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ABSTRACT

We examine the structure of the postshock region in supernova remnants (SNRs). The ‘‘shock transition zone’’ is
set up by charge transfer and ionization events between atoms and ions and has a width�(1015 cm�2)n�1

0 , where n0
is the total preshock density (including both atoms and ions). For Balmer-dominated SNRs with shock velocity vsk
1000 km s�1, the Rankine-Hugoniot conditions for ion velocity and temperature are obeyed instantly, leaving the full
width at half-maximum (FWHM) of the broad H� line versus vs relation intact. However, the spatial variation in the
postshock densities is relevant to the problem of Ly� resonant scattering in young, core-collapse SNRs. Both two-
(preshock atoms and ions) and three-component (preshock atoms, broad neutrals, and ions) models are considered.
We compute the spatial emissivities of the broad (�b) and narrow (�n) H� lines; a calculation of these emissivities in
SN 1006 is in general agreement with the computed ones of Raymond and coworkers. The (dimensionless) spatial
shift,�shift, between the centroids of �b and �n is unique for a given shock velocity and fion, the preshock ion fraction.
Measurements of �shift can be used to constrain n0.

Subject headinggs: atomic processes — hydrodynamics — shock waves — supernova remnants

Online material: color figure

1. INTRODUCTION

In a purely hydrodynamic treatment, shock fronts are regarded
as mathematical discontinuities, across which the density, pres-
sure, and temperature of the fluid vary according to the Rankine-
Hugoniot jump conditions. A characteristic length scale for the
thickness of the discontinuity appears when one takes into ac-
count the atomic structure of the gas (Zel’dovich & Raizer 1966).
The structure of collisional shock fronts is relatively well under-
stood. A dissipation mechanism is generally required: for exam-
ple, thermal conduction and viscosity for weak and strong shocks,
respectively. In collisionless shock fronts, the dissipation is due to
turbulent electromagnetic fields rather than collisions. Determin-
ing the structure of collisionless shocks requires an understanding
of how particles equilibrate their temperatures via plasma in-
stabilities, which is currently a largely open question in astro-
physics. Reviews can be found in McKee & Hollenbach (1980)
and Draine & McKee (1993).

Our study is motivated by a need to understand the structure
of the postshock region inBalmer-dominated supernova remnants
(SNRs; Heng & McCray 2007, hereafter HM07, and references
therein), which we term the ‘‘shock transition zone.’’ These SNRs
typically have shock velocities vs � 1000 km s�1, ages much less
than the radiative cooling times, and produce a modest amount of
ionizing radiation. Balmer-dominated SNRs have two-component
spectra consisting of a broad and a narrow line (Chevalier et al.
1980, hereafter CKR80; see x 6.1). If the temperatures of the atoms
and ions are known, the width of the broad line is uniquely related
to the shock velocity, as first shown byCKR80. The upstream, pure
hydrogen gas consists of atoms and ions (Tu � 10;000 K) with a
typical preshock ion fraction of fion � 0:5. The atoms are converted
into ions via charge transfer (with protons) and impact ionization

(with both electrons and protons) in the transition zone (Fig. 1),
which has awidth on the order of themean free path of interactions.

If a noticeable variation of the ion velocity occurs within the
transition zone, then for a given broad line width, the shock ve-
locity would be underestimated. This is because charge transfer
events, which give rise to broad H� emission, are favored at low
relative velocities between the atoms and ions, which may occur
within the transition zone. In x 6.1, we show this not to be the
case.

The second reason for investigating the structure of Balmer-
dominated SNRs is that Ly� resonant scattering occurs in the
freely streaming debris of young, core-collapse SNRs that are
still in the pre-Sedov-Taylor phase. Photons produced at the shock
fronts undergo a spectral random walk and become increasingly
redshifted as the debris is in Hubble-like flow. Ly� line profiles
will therefore be distorted with respect to nonresonant lines such
as H� (if the hydrogen atoms are mostly in the ground state).
Photon production occurs within the shock transition zone, the
width of which is usually greater than the mean free path of the
Ly� photons. Therefore, understanding the spatial structure of
the transition zone in Balmer-dominated SNRs is relevant to
modeling the Ly� lines in young remnants such as SNR 1987A,
where resonant scattering occurs in the hydrogen ejecta from the
massive progenitor.

The third motivation for our study is to develop a newmethod
for deriving the spatial emissivity profiles of both the broad and
narrow H� lines behind the shock front. Raymond et al. (2007,
hereafter R07) have shown that such profiles can be used to infer
n0, the total preshock density (including both atoms and ions).

In x 2, we present our model and assumptions and state the
relevant equations involved. We describe our solution methods
in x 4 and analyze our results in x 5. In x 6, we discuss the im-
plications and limitations of our results and present opportuni-
ties for future work.

