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ABSTRACT

Numerical computation of the time evolution of the mass transfer rate in a close binary can be and, in particular, has been a computational
challenge. Using a simple physical model to calculate the mass transfer rate, we show that for a simple explicit iteration scheme the mass
transfer rate is numerically unstable unless the time steps are sufficiently small. In general, more sophisticated explicit algorithms do not
provide any significant improvement since this instability is a direct result of time discretization. For a typical binary evolution, computation of
the mass transfer rate as a smooth function of time limits the maximum tolerable time step and thereby sets the minimum total computational
effort required for an evolutionary computation. By methods of “Controlling Chaos” it can be shown that a specific implicit iteration scheme,
based on Newton’s method, is the most promising solution for the problem.
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1. Introduction

To compute the long-term evolution of a semi-detached binary,
the numerically determined mass transfer rate, which is a func-
tion of current stellar and binary parameters, must be a suffi-
ciently smooth function of time. The simplest approach to ob-
tain the mass M2 of the mass losing secondary star is an explicit
forward integration in time:

M2(tn+1) = M2(tn) + Ṁ2(tn)∆t. (1)

Here, ∆t = tn+1 − tn denotes the length, and tn and tn+1 the start
and end points of the nth time step. Every change of M2 within
one time step causes changes of other stellar and binary param-
eters which affect Ṁ2, and an additional change of M2 would be
necessary to obtain a consistent result for the current time step.
This feedback between Ṁ2 and other stellar and binary param-
eters, especially the radius R2 and the critical Roche radius RR,2

of the donor star, can destabilize the numerically computed
mass transfer rate: Ṁ2 can become non-continuous between
successive time steps and can even show strong fluctuations
around its secular mean value. These numerical effects have
been known for quite a long time (numerical experience by
the authors; U. Kolb, K. Schenker, priv. comm.). Not surpris-
ingly, only very few evolutionary calculations that show these
instabilities of the mass transfer rate have been published, e.g.,
Kolb & Ritter (1990, Figs. 3–5), Sarna (1992, Figs. 1 and 9),
D’Antona (1994, Fig. 2), Kolb et al. (2000, Figs. 3 and 4), and
Schenker et al. (2002, Fig. 5).

Attempts to use a different explicit integration scheme that
takes into account not only Ṁ2(tn) but also Ṁ2(tn− j) for certain

values of j (e.g., for a particular average over the last m time
steps) did not show major improvements. The reason for this
behaviour of the mass transfer rate has remained unknown.

The main purpose of this paper is to show analytically why
these numerical instabilities exist, what they are, which meth-
ods are suitable to suppress them, and which ones are not. Even
in the case of the proposed implicit algorithm, calculation of
the mass ransfer rate still limits the maximum tolerable time
step in a numerical computation and thus sets the minimum to-
tal computational effort required for carrying out such a binary
evolution. To illustrate this point: by imposing a fixed mass loss
rate on a single low-mass main sequence star, up to 10% of the
total mass of the star can be removed per time step (eventually
after 1 or 2 initial time steps with a lower rate), and the stel-
lar model still converges. But if the mass loss rate is coupled
to the binary parameters, even in the case of our proposed im-
plicit iteration scheme, typically no more than a few 10−3 of
the stellar mass can be removed per time step without losing
convergence1. When using the explicit algorithm (1), the cor-
responding value is much lower: often only about 10−5−10−4

or even less of the total mass can be removed per time step if
fluctuations of the mass transfer rate by up to several orders of
magnitude are to be avoided.

This paper is organized as follows: first, we discuss in
Sect. 2 the necessary input physics before we show in Sect. 3

1 This upper limit of about 10−3 varies and depends on the starting
value for the iteration, on the “smoothness” of the stellar input physics,
and on the “smoothness” of the stellar structure. In principle, this is not
a limitation of the implicit mass transfer algorithm.
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that the mass transfer rate in our model is physically stable.
Subsequently, in Sect. 4.1 we prove mathematically that for
a simple explicit algorithm the time-discretized mass transfer
rate becomes unstable if ∆t is greater than a critical value.
We also give an estimate of how many time steps are re-
quired to calculate the binary evolution. Next, we show in
Sect. 4.2 that for increasing ∆t the mass transfer rate undergoes
a Feigenbaum scenario (Feigenbaum 1978, 1980; for a more
accessible review see, e.g., Thompson & Stewart 1986) and fi-
nally becomes chaotic. In Sect. 4.3 we discuss how the onset
of chaos can be suppressed in terms of “Controlling Chaos”
and we present an implicit iteration scheme for the integra-
tion of the mass transfer rate. Finally, in Sect. 5 we discuss
a number of points which have to be considered for a practical
implementation.

