ(θm − θ) sin θ cos θdθ , (55)

where σSB = 2π5k4
B/(15h3c2) is the Stefan-Boltzmann con-

stant. It can be checked that when the rph and Teff are con-
stants and g = 1, equation (55) gives the standard result for
the luminosity of a spherical blackbody.

The lightcurve of a GRB or its precursor is generally
not expressed in luminosity. Instead, it is expressed in the
photon rate, i.e., the number of photons received by the
observer per unit time. By equation (54), the photon rate,
which we denote by N , is

N = 4πD2

∫

∞

0

FEobs
d lnEobs

=
240ζ(3)σSB

π3kB

×
∫ π/2

0

g3T 3
effr2

phϑ(θm − θ) sin θ cos θdθ , (56)

where the Riemann zeta function ζ(3) ≈ 1.202.

4 NUMERICAL RESULTS

At very early time when η2/η2
0 ≪ 1, the photosphere ex-

pands with a constant velocity that is close to the speed of
light, and the formulae for the spectrum, the luminosity, and

c© 2006 RAS, MNRAS 000, 1–18



Gamma-Ray Burst Precursors 9

the photon rate can be simplified considerably. The results
in this limiting case are presented in Appendix A. In fact,
the luminosity and the photon rate can be worked out an-
alytically. It turns out that the luminosity L is a constant,
and the photon rate N ∝ µ1/2, where the dimensionless time
µ is defined by equation (49).

Although the spectrum cannot be worked out analyti-
cally, a remarkable feature of the spectrum is still identified.
When tobs, Eobs, and EobsFEobs

are scaled respectively by t0
(eq. 47), Eph,0 (eq. A5), and F0 (eq. A8), the spectrum does
not depend on the value of Γ, provided that Γ & 100 (eq.
A9). As will be seen in this section, this ‘similarity’ feature
persists in the late evolution of the spectrum, the luminosity,
and the photon rate up to a time µ ≈ 10.

From equations (43) and (46), we have g = Γη/µη0.
Then, using the variables χ defined in equation (A5) and x
defined in equation (49), we can write the spectrum integral
in equation (54) as

ΨE =
45

7π4
Γ2χ4

∫ π/2

0

x2f1(x)ϑ(θm − θ) sin θ cos θdθ

exp
[

µχx−1/2f
1/4
2 (x)

]

− 1
, (57)

where ΨE ≡ EobsFEobs
/F0 (eq. A8),

f1(x) ≡
(

1

1 + x2
− 1

4Γ2

)2

, (58)

and

f2(x) ≡ 1

3

[

16Γ2

(

1 + 2Γ/
√

1 + x2
)2

− 1

]

. (59)

Similarly, for the luminosity and the photon rate, we
have

ΨL =
3Γ2

7µ4

∫ π/2

0

x4f1(x)f−1
2 (x)ϑ(θm − θ) sin θ cos θdθ , (60)

and

ΨN =
5Γ2

(

8
√

2 − 2
)

µ3
×

∫ π/2

0

x7/2f1(x)f
−3/4
2 (x)ϑ(θm − θ) sin θ cos θdθ , (61)

where ΨL ≡ L/L0, L0 is the luminosity as µ → 0 (eq. A11);
and ΨN ≡ N/N0, N0 is defined by equation (A13).

Equations (57), (60), and (61) have the forms that are
convenient for numerical calculations.

First, we calculate the luminosity as a function of µ
and Γ. The results are shown in Fig. 5, where the solid line
is for Γ = 100, and the dashed line is for Γ = 1000. At
small µ, the solid line is almost identical to the dashed line.
Quantitatively, for µ < 10, the fractional difference in the
two luminosities is . 10 percent. As µ → 0, the luminosity
L approaches the constant L0 (Appendix A). From µ ∼ 0.1,
the luminosity starts to decay with time. At µ = 1, L drops
to 0.049L0 . At very large µ, the luminosity depends on the
value of Γ.

The luminosity drops to zero as µ approaches Γ. This is
caused by the following fact. On the photosphere at any co-
moving time η, the photon emitted by a particle at a larger θ
reaches the observer at later time. By equation (46), the last
photon reaches the observer at tobs = tph − rph cos θm/c =
tph

(

1 − β2
ph

)

= η/γph, since photons emitted by particles

-8
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-4

-2

0

-2 -1 0 1 2

0

0.5

Figure 5. Upper panel: the luminosity of the precursor as a func-
tion of the observer’s time. The horizontal axis is µ = tobs/t0. The
vertical axis is ΨL = L/L0. The solid line is for Γ = 100. The
dashed line is for Γ = 1000. Lower panel: the fractional difference
in the luminosity: ∆ΨL/ΨL ≡ ΨL(Γ = 1000)/ΨL(Γ = 100) − 1.
The dotted line marks the position of ∆ΨL = 0.
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Figure 6. The fraction of the accumulated energy in the total
energy (eq. 62). The solid line is for Γ = 100. The dashed line is
for Γ = 1000 (almost indistinguishable from the solid line).

at θ > θm are invisible to the observer. Since γph > 1, we
have tobs 6 η 6 η0, hence µ = tobs/t0 6 Γ. That is, the last
photon reaches the observer at µ = Γ.

