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Is the magnetic field in quiescent prominences force-free?
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ABSTRACT

Aims. We describe under which conditions the magnetic fields of quiescent prominences are force-free and under which gravity plays
the dominant role.
Methods. The existing observational determinations of the magnetic field are summarised and the calculation of the plasma β is
outlined. We derive the dependence of β on the prominence weight and the field strength.
Results. We show that in many cases of well-developed quiescent prominences the field can deviate substantially from the force-free
situation and gravity fully determines the structure of the magnetic dips.
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1. Introduction

Solar prominences have been studied in great detail for many
years. An excellent summary on that subject is the book by
Tandberg-Hanssen (1995). The prominences can be divided into
two basic categories: quiescent prominences and active region
prominences. The former ones occur preferentially at high solar
lattitudes, in particular the so-called polar crown filaments. They
are in general very stable and also have large spatial dimensions.
The second type is associated with active regions, they are ex-
tremely dynamic and are generally of much smaller size. Also
the magnetic fields related to them differ in strength and orienta-
tion for the two classes. Therefore it is important to distinguish
clearly between these two different categories when one devel-
ops models for their equilibria. In this paper we concentrate on
the case of quiescent prominences.

It is widely accepted that the support of the dense and cool
prominence material is due to magnetic forces. A detailed dis-
cussion of different types of magnetic support can be found in
Anzer (1989). These fields must contain dips in order to lead
to stable configurations. In our analysis we neglect the presence
of prominence fine structure, which could complicate the mod-
elling. These fine structures were recently reviewed by Heinzel
(2007).

The mechanisms which can produce the required dips can
either lie in the complex topology of the fields if the plasma
beta is very low, or result from the weight of the cool promi-
nence plasma. The crucial parameter which distinguishes be-
tween these two possibilities is the value of β in the interior of
the prominence, where β = 8πp/B2 . This implies that one needs
to know both the field strength, B, and the gas pressure, p, within
the prominence. For this reason we shall discuss in Sect. 2 the
determinations of B, both by direct and indirect methods. The
determination of the gas pressure inside the prominence is pre-
sented in Sect. 3. In Sect. 4 we briefly summarise the models
for magnetic dips based upon force-free field calculations. In
Sect. 5 we study magnetic equilibria where gravity is important.
For these models a simple relation between the value of β and

the column mass has been found, which allows an independent
determination of β. Section 6 summarises the conclusions.

2. Values of the magnetic field strength

We summarise the values of B that can be found in the litera-
ture. The most direct way to determine the field is to look at
prominences on the limb. These field measurements are mainly
by Leroy and his coworkers. Bommier et al. (1986, 1994) studied
a set of 14 prominences and found B = 2−20 G. An inspection
of their Table 1 shows that there is a slight trend for weaker fields
to occur at larger lattitudes. For lattitudes with Φ > 35◦ one ob-
tains a mean value of B = 8 G and for Φ < 35◦ a mean value
of B = 10 G. We suggest that the high lattitude prominences
are the best candidates to represent the quiescent prominences.
Leroy et al. (1983) have also collected data on a very large num-
ber of polar crown filaments. They found B = 2−15 G and an
increase from B = 6 G to B = 12 G in the course of the solar cy-
cle. Athay et al. (1983) obtained for a sample of 13 cases fields
between 6 and 27 G. They did not distinguish between quiescent
and eruptive prominences. This could be the reason why they
found more cases with larger B.

In some more recent studies by López Ariste & Casini (2003)
and Casini et al. (2003) much stronger fields were reported. But
these authors selected a small number of cases for which it is
not clear that all these prominences are actually of the quies-
cent type. Moreover, all these new measurements were obtained
without coronographs and therefore are restricted to low heights
above the the limb where the prominences are bright enough and
where the fields are rather strong (López Ariste 2006). For these
reasons it seems clear that one would need a detailed systematic
study based upon a large number of quiescent prominences to
really prove that the earlier values of B were systematically too
low. On the basis of the presently available observations we con-
clude that at present nothing definite can be said about such very
strong prominence fields.
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A quite different approach to determine B was taken by
Aulanier & Démoulin (2003). They used the observed photo-
spheric flux distribution around some filaments seen on the disk.
Then they extrapolated the fields into the corona assuming con-
stant α force-free fields. Although the assumtion of a constant
value of α may not be correct their results could at least give
the right order of magnitude of the field in the prominence. They
selected one example of a quiescent prominence and calculated
B = 2.5−3 G. They also had one plage prominence which gave
B = 34−45 G. This shows that there is a very large difference in
field strength between quiescent and active region prominences
and one should not mix the two. For a detailed study of field
determinations see the review by López Ariste (2007).