2. MODEL AND ASSUMPTIONS:
TWO-COMPONENT MODEL

For the problem to be tractable, we need to make a few simpli-
fying assumptions. First, the only significant sink term present
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for the atoms is for their conversion to ions, via charge transfer
and impact ionization. In the frame of the shock, the atoms
comprise a beamwith a velocity of vH ¼ vs. The ions are shocked
and isotropized in a distance comparable to the cyclotron gyro-
radius (lgyro � 1010 cm).We assume that the ion distribution func-
tion becomes approximately Maxwellian in a length scale that is
much less than the width of the shock transition zone. Plasma in-
stabilities are capable of partially equilibrating the temperatures be-
tween the electrons and protons (Te/Tpk 0:1 for vsP1000 km s�1;
Cargill & Papadopoulos 1988; Rakowski et al. 2003; Ghavamian
et al. 2007). We parameterize the ratio of the temperatures at the
shock front by

� ¼ Te

Tp
: ð1Þ

Hereafter, we drop the subscript ‘‘p’’ when referring to variables
describing the ion fluid. The length scale for equilibration is
determined by Coulomb collisions and can be much larger than
the physical extent of the SNR for � ¼ 0:1. It is generally larger
than lgyro and the length scale for atomic interactions, lzone �
(1015 cm�2)n�1

0 .

2.1. Interaction of Atomic Beam with Maxwellian Ions

In the shock transition zone, the atomic beam (number density
nH and velocity vH) interacts with Maxwellian ions (density n,
velocity v, and temperature T ). Charge transfers between the atomic
beam and postshock protons produce populations of atoms having
velocity distributions intermediate between a beam and a Max-
wellian, whichwe term ‘‘broad neutrals.’’5 The resulting ‘‘skewed

Maxwellian’’ distributions are described in HM07. These broad
neutrals are produced in the same transition zone as the ions.
We shall show how to account for the broad neutrals in x 3. In

this section, we assume low neutral fractions ( fionk 0:9) so that
the broad neutrals will not affect the density of the ions signif-
icantly. In this case, we can approximate the variation of mass,
momentum, and enthalpy flux with distance by

d

dx
nHvHð Þ ¼ �nHnR;

d

dx
nvð Þ ¼ nHnR;

d

dx
P þ �v2
� �

¼ mHvHnHnR;

d

dx
Uvþ Pvþ 1

2
�v3

� �
¼ 1

2
mHv

2
HnHnR; ð2Þ

where � ¼ mpn. The internal energy density and pressure of the
ion fluid are represented byU andP, respectively. The set of equa-
tions is supplemented by the following equations of state:

P ¼ � þ 1ð ÞnkT ;

U ¼ P

� � 1
¼ 3

2
� þ 1ð ÞnkT : ð3Þ

In the case of full equilibration (� ¼ 1), we haveP ¼ 2nkT , where
the factor of 2 accounts for contributions from both electrons and
protons. The polytropic index is � ¼ 5

3
for a monoatomic gas. The

rate coefficient, R, characterizes the loss of atoms by conversion to
ions via both charge transfer and ionization. Examples of R are
shown in the left panel of Figure 2; these rates assume a relative
velocity of 3vH/4 between the atoms and the peak of the ion distri-
bution. For � ¼ 1, charge transfer dominates over ionization at
vHP 4000 km s�1. Details on how to calculate R for a general
relative velocity are given in Appendix A.

Fig. 1.—Schematic diagram of the shock transition zone, in the case of a strong shock. The width of the transition zone is on the order of the mean free path of
interactions (charge transfer and ionization). The velocity of the ions goes down to 1

4
of its preshock value almost immediately, according to the Rankine-Hugoniot jump

condition. The ion density first jumps by a factor of 4 to conserve momentum, then eventually evolves to a value which depends on the preshock ion fraction, fion. [See the
electronic edition of the Journal for a color version of this figure.]

5 In this paper, we refer to the preshock atoms in a beam simply as ‘‘atoms,’’
while ‘‘broad neutrals’’ refers to the postshock atoms found in broad distribu-
tions. Alternatively, the ‘‘atoms’’ could have been named ‘‘narrow neutrals.’’ We
have avoided use of the terms ‘‘slow’’ and ‘‘fast neutrals’’ as these are dependent
on one’s frame of reference.
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Suppose we can define a typical value for the rate coefficient,
R̄. Then a natural length scale for the problem emerges:

L ¼ vH

naR̄
; ð4Þ

where na is the preshock atomic density. Knowledge of L allows
us to define the dimensionless distance, � � x/L. Other dimen-
sionless variables follow naturally: � � n/na, �H � nH/na, u �
v/vH, � � kT /mpv

2
H, andR � R/R̄. The system of equations then

becomes

d�H

d�
¼ ��H�R;

d

d�
�uð Þ ¼ �H�R;

d

d�
�u2 þ � þ 1ð Þ��
� �

¼ �H�R;

d

d�
�u3 þ 5 � þ 1ð Þ��u
� �

¼ �H�R: ð5Þ

2.2. Generalized Conservation Equations

The upstream, initial values for �H, �, u, and � are 1, fu ¼
fion/(1� fion), 1, and �u � kTu/mpv

2
H , respectively. By adding the

first pair of expressions in equation (5) and applying initial con-
ditions, one obtains