We can define the accumulated energy of the precursor
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Figure 7. The lightcurve of the precursor. The horizontal axis is
the observer’s time in units of t0. The vertical axis is the number
of photons per unit time, in units of N0. The solid curve is for
Γ = 100. The dashed curve is for Γ = 1000.

by

E (tobs) =

∫ tobs

0

Ldtobs = E0

∫ µ

0

ΨLdµ , (62)

where

E0 ≡ L0t0 = Γ−1L0η0 (63)

is a characteristic total energy scale. The total energy emit-
ted by the photosphere is then Etotal = E (tobs = Γt0),
which is equal to 0.426E0 when Γ = 100, and 0.421E0 when
Γ = 1000.

In Fig. 6 we show the fraction of the accumulated energy
in the total energy. At µ = 1, about 96 percent of the total
energy has been accumulated.

The lightcurve defined by ΨN = N/N0 as a function of
µ is plotted in Fig. 7, which has a smooth and FRED shape.
It starts increasing with time as ΨN ∝ µ1/2, reaches a peak
at µ = 0.221, then decreases with time quasi-exponentially.
The lightcurve has a long tail of soft photons, which lasts
until µ = Γ (see Fig. 5). These soft photons originate from
the spacelike part of the photosphere (Fig. 1).

The width of the lightcurve pulse at N = Nmax/4 is
∆µ = 0.895. The width at N = Nmax/20 is ∆µ = 1.68. The
maximum of the photon rate varies slightly with Γ. When
Γ = 100, we have Nmax = 0.363N0 . When Γ = 1000, we
have Nmax = 0.359N0 . The variation in Nmax is at a level of
1 percent.

The spectra numerically calculated by equation (57) is
plotted in Fig. 8, for a sequence of time from µ = 10−3 to
µ = 100.6, with the step in log µ being 0.3. As mentioned
above, for the range of time being of interest (0 < µ < 10),
the spectrum ΨE is insensitive to the variation of Γ, provided
that Γ & 100, Eobs is scaled by Eph,0, and tobs is scaled by
t0. In Fig. 8, we plot the spectrum with Γ = 100 with solid
lines, and the spectrum with Γ = 1000 with dashed lines.

-1 0 1 2 3
-5

-4

-3

-2

-1

0

Figure 8. The blackbody spectrum of the precursor. The hor-
izontal axis is χ = Eobs/Eph,0, which represents the photon
energy measured by the observer. The vertical axis is ΨE =
EobsFEobs

/F0, which represents the energy flux density measured
by the observer (see the text for details). Different curves corre-
spond to different observer’s time, µ = tobs/t0 = 10−3–100.6

(∆ log µ = 0.3; from right to left as indicated by the arrow). The
solid curves are for Γ = 100. The dashed curves (visually indis-
tinguishable from the solid curves) are for Γ = 1000.

As can be seen from the figure, the two results are almost
indistinguishable.

A critical parameter characterizing the energy of the
photons is the peak spectral energy, Epeak, which is defined
to be the photon energy at the maximum of EobsFEobs

. In
Fig. 9, we plot Epeak as a function of time. Since the results
are not sensitive to the variation of Γ as we have claimed by
Figs. 5–8, in Fig. 9 (similarly in the following figures unless
otherwise stated) we show only the plot for Γ = 100. We
see that, as µ → 0, Epeak approaches the asymptotic value
given by (Appendix A)

Epeak = 4.913 Eph,0µ
−1/2 . (64)

Beyond the maximum of the lightcurve (i.e., when µ >
0.221), the value of Epeak decays with time faster than that
given by equation (64).

In Fig. 10, we show the spectrum at the maximum of
the lightcurve (ΨE,peak = ΨE at µ = 0.221, Fig. 7), and
the spectrum integrated over the time interval of N/Nmax >
1/20

ΨE,int =

∫ µ2

µ1

ΨEdµ , (65)

where µ1 = 0.000345 and µ2 = 1.68. At the low energy end,
ΨE,int ∝ χ3, just as the instant spectrum at any moment.
At the high energy end, ΨE,int ∝ χ−2, if we take µ1 = 0.

The integrated spectrum, ΨE,int, peaks at χ = 8.241.
The spectrum at the maximum of the lightcurve, ΨE,peak,
peaks at χ = 10.02. Therefore, the peak spectral energy at
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Figure 9. The peak energy of the blackbody spectrum as a func-
tion of time (Γ = 100). The point marks the peak energy at the
maximum of the lightcurve (at µ = 0.221). The dashed line is the
peak energy calculated by equation (64).

the maximum of the lightcurve is

Epeak,max = 10.02 Eph,0 . (66)

The peak spectral energy of the integrated spectrum is

Epeak,int = 8.241 Eph,0 . (67)

5 CHARACTERISTIC QUANTITIES

Our model has three characteristic quantities: Eph,0 (eq.
A5), a photon energy scale charactering the peak energy
of the spectrum; t0 (eq. 47), a time scale characterizing the
duration and the ‘pulse width’ of the lightcurve; and E0 (eq.
63), an energy scale characterizing the total energy emitted
by the photosphere.