2. Input physics

In this paper we use the same nomenclature as in Büning &
Ritter (2004), hereafter called Paper I. For the mass transfer
rate we use

Ṁ2 = −Ṁ0 exp

(
∆R
HP

)
, (2)

where

∆R := R2 − RR,2 (3)

denotes the difference between the radius R2 and the Roche
radius RR,2 of the donor, HP the photospheric pressure scale
height, and Ṁ0 > 0 a weakly varying function of several system
parameters (for details, see Ritter 1988).

Instead of Eq. (2) other relations between Ṁ2 and ∆R
have also been used in the literature. For example Tout et al.
(1997) have adopted a power-law dependence Ṁ2 ∝ (∆R/R2)3.
However, a mass transfer prescription other than Eq. (2) results
mainly in a different characteristic scale length

H :=

⎛⎜⎜⎜⎜⎜⎜⎝
d ln

(
−Ṁ2

)
d∆R

⎞⎟⎟⎟⎟⎟⎟⎠
−1

(4)

at the secular mass transfer rate Ṁ2 which is given by

τM := − M2

Ṁ2

= (ζs − ζR)τ′d. (5)

Here, τM is the secular time scale of the mass loss, τ′d the driv-
ing time scale including thermal relaxation of the donor, ζs
and ζR are respectively the adiabatic mass radius exponent of
the donor and the mass radius exponent of the Roche radius,
where ζs > ζR is required for physical stability of mass transfer
(for details, see Paper I). For the mass transfer prescription (2),
we have H ≡ HP.

3. The time-continuous system

The mass transfer rate Ṁ2 is uniquely invertibly coupled to ∆R
by Eq. (2). For simplicity, we will consider the time evolution
of ∆R instead of Ṁ2 which is given by Eq. (36) of Paper I:

d
dt
∆R = (ζs − ζR) R2

Ṁ2(∆R)
M2

+
R2

τ′d
=: F(∆R). (6)

Since for our stability considerations we neither take into ac-
count changes in the system parameters (ζs, ζR, τ′d) nor irradi-
ation of the donor as in Paper I, our model is completely de-
scribed by this 1-dim. autonomous differential equation which
simplifies the linear stability analysis significantly.

At the stationary value ∆R which is the only fixed
point (FP) of Eq. (6) and which is equivalent to the stationary
mass transfer rate, using Eq. (2) we get

DF(∆R) :=
dF(∆R)

d∆R
= (ζs − ζR)

R2

HP

Ṁ2

M2
(7)

(cf. Eq. (44) of Paper I). Since Ṁ2 < 0 and ζs > ζR, DF is
negative, not only for ∆R, but even for all ∆R ∈ IR. This means
that the stationary mass transfer rate, i.e., ∆R is stable and that
all solutions∆R(t) of Eq. (6) converge2 to ∆R. The convergence
occurs on a time scale of

τ ≈ HP

R2
τ′d (8)

since

∆R(t) = ∆R +
[
∆R(0) − ∆R

]
e−DF t (9)

in the linearized system. This has also been discussed in more
detail by D’Antona et al. (1989).

4. The time-discretized system

4.1. The explicit algorithm

The simplest way to obtain the donor mass numerically as a
function of time is an explicit forward integration of Ṁ2 as
given by Eq. (1). In this time-discretized system the evolution
of ∆R is given by an iteration equation which follows directly
from Eq. (6):

∆Rn+1 = ∆Rn +

[
R2

τ′d
+ (ζs − ζR)

R2

M2
Ṁ2(∆Rn)

]
∆t

=: Φ (∆Rn) . (10)

Here, ∆Rn denotes the value of ∆R at t = tn which is in practice
a (numerical) approximation for the “real” value of ∆R in the
time-continuous system.

Obviously, Eqs. (6) and (10), i.e., the time-continuous and
the time-discretized systems have the same FP since F(∆R) = 0
if and only if Φ(∆R) = ∆R. But, since Φ(∆R) is a map while
F(∆R) is a vector field3, the condition for stability is dif-
ferent: according to the Hartmann-Grobmann theorem (e.g.,
Guckenheimer & Holmes 1983), a FP x of a mapΦ is stable if
the absolute values of all eigenvalues of the Jacobi matrix DΦ
of Φ at x are less than unity, and x is unstable if at least one
eigenvalue has an absolute value greater than unity.

