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ABSTRACT

Aims. We study the efficiency and reliability of cluster mass estimators that are based on the projected phase-space distribution of
galaxies in a cluster region.

Methods. We analyse a data-set of 62 clusters extracted from a concordance ACDM cosmological hydrodynamical simulation. We
consider both dark matter (DM) particles and simulated galaxies as tracers of the clusters gravitational potential. Two cluster mass
estimators are considered: the virial mass estimator, corrected for the surface-pressure term, and a mass estimator (that we call M,,)
based entirely on the velocity dispersion estimate of the cluster. In order to simulate observations, galaxies (or DM particles) are
first selected in cylinders of given radius (from 0.5 to 1.54~! Mpc) and ~200A~! Mpc length. Cluster members are then identified by
applying a suitable interloper removal algorithm.

Results. The virial mass estimator overestimates the true mass by ~10% on average, for sample sizes of 260 cluster members.
For similar sample sizes, M, underestimates the true mass by ~15%, on average. For smaller sample sizes, the bias of the virial
mass estimator substantially increases, while the M, estimator becomes essentially unbiased. The dispersion of both mass estimates
increases by a factor ~2 as the number of cluster members decreases from ~400 to ~20.

It is possible to reduce the bias in the virial mass estimates either by removing clusters with significant evidence for subclustering
or by selecting early-type galaxies, which substantially reduces the interloper contamination. Early-type galaxies cannot however be
used to improve the M,, estimates since their intrinsic velocity distribution is slightly biased relative to that of the DM particles.
Radially-dependent incompleteness can drastically affect the virial mass estimates, but leaves the M, estimates almost unaffected.
Other observational effects, like centering and velocity errors and different observational apertures, have little effect on the mass

estimates.
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1. Introduction

The masses of galaxy clusters are a very useful observable in
cosmology. The number density of clusters of galaxies above
a given mass threshold, and the evolution of this abundance with
redshift z, provide in principle strong constraints on cosmolog-
ical models/parameters (see, e.g., Rosati et al. 2002; Voit 2005,
for recent reviews, and references therein). The advantage of us-
ing galaxy clusters is that they are massive, luminous objects,
that can be detected relatively easily out to z ® 1 by several
techniques in different wavebands. The disadvantage is that they
are rather complex objects, hence their masses are not easily es-
timated, and can often be plagued by systematic effects that are
not easy to correct for.

Since Zwicky’s (1933) first estimate of a cluster mass, based
on the application of the virial theorem to the projected phase-
space distribution of galaxies in the Coma cluster, cluster mass
determinations have always been taken with some caution (see
the historical review of Biviano 2000). A cluster mass esti-
mate based on the observed projected phase-space distribution
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of galaxies can be wrong because of several effects. Quite impor-
tant in this respect are the projection effects leading to the inclu-
sion of interlopers in the sample of presumed cluster members
(see, e.g., Lucey 1983; Borgani et al. 1997; Cen 1997, C97 here-
after). Biases in the cluster mass estimates can also occur when
the studied cluster is far from virialization, e.g. during the ac-
cretion phase of a massive group (see, e.g. Girardi & Biviano
2002), or if galaxies are biased tracers of the gravitational po-
tential, which could happen as a consequence of dynamical fric-
tion (e.g. Biviano et al. 1992; Goto 2005), or as a consequence
of infalling motions (e.g., Moss & Dickens 1977; Biviano et al.
1997).

Because of the abovementioned problems, other methods
of cluster mass determination have been considered that are
not based on the phase-space distribution of galaxies. While
lensing mass estimates are also known to be affected by pro-
jection effects, these are generally believed to be less severe
(e.g. Reblinsky & Bartelmann 1999, RB99 hereafter; Clowe
et al. 2004; but see Metzler et al. 1999), unless the cluster is
elongated or has substantial substructure along the line-of-sight
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(Athreya et al. 2002; Bartelmann & Steinmetz 1996; Gavazzi
2005; Oguri et al. 2005). Projection effects are even less impor-
tant in the case of X-ray emission-based cluster mass estimates,
since the X-ray emissivity is proportional to the square of the gas
density.