The ratio E0/EK determines the dynamical importance
of the radiation field to the fireball. As mentioned in Section
2.2, the importance of the radiation field for the dynamics
of the fireball is determined by the parameter λ defined by
equation (24), where er is the comoving energy density of
the radiation, and ρ is the comoving mass density of the
fireball. Since er = aT 4 = aT 4

0 (η/η0)
−4, where T is the co-

moving temperature, and a = 4σSB/c is the radiation den-
sity constant, by equations (7), (8), and (15) we have

λ ≈ 16πσSBT 4
0 Γ3c2η3

0

3EK

(

η

η0

)

−1

. (68)

By equations (A6), (A11), and (63), we have then

λ ≈ 6L0η0

7ΓEK

(

η

η0

)

−1

=
6ǫ0
7

(

η

η0

)

−1

, (69)

where

ǫ0 ≡ E0

EK
. (70)
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Figure 10. The integrated spectrum of the precursor (ΨE,int,
integrated over the time interval of N/Nmax > 1/20, eq. 65;
solid curve), and the spectrum at the maximum of the lightcurve
(ΨE,peak, at µ = 0.221; dashed curve). The dotted line is the
asymptotic spectrum at high energy end when the spectrum is
integrated from µ = 0, ΨE,int ∝ χ−2 (eq. A16).

Hence, at η = η0, we have λ = 6ǫ0/7. For the model of
a freely expanding fireball to be a good approximation, we
must require that ǫ0 ≪ 1.

From equations (63), (A5), (A11), and the definitions
of t0 (eq. 47) and R0 (eq. A6), we can derive that

Eph,0 = kB

(

3E0

14πac3t30Γ
2

)1/4

= 2.073 keV

(

E0

1052erg

)1/4
(

t0
1 s

)

−3/4

×
(

Γ

100

)−1/2

. (71)

If E0, Eph,0, and t0 can be measured, then equation (71) can
be used to estimate the value of the Lorentz factor Γ.

Since Γ > 1, equation (71) leads to a constraint on E0,
t0, and Eph,0

Eph,0 < 20.73 keV

(

E0

1052erg

)1/4
(

t0
1 s

)

−3/4

. (72)

As we have assumed, the fireball does not contain
electron-positron pairs and the opacity in the fireball is dom-
inated by the Thompson electron scattering opacity. Then
we have κ = 0.20(1 + X) cm2 g−1, where X is the mass
fraction of hydrogen. It is likely that long-duration GRBs
arise from the core-collapse of massive stars which have lost
their hydrogen envelopes (Woosley & Bloom 2006), hence it
is reasonable to assume that X = 0. Then we have κ = 0.2
cm2 g−1.
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Then, by equation (47), we have

t0 ≈ 1.719 s

(

κ

0.2 cm2g−1

)1/2(

EK

1054erg

)1/2

×
(

Γ

100

)−5/2

. (73)

By the definition of ǫ0, equation (70), we have

E0 = 1052erg
(

ǫ0
0.01

)

(

EK

1054erg

)

. (74)

By equations (47), (70), and (71), we have

Eph,0 ≈ 1.381 keV
(

ǫ0
0.01

)1/4
(

κ

0.2 cm2g−1

)

−3/8

×
(

EK

1054erg

)

−1/8
(

Γ

100

)11/8

. (75)

By equations (75) and (A5), we have

kBT0 ≈ 0.018 keV
(

ǫ0
0.01

)1/4
(

κ

0.2 cm2g−1

)

−3/8

×
(

EK

1054erg

)

−1/8
(

Γ

100

)3/8

. (76)

The very small value of kBT0 justifies our assumption that
the fireball does not contain pairs.3

By equations (47) and (A6), the characteristic radius of
the fireball when the thermal precursor emission takes place
is

R0 = Γ2ct0 ≈ 5 × 1014cm

(

κ

0.2 cm2g−1

)1/2

×
(

EK

1054erg

)1/2
(

Γ

100

)−1/2

. (77)

The radius of the fireball at the end of acceleration, defined
by λ = 1 (η = ηacc), is

Racc =
6ǫ0
7

R0 ≈ 4 × 1012cm
(

ǫ0
0.01

)

(

κ

0.2 cm2g−1

)1/2

×
(

EK

1054erg

)1/2
(

Γ

100

)−1/2

. (78)

For the model of a freely expanding fireball to be self-
consistent, we must require that Racc ≪ R0, i.e. ǫ0 ≪ 1.

The peak spectral energy is related to Eph,0 by equa-
tions (64), (66), and (67). The duration of the precursor (de-
fined by the width of the lightcurve pulse at N = Nmax/20)
is ≈ 1.7t0. The total energy emitted in the precursor, is
≈ 0.42E0.

Generally, the characteristic photon energy predicted by
our simple model with the assumption of a blackbody pho-
tosphere emission is too small for explaining the precursors
detected by the gamma-ray detectors, but is in agreement

3 Even if Eph,0 has a value as high as ∼ 260 keV which is likely
the case when the blackbody spectrum is distorted by electron
scattering (Section 6.3), we have kBT0 ∼ 3 keV and the effect
of pair production is also unimportant at least during the stage
when the majority of the precursor photons are emitted.

with the precursors detected by the X-ray detectors (see In-
troduction; for further discussions see Sec. 6.3).

6 DISCUSSIONS

6.1 The Effect of Jet Collimation

In our model we have assumed that the fireball is a sphere
with a total solid angle of 4π. In reality, GRBs are likely to
be collimated. That is, the fireball may have a cone shape
and spans a solid angle Ω < 4π. Now we check how this ‘jet
collimation’ effect affects our results.