2 This can be proven by using the fact that F is continuous and has
only one FP. Thus, DF(∆R) < 0 for all ∆R ∈ IR together with F(∆R) =
0 implies F ≷ 0 ⇔ ∆R ≶ ∆R so that from (6) the convergence of all
solutions to ∆R can be concluded.

3 For details on maps, vector fields an their related nomenclature,
the reader is referred to, e.g., Guckenheimer & Holmes (1983).
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In the case of Φ(∆R) from Eq. (10) this means: ∆R is
stable if

|DΦ| :=
∣∣∣∣∣ dΦ
d∆R

∣∣∣∣∣ =
∣∣∣∣∣∣∣1 + (ζs − ζR)

R2

HP

Ṁ2

M2
∆t

∣∣∣∣∣∣∣ < 1, (11)

and unstable if the absolute value is greater than unity. As can
be easily shown by using Eq. (5), Eq. (11) is equivalent to

∆t < 2
HP

R2
τ′d =: ∆tmax. (12)

This means that in the neighbourhood of ∆R all solutions of
the explicit iteration scheme (1) converge to the FP if ∆t is less
than the critical time step length ∆tmax. But for ∆t > ∆tmax the
FP is unstable and the solutions of the time-discretized sys-
tem (10) diverge although the solutions of the time-continuous
system (6) converge to the FP.

If the initial value of the iteration is ∆R0, then in the lin-
earized system the orbit of ∆R0, i.e., {∆R0,∆R1,∆R2, . . .} is
given by

∆Rn+1 = Φ(∆Rn) ≈ ∆R +
(
DΦ(∆R)

)n+1 (
∆R0 − ∆R

)
, (13)

which can be shown by induction over n.
The following cases are possible (without proof):

1. ∆t < HP
R2
τ′d: the orbit converges directly to the FP; for ∆t →

0 the continuous limit is reached.
2. ∆t = HP

R2
τ′d: the orbit converges after one iteration to the FP.

3. HP
R2
τ′d < ∆t < 2 HP

R2
τ′d: since DΦ(∆R) becomes negative, the

orbit converges alternatingly to the FP.
4. 2 HP

R2
τ′d < ∆t: the orbit diverges.

Therefore, any binary evolutionary code which uses an ex-
plicit iteration scheme like Eq. (1) encounters this numerical
instability. This is the case even if we assume that the bi-
nary evolutionary code solves the equations of stellar structure
with infinite accurracy because this instability is a result of the
time-discretization itself which is basically unavoidable for nu-
merical computations.

It is now possible to estimate how many time steps an ex-
plicit method like Eq. (1) needs at least for the computation
of a mass transfer phase during which the maximum time step
length ∆tmax is used. From Eqs. (5) and (12) it follows that at
most the mass fraction

∆Mmax

M2
=

∣∣∣∣∣∣∣
Ṁ2

M2

∣∣∣∣∣∣∣∆tmax =
2

ζs − ζR
HP

R2
(14)

can be removed from the donor per time step. After n time steps
the initial mass M(0)

2 has been reduced to

M2(tn) =

(
1 − 2
ζs − ζR

HP

R2

)n

M2(t0). (15)

For low-mass main sequence (MS) stars, ζs >∼ − 1
3 (Hjellming

& Webbink 1987; and Hjellming 1989); for sufficiently small
mass ratio M2/M1 of the binary, ζR → − 5

3 in the analytical ap-
proximation of Paczyński (1971), and therefore ζs − ζR ≈ 1. As

an example: for HP
R2
= 10−4 which is a typical value for low-

mass MS stars and the low-mass limits ζs = − 1
3 and ζR = − 5

3
at least 4600 time steps are necessary to reduce the donor mass
by a factor of two according to Eq. (15). This is the most op-
timistic limit where ∆t = ∆tmax. For thermally unstable sys-
tems, which can even approach the onset of dynamical insta-
bility (Hjellming & Webbink 1987; Schenker et al. 2002; and
Beer & Podsiadlowski 2002), easily 104 or 105 time steps are
necessary to reduce the donor mass by a factor of two.