�H þ �u ¼ 1þ fu; ð6Þ

which is a statement of the conservation of mass density flux,
from which one can derive

d�H

d�
¼ � �HR

u
1þ fu � �Hð Þ: ð7Þ

Algebraic manipulation of the expressions in equation (5) yields
the cubic equation for u:

u� 1ð Þ 4�u2 � �u� 5 � þ 1ð Þ fu�u
� �

¼ 0: ð8Þ

With the solutions for �H, �, and u in hand, one can then solve for
� using

� ¼ fu�u
�

þ u

� þ 1
1� uð Þ: ð9Þ

In general, since the expressions in equation (5) have the same
source/sink term, we can add/subtract any given pair and obtain
algebraic equations equated to six conservation constants. Only
three of the conservation constants are independent; the other
three are a simple, linear combination of the first three. One can
choose to tackle the system of four coupled differential equations
or substitute up to three of them by the conservation equations.

2.3. Energy Losses from the Atomic Beam

The atomic beam suffers energy losses due to excitation and ion-
ization, prior to engaging in charge transfer events with the ions. On
average, an atom gets excitedNE � 1:5 times before it gets taken

Fig. 2.—Left : Rate coefficients for conversion of hydrogen atoms to protons ( p) and electrons (e), used in the two-componentmodel. The velocity difference between the atoms
and ions is 3vH/4. As an illustration, we display the individual rate coefficients for charge transfer (RCH; atoms and protons) and impact ionization (RiH; atoms, electrons, and
protons) for � ¼ 1, but only the total rate coefficient for � ¼ 0:1. Right: Rate coefficients for interactions between atoms (H), ions (i), and broad neutrals (B), used in the three-
component model.
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out of the beam (HM07). Therefore, the final expression in equa-
tion (5) has to be modified:

d

d�
�u3 þ 5 � þ 1ð Þ��u
� �

¼ �H�R 1� 2�lossð Þ: ð10Þ

The quantity �loss � Eloss/mHv
2
H characterizes the energy loss,

Eloss ¼ 13:6 eVþ NE 10:2 eVð Þ: ð11Þ

The cubic equation for u changes slightly:

4�u3 � 5�u2 þ u � 1� 2�lossð Þ � 5 � þ 1ð Þ fu�u½ �
þ 5 � þ 1ð Þfu�u þ 2�loss ¼ 0: ð12Þ

We emphasize that this is an approximate way to account for
the energy losses.More generally,NE has a velocity dependence.
However, �loss � 10�3 at vH � 1000 km s�1, and a more com-
plicated treatment (e.g., Cox & Raymond 1985) is only impor-
tant for shocks with vHP 200 km s�1. Excitation and subsequent
emission of Ly� photons extract increments of 10.2 eV from the
atomic beam; energy losses due to Balmer and other Lyman lines
are a �10% effect for �1000 km s�1 shocks.

3. RESTRICTED THREE-COMPONENT MODEL

At low and intermediate values of fion, the creation of the broad
neutrals competes effectively with that of the ions. In this case we
must generalize the hydrodynamic equations to a three-component
model, consisting of the beam of atoms (‘‘H’’), the electrons
and protons (‘‘i’’), and the broad neutrals (‘‘B’’). Here we assume
that the broad neutrals and ions share a common fluid velocity,
vB ¼ v, which implies that they share a common temperature as
well (TB ¼ T ). This approximation has been employed in all of
the papers before HM07, who showed that the steep velocity de-
pendence of the charge transfer cross section creates significant
differences between vB and v (and hence TB and T ) for shock veloc-
ities k3000 km s�1. The full three-component model requires
vB 6¼ v, which is beyond the scope of our present study (see x 6.2).

We consider three processes between the particles: charge trans-
fer between the atoms and ions (with a rate coefficient of RCH),
ionization of atoms by ions (RiH), and ionization of broad neutrals
by ions (RiB); the rate coefficients are calculated using the formal-
ism of HM07 and shown in the right panel of Figure 2. We neglect
interactions between the atomic beam and the broad neutrals.

Under these assumptions, the expressions in equation (2) gen-
eralize to

d

dx
nHvHð Þ ¼ �nHn RCH þ RiHð Þ;

d

dx
nBvð Þ ¼ nHnRCH � nBnRiB;

d

dx
nvð Þ ¼ nHnRiH þ nBnRiB;

d

dx

�
P þ PBð Þ þ 1

2
mpnv

2

þ 1

2
mHnBv

2

�
¼ mHvHnHn RCH þ RiHð Þ;

d

dx

�
U þ UBð Þvþ P þ PBð Þv

þ 1

2
mpnv

3 þ 1

2
mHnBv

3

�
¼ 1

2
mHv

2
HnHn RCH þ RiHð Þ;

ð13Þ

where P and U have the same definitions as before, while
PB ¼ nBkTB and UB ¼ 3PB/2.
Casting the equations in dimensionless form yields

d�H

d�
¼ ��H� 1þ fiHð ÞR;

d

d�
�Buð Þ ¼ �H�R � �B� fiBR;

d

d�
�uð Þ ¼ �H� fiHR þ �B� fiBR;