Assume that the fireball spans a solid angle Ω = 4πω,
ω < 1. The observer is on the polar axis θ = 0, and the polar
boundary of the fireball (which is now a cone) is at θ = θc <
π/2, where θc ≡ arccos(1−2ω). In addition, we assume that
θc ≫ Γ−1, so that the effect of ‘jet collimation’ starts to
affect the shape of the lightcurve only at very late time when
the Lorentz factor of the photosphere (γph) drops to a value
∼ 1/θc, just as the observation of the ‘jet break’ signature
in GRB afterglow lightcurves (Sari, Piran & Halpern 1999;
Friedman & Bloom 2005, and references therein). Hence, we
have Γ−2 ≪ ω < 1.

With jet collimation, the comoving volume of the fire-
ball in equation (7) should be replaced by

Vcom ≈ 2πωΓ2c3η3 ∝ ω , (79)

where we have let γ = Γ. The kinetic energy EK is still
related to the total mass M by equation (15), but equation
(14) should be replaced by

M ≈ ω

2
M0Γ

2 , (80)

where M0 is defined by equation (9).
The optical depth is still given by equations (27) and

(32), and η0 is still defined by equation (30). Then, for the
characteristic time in equation (47), we should replace EK

by EK/ω. This is equivalent to say that equation (47) still
holds if EK is interpreted as the isotropic-equivalent kinetic
energy.

The photosphere is still defined by equation (29), or
equivalently, by equations (39) and (40). The effective tem-
perature of the photosphere is still given by equation (38).

Equation (48) is unchanged, except that θ is only al-
lowed to vary in the range of 0 6 θ 6 θc.

The specific flux density measured by the observer is
still given by equation (54), but the following replacement
to the integral over θ should be made
∫ π/2

0

dθ −→
∫ θc

0

dθ . (81)

The luminosity defined by equation (55), after the re-
placement in equation (81), should be interpreted as the
isotropic-equivalent luminosity. The true luminosity of the
photosphere should be ωL. The same conclusion holds for
the photon rate in equation (56).

Because of the relativistic beaming effect, when γph ≫ 1
the contribution of the photosphere to the observed luminos-
ity, the photon rate, and the spectrum comes from a small
region of θ < γ−1

ph ≪ θc on the photosphere. Hence, the effect
of the boundary of the jet becomes important only after γph

drops to a value smaller than γph,br ≈ θ−1
c . For θc ≫ Γ−1,
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Figure 11. The flux-averaged polar angle on the photosphere
(solid curves), defined by equation (82). The curve ends at µ = Γ,
since after µ = Γ no photons emitted by the photosphere can
reach the observer. The dashed lines show the maximum polar
angle of the cone-shape fireball, θc. The model of the spherical
fireball applies only when the value of 〈θ〉 is below the dashed line
(i.e., when 〈θ〉 < θc). If the photosphere is a static and uniform
sphere, we would have 〈θ〉 = π/4.

we have γph,br ≪ Γ, and hence the time µ = µbr when γph

drops to γph,br would be ≫ 1.
We can define a flux-averaged polar angle on the pho-

tosphere by

〈θ〉 =
8πσSB

L

∫ π/2

0

θg4T 4
effr2

phϑ (θm − θ) sin θ cos θdθ , (82)

for the model of the spherical fireball. If the photosphere is
a static and uniform sphere (i.e., g = 1, Teff and rph are con-
stants), we would have 〈θ〉 = π/4. If the contribution to the
luminosity comes from a small region of θ ≪ 1 on the pho-
tosphere (which is the case when the photosphere expands
relativistically), we would have 〈θ〉 ≪ 1. If the contribution
to the luminosity comes from a narrow ring region around
θ = θ0 on the photosphere, we would expect 〈θ〉 ≈ θ0.

In Fig. 11, we show the value of 〈θ〉 as a function of
time (solid curves). When µ ≪ 1, the photosphere has a
Lorentz factor γph ≈ Γ ≫ 1, the radiation received by the
observer comes dominantly from a region of θ . Γ−1 on the
photosphere, hence we have 〈θ〉 ∼ Γ−1 ≪ 1. As µ → µmax =
Γ, the radiation received by the observer comes dominantly
from a region of π/4 < θ < π/2.

The dashed lines show the value of θc, the maximum
polar angle of the cone-shape fireball. When 〈θ〉 & θc, the
observer starts to see the boundary of the cone and the
spherical model does not apply any more. As a result, the
lightcurve starts to decay faster with time than that pre-
dicted by the spherical model. The transition time µtr (or,
the ‘jet break’ time, as commonly called for the GRB af-
terglow) is approximately determined by 〈θ〉 = θc, i.e. the
intersection of the solid curve and the dashed line. When

0 1 2 3 4

0

0.1

0.2

0.3

0.4

Figure 12. The lightcurves detected by detectors with different
lower limit on the photon energy. Top to bottom: Emin/Eph,0 = 0,
1, 5, 10, 15, and 20.

θc ≫ Γ−1 as we have assumed, the transition time µtr is
much larger than the duration of the event.

Particularly, when µ ≪ 1, the effect of jet collimation is
negligible. The results in Appendix A are unchanged. Eph,0

is still given by equation (A5), L0 is still given by equation
(A11), and N0 is still given by equation (A13). However, as
explained above, L0 and N0, as well as the EK in the defi-
nition of η0 (eq. 30), should be interpreted as the isotropic-
equivalent quantities.