The main reason for this increased computational demand
in the case of thermally unstable mass transfer can be under-
stood as follows:

The donor star of a binary in which mass transfer is ther-
mally unstable has a deep radiative envelope. Unperturbed stars
with a deep radiative envelope can be described (to some ex-
tent) by a polytropic stellar structure with a polytropic index
n <∼ 3 and an adiabatic index γ = 5/3 (monoatomic ideal gas),
see e.g. Hjellming & Webbink (1987), Table 1. Because for
polytropes of index n, ζs = (1 − n)/(3 − n), for radiative stars
(with n <∼ 3) ζs is a very large, positive number. However,
this holds only for unperturbed stars in thermal equilibrium
and only in the limit of infinitesimally small mass loss (see
Hjellming & Webbink (1987), last paragraph of Sect. II). On
the other hand, for finite mass loss ζs decreases rapidly with the
amount of mass lost. Yet for such stars, at least during the ini-
tial phases of thermal timescale mass transfer, ζs is still much
larger than unity, i.e. typically of order 10−100 (as shown in
Hjellming & Webbink 1987, their Figs. 3 and 4). As a conse-
quence, ζs−ζR is then also of the order of 10−100, and ∆Mmax

as given in Eq. (14) is smaller and the minimum number of
required time steps increases by that factor.

As can be seen from Eq. (15), an artificial increase of HP

can significantly reduce the required number of time steps. This
has been used in the past by numerous authors to speed up the
computations (e.g., Hameury 1991). This approach yields the
correct mass transfer rate only when mass transfer is close to
stationary. However, it cannot be used if the turn-on and turn-
off of mass transfer is important, as is the case for irradiation-
induced mass transfer cycles (cf. Paper I).

4.2. The Feigenbaum scenario

The linear stability analysis discussed in Sect. 4.1 describes
only the system dynamics near the FP, i.e., the local dynam-
ics; we will now briefly discuss the global dynamics.

When going to dimensionless quantities

x :=
∆R − ∆R

HP
, δ :=

R2

HP

∆t
τ′d

(16)

and using Eqs. (2) and (5), Eq. (10) is equivalent to

xn+1 = xn +
[
1 − exp(xn)

]
δ =: xn +G(xn) =: fδ(xn). (17)
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Fig. 1. Feigenbaum diagram of map (17). 50 iterations of one orbit for
5000 different values of δ are shown.

The family of functions fδ is topologically conjugated to a fam-
ily of S-unimodal functions4: thus, fδ is qualitatively similar to
the well-known logistic map:

gδ(x) = δx (1 − x) (18)

and undergoes a Feigenbaum scenario for increasing δ which
is called the control or chaos parameter5.

For δ = 2, corresponding to ∆t = ∆tmax, the FP becomes
unstable and bifurcates into an unstable FP and a stable cycle
of period 2. For increasing values of δ, the 2-cycle also be-
comes unstable, and a stable 4-cycle appears, and so on. At a
critical value of δ ≈ 2.7, the system dynamics become chaotic,
and beyond this value the chaotic dynamics are permanently
interrupted by finite windows of regular dynamics which corre-
spond to the existence of a stable cycle of any period. Figure 1
shows 50 iterations of Eq. (17) of one single orbit for 5000 dif-
ferent values of δ. The FP x̄ ≡ 0 corresponds to ∆R. At about
δ ≈ 3.1, a stable orbit of period 3 appears, whose existence
is a mathematical proof for the existence of chaotic dynamics
in the system according to the famous “Period three implies
chaos” by Li & Yorke (1975). x is a logarithm of Ṁ2 and δ is
linear in ∆t. Thus, the transitional region from stable to chaotic
dynamics is rather small.

Since chaotic or “random” values in the mass transfer rate
are not desirable, how can the chaotic dynamics be suppressed?
As mentioned above, an artificial increase of HP will increase
∆tmax and therefore shift the onset of chaos to higher values
of δ. In general, the choice of a mass transfer prescription
which differs from Eq. (2) will only shift the onset of chaos
to different values of δ but it cannot suppress it. At least, if Ṁ2

grows as xα, fδ basically keeps its behaviour (without proof)

4 Unimodal functions and their system dynamics are discussed in
detail by Collet & Eckmann (1980). For an overview about topolog-
ical conjugacy and the Feigenbaum scenario see, e.g., Thompson &
Stewart (1986); and Jackson (1989). For some background about topo-
logical conjugacy and topological equivalence of maps, see Arnold
(1983); and Wiggins (1990). A more in-depth discussion of map (17)
can also be found in Büning (2003).