Problems with lensing and X-ray mass estimates do exist,
however. Masses determined with the lensing technique are af-
fected by the mass-sheet degeneracy that cannot always be bro-
ken (e.g. Dye et al. 2001; Cypriano et al. 2004). The effect
of intervening matter along the line-of-sight is to increase the
weak-lensing mass estimates of clusters, especially at high red-
shifts (Metzler et al. 2001; Lombardi et al. 2005; Wambsganss
et al. 2004, 2005). Lensing and X-ray-based mass estimates have
often been found to be discordant, and this is generally inter-
preted as evidence of non-equilibrium (e.g. Wu 2000; Clowe
etal. 2001; Athreya et al. 2002; Smith et al. 2002; Cypriano et al.
2004; Ota et al. 2004; Bradac et al. 2005). In clusters undergo-
ing merging events the X-ray luminosity and temperature can
be boosted, thus leading to an overestimate of the cluster mass
(e.g. Schindler & Miiller 1993; Ricker & Sarazin 2001; Barrena
et al. 2002; Diaferio et al. 2005). On the other hand, violations of
the condition of hydrostatic equilibrium, inaccurate modelling
of the gas density profile and observational biases in the mea-
sure of the intra-cluster gas temperature, may lead to a sizeable
underestimate of the cluster mass (e.g. Bartelmann & Steinmetz
1996; Kay et al. 2004; Rasia et al. 2004).

A combination of several, independent cluster mass esti-
mates is likely to provide the most accurate results. Moreover,
with the Sloan Digital Sky Survey coming to completion (e.g.
Abazajian et al. 2005), a large number of nearby clusters with
>30 galaxies with redshifts is now available (Miller et al. 2005).
For many of these clusters, X-ray data are not available, and
mass estimates must be based on optical data. Hence, mass esti-
mates based on the projected phase-space distribution of galax-
ies are still very useful.

It is thus appropriate to re-assess the reliability of mass
estimates of clusters based on the dynamics of their member
galaxies. Previous analyses have generally considered only spe-
cific aspects of this topic. Initially, the reliability of different
mass estimators has been assessed from N-body simulations out-
side of a cosmological context (Danese et al. 1981; Perea et al.
1990; Aceves & Perea 1999). In order to properly deal with this
topic, clusters must however be identified within cosmological
simulations with large box-sizes. This has been achieved by sev-
eral studies (e.g. Frenk et al. 1990; Borgani et al. 1997; C97;
van Haarlem et al. 1997, hereafter vH97; RB99; Sanchis et al.
2004; Lokas et al. 2005), where, however, dark matter (DM here-
after) particles and not galaxies were considered as tracers of
the potential. Van Kampen & Katgert (1997) used the method
of constrained random fields to increase the numerical resolu-
tion of their simulation, but by doing this they were unable to
consider projection effects. In most analyses, interlopers were
rejected using Yahil & Vidal’s (1977) traditional 3-o-clipping
method (but see, e.g., vH97 who also tested the more sophisti-
cated method of den Hartog & Katgert 1996; and Sanchis et al.
2004; and Lokas et al. 2005, who tested their own methods of
interloper removal).

A general conclusion from these studies is that cluster
mass estimates can be severely affected by projection effects.
This happens mainly as a consequence of the cluster identifi-
cation process in 2d projected space, performed with Abell’s
(1958) original algorithm. Frenk et al. (1990) argued that cluster
masses are systematically over-estimated, but subsequent stud-
ies (C97; vH97; RB99) concluded that cluster masses can be

either over- or under-estimated, depending on the projection an-
gle, the cluster mass, and the algorithm used to remove interlop-
ers. Sanchis et al. (2004) and Eokas et al. (2005) found a rather
good agreement between estimated and true cluster masses,
when a large number of tracers of the potential was considered
in each cluster.

None of the abovementioned studies tried to identify galax-
ies in the cosmological simulations. In those studies where this
was achieved, it was generally found that the spatial distribution
of subhaloes, selected by their mass, is less concentrated than
that of DM (e.g. Ghigna et al. 1998; Klypin et al. 1999; Gao
et al. 2004). However, when gas dynamics was included in the
simulations, galaxies, selected by luminosity, turned out to have
a considerably more concentrated spatial distribution than sub-
haloes, and more similar to that of DM (Berlind et al. 2003; Gao
et al. 2004; Nagai & Kravtsov 2005). This occurs because tidal
stripping induce substantial mass loss from galaxy haloes, but
very little stellar mass loss.

As far as the velocity distribution of subhaloes is concerned,
most studies have found it to be wider than that of DM particles
(Colin et al. 2000; Diemand et al. 2004), at least near the cluster
centre (Ghigna et al. 2000; Reed et al. 2005). Based on hydrody-
namical simulations, Frenk et al. (1996) concluded that galaxies
suffer significant dynamical friction, and are slowed down rel-
ative to DM particles, to such an extent that cluster mass esti-
mates based on the velocity dispersion of galaxies are likely to
be in error by factors of 0.25-0.75, depending on the masses of
the galaxies selected as tracers. On the other hand, Berlind et al.
(2003) found that galaxies have only a mild velocity bias with re-
spect to DM, and Faltenbacher et al. (2005) found that galaxies,
if anything, move slightly faster than DM particles.