Then, Eph,0 is still the characteristic photon energy,
while E0 = L0t0 is the isotropic-equivalent characteristic
total energy. Equations (70)–(77) are then unchanged, if the
EK and E0 are interpreted as the isotropic-equivalent kinetic
energy and the isotropic-equivalent characteristic total en-
ergy, respectively.

6.2 Dependence of the Lightcurve and Spectrum

on the Energy Band of a Detector

Every detector has a finite range of energy that the detector
is sensitive to. For example, the BAT on Swift covers an en-
ergy range of 15–150 keV, while the BATSE on CGRO cov-
ers an energy range of 20–1900 keV. The observed lightcurve
and the spectrum of a GRB precursor depends crucially on
the range of energy of the detector.

We consider only the effect of the lower limit on the pho-
ton energy. For a quasi-thermal spectrum the flux density
decays quickly at the high energy end, the upper limit on
the photon energy is not important provided that it exceeds
the peak spectral energy at the maximum of the lightcurve.4

Hence, we take the lowest energy to be Emin, and allow the

4 This could be a problem for Swift since the BAT on it has a
very small maximum energy.
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Figure 13. The observed peak photon energy of the spectrum at
the maximum of the lightcurve (upper panel) and the width of
the observed lightcurve pulse (at N = Nmax/20; lower panel) as
functions of the lower energy limit of the detector. The dashed line
in the upper panel shows the lower energy limit of the detector.

highest energy to be infinity. Then, the observed photon rate
is

ΨN =
N

N0
=

7π4

36
(

4
√

2 − 1
)

ζ(3)

∫

∞

χmin

χ−2ΨEdχ , (83)

where χmin ≡ Emin/Eph,0.
The lightcurves calculated for χmin = 0, 1, 5, 10, 15, and

20 are shown in Fig. 12. As Emin increases, the maximum
of the lightcurve shifts to earlier time, and the width of
the lightcurve pulse decreases. This is caused by the fact
that the energy of the photons emitted by the photosphere
decreases with time (Figs. 8 and 9). The maximum photon
rate decreases as Emin increases.

In Fig. 13, we show the observed peak photon energy of
the spectrum at the maximum of the lightcurve (estimated
by eq. 64) and the width of the observed lightcurve pulse at
N = Nmax/20 as functions of Emin. The peak photon energy
increases with Emin, while the width of the lightcurve pulse
decreases with Emin.

6.3 Distortion of the Blackbody Spectrum by

Electron Scattering

Even if the effects of jet collimation and the finite en-
ergy band of the detector are considered, the characteris-
tic photon energy predicted by the model is still signifi-
cantly smaller than that of the GRB precursors detected
by gamma-ray detectors. For example, the spectrum of the
precursor of GRB 041219a can be fitted by a blackbody plus
a power law. The temperature of the blackbody is ≈ 46± 9
keV, corresponding to a peak photon energy ≈ 180±35 keV
(in the observer’s frame; McBreen et al. 2006). The spec-
trum of the precursor of GRB 030406 can be fitted by a

blackbody with temperature ≈ 106±13 keV, corresponding
to a peak photon energy ≈ 416 ± 51 keV (in the observer’s
frame; Marcinkowski et al. 2006). However, the peak photon
energy of the integrated spectrum predicted by our model
is typically ≈ 8Eph,0 ≈ 10 keV, which appears to be con-
sistent with that of the soft X-ray precursors detected by
Ginga (Murakami et al. 1991, 1992) and WATCH/GRANAT

(Sazonov et al. 1998).

In our model we have assumed that the emission from
the photosphere is a perfect blackbody. However, when elec-
tron scattering dominates the opacity, thermal equilibrium
exists only when τffτTh > 1, where τff is the free-free opti-
cal depth, and τTh is the Thompson optical depth (Felten &
Rees 1972; Shakura 1972; Shakura & Sunyaev 1973; Novikov
& Thorne 1973; Sunyaev & Shakura 1974). At the surface
of the fireball, the spectrum of the outgoing radiation is dis-
torted. The energy flux measured in the comoving frame is
(Novikov & Thorne 1973)

Q = 1.54 × 10−4n1/2
e T

9/4
eff (84)

in cgs units, where ne is the number density of electrons, and
Teff is the effective temperature. Equation (84) is in contrast
to the standard formula Q = σSBT 4

eff for the blackbody.

The characteristic radius for the emission from the pho-
tosphere is the R0 given by equation (77). Let us define the
effective temperature of the standard blackbody spectrum
in the comoving frame, Teff,0, by L0 = 4πσSBT 4

eff,0R
2
0Γ

2,
where L0 is related to the characteristic total energy E0 by
equation (63). Similarly, we can define the effective tem-
perature of the distorted blackbody spectrum, Teff,1, by
L0 = 4πQR2

0Γ
2, where Q is given by equation (84). Then,

we find that

Teff,1

Teff,0
≈ 23.5

(

ǫ0
0.01

)7/36
(

EK

1054erg

)1/72
(

Γ

100

)−1/24

, (85)

where we have assumed that κ = 0.2 cm2 g−1 and ne =
ρ/2mH, where mH is the atomic mass unit.

If we take Epeak ≈ 8Eph,0, then equations (75) and (85)
imply that

Epeak ≈ 259 keV
(

λ0

0.01

)4/9
(

EK

1054erg

)

−1/9

×
(

Γ

100

)4/3

, (86)

for the distorted blackbody spectrum. The peak spectral
energy given by equation (86), which is defined in the ob-
server’s frame, appears to be in agreement with that of the
precursors detected by gamma-ray detectors.