5 fδ is not topologically conjugated to a full family of S-unimodal
functions. Hence, unlike the logistic map, fδ formally does not un-
dergo a complete Feigenbaum scenario.

for α ≥ 2 and this is the case for all physical models for com-
puting mass transfer.

4.3. Controlling Chaos

It is possible to suppress chaotic dynamics and to stabilize
a given FP by introducing small pertubations in terms of
“Controlling Chaos”6. There are two distinct approaches: the
first one varies one system parameter by a small amount εn for
each time step to enforce stability of the FP (Ott et al. 1990),
but this method requires the a priori knowledge of the FP, and
this is not the case for our system. The second method adds a
small correction εn to the new iteration value, i.e.,

xn+1 := f (xn) + εn. (19)

The simplest approach uses εn = K (xn − xn−1) with a suitable
constant K (Pyragas 1992). This so-called delayed dynamical
feedback involves xn−1 and xn, i.e., it uses information from
previous iteration steps. This can extend the stability limit to
larger values of δ depending on K, but as numerical experi-
ence shows, this is by far not sufficient in our case. The in-
clusion of all prior iteration values (Socolar et al. 1994) like
εn = K (xn − xn−1) + Rεn−1 with a suitable constant R achieves
significantly better results. For R → 1 the stability of the FP
can be extended to arbitrarily large values of δ but at the ex-
pense of an arbitrarily small basin of attraction which makes
this approch difficult for practical application.

A nonlinear approach of the form

xn+1 = f (xn−1) + K ( f (xn) − f (xn−1)) + Rεn (20)

as has been proposed by de Sousa Vieira & Lichtenberg (1996)
yields a significant improvement of the basin of attraction. For
the specific choice of R = K and K = (D f (x̄) − 1)−1DF(x̄), the
FP becomes superstable, i.e., the FP iteration (20) converges
quadratically in a sufficiently small neighbourhood of the FP.

Since our map (17) is of the form fδ(x) = x+Gδ(x), Eq. (20)
is equivalent to

xn+1 = xn + DG−1
δ (x̄)Gδ(xn). (21)

Because the position of the FP is a priori unknown, the best
available approximation to DGδ(x̄) is given by DGδ(xn). Then
Eq. (21) turns into a standard Newton’s method for Gδ(x).
Therefore, we conclude that Newton’s method is most likely

the best available method to compute x̄, and Ṁ2 with a reason-
able computational effort.

5. The implicit algorithm

While the explicit iteration scheme is a simple time integration
scheme which requires one iteration per time step, the proposed

6 The term “Controlling Chaos” comes from an article of the same
title by Ott et al. (1990) who suggested to control chaotic motion in
nonlinear systems by small perturbations. The keyword “Controlling
Chaos” or “Control of Chaos” later became common in that spe-
cial field of research. In their introduction to The Control of Chaos:
Theory and Applications, Boccaletti et al. (2000) gave a short histori-
cal overview of that topic.
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Fig. 2. Mass transfer rate Ṁ2[M�/yr] as a function of time t[yr] for an
early case A mass transfer in a binary system with M1 = M2 = 2 M�
and using a constant time step length of 5000 yr. The variation of
the chaos parameter δ is caused by the variation of thermal relaxation.
The system dynamics are most unstable when τ′d is minimal. Every dot
corresponds to one single time step in the calculation with the explicit
scheme (1); the dashed line shows the result of the same computation,
but using the implicit method.

implicit iteration scheme is a fixed point search which requires
several iterations per time step until the fixed point is found
with sufficiently high accuracy.

Fortunately, the equations of stellar structure are typi-
cally solved by Newton’s method, more explicitly by the so-
called Henyey method (Kippenhahn et al. 1967; Kippenhahn
& Weigert 1990). Thus, the best solution is to include the mass
transfer rate or the stellar mass itself as an additional variable
in the Henyey method and to perform the fixed point search
simultaneously with the solution of the equations of stellar
structure (Paper I). This has also been done independently by
Benvenuto & de Vito (2003). For details of our implementa-
tion, see Büning (2003).

Figure 2 shows the mass transfer rate obtained with our bi-
nary evolutionary code as a function of time for one specific bi-
nary system. Since our evolutionary code has not been designed
for the analysis of chaotic dynamics, we have kept ∆t constant
and instead have used the fact that the timescale of thermal re-
laxation varies, which is the dominant term in τ′d for the binary
system in question. When mass transfer starts, the thermal re-
laxation of the donor increases (i.e., τ′d decreases, cf. Eq. (16)),
and, therefore, δ also increases. At some point, thermal relax-
ation reaches a maximum and decreases afterwards, and so
does δ.