In this paper the reliability of cluster mass estimates based
on the dynamics of their member galaxies is reconsidered on
the basis of a set of clusters extracted from a large cosmo-
logical hydrodynamical simulation (Borgani et al. 2004; see
also Murante et al. 2004), performed using the TREE+SPH
GADGET-2 code (Springel et al. 2001; Springel 2005), for a con-
cordance ACDM model. This simulation samples a fairly large
volume (box size of 19247} Mpc, where & is the Hubble con-
stant in units of 100 kms™' Mpc~!) which contains more than
100 clusters with mass above 10'*4~! M, while also having
good enough resolution (mpy = 4.62 x 10°h~' M, for the
mass of the DM particles) to allow resolving halos hosting bright
galaxies. Finally, the inclusion of the processes of radiative cool-
ing, star formation and supernova feedback allows us to have
a realistic description of the gas evolution and of the galaxy for-
mation process.

In this paper we address the question of how accurate cluster
mass determinations are, based on the dynamics of their mem-
ber galaxies, under a variety of observational conditions, and for
a wide range of cluster masses, but independently of the clusters
identification procedure. No attempt is made here to simulate
the observational identification algorithms of galaxy clusters,
such as Abell’s (1958) original one. In this sense, our approach
is different from previous ones (Frenk et al. 1990; C97; vH97,
RB99), in that we disentangle the problem of cluster mass esti-
mation from that of cluster identification. The rationale for this
choice is that today there is no standard cluster identification
algorithm. Automated scans of digitized plates have since re-
placed Abell’s eyeball identification of galaxy clusters (Dalton
et al. 1992; Lumsden et al. 1992; Lopes et al. 2004), and much
more sophisticated algorithms than Abell’s (1958) have been ap-
plied to extract the 2-dimensional signal produced by a galaxy
overdensity (e.g. Ramella et al. 2001; Gladders & Yee 2005, and
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references therein). Moreover, those clusters whose masses are
derived using member galaxies are not necessarily optically se-
lected (e.g. Popesso et al. 2005). The results of this paper are
therefore useful for a better understanding of why different tech-
niques (lensing, X-ray, galaxies) can lead to discrepant cluster
mass estimates, and also for the study of scaling relations of dif-
ferent cluster properties with cluster masses. Translating the re-
sults of this paper to the study of the distribution of observed
cluster masses in a given survey requires convolution with the
selection function of the survey itself.

The plan of this paper is as follows. In Sect. 2 the set of sim-
ulated clusters and its characteristics are described. In Sect. 3 the
steps involved in the determination of cluster dynamical quanti-
ties are briefly described. The analyses of the cluster dynamics
in projected phase-space are described in Sect. 4. Results are
discussed and summarized in Sect. 5. In Sect. 6 we provide our
conclusions.

2. The simulated clusters

The set of simulated clusters analysed in this paper are ex-
tracted from a large cosmological hydrodynamical simulation
presented by Borgani et al. (2004), and performed using the mas-
sively parallel Tree+SPH GADGET-2 code (Springel et al. 2001;
Springel 2005). We refer to Borgani et al. (2004) for a com-
plete description of this simulation and of the cluster identi-
fication procedure. We provide here their main characteristics
and describe in some detail the galaxy identification procedure.
The simulation assumes a cosmological model with Qy = 0.3,
Qx = 0.7, Q, = 0.019h72, h = 0.7, and og = 0.8. The box
size is 192h~! Mpc. We used 480° DM particles and (initially)
as many gas particles, for a mass resolution of mpy = 4.62 X
10°4~! My. The Plummer-equivalent softening length was set
to € = 7.5h7" kpc at z = 0. The simulation code includes ex-
plicit energy end entropy conservation, radiative cooling, a uni-
form time-dependent UV background (Haardt & Madau 1996),
the self-regulated hybrid multi-phase model for star formation
(Springel & Hernquist 2003), and a phenomenological model
for galactic winds powered by type-II supernovae.

We identify galaxy clusters at redshift z = 0 by applying
a standard Friends-of-friends (FoF) analysis to the DM particle
set, with linking length 4 = 0.15 in units of the mean interpar-
ticle distance. After the FoF identification, we applied a spheri-
cal overdensity criterion to find the virial region of each cluster
(corresponding to an overdensity of ~100 times the critical den-
sity for the adopted cosmology). We identify 117 galaxy clusters
whose virial mass is larger than 10'*4~' My within our simu-
lated volume. A subset of these clusters is selected for the anal-
ysis discussed in the following. The position of the minimum
potential particle of each FoF group is then used as the centre
for a spherical overdensity algorithm, which identifies the radii
encompassing different overdensities.