Another effect that may help shifting up the photon
energy is that the blackbody emission from the photosphere
may be nonthermalized by some scattering process and have
a nonthermal spectrum. For example, Thompson (1994) has
shown that the scattering of the adiabatically cooled thermal
photons by the magnetohydrodynamic (MHD) turbulence
in the photosphere can boost the thermal photons up to a
larger peak energy and lead to a spectrum that have a broken
power-law or a Band function (Band et al. 1993) shape.
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7 SUMMARY AND CONCLUSIONS

We have studied a simple model for the precursor event of a
GRB, where the precursor is produced by the emission from
the early photosphere of a fireball. The fireball is assumed
to be homogeneous, spherical, and expand freely and rela-
tivistically. The fireball contains a constant amount of rest
mass, and has a constant total kinetic energy. It also con-
tains a radiation field, which drives the acceleration of the
fireball expansion at the very early stage, but simply cools
down with the expansion at the late free expansion stage.
These assumptions make our model different from that has
been adopted in the literature for studying the photosphere
emission of a GRB, which usually assumes a steady wind
with mass and energy injection at the center (Daigne &
Mochkovitch 2002; Mészáros & Rees 2000; Mészáros et al.
2002; Ramirez-Ruiz 2005; Rees & Mészáros 2005; Pe’er et
al. 2006, 2007; Thompson et al. 2007).

The dynamics of the fireball is the same as that of a
Milne universe, except that the fireball has a finite size and
contains a finite amount of mass and energy. In the same way
as the Universe, at very early time the fireball is opaque to
the photons contained in it, but later it becomes transparent
(Fig. 1). The photosphere is defined to be the hypersurface
where the total optical depth is unity. If the fireball had an
infinitely large radius, then as in the Milne universe, the pho-
tosphere were just a spacelike hyperbola. However, because
of the fact that the fireball has a finite radius, the hypersur-
face of the photosphere is timelike when η < η0/

√
2. It is the

emission from this timelike part that makes the dominant
contribution to the precursor emission detected by a remote
observer, since this timelike surface moves towards the ob-
server with a relativistic speed. However, the spacelike part
of the photosphere produces a long tail of soft emission.

The luminosity, the photon rate (the lightcurve), and
the blackbody spectrum of the precursor are calculated. The
results are presented in Figs. 5–10. A remarkable feature of
the results is that, when the quantities are properly scaled
and the time is not too large, the results are almost invariant
with respect to the Lorentz factor of the fireball. That is,
if the observer time is in units of t0 = η0/Γ (eq. 47), the
luminosity is in units of L0 (eq. A11), the photon rate is
in units of N0 (eq. A13), and the spectrum EobsFEobs

is in
units of F0 (eq. A8), then the luminosity, the photon rate,
and the spectrum are insensitive to the variation of Γ for
µ = tobs/t0 . 10, provided that Γ & 100. At very late time,
the results depend on the value of Γ.

Thus, a critical time scale for the precursor is t0 (eqs. 47
and 73), which is ∼ 2 s for typical parameters. The luminos-
ity starts with a constant L = L0, and drops to L ≈ 0.05L0

at tobs = t0. The total energy emitted by the photosphere
is ≈ 0.42L0t0. About 96 percent of the total emitted energy
has been accumulated at tobs = t0.

The lightcurve (defined by the photon rate) has a

smooth and FRED shape (Fig. 7). It begins as N ∝ t
1/2
obs ,

peaks at tobs ≈ 0.22t0, and then decays quasi-exponentially.
The width of the lightcurve pulse at N = Nmax/4 (Nmax is
the maximum photon rate) is ∆tobs ≈ 0.9t0. The width at
N = Nmax/20 is ∆tobs ≈ 1.7t0.

The blackbody spectrum at different moment of ob-
servation is shown in Fig. 8. The peak spectral energy
Epeak, defined to be the photon energy at the maximum of

EobsFEobs
, decays with time (Fig. 9). Before the maximum

of the lightcurve (tobs < 0.22t0), the peak spectral energy

evolves according to, approximately, Epeak ∝ t
−1/2
obs (eq. 64).

After the maximum, the peak spectral energy decays with
time with a rate faster than that given by equation (64)
(Fig. 9). At the maximum of the lightcurve (tobs ≈ 0.22t0),
the spectrum peaks at Epeak = 10.0Eph,0, where Eph,0 is the
characteristic photon energy defined by equation (A5). The
spectrum integrated over the time interval of N > Nmax/20
peaks at Epeak = 8.24Eph,0 (Fig. 10).

The characteristic quantities describing the precursor,
which include the characteristic time, the characteristic to-
tal energy, and the characteristic photon energy are sum-
marized in equations (73)–(75). For typical parameters, the
characteristic time is shorter than the duration of a typical
long GRB (the main burst), and the characteristic photon
energy is in the X-ray band. Because of the thermal nature
of the spectrum, at least in the high energy band the to-
tal energy is expected to be smaller than the main burst. A
constraint on these three characteristic quantities is given
by equation (72), which does not depend on the value of the
opacity in the fireball.