d

d�
�t þ ��ð Þ�þ �tu

2
� �

¼ �H� 1þ fiHð ÞR;

d

d�
5 �t þ ��ð Þ�uþ �tu

3
� �

¼ �H� 1þ fiHð ÞR; ð14Þ

where �H, �, u, and � retain their previous definitions, while �B ¼
nB/na, fij ¼ Ri j/RCH, R ¼ RCH/R̄, and �t � � þ �B. The initial
conditions are �H(0) ¼ 1, �(0) ¼ fu, �B(0) ¼ 0, u(0) ¼ 1, and
�(0) ¼ �u.
Our approach to solving for the hydrodynamic variables is

similar to that previously described in x 2.2. In fact, the cubic
equation for u remains the same as equation (8), but with � re-
placed by �t:

u� 1ð Þ 4�tu
2 � �tu� 5 � þ 1ð Þ fu�u

� �
¼ 0: ð15Þ

Adding the first three expressions in equation (14) and applying
initial conditions yields

�H þ �tu ¼ 1þ fu: ð16Þ

Defining 	 � �u and 	B � �Bu, we use equation (16) to elimi-
nate �H and obtain

d	

d�
¼ 1

u
1þ fuð Þ fiHR	� 1

u
fiHR	2 � 1

u
fiH � 1

u
fiB

� �
R	B	;

d	B

d�
¼ 1

u
1þ fuð ÞR	� 1

u
R	2 � 1

u
1þ 1

u
fiB

� �
R	B	: ð17Þ

Once � and �B are known, � is determined using

� ¼ �tu 1� uð Þ þ 1þ �ð Þ fu�u
�t þ ��

: ð18Þ

4. SOLUTION METHODS

4.1. Approximate Solutions and Their Asymptotes
for the Two-Component Model

For vHk 1000 km s�1, we can assume �loss � 0 and constant
R (see x 5) behind the shock and derive approximate solutions to
the hydrodynamic variables and their corresponding asymp-
totes. Again assuming upstream initial conditions, we obtain
from equation (8)

u ¼ 1

8
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 80 � þ 1ð Þ fu�u

�

s" #
: ð19Þ
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We pick the positive root to ensure that u > 0. Consider the
limiting case where fu�uT1. We then have

u � 1

4
þ 5 � þ 1ð Þ fu�u

�
: ð20Þ

Using equation (6), one gets

� � 4 1þ fu � �H � 5 � þ 1ð Þ fu�u½ �: ð21Þ

Substituting this into the first expression in equation (5) yields
the Bernoulli equation, � 0

H þ au�H ¼ bu�
2
H, where au ¼ 4R 1þ½

fu � 5(� þ 1) fu�u� and bu ¼ 4R. Solving for �H yields

�H � bu

au
þ 1� bu

au

� �
exp au�ð Þ

� ��1

: ð22Þ

The set of solutions, (u; �; �H; �), has the following asymptotes
(� 31):

u ! 1

4
;

� ! 4;

�H ! 0;

� ! 3

16 � þ 1ð Þ ; ð23Þ

consistent with standard jump conditions for a strong shock.
Another quantity of interest is the Mach number,M, of the post-
shock ion flow. Since P / �5/3, we have c2s ¼ @P/@� ¼ 5(�þ
1)�v2H/3. The Mach number then becomes

M ¼ v

cs
¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

5 � þ 1ð Þ�

s
! 1ffiffiffi

5
p : ð24Þ

4.2. Numerical Solutions

To obtain numerical solutions for the set of expression in equa-
tion (5), we employ a coordinate system inwhich the beginning of
the transition zone (Fig. 1) is placed at � ¼ 0. We discuss our
approach for �loss ¼ 0; our solution method for �loss 6¼ 0 is con-
ceptually similar. First, we assume �H(0) ¼ 1 and use equations
(6), (8), and (9) to solve for �(0), u(0), and �(0). To obtain a self-
consistent set of solutions, we use an iterative approach. For the
first iteration, the (dimensionless) ion velocity and temperature are
taken to be u(1)(�) ¼ u(0) and �(1)(�) ¼ �(0), respectively. Equa-
tion (7) is then solved using a standard Runge-Kutta method for
�(1)H (�), which is substituted into equation (6) to determine �(1)(�).
With �(1)(�) known, the cubic equation in equation (8) is solved at
each � using a simple bisection method in the range 0 < u < 1,
for which there is only one physical root. [Note that if �lossT1,
we only need to solve a quadratic equation for u(2)(�).] The up-
dated value of u(2)(�) is substituted into equation (9), yielding
�(2)(�). This procedure is iterated i times, until the dependent
variables �(i)H (�), �

(i)(�), u(i)(�), and �(i)(�) converge. The conver-
gence is monitored in two ways: (1) The final, fractional correc-
tion for each dependent variablemust be less than a predetermined
tolerance, i.e., ju(i)(�)� u(i�1)(�)j/u(i)(�)P �tol. (2) The mass, mo-
mentum, and enthalpy fluxes must be constant and equal to their
values at � ¼ 0.