Galaxies are identified using the publicly available algo-
rithm! SKID (Stadel 2001). SKID calculates a density field us-
ing all the particles. Density is assigned with a spline-kernel sim-
ilar to that employed by SPH codes; an important parameter is
the number of neighbouring particles Ny, on which the density is
softened. Particles are then associated with the local maxima of
such a field, which should represent the positions of the substruc-
ture. To this end, particles are “moved” along the gradient of the
field until they begin to oscillate around the peaks and are then

I See http://www-hpcc.astro.washington.edu/tools/
skid.html

grouped using a FoF analysis on the “moved” positions. An un-
binding procedure is applied to the resulting FoF groups, to dis-
card particles that are not gravitationally bound to the group. All
particles within a sphere of given radius are used to evaluate the
gravitational potential. This step is performed on the “true” (i.e.
not “moved”) positions. All the length scales involved in the pro-
cess are set starting from the parameter T which represents the
typical size of the objects to be found. Apart from the evalua-
tion of the density field, it is possible to select to which types of
particles (DM, stars, and gas) the algorithm must be applied. We
used only star particles to identify our galaxies.

The problem of reliably detecting sub-structures within
given DM haloes is long-lasting and still not uniquely solved.
It is outside the purpose of the present work to discuss such
an issue. We performed a number of tests on the SKID galax-
ies, to verify that the least possible number of objects is missed
by the analysis and that the identified object are real ones. Such
tests are presented elsewhere (Murante et al., in preparation).
Our galaxies have been identified by using 7 = 20A~! kpc,
which, after a trial-and-error procedure, turned out to be the
optimal choice. This choice is also motivated by the fact that
204! kpc roughly corresponds to the effective force resolution
of the simulation. We also determined that distinct SKID analy-
ses are needed, with different values of Ny, that we assumed
to be 16, 32 and 64. Some galaxies are “missed” using only
one value for Nyy,. Therefore, we built our catalogue by com-
bining together the results of the three SKID analyses, with the
following rule: if a star particle is a member of a galaxy for
one value of Ny, it is considered to belong to that galaxy; if
a particle is member of two different galaxies for two different
values of Ny, the two galaxies are then merged into a single
object. SKID objects with less than 32 particles are discarded.

For the purpose of this paper it is not useful to consider clus-
ters with less than 10 galaxies, hence in the following we restrict
our analysis to those 62 clusters with at least 10 galaxies within
a sphere of “virial” radius ry, defined as the radius where the
mass density of the cluster equals 200 times the critical density
of the Universe.

In Borgani et al. (2004) we have shown that these simulated
clusters have on average a star fraction which is ~50 per cent
larger than the typical observed values (Lin et al. 2003).
However, this overcooling is mainly contributed by the central
galaxy. Therefore, our simulations are expected to reliably de-
scribe the way in which cluster galaxies trace the underlying
cluster dynamics.

For each galaxy, we define its formation redshift, z¢, as the
average value of the formation redshifts of all its member star
particles. The value of z; is also used to classify our galaxies into
“early-type” and “late-type”. Specifically, we consider a galaxy
to be of early-type if zz > 1.25, and of late-type if zr < 1.25. This
choice is admittedly rather crude and is based on the comparison
of our simulated galaxy sample with the sample of cluster galax-
ies of the ESO Nearby Abell Clusters Survey (ENACS, Katgert
et al. 1996, 1998). In the ENACS, 64% of the galaxies identi-
fied as cluster members within 1.5 r, are classified as early-type
galaxies (ellipticals, lenticulars, or an intermediate class between
these two; see Biviano et al. 2002; Thomas & Katgert 2006).
Similarly, in the simulated clusters, 64% of the galaxies within
1.5 r, have zz > 1.25.