The characteristic radius of the thermal emission, R0,
is given by equation (77), which is 1014–1015 cm for typical
parameters. The internal shock must not occur until the
fireball becomes optically thin, since otherwise it would be
difficult to explain the nonthermal spectrum of the GRB.
Hence, Rδ—the radius where the internal shock occurs—
must be > R0. The time separation between the precursor
and the main burst is then tsep ∼ Rδ/2Γ

2c.
The main burst produced by the internal shock has

a duration T ≈ ∆/c, where ∆ is the width (measured in
the rest frame of the GRB) of the outflow that contributes
to the prompt gamma-ray emission (Piran 1999). In our
model, the fireball has an expansion velocity v ∝ r, and
the majority of mass and energy is confined in a thin layer
at the outer boundary of the fireball (Sec. 2.1). The thick-
ness of the layer—which contains 50 percent of total mass
and 65 percent of total kinetic energy—is given by equa-
tion (16). Letting R = Rδ, we have then ∆ ≈ Rδ/2Γ

2 and
T ≈ Rδ/2Γ

2c ∼ tsep. This relation between the duration of
the main burst and the time separation between the main
burst and the precursor appears to be consistent with the
observation (see Introduction).

We have assumed a spherical fireball. If the GRB out-
flow is collimated and the resulted fireball has a configu-
ration of a cone spanning a solid angle 4πω that satisfies
Γ−2 ≪ ω < 1, the results are still valid until a time is
reached when the flux-averaged polar angle of the photo-
sphere increases to a value & θc = arccos(1 − 2ω) (Fig. 11).
However, in the results, L and N should be interpreted as the
isotropic-equivalent luminosity and the isotropic-equivalent
photon rate respectively. Equations (70)–(77) still hold, but
EK and E0 should be interpreted as the isotropic-equivalent
kinetic energy and the isotropic-equivalent characteristic to-
tal energy of radiation, respectively. This fact is caused by
the relativistic beaming effect, which implies that when the
photosphere expands relativistically the dominant contribu-
tion to the spectrum and the luminosity observed by a re-
mote observer comes from a small region on the photosphere
that spans a solid angle ∼ Γ−2.

The dependence of the observed lightcurve and spec-
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trum on the finite energy range of a detector has also been
discussed (Sec. 6.2). Overall, as the lower limit of the de-
tector energy increases, the duration of the lightcurve de-
creases and the maximum of the lightcurve shifts to earlier
time (Figs. 12 and 13). The peak photon energy of the spec-
trum increases with the lower energy bound of the detector
(Fig. 13).

The photon energy predicted by our simple model seems
to be consistent with the X-ray precursors of GRBs detected
by Ginga and WATCH/GRANAT (Murakami et al. 1991,
1992; Sazonov et al. 1998), but is too small for the precur-
sors detected by gamma-ray detectors (Cenko et al. 2006;
Marcinkowski et al. 2006; McBreen et al. 2006; Romano et
al. 2006; Page et al. 2007). However, in our model we have
assumed that the emission from the photosphere has a spec-
trum that is perfectly blackbody. When electron scattering
dominates the opacity, the blackbody spectrum is distorted
(Felten & Rees 1972; Shakura 1972; Shakura & Sunyaev
1973; Novikov & Thorne 1973; Sunyaev & Shakura 1974).
We have estimated this effect by adopting a modified flux
equation in equation (84) and found that the distorted spec-
trum could have a peak spectral energy of ∼ 260 keV, which
is consistent with the hard spectrum of the observed gamma-
ray precursors (Sec. 6.3). Scattering of the soft blackbody
photons by e.g. the magnetic turbulence in the fireball may
also lead to a nonthermal spectrum (Thompson 1994). A
detailed study on these issues is left for our future work.

A strong assumption in our model is that there is no
continuous injection of energy and mass, and hence the to-
tal mass and the kinetic energy of the fireball are conserved.
A big benefit from this simplified assumption is that the
shape of the lightcurve and the duration of the emission can
be predicted, in contrast to the steady wind model where
the lightcurve and the duration depend on the rate of en-
ergy and mass injection as a function of time. On the physics
side, this type of models with ‘instant release of energy’ may
be relevant to the precursors that have smooth and FRED
shape lightcurves. More complicated models with continu-
ous injection of mass and energy may be relevant to the
precursors that have complex lightcurves.

Although the X-Ray Telescope (XRT) on Swift has dis-
covered that flares are common in early X-ray afterglows of
GRBs and it seems that the most likely cause of the flares is
the late-time activity of the GRB central engine (Burrows
et al. 2007, and references therein), the time separation be-
tween two adjacent flares are usually much longer than the
duration of the precursor event predicted by our model and
hence the assumption of no continuous energy and mass in-
jection remains valid. Of course the fireballs or expanding
shells related to the late-time activity would also have photo-
sphere emissions. However, the late-time photosphere emis-
sions would overlap with the prompt main GRB emissions
or the afterglows (Mészáros & Rees 2000; Mészáros et al.
2002; Ramirez-Ruiz 2005; Rees & Mészáros 2005; Pe’er et
al. 2006; Thompson et al. 2007) and hence are hard to detect
[see, however, Ryde (2004, 2005); and Pe’er et al. (2007)].