In practice, the values of the variables converge rapidly during the
iteration, requiring i < 10. For shock velocities vsk 1000 km s�1,

the velocity difference between the atomic and ion populations is
nearly constant, meaning R � R̄ (R � 1) throughout the shock
transition zone. In this regime, �loss is negligible and the ana-
lytical solutions of x 4.1 are excellent approximations to the two-
component numerical calculations. At lower shock velocities
(vHP 200 km s�1), variations in u(�) and nonnegligible values of
�loss quantitatively change the solution, requiring the full numer-
ical treatment.

The numerical method in the three-component case is analo-
gous to the iterative procedure described above. Assuming �H(0) ¼
1 and �B(0) ¼ 0, equations (15), (16), and (18) are solved for �(0),
u(0), and �(0). As before, we set u(1) ¼ u(0) and now solve the
expression in equation (17) for	(1) and	(1)

B using a standardRunge-
Kutta algorithm, from which we calculate �(1) and �(1)B using u(1).
Equation (15) is solved using the updated values for the (dimen-
sionless) densities to give the improved estimate, u(2). The pro-
cess is then iterated in the manner described above.

5. RESULTS

Figure 3 displays the structure of the shock transition zone for
v8 ¼ vH/1000 km s�1 ¼ 1, 5, 7, and 10. In each case, we assume
fu ¼ 1 ( fion ¼ 0:5) and T4 ¼ Tu/10

4 K ¼ 1. Knowledge of v8
and T4 then determines �u ¼ 8:25 ; 10�5T4/v

2
8 . The preshock

atomic density is na ¼ n0/(1þ fu) � 0:1 cm�3. For example, in
the case of SN 1006, R07 find 0:25 cm�3 � n0 � 0:4 cm�3, im-
plying 0:025 cm�3 � na � 0:04 cm�3.

Hydrodynamic quantities vary from their preshock to their post-
shock values, at the beginning of the shock transition zone, ac-
cording to the Rankine-Hugoniot jump conditions. Across the
zone, the ions have no velocity structure, consistent with the
assumption made by CKR80. Numerically, for a strong shock, u
goes from 1 to 1

4
immediately and � jumps to 4fu to conserve ion

mass flux. The latter is in accordance with the Rankine-Hugoniot
density jump (Zel’dovich & Raizer 1966) of

Jd0 ¼
� þ 1ð Þ�d0 þ � � 1ð Þ�u
� � 1ð Þ�d0 þ � þ 1ð Þ�u

; ð25Þ

where �d0 is the value of � immediately after the shock (and not
far downstream). For �d0 3 �u and � ¼ 5

3
, we recover the familiar

density jump of 4 for a monoatomic gas. For strong shocks
(vHk1000 km s�1), energy losses from the atomic beam are
negligible after the jump, and the downstream density eventually
evolves to Jd � 4(1þ fu) � 8 for fu ¼ 1. A factor of 4 comes
from the jump condition, while an additional factor of 2 results
from adding the atoms to the population of ions. We note that for
weak shocks, a departure from the decrease by a factor of 4 in u
occurs, consistent with equation (25). The departure from a jump of
4 in � (and its subsequent evolution) follows naturally to conserve
momentum; the asymptotic value of � dips to below 3/32 (� ¼ 1)
due to energy losses. It is worth noting that as the shock velocity
increases, the distinction between �B for � ¼ 0:1 and 1 vanishes.

With a telescope having sufficient angular resolution, it may
be possible to measure the spatial emissivity profiles of the nar-
row and broad H� lines. The narrow emissivity is given by �n ¼
nnHRH�n, where RH�n is the rate coefficient for the narrow H�
line (cf. eq. [20] in HM07). Broad emission has two distinct
contributions: (1) from charge transfers of the atoms in the initial
beam directly to excited states of the broad neutrals, with a rate
coefficient given by RH�b0 ; and (2) from excitations and charge
transfers of the broad neutrals to excited states, with a net rate co-
efficient of RH�b� . The addition of RH�b0 and RH�b� yields the
broad line rate coefficient (cf. eq. [22] in HM07). Charge transfers
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involving atoms from the beamwill naturally have the spatial pro-
file of the narrow emissivity.

We first derive the emissivity profile of the broad line, �b, from
�n, using the two-component model: on its creation at x0, a broad
neutral drifts for an average distance of ld ¼ ld(x; x0) until it gets
destroyed by impact ionization. The drift velocity, vd , is the velocity
difference between the peak of the broad neutral distribution and
the shock front, 1

4
P vd /vHP 1. The broad H� emissivity is then

�b xð Þ ¼ RH�b0

RH�n
�n þ

RH�b�

RH�n

Z x

0

�n x0ð ÞP x; x0ð Þ dx0; ð26Þ

where P(x; x0) ¼ P0(x0) exp ½�(x� x0)/ld(x; x0)� is the ‘‘transfer
function.’’ Details regarding ld(x; x0) and P(x; x0) are given in
Appendix B. Examples of RH�n, RH�b0 , and RH�b� are given in
Figure 4. In the three-component model, the broad and narrowH�
emissivities are simply given by �b ¼ nnHRH�b0 þ nnBRH�b� and
�n ¼ nnHRH�n, respectively.