Further support for the identification of zz > 1.25 galax-
ies as early-type galaxies comes from the comparison of their
distribution in projected phase-space with that observed for the
ENACS cluster galaxies. Since the number of galaxies per sim-
ulated cluster is rather limited, clusters are stacked together by
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Fig.1. The projected number density profiles of simulated galaxies
(solid lines) and real galaxies from the ENACS sample (dots with error
bars). The three solid lines in each plot correspond to three orthogonal
projections. The normalisations of the simulated galaxies profiles have
been arbitrarily scaled to match the observed profiles. The clustercentric
distances on the x-axis are in units of the cluster virial radius. Top panel:
simulated galaxies with formation redshift z; > 1.25 (see text) vs. early-
type galaxies from the ENACS sample. Bottom panel: simulated galax-
ies with z; < 1.25 vs. late-type galaxies from the ENACS sample.
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Fig. 2. The line-of-sight velocity dispersion profiles (in units of the to-
tal cluster velocity dispersion) of simulated galaxies (solid lines) and
real galaxies from the ENACS sample (dots with error bars). The clus-
tercentric distances on the x-axis are in units of the cluster virial ra-
dius. The three solid lines in each plot correspond to three orthogo-
nal projections. Top panel: simulated galaxies with formation redshift
zr > 1.25 (see text) vs. early-type galaxies from the ENACS sample.
Bottom panel: simulated galaxies with zz < 1.25 vs. late-type galaxies
from the ENACS sample.

scaling the galaxy clustercentric distances and velocities by the
value of r, and the velocity dispersion of the cluster they be-
long to. A similar procedure is applied to the observed galaxies
(see Katgert et al. 2004; Biviano & Katgert 2004). The projected
number density profiles, Z(R), and the line-of-sight velocity dis-
persion profiles, o (R), of real and simulated galaxies are shown
in Figs. 1 and 2, respectively, separately for early- and late-type
galaxies (top and bottom panels, respectively). The simulated
galaxies Z(R)s have been arbitrarily rescaled to match the ob-
served Z(R)s, since here we are only interested in the relative
distributions of simulated and real galaxies.

The profiles of observed and simulated galaxies are rather
similar, both for the early- and the late-types. The main differ-
ence between the observed and simulated profiles is the lower
number density and smaller velocity dispersion of the simulated

early-type galaxies in the inner regions (R/ry < 0.1). This differ-
ence is related to the well-known overmerging problem which
affects the simulations in the denser regions. While this can be a
source of concern when comparing simulated vs. observed clus-
ter mass profiles, we argue that the analysis of cluster masses
is not significantly influenced by this problem. In fact, the ap-
parent underdensity of simulated early-type galaxies in the in-
ner regions, as compared to the real ones, is not significant. The
fraction of early-type galaxies within the virial region that lie
within 0.1 ry is 12.9% for the simulated galaxies and 14.5% for
the observed ones. As a consequence, no significant effect is ex-
pected on cluster harmonic mean radius estimates (which enters
the virial mass estimate, see Sect. 3), also because these fractions
are low. For the same reason, no significant effect is expected on
cluster global velocity dispersion estimates, despite the fact that
the difference in the velocity dispersions of simulated and ob-
served early-type galaxies is significant within 0.1 ry. In fact, the
ratio between the velocity dispersion estimates obtained using
all galaxies and only those with R > 0.1 ry is 0.994 for the sim-
ulated galaxies and 1.008 for the real ones.

We conclude that the similarity between the profiles of sim-
ulated and observed galaxies lends support to our choice of
zz = 1.25 for separating early- and late-type galaxies in our
simulations.

3. The cluster mass estimates

Several different definitions of “virial mass” have been given in
the literature. This term may be used to define the total mass
of a cluster within a radius of given overdensity, i.e. the “virial
radius”, typically the radius where the mean cluster mass den-
sity equals 100 or 200 times the Universe critical density (see,
e.g., Lokas & Mamon 2003). On the other hand, the same term
is used to define the mass estimated through application of the
virial theorem to the cluster galaxies within an observationally
defined aperture (e.g. Biviano et al. 1993; Girardi et al. 1998).
This estimate requires not only an estimate of the cluster veloc-
ity dispersion, but also of the harmonic mean radius of the spatial
distribution of cluster galaxies. To further complicate the issue,
twice the harmonic mean radius is also usually referred to as the
“virial radius” (e.g. Girardi et al. 1998; Merchin & Zandivarez
2005).

The virial mass estimate requires correction for the surface
pressure term (The & White 1986), unless the entire system is
contained within the observationally defined aperture radius (see
also Maccio et al. 2003). Unfortunately, it is still relatively un-
common to see this correction applied (see, e.g., Koranyi et al.
1998). Neglecting this correction leads to overestimate the mass
of a system (see, e.g., Carlberg et al. 1997a), and this can partly
account for some of the claimed discrepancies between optically
and X-ray derived cluster mass estimates.

For the sake of clarity, we detail in the following the proce-
dure that we apply to our simulated clusters in projection in or-
der to simulate an observational estimate of their masses. Such
a procedure has recently been applied to a large set of nearby
clusters by Popesso et al. (2005, 2006).