When using the explicit algorithm (1), the resulting mass
transfer rate undergoes a period doubling bifurcation before it
exhibits chaotic dynamics. Within the chaotic region a peri-
odic window of period 5 appears. After thermal relaxation and
hence also δ has reached its maximum, the Feigenbaum sce-
nario evolves backwards. Since the decrease of δ occurs slower
than its increase before, even stable cycles of period 8 and 4
appear before the secular mass transfer rate finally becomes
stable. In contrast, the result obtained with our implicit algo-
rithm for the same system and the same system parameters is
shown by the dashed line.

Although the implicit algorithm stabilizes the FP and even
provides a quadratic convergence of the iteration, chaotic dy-
namics are still present outside of a neighbourhood of the FP.
Therefore, a good initial value for the iteration is necessary. We
used a linear extrapolation of Ṁ0 and HP to determine the initial
value for Ṁ2 by Eq. (2). First, we perform typically 2–4 itera-
tions and keep the preestimated value for Ṁ2 constant until the
solution for the other stellar parameters has almost converged.
Otherwise, even small fluctuations of R2 might push the next
iteration value of Ṁ2 out of the basin of attraction of the FP
and prevent convergence. Then, we finish with mostly 2–6 iter-
ations using the full implicit algorithm to determine the correct
mass transfer rate.

Furthermore, to calculate the mass transfer rate with a nu-
merical accuracy of better than 1%, the stellar radius has to be
determined with a very high numerical accurracy. According
to Eq. (2), for a scale height of HP ≈ 10−4 R2, which is typical
for low-mass MS stars, R2 has to be determined with a relative
accuracy of the order of 10−6 in order to get Ṁ2 with a relative
accuracy of the order of 10−2. To compute the radius with such
a high accuracy the stellar physics and especially the equation
of state must be a very smooth function of its variables. Every
small discontinuity, especially in the outer layers of the star, can
cause small jumps in the stellar radius which appear, magnified
by the factor R2/HP, as significant jumps in the mass transfer
rate.

6. Summary and conclusions

We have used a simple analytical model, a 1d autonomous or-
dinary differential equation to describe the time evolution of
the mass transfer rate. We have shown that, while the FP in the
time-continuous system, i.e., the “physical” mass transfer rate
is stable, the FP in the time-discretized system, i.e., the “numer-
ical” mass transfer rate becomes unstable if the length of the
time step ∆t exceeds a critical value ∆tmax given by Eq. (12).
We have estimated that even in the ideal case where ∆t = ∆tmax

at least several thousand time steps are necessary to reduce the
donor mass in a low-mass binary system by a factor of two. For
systems with thermally unstable mass transfer, it is even worse.

We outline a mathematical proof that the iteration equation
for the time-discretized system shows a behaviour similar to
that of the logistic map and, for ∆t > ∆tmax, undergoes a series
of period doublings which finally leads to chaotic dynamics,
i.e., to apparently random values of the computed mass transfer
rate. The choice of a different explicit prescription to calculate
the mass transfer rate results only in a shift of the critical time
step length ∆tmax which, in turn, depends on the characteristic
scale length H at the FP ∆R, i.e., at the secular mass transfer
rate.

In terms of “Controlling Chaos” we have briefly discussed
several methods to stabilize the FP. Various modified itera-
tion schemes which are equivalent to different explicit itera-
tion schemes have been discussed in the literature, but they
all do not show sufficient stabilization. Therefore, we suggest
that using a different explicit iteration scheme may shift ∆tmax

to higher values but will not solve the problem. An implicit
scheme, Newton’s method, is the most promising solution
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because it stabilizes the FP formally for ∆t → ∞, although
for this to be the case a sufficiently good initial value for the
iteration is required.

In practice, the implicit algorithm reduces the number of re-
quired time steps by at least a factor of 10. Another advantage
is that the implicit algorithm either yields the “correct” mass
transfer rate or does not converge at all, whereas the explicit
algorithm provides a result in every case, even if it is random.
Therefore, in our binary evolutionary calculations we reject re-
sults of the last time step if convergence is not reached and
restart it with a smaller ∆t.
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