In the two-component model, the ratio of broad to narrow H�
emission is given by

Ib

In
¼

R 1
0

�b xð Þ dxR 1
0

�n xð Þ dx
¼ RH�b0 þ RH�b�

RH�n
; ð27Þ

such that it is equal to the ratio of rate coefficients and the in-
tegrated line ratio is preserved. In the three-component model,
this is not necessarily the case, as

Lbn ¼
RH�b0

R 1
0

nnH dxþ RH�b�

R 1
0

nnB dx

RH�n

R 1
0

nnH dx
6¼ Ib

In
; ð28Þ

due to the fact that
R 1
0

nnH dx 6¼
R 1
0

nnB dx in general.

The high shock velocity and low neutral fraction of the
remnant of SN 1006, located 2.1 kpc away,makes it an ideal case
study for both the two- and three-component models. Following
R07, we compute �b and �n (Fig. 5). We adopt the following
parameters: vH ¼ 2890 km s�1 (R07), vd /vH ¼ 0:34, � ¼ 0:1
(Ghavamian et al. 2002, hereafter G02), fion ¼ fu/(1þ fu) ¼ 0:9
(G02), T4 ¼ 1, na ¼ 0:025 cm�3 (n0 ¼ 0:25 cm�3; R07), R̄ ¼
1:1 ; 10�7 cm3 s�1, RCH ¼ 5:9 ; 10�8 cm3 s�1, RiH ¼ 5:0 ;
10�8 cm3 s�1, and RiB ¼ 4:5 ; 10�8 cm3 s�1. The broad H� line
has the following parameters: RH�b0 ¼ 1:5 ; 10�9 cm3 s�1 and
RH�b� ¼ 1:0 ; 10�8 cm3 s�1 (case A conditions). The narrow
H� line has RH�n ¼ 6:9 ; 10�9 cm3 s�1 (case A) and 1:7 ;
10�8 cm3 s�1 (case B). We emphasize that it is not our intention
to model the Lyman line trapping, as done by Ghavamian et al.

Fig. 4.—Rate coefficients for the narrow (RH�n) and broad (RH�b0 þ RH�b� )
H� lines, assuming case B and A conditions, respectively.

Fig. 3.—Spatial variation of �H, �, �B, and � in the three-component model, for various values of the shock velocity, v8 ¼ vH/1000 km s�1, and fion ¼ 0:5. Like in the
two-component model, u � 1

4
throughout the shock transition zone.
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(2001) and G02. Rather, we wish to calculate the relative shifts
between �b and �n, and demonstrate that Lbn 6¼ Ib/In; these are
not dependent on the opacity assumptions for the narrow H�
line. As a matter of illustration, we adopt case B conditions for
the narrow H� line.

Except for T4, values of the parameters without references
were computed using the formalism of HM07. The drift velocity
is vd/vH > 1

4
because at the velocity of SN 1006, charge transfer

is not efficient enough to create a Maxwellian population of
broad neutrals centered at vH/4.

Our calculation shows that �b peaks at�0.0700 from the shock
front, a factor of �2 smaller than the�0.1400 value computed by
R07. The smaller spatial scale of the current calculation is due to
a numerical error in the model code used in R07; it implies that
the lower values of n0 in the curved shock models of Figure 5 of
R07 will not produce too much H� emission toward the inside
of the remnant, and the density range 0:25 cm�3 � n0 � 0:4 cm�3

obtained by R07 produces too steep a falloff. However, smaller
preshock densities require larger radii of curvature to match the
observed peak surface brightness, and that produces too gradual a
falloff toward the outside of the remnant. Overall, the revised
models of R07 are compatible with densities in the range
0:15 cm�3 � n0 � 0:3 cm�3, but with small-scale ripples in the
shock front that broaden the filament by about 0.500. The values
of our emissivities are comparable to those of R07; minor dis-
crepancies in the emissivities may be partially due to our use of
cascade matrices to compute the H� rate coefficients, follow-
ing HM07. Excitation from the ground state tends to populate
the lower l levels, especially the p ones. Hence, our calculations
overestimate the cascade contribution, while R07 ignores it,
and the true emissivities are probably bracketed by these two
approaches.

For SN1006,we compute Ib/In ¼ 0:68 andLbn ¼ 0:77 (caseB),
with the latter being about 13% higher than the former. Despite
this difference, it is worthwhile to note that the shift between the
peaks of �b and �n is about the same in both the two- and three-
component calculations. Furthermore, Smith et al. (1991) and
G02 measure the broad to narrow H� line ratio to be about 0.73
and 0.84, respectively, and thus our prediction is within the range
of uncertainty.

6. DISCUSSION

6.1. SNR 1987A and Balmer-dominated Supernova Remnants

Balmer-dominated SNRs are named for the dominance of
their hydrogen lines (over forbidden ones), as first described by
Chevalier & Raymond (1978) and CKR80. They are charac-
terized by their two-component spectra, which consist of a
narrow (�10 km s�1) superimposed on a broad (�1000 km s�1)
line. Broad line emission is produced when the atoms engage in
charge transfer reactions with the postshock ions. Narrow lines
are the result of direct excitation of the preshock atoms. For a
given value of �, the full width at half-maximum (FWHM) of
the broad component is uniquely related to the shock velocity, vs ¼
vH, a relation which provides a way of measuring the distances to
SNRs (Kirshner et al. 1987).