‘We define a cluster “true” mass, My, as the total mass within
the radius r,, where the mass density of the cluster equals
200 times the critical density of the Universe at the cluster red-
shift (we call o, the 3d velocity dispersion of the DM particles
within the same radius). The virial mass estimate M, within the
same radius is computed as follows.
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1. Define an aperture radius, a, within which to perform the
dynamical analysis, and select all DM particles or all galax-
ies within a cylinder of radius a and ~200A4~! Mpc length,
along each of three orthogonal projections. Cluster centres
are computed as the positions of the minimum potential par-
ticle in each cluster (see Sect. 2), unless otherwise indicated
(see Sect. 4.5). In virtually all cases, these centres correspond
(to within ~10 kpc) with the peaks of the cluster X-ray emis-
sivity. The same centre choice is usually adopted observa-
tionally, when X-ray data are available (see, e.g., Biviano
et al. 1997; Popesso et al. 2005).

2. Select cluster members. This is done first by using a cut in
line-of-sight velocity space of +4000 kms~! with respect to
the mean cluster velocity, initially defined by applying the
biweight estimator’ (see Beers et al. 1990) to all the ob-
jects within 0.54~! Mpc from the cluster centre. In a second
step, the weighted gap procedure of Girardi et al. (1993) is
applied on the remaining objects. To the objects that pass
the weighted gap selection we apply Katgert et al.’s (2004)
procedure that makes use of the location of galaxies (or
particles) in projected phase-space (see also den Hartog &
Katgert’s 1996).

3. Determine the “robust” estimate of the line-of-sight velocity
dispersion o, ;,, within the aperture a, using the biweight or
gapper estimator, depending on the number of data available,
>15 or <15, respectively (see Beers et al. 1990).

4. Correct the velocity dispersion estimate for velocity errors (if
these are added to the simulated data, see Sect. 4.5) following
the prescriptions of Danese et al. (1980).

5. Determine the projected harmonic mean radius r, ,, within
the aperture a.

6. Obtain a first estimate of the mass from

M, = 3r0,, ,rap/G, (1)

where G is the gravitational constant, the factor 37/2 is
the deprojection factor, see Limber & Mathews (1960), and
a factor 2 is needed to convert the harmonic mean radius into
the “virial radius” of Girardi et al. (1998).

7. Estimate the Navarro et al. (1997, NFW hereafter) concen-
tration parameter using the relation ¢ = 4(0'a,p/700)‘0'306.
The normalization of the relation is taken from Katgert et al.
(2004), and the exponent of the relation is derived from
Dolag et al. (2004), under the assumption that the mass
scales with the third power of the velocity dispersion.

8. Correct the mass estimate for the surface pressure term, fsp,
obtained for a NFW profile with concentration ¢: M, =
JspM,, assuming isotropic orbits (see Eq. (8) in Girardi et al.
1998). Note that the value of the correction factor is not neg-
ligible (fsp = 0.84 on average for our simulated clusters ob-
served out to an aperture radius a = 1.54~! Mpc).

9. Determine 7y, an estimate of ry, as 7, = a[p./(200p.(z))]"/%,
where p.(2) is the critical density of the Universe at the clus-
ter redshift, p, = M, /(4na®/3), and £ is the local slope of
a NFW profile of concentration c at the radius a.

10. Determine M,, an estimate of My, by extrapolating or inter-
polating M, . from a to 7, using a NFW profile with concen-
tration c.

Quite often, cosmological constraints have been obtained di-
rectly from the distribution of cluster velocity dispersions, used
as proxies for the cluster masses (see, e.g., Girardi et al. 1993).

2 Here and throughout this paper we use the biweight estimator for
the average and dispersion, unless otherwise indicated.
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Fig.3. The true mass vs. the 3d velocity dispersion (both computed
within a sphere of radius r,) for the 62 simulated clusters with at least
10 galaxies within r,. The best fitting cubic law relation is shown (solid
line).
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ulated clusters. The 3d velocity dispersion within a sphere of radius a is
shown as a function of a/ry, in units of o-,. 1-0- error bars are shown.
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It is therefore useful to also consider an alternative (and simpler)
mass estimator entirely based on the line-of-sight estimate of the
velocity dispersion within a given aperture, o ,. The relation be-
tween M, and o for our simulated clusters is shown in Fig. 3.
The line in that plot represents the best-fitting cubic relation

o 3
M, = A (7) x 104071 M 2
103 kms~! e @
where A = 1.50 £ 0.02 (1-0 error). We note that this rela-

tion is approximately independent of the cosmological model
(Borgani et al. 1999). It is possible to use this relation to ob-
tain a mass estimate entirely based on the velocity dispersion
estimate. Since \/§O'a,p can differ significantly from o, depend-
ing on the aperture radius a chosen by the observer, we need
to apply a correction that depends on the ratio a/r,. For each
of the 62 clusters, we determine the 3-d velocity dispersion o,
within a sphere of radius a, for different values of a. The aver-
age 0,/0y vs. a/ry profile of our 62 clusters is shown in Fig. 4.