Based upon this discussion we shall take the standpoint that
in quiescent prominences the field strength typically lies be-
tween 3 and 15 G, with a slight preference of lower values.

3. Determination of the gas pressure

The electron density, ne, in prominences has been derived from
the Stark effect of high Balmer lines (see the discussion in
Hirayama 1985). For typical quiescent prominences values be-
tween 3×1010/cm3 and 3×1011/cm3 have been found (Hirayama
1985, see also the Hvar Reference Atmosphere of Quiescent
Prominences, Engvold et al. 1990). For the total gas pressure
one has

p = (nH + ne)kT, (1)

where nH is the total number density of hydrogen. Here the small
correction due to the admixture of helium has been neglected. If
we introduce the ionisation degree of hydrogen, i = ne/nH, we
get the relation

p = ne(1 + 1/i)kT. (2)

For the case of a fully ionised plasma we get a lower limit for p
(if the value of ne is given) of

p = 2 nekT. (3)

More realistic values for i are around 0.3, as in the models of
Anzer & Heinzel (1999). This leads to

p = 4.3 nekT. (4)

For T = 8000 K and ne in the range between 3 × 1010/cm3 and
1011/cm3 one derives a gas pressure of

p = 0.05−0.5 dyn/cm2. (5)

Taking i = 0.07 as suggested by Hirayama (1985) would result
in even larger gas pressures (0.15 to 1.5 dyn/cm2). For a repre-
sentative value of the magnetic field strength of 5 G we obtain
β = 0.05−0.5 (for i = 0.3). Although all these quantities contain
rather large uncertainties there is strong observational evidence
that the magnetic field in many quiescent prominences will not
be force-free. An independent method to determine βwhich sup-
ports this argument will be described in Sect. 5.

4. Dips in force-free fields

If we take for the magnetic field strength a representative value
of B = 5 G we have a magnetic pressure of pm = 1 dyn/cm2. For
the corona we assume ne = np = 108 /cm3 and T = 106 K. This
gives a coronal gas pressure p0 = 0.03 dyn/cm2 and therefore

one has in this region β0 = 0.03 � 1. This means that the coro-
nal field will always be force-free. As long as the gas pressure
inside the prominence is also around p0 one obtains β ≈ 0.03.
Therefore all prominences which have such a low central pres-
sure will be approximately force-free and if the field is stronger
than 5 G then even larger values for the gas pressure are allowed.
Under these circumstances the magnetic dips which are required
for equilibrium have to be of the force-free type. These dips can
be produced basically in two different ways: either by the pres-
ence of sufficiently complex photospheric flux distributions or
by strong photospheric shearing motions.

For the first category the simplest case is a quadrupolar po-
tential field as dicussed by Anzer (1990). More realistic mod-
els were developped by Aulanier & Démoulin (1998, 2003) and
Aulanier & Schmieder (2002). They studied periodic configu-
rations and assumed a sufficiently large number of “parasitic”
polarities. Such models could simulate to a certain degree the
observed photospheric flux distribution. The fields in the corona
were then taken as constant α force-free configurations. The
assumption of a constant value for α is certainly somewhat ques-
tionable. The other shortcoming of this approach is that the max-
imum value for α is determined by the size of the box of the nu-
merical domain which is an unphysical constraint. But in spite
of all this the investigations give some interesting new results.
The authors found that in many cases large regions with mag-
netic dips exist in the solar corona. One can then interprete the
locations of these dips as the position of the prominence.

The second category of models is based upon the presence
of photospheric shearing and an efficient field line reconnec-
tion in the corona. On this basis van Ballegooijen & Martens
(1989) generated flux rope models with extended dip regions.
Their model is similar to that of Priest et al. (1989) discussed
below. More recently fully 3D configurations of this type were
studied numerically by by DeVore & Antiochos (2000), Aulanier
et al.(2002) and DeVore et al. (2005). All these latter calcula-
tions start with some initial, usually potential, field and then ap-
ply to it a specific shearing motion. They also allow for a certain
degree of reconnection within the region. As a result one ob-
tains force-free fields for which α is not constant. Under certain
circumstances these fields can develop regions with dips where
then prominences can form. The models calculated so far apply
very specific shear profiles. They have an enormous stretching
present in a very narrow region. Typically the total stretching is
about 12 times the lateral distance of the maximum in the shear
profile. Such flows seem unrealistic in the solar photosphere.
Since at present no studies exist with more realistic field line dis-
placements it is not clear how representative the results of these
calculations are.