As mentioned in x 3, HM07 showed that the charge transfer
cross section is sensitive to the shock velocity. For very fast
shocks, the bulk velocity of the broad neutrals exceeds that of
the protons, resulting in lower values of the FWHM for the broad
neutral distribution relative to that for the protons. HM07 further
suggested that the FWHM versus vs relation might be modified
substantially if one takes the structure of the shock transition
zone into account. If the velocity difference between the atoms
and the protons were considerably less than the 3vs/4 assumed in
earlier models, then two consequences would result: (1) The
amount of broad emission produced would be underestimated,
and (2) for a given FWHM, the shock velocity inferred would
always be less than the true value. However, as we show in x 5,
the velocity of the proton fluid is decelerated to vH/4 almost im-
mediately, and the subsequent evolution of v is weak. This val-
idates the thin shock assumption made by CKR80 and HM07 and
highlights a puzzle—how does one account for the excessive
amount of broad (‘‘interior’’) emission observed in SNR 1987A
(Heng et al. 2006; HM07)? More optical /ultraviolet spectro-
scopic studies of SNR 1987A are needed to shed light on the
issue.

Another relevant quantity to examine is the spatial shift between
the centroids6 of �b and �n. In Figure 6, we compute �b and �n for
fion ¼ 0:5 and na ¼ 0:1 cm�3, over the range 1000 km s�1 �
vH � 10; 000 km s�1, as well as for � ¼ 0:1 and 1. (Again, as a
matter of illustration, we assume case B conditions for the narrow
H� line.) Then for 0:1P fionP 0:9, we determine the dimension-
less spatial shift,�shift (Fig. 7), which is the spatial shift normalized
by L. At any given shock velocity,�shift decreases with increasing
fion. This is explained by the fact that at high neutral fractions (low
fion), there are initially only a small number of ions available; the
system drifts along until there are enough ions to create the broad
neutrals. Hence, the length scale for the creation of broad neutrals is
relatively larger, corresponding to a greater shift in the centroid of
�b. For a fixed value of fion, �shift decreases as the shock velocity
increases, for vH 	 1000 km s�1. This is because charge transfer
reactions are favored at lower velocities and the larger number of
broad neutrals created ensures that the centroid of �b is shifted
farther downstream. This behavior is not true for shocks with
vHP 1000 km s�1, as the charge transfer cross section becomes
nearly constant with velocity.

Observationally, it should be possible to measure �shift with
WFC3 on board the Hubble Space Telescope if one isolates the
narrow H� component with a narrowband filter. Such measure-
ments can be used to constrain n0 in some SNRs.

Fig. 5.—Emissivity of the broad and narrow H� lines from a shock with
parameters representative of SN 1006 (see text).

6 For an arbitrary distribution F(x), the centroid is defined as the point xc such
that

R xc
�1 F(x) dx ¼

R 1
xc

F(x) dx.
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6.2. Future Work

Although the velocity of the broad neutrals and ions has no
spatial structure, the densities of the atoms, broad neutrals, and
ions vary across the width of the shock transition zone. Asmen-
tioned in x 1, knowledge of the density structures is relevant to
modeling Ly� resonant scattering in young, core-collapse SNRs.
Photons are produced within the transition zone and resonantly
scatter with a path length lmfp � (1013 cm)t10 yrT

1/2
ej;100 < lzone,

where t10 yr is the time since the supernova explosion in units of

10 yr and Tej ¼ (100 K)Tej;100 is the temperature of the freely
streaming ejecta. There is evidence for Ly� resonant scattering
in SNR 1987A (Michael et al. 2003; Heng et al. 2006); while we
now know how the density evolves spatially, it is beyond the
scope of this paper to model the scattering process and observed
spectra. It is, however, worthy to note that for vsk 1000 km s�1

(�lossT1) and fionk 0:9, the approximate, two-component so-
lution for nH ¼ �Hna becomes a good one. The interested reader
is referred to Zheng & Miralda-Escudé (2002) and Tasitsiomi
(2006) for the physics of Ly� resonant scattering.
We have constructed a three-component model in which we em-

ployed the simplifying assumption vB ¼ v. At vHk 3000 km s�1,
impact excitation and ionization become competitive with charge
transfer, and the resulting skewed Maxwellian of the broad neu-
trals peaks at vB 	 v. The quantity

R 1
0

nB dx is sensitive to changes
in vB, which is relevant to the determination of Lbn. Therefore, a
vB 6¼ v treatment is necessary (M. van Adelsberg et al. 2007, in
preparation). Before CKR80 and HM07, the ratio of broad to
narrow H� rates7 was assumed to be equal to the ratio of rate
coefficients, as the densities of the atoms, ions, and broad neutrals
were assumed to be constant. Physically, a full three-component
model will answer the following question: for two Balmer-
dominated SNRs with the same shock velocity, do we expect the
ratio of broad to narrow H� rates to be the same if one is highly
ionized and the other is largely neutral?
There are several important aspects of the hydrogen emission

from nonradiative shocks that remain to be explored. If a signif-
icant fraction of the energy dissipated by a shock goes into cosmic
rays, a precursor will heat and accelerate the gas before it reaches

Fig. 6.—Emissivity of the broad and narrow H� lines and their ratios, for various values of the shock velocity, v8 ¼ vH/1000 km s�1, fion ¼ 0:5, and na ¼ 0:1 cm�3.