Hence, given a line-of-sight velocity dispersion estimate
within a given observational aperture, o ,, we proceed as fol-

lows. We use V30, to determine an initial estimate of the
mass of the system through Eq. (2). We then obtain an estimate
7y of ry, following steps 7 and 9 above (note that step 8 is not
needed in this case, because the relation provided by Eq. (2) re-
lates the velocity dispersion to the true cluster mass, for which
no surface term correction is needed). Using the o, /oy vs. a/ry
profile of Fig. 4, and replacing the true quantities r, and o, with
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Fig. 5. Verifying the performance of the mass estimators: the compari-
son between the masses estimated using full phase-space information,
and the true cluster masses. Top-left panel: ratio between the virial and
true mass, M, /M, vs. the true mass, M,. Bottom-left panel: ratio be-
tween the mass obtained from o, and the true mass, M,./M, vs. the true
mass M,. Top-right panel: distribution of M, /M,. Bottom-right panel:
distribution of M,./M,. The masses M, and M, are estimated from the
full phase-space distributions of 5000 DM particles per system (when
available; otherwise all DM particles are selected) within the cluster
virial radius.

their estimates 7, and \/gaa,p, respectively, we obtain an esti-
mate of o, which we use to determine the M, estimate of M,
through Eq. (2).

In order to verify the performance of these two mass estima-
tors, we have applied them to the clusters in the simulation, mak-
ing use of the full phase-space information. In this case, there
is no need to apply the interloper-rejection procedure outlined
above (step 2), since we randomly select 5000 DM particles in
each cluster within a sphere (not a cylinder) of radius a = ry
(when this sphere contains less than 5000 DM particles, all par-
ticles are selected). Also the de-projection factor 37/2 (step 6) is
not needed. As for the estimate of M-, we directly apply Eq. (2).
In Fig. 5 we show the ratio between the virial (M) and the true
masses (upper panel), and M, and the true masses (lower panel)
for our sample of 62 clusters. On average we find M, /M, = 1.03
with a dispersion of 0.09, and M,/M, = 1.00 with a disper-
sion of 0.12 (see also Tormen et al. 1997, for a similar analysis).
Perfect identity is not expected, since clusters are not fully virial-
ized, but the good agreement indicates that the estimators are un-
biased and the clusters in the simulation are close to virialization
within ry, as expected for z ~ 0 clusters in a ACDM cosmology.

4. Dynamical analysis in projected phase-space

In order to mimic observations, the simulated clusters are placed
at a distance of 2504~! Mpc from the hypothetical observer.
Three orthogonal projections are considered for each cluster,
leading to a total of 186 (62 X 3) cluster projections (except when
we remove the cases with significant evidence for subclustering,
see Sect. 4.2). DM particles or galaxies are then selected within
cylinders of given radius, chosen to be a fraction (from 1/3
to 1) of an Abell radius. This is meant to reproduce typical

observational procedures where the virial radius of the system is
unknown prior to observation. The length of the cylinder is set
by the simulation cube.

In the following we analyse how cluster mass estimates are
affected by several observational effects. In particular, we con-
sider the effects of different sample sizes, different observational
apertures, observational errors, incompleteness, and subclusters
detected in projected phase-space. In principle, it would be de-
sirable to perform all these analyses using the simulated galaxies
as tracers of the potential, rather than the DM particles. As a mat-
ter of fact, the analyses performed on the simulated galaxies are
likely to provide a reliable picture of the real observational sit-
uation, since the phase-space distributions of simulated galax-
ies are not too different from the observed ones (see Sect. 2).
On the other hand, the DM particles are not distributed like the
galaxies in the simulated clusters (see Sect. 4.6). Unfortunately,
however, there are only few galaxies per cluster in our simulated
set, hence small-number statistical noise becomes a dominant
source of scatter. In order to overcome this problem, we have
also considered DM particles as tracers of the gravitational po-
tential, even if, of course, these are not true “observables”.