In summary, our model implies the existence of a quasi-
thermal precursor of a GRB. The precursor is a remnant of
the thermal radiation contained in the fireball during its ini-
tial acceleration phase, just like that the CMB is a remnant
of the radiation in the Big Bang. The precursor emission
has a quasi-thermal spectrum, and a smooth and FRED

shape lightcurve with a duration ∼ 1–5 s. If the distortion
of the blackbody spectrum by the electron scattering pro-
cess is not important, the radiation observed by a remote
observer is in the X-ray band with a peak photon energy
∼ 1–10 keV. If the distortion by electron scattering is im-
portant, the peak photon energy could be of several hundred
keV and hence be in the gamma-ray band. Under some con-
ditions the soft thermal photons may also be nonthermalized
and have a nonthermal spectrum. Although in reality the
situation may be much more complicated, our simple model
may provide a reasonable interpretation for at least a class
of GRB precursors—those having smooth and FRED-shape
lightcurves and quasi-thermal spectra.
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Paczyński B., 1990, ApJ, 363, 218
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Pe’er A., Mészáros P., Rees M. J., 2006, ApJ, 642, 995
Pe’er A., Ryde F., Wijers R. A. M. J., Mészáros P.,
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APPENDIX A: PHOTOSPHERE WITH A

CONSTANT EXPANSION VELOCITY

When η2/η2
0 ≪ 1, the photosphere defined by equation (29)

has a radius ξph ≈ ξR, constant γph = cosh ξph ≈ Γ ≫
1, and constant θm ≈ 1/Γ ≪ 1. That is, the photosphere
expands with a constant and ultra-relativistic velocity. In
this Appendix, we derive the spectrum, the luminosity, and
the photon rate of a photosphere in this limiting case.

When η2/η2
0 ≪ 1, we have tph ≈ Γη, rph ≈ R ≈ Γcη,

and βph ≈ βR ≈ 1−1/2Γ2. Then, by equation (43), we have

g ≈ 1

Γ (1 − βph cos θ)
. (A1)

By equations (43) and (46), we have tobs = η/g and hence

η

η0
=

µg

Γ
. (A2)

Then, by equations (38) and (A2), we have

Teff ≈ 3−1/4T0

(

η

η0

)

−1/2

, (A3)

and

Eobs

gkBTeff
≈ χ

(

Γµ

g

)1/2

, (A4)

where

χ ≡ Eobs

Eph,0
, Eph,0 ≡ 3−1/4kBT0Γ . (A5)

Let us define

R0 ≡ Γcη0 . (A6)

Then, rph/R0 ≈ η/η0 = µg/Γ. By equation (54) we have

EobsFEobs
≈ 10σSBT 4

0 R2
0

π4D2
Γ2µ2χ4

×
∫ Γ−1

0

g2 sin θ cos θdθ

exp [(Γµ/g)1/2χ] − 1
. (A7)

Define s ≡ g/Γ and

ΨE ≡ EobsFEobs

F0
, F0 ≡ L0

4πD2
, (A8)

where L0 is the constant luminosity in the limit η2/η2
0 ≪ 1

given by equation (A11) below. By equation (A1), we have
cos θ ≈ β−1

ph

[

1 − 1/(Γ2s)
]

and d cos θ ≈ β−1
ph ds/(Γ2s2).

When θ = 0, we have s = 2. When θ ≈ 1/Γ, we have s ≈ 1.
Hence, equation (A7) can be rewritten as

ΨE ≈ 45

7π4
µ2χ4

∫ 2

1

ds

exp [(µ/s)1/2χ] − 1
. (A9)
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In equation (A9), χ and µ appear in the combination
µ1/2χ. Hence, ΨE is invariant under the transformation

µ → µ′ , χ → χ′ = χ

(

µ

µ′

)1/2

. (A10)

That is, the value of ΨE at energy χ and at time µ, is equal
to the value of ΨE at energy µ1/2χ and at time µ = 1. When
µ = 1, ΨE(χ) peaks at χ = 4.913. Hence, at any µ, ΨE(χ)
peaks at χpeak = 4.913 µ−1/2.

Similarly, for the luminosity in equation (55), we have

L ≈ 8π

3
σSBT 4

0 R2
0

∫ Γ−1

0

g4 sin θ cos θdθ

≈ L0 ≡ 56π

9
σSBT 4

0 R2
0Γ

2 , (A11)

which is a constant.
For the photon rate in equation (56), we have

N ≈ 80 · 31/4ζ(3)σSB

π3kB
T 3

0 R2
0

×
∫ Γ−1

0

g3

(

η

η0

)1/2

sin θ cos θdθ

= N0µ
1/2 , (A12)

where

N0 ≡
(

4
√

2 − 1
) 32 · 31/4ζ(3)σSB

π3kB
T 3

0 R2
0Γ

=
(

4
√

2 − 1
) 36ζ(3)

7π4

L0

Eph,0
. (A13)

Equations (A11), (A9), and (A12) approximate the nu-
merical results presented in Figs. 7–9 very well for µ . 0.1,
with fractional errors . 5 percent.

The integration of ΨE over µ is

∫ µ

0

ΨEdµ =
45

7π4
χ−2

∫ 2

1

ds

∫ µχ2

0

w2dw

exp
√

w/s − 1
, (A14)

where w ≡ µχ2.
As χ → 0, we have

∫ µ

0

ΨEdµ ≈ 12

7π4

(

23/2 − 1
)

µ5/2χ3 ∝ χ3 . (A15)

As χ → ∞, we have
∫ µ

0

ΨEdµ ≈ 300π2

49
χ−2 ∝ χ−2 . (A16)
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