Fig. 7.—Dimensionless spatial shift,�shift, between the centroids of the broad
and narrow H� line emissivity profiles.

7 In this paper, we define the emissivities as functions of x, i.e., �(x). The rate
is defined as the value of �(x) at a fixed value of x.
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the shock transition zone, altering the density and velocity jumps
and changing the postshock ion temperatures (Blandford &
Eichler1987; Drury et al. 2001). Evidence for such a precursor is
found in the anomalously large widths of the narrow H� lines in
Balmer-dominated shocks (Sollerman et al. 2003). Furthermore,
when a preshock atom is ionized upstream, it effectively becomes
a ‘‘pickup ion,’’ analogous to those observed in interplanetary
space (Kallenbach et al. 2000). These pickup ions are preferen-
tially accelerated to become anomalous cosmic rays. In SNR
shocks, they may form an isotropic, monoenergetic population
that might perturb the Balmer line profiles.

K. H. is grateful to Roger Chevalier, Jeremy Darling, Bruce
Draine, Claes Fransson, Peter Goldreich, Robert Kirshner, Davide
Lazzati, Peter Lundqvist, Rosalba Perna, Jeffrey Weiss, and Jared
Workman for illuminating conversations. We thank the anony-
mous referee for his/hermeticulous reading and critical comments
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Institut für extraterrestrische Physik (MPE) for their generous
hospitality during the summer and fall of 2007; he is eagerly
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APPENDIX A

RATE COEFFICIENT

The reaction rate coefficient between a beam of atoms and the Maxwellian population of an ion species s ( p for protons and e for
electrons) takes the form

Rs v; T ; vH; 
;msð Þ ¼
Z Z

fM v1; T ;msð Þ� v2 � vH þ vð Þ
 v1 � v2j jð Þ v1 � v2j j d3v1 d3v2

¼ 2�fM ;0

Z 1

�1

Z 1

0

exp �
ms v 2r þ v2z

� �
2kT

� �

 �vð Þ�vvr dvr dvz; ðA1Þ

where d 3v1 ¼ 2�vr dvr dvz and�v ¼ ½v 2r þ (vz � jvH � vj)2�1/2. The velocity difference between the atoms and the centroid of the ions is
jvH � vj, which is 3vH/4 in the models of CKR80 and HM07. The coefficient in front of the Maxwellian is fM ;0 ¼ (ms/2�kT )3/2.

The rate coefficient summed over species is

R ¼ Rp v; T ; vH; 
I ;p þ 
T ;p;mp

� �
þ Re v; �T ; vH; 
I ;e;me

� �
; ðA2Þ

since the atoms and protons participate in both ionization (‘‘I ’’) and charge transfer (‘‘T ’’) events, while the atoms and electrons only
interact via the former process (if one neglects impact excitation). With the exception of that for charge transfer to an excited state
(Barnett 1990), all of the cross sections are taken from Janev & Smith (1993).

APPENDIX B

TRANSFER FUNCTION AND DRIFT LENGTH

The probability of destroying a broad neutral via impact ionization is described by

dP

dx
¼ � nRiB

vd
P: ðB1Þ

On its creation at x0, a broad neutral has a P0 ¼ P0(x0) chance of survival. The probability of it drifting to a location x is given by
integrating the previous equation from x0 to x:

P x; x0ð Þ ¼ P0 x0ð Þ C1 þ C2 exp C3x0ð Þ
C1 þ C2 exp C3xð Þ

� ��
; ðB2Þ

where � � RiBvH/R̄vd , C1 � bu/au, C2 � 1� C1, and C3 � au/L. Since the mass flux of broad neutrals has to be conserved, we require

Z 1

x0

P x; x0ð Þ dx ¼ 1: ðB3Þ

If we solve forP0 analytically, it contains the hypergeometric function of Gauss, 2F1; we choose instead to seek numerical solutions of P0.
If we express the transfer function in the form

P x; x0ð Þ ¼ P0 x0ð Þ exp � x� x0

ld x; x0ð Þ

� �
; ðB4Þ
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then the drift length is

ld x; x0ð Þ ¼ x� x0ð Þ � ln
C1 þ C2 exp C3xð Þ
C1 þ C2 exp C3x0ð Þ

� �
 ��1

: ðB5Þ

We also note that for fionk 0:9, ld(x; x0) � vd /n(x0)RiB is an excellent approximation for the drift length. Examples of vd are shown in
Figure 8.
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