Instead of applying some photospheric shearing to a mag-
netic arcade one can also use the twisting of a bipolar region to
produce a force-free flux rope with internal twist. A large flux
rope of this type was proposed by Priest et al. (1989) and later
this type of model was extended by Lionello et al. (2002). If
the configuration is sufficiently twisted then magnetic dips will
develop in the lower parts of the flux rope which can be the lo-
cations of the prominence. Therefore this mechanism could be a
possible alternative. The twisted flux rope configurations could
also result from the emergence of field structures from below the
photosphere as advocated by Fan & Gibson (2003, 2004). There
is, however, a problem with this approach: the flux tubes below
the solar surface contain plasma of a very high density. Most of
this material will be trapped in the magnetic dips and is therefore
lifted into the corona. Since this is not very plausible one needs
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an additional mechanism by which a sufficient amount of gas is
drained from the tube during its emergence.

Models with twisted flux ropes were also discussed by Low
(2001) in the context of coronal mass ejections which are asso-
ciated with prominence eruptions.

5. Dips produced by the prominence

The other possibility is that the weight of the prominence is large
enough to produce the magnetic dips, or enhance existing ones.
In this case the field no longer will be force-free and the value
of β in the central parts of the prominence can be very large.

We shall study these effects using simple 1D slab configura-
tions. The details of this type of model can be found for example
in the review of Heinzel & Anzer (2005) and we give here only
those relations directly relevant to our investigation. Denoting
by Bx the x-component of the field, by Bz1 the vertical field at
the boundary, by M the total column mass, by p0 the gas pres-
sure of the ambient corona and by pcen the gas pressure in the
center of the prominence we have the relations

M =
BxBz1

2πg
(6)

and

pcen =
B2

z1

8π
+ p0. (7)

We also allow for some magnetic shear by introducing a field
component By along the prominence. The field strength in the
middle of the prominence is then given by

B =
√

B2
x + B2

y. (8)

We now write this as

Bx = B sin γ, (9)

where 90◦−γ is the angle of the shearing. For simplicity we take
p0 � pcen, which is justified in most cases and we therefore set

pcen =
B2

z1

8π
· (10)

Note: the generalisation to the case of p0 � 0 is straightfor-
ward. We define now by β the value of pg/pm in the center of
the prominence. Using Eqs. (6), (9) and (10) we obtain the final
result

β =

(
2πgM
sin γB2

)2

· (11)

This equation directly relates the central value of β to the column
mass M and therefore the weight of the prominence. Therefore
one finds that if M is sufficiently large for a given field strength
then β also can become rather large, since it increases with M2.

As a next step we derive estimates for the column mass M
of a prominence seen on the limb. Such estimates can be ob-
tained from a relation which gives the column mass as a func-
tion of the optical thickness observed in Hα. For this we use the
tables produced by Gouttebroze et al. (1993). They considered
a large grid of isobaric isothermal 1D slab models. Selecting a
subset of these models that have temperatures between 6000 K
and 8000 K we obtain the relation shown in Fig. 1. If we now
assume that the optical thickness in the Hα line lies in the range

Fig. 1. Column density M in g cm−2 as a function of the optical thick-
ness in Hα for a set of 1D slab models.

between 3 and 5, which seems a reasonable assumption for well
developed prominences, we find the estimates

3 × 10−5 g/cm2 < M < 3 × 10−4 g/cm2.

Taking B = 5 G and assuming a shear angle γ of 30◦ we then
obtain

0.17 < β < 17.

From our Eq. (11) one sees that β depends on the values for M, B
and γ. All these values can vary over a large range. This in turn
results in a wide range of expected β values. But as the above dis-
cussion shows, values for β between 0.3 and 10 are expecteted,
if we exclude the most extreme cases. These values for β are
even larger than those obtained in Sect. 3 which strengthens our
conclusion that a large number of prominences have fields which
will not be force-free.

The estimates for β can increase beyond the estimates given
above when one includes the effects of prominence fine struc-
ture. In this case the value of τHα gives the column mass aver-
aged along the line-of-sight whereas the actual local densities
can be considerably higher. This will lead to a further increase
in β.

The value of β can also be related to the amount of field
line sagging (Heinzel & Anzer 1999). If we define the sagging
angle φ by

tan φ =
Bz1

B
, (12)

we obtain the relation

β = (tanφ)2. (13)

This equation was initially derived for 1D slab models of the
Kippenhahn-Schlüter type, but it also applies to our 2D verti-
cal thread models. In addition it will be valid approximately for
all those prominence structures for which the vertical scale is
significantly larger than the prominence width. This result then
implies that if one can measure the full field vector at the surface
of the prominence one also obtains an estimate for β. The val-
ues of φ between 30◦ and 45◦ found by Bommier et al. (1994)
lead to β between 0.3 and 1.0. This is independent support of our
previous estimates.
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6. Discussion

On the basis of the presently available determinations of the
magnetic field in prominences there is clear evidence that mas-
sive, well-developed prominences are not in a force-free equi-
librium. We have derived estimates for the values of β in promi-
nences, either by using the gas pressure in the central parts of
the prominence or by taking the column density together with a
simple equilibrium model. We find β = 0.05−1.5 from density
estimates and β = 0.2−10 from the column masses. Therefore
values of β between 0.2 and 1.5 are reasonable. This then im-
plies that any prominence model will have to take this result into
account by including the gravitational force which is exerted on
the field. Nevertheless there can be configurations where either
B � 5 G, or τHα < 1, occur leading to low values of β and
therefore force-free fields will give the correct description under
these particular circumstances.

All our estimates given here were derived for rather uni-
form distributions of the gas pressure, the column mass and the
magnetic field. But the observations indicate that prominences
usually show a large amount of fine structure, both as vertical
threads and as horizontal fibrils. This then means that locally
the values of β can be considerably larger than our values. But
these stronger deviations from force-free states will be very lo-
cal. Therefore on the large scales the field configurations will be
fully determined by the mean quantities discussed in this paper.
An interesting aspect in this context is the fact that Aulanier &
Démoulin (2003) calculated coronal fields of 2.5–3 G for a qui-
escent prominence whereas typical observed fields are about a
factor 2 larger. This can be explained by the compression of the
initial coronal field by the weight of the prominence.

There is also the aspect that in the corona itself one has typi-
cally p0 ≈ 0.03 dyn/cm2. This implies that essentially all coronal
fields are force-free. If then a prominence forms in the corona the
initial field must have dips which result from the force-free con-
figuration itself. This means that the initial shape of the promi-
nence will be determined by the dip locations of the force-free
models. But as the prominence grows in mass its weight be-
comes important and pulls down the field lines. This will have
two effects: it enhances the existing dips and also creates new
dips in the neighbourhood. From this we conclude that the fully
developed prominence can occupy a much larger volume than
the original dip region. But the force-free dips can be considered
as seed structures for the prominence formation. The force-free
models will be of some relevance but also the effects of gravity
cannot be neglected.

Equilibrium models that include gravity have been devel-
oped by Anzer & Heinzel (1998) for 1D slabs and by Heinzel
& Anzer (2001) and by Low & Petrie (2005) for 2D threads.
Similar 2D thread models were used by Petrie & Low (2005).
But in contrast to our approach they were mainly interested in
the question of efficient field line reconnection and the promi-
nence dynamics resulting from this effect. On the basis of their
2D thread configurations Heinzel & Anzer (2006) constructed
approximate 3D models for horizontal fibrils. They also solved
the 3D radiative transfer problem in a simplified 2+1 D approx-
imation. This then allowed them to determine the contrast in the
Hα line for different structures. For some reasonable combina-
tions of physical parameters this Hα contrast was found to be in
good agreement with the available high resolution observations
of quiescent filaments on the disk.

A large number of force-free models was also used to predict
the appearance of filaments on the disk (Aulanier & Démoulin
1998; Aulanier et al. 2000, 2002; and Lionello et al. 2002).

All these investigations have in common that the structures are
sketched only in a schematic way. These authors fill all the dips
(or only a certain fraction of them in order to reproduce the fine
fibril-like structures) up to a certain height with cool material.
This height is usually taken as the pressure scale H which for
prominences is around 200 km. Therefore all dips are only filled
to a very small height of several hundered kilometers. Then these
stuctures were taken to represent the filaments. But up to now no
radiative transfer calculations were performed for these types of
models. Therefore it is not clear whether the models can give the
right contrast in Hα for filaments that are observed on the disk. If
it turns out that the contrast is actually too low then such model
filaments would be invisible. One could resolve this problem by
adding more cool material and thus fill all the dips to a height of
several H. But then the question arises whether these new config-
urations are still force-free or the effects of gravity become suffi-
ciently important to require a modification of the initial models.
These aspects have not been discussed so far in the literature but
they should be taken into account in future modelling.
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