The most relevant results of the dynamical analyses in pro-
jected phase-space are summarized in Table 1. The different
analyses performed are identified by their number in the 1st col-
umn of Table 1. Column 2 lists the observational aperture size,
a, in k™! Mpc, i.e. the radius of the cylinder within which par-
ticles or galaxies are selected. Column 3 lists the number of
DM particles per projection initially selected for the analysis
within a cylinder of given radius. In the case of galaxies, all
galaxies (of the specified type) are always selected, and this
number changes from projection to projection, hence we list the
average over all projections. This is also the case for DM parti-
cles, when we select an identical number of DM particles as of
available galaxies within the cylinder (see Sect. 4.6). In Col. 4
“DM” or “G” indicates whether DM particles or Galaxies are
chosen as tracers of the potential. When only galaxies of a given
type are selected, this is further specified after the letter “G”.
Column 5 lists the type of selection performed on DM particles,
which can either be random (“Rdm”) or of a type that repro-
duces a single-mask, multi-slit observation (“Slit”). In the case
of galaxies, “All” indicates that all galaxies in the cylinder are
selected. The note “projections with subclusters excluded” in-
dicates that the definition of the sample used is the same as in
the line above, except that cluster projections with significant
evidence of substructure have been removed from the sample.
Columns 6 and 7 list the average of the number of DM parti-
cles or galaxies selected as cluster members within the chosen
aperture, and the fraction fy,, of these that actually lie outside
the sphere of radius equal to the chosen aperture, and that we
call “interlopers”. Columns 8 and 9 list the average ratios of
the estimated-to-true velocity dispersion \/50',4,,, /o4, and of the
estimated-to-true harmonic mean radius 37, ,/r,, respectively,
all quantities being estimated within the given aperture a (note
that the projected quantities are multiplied by the deprojection
factors). Column 10 lists the average ratio of the estimated-to-
true virial radius, 7, /r,. Columns 11 and 12 list the average ratios
of the two mass estimates (the virial estimate and the velocity-
dispersion based estimate, respectively) to the true mass, M, /M,
and M, /M., respectively. The dispersions of the quantities listed
in Cols. 612 are given (within brackets) in the line immediately
below. Columns 13 and 14 list the fractions of cluster projections
for which the virial mass is a strong under- or over-estimate of
the true mass, M, /M, < 1/2, and M,/M, > 2, respectively.



A. Biviano et al.: On the efficiency and reliability of cluster mass estimates

29

Table 1. The ratios between the estimated dynamical quantities in projection and the true ones. Quantities in brackets are the dispersions on the

estimated quantities.

Id a N Tracer SC] Nm f")ul \/§0'a’p/0'a %ra,p/ra 7\,/}’\, MV/MV MO‘/MV f<0.5 f>2
(h~! Mpc)
1 1.50 500 DM Rdm 402 0.18 0.93 1.22 1.08 1.10 0.88 0.01  0.03
(48) (0.11) (0.10) 0.12) (0.10)  (0.31) (0.28)
2 projections with subclusters excluded 396  0.17 0.90 1.21 1.06 1.02 0.81 0.00 0.00
(50) (0.10) (0.10) 0.11) (0.08)  (0.25) (0.24)
3 1.50 100 DM Rdm 80 0.18 0.93 1.20 1.07 1.10 0.81 0.04 0.10
) (0.11) (0.14) (0.19) (0.14)  (0.46) (0.38)
4 1.50 20 DM Rdm 17 0.20 0.89 1.37 1.11 1.25 0.83 0.09 0.25
2) (0.14) 0.27) (0.28) 0.25) (0.79) (0.58)
5 1.50 500 DM Slit 198 0.26 0.90 1.63 1.18 1.51 0.83 0.00 0.16
(51) (0.13) (0.12) 0.17) (0.10)  (0.41) (0.28)
6 0.50 500 DM Rdm 459 0.28 0.94 1.20 0.97 1.08 0.87 0.01 0.02
(46) (0.09) (0.10) (0.07) 0.09) (0.32) (0.29)
7 1.50 39 G All 30 0.26 0.95 1.39 1.16 1.40 0.94 0.11  0.27
12)  (0.15) 0.27) 0.25) 0.24)  (0.85) (0.62)
8 1.50 39 DM Rdm 29 024 0.98 1.37 1.17 1.46 1.03 0.03 031
(12) (0.14) (0.26) (0.26) 0.24)  (0.89) (0.68)
9 1.50 19 Gz =125 All 16 0.18 0.89 1.21 1.04 1.01 0.80 0.20 0.15
&) (0.15) (0.30) (0.30) 0.26)  (0.74) (0.64)
10 1.50 19 DM Rdm 15 0.25 0.93 1.41 1.13 1.32 0.92 0.14 0.34
(7) (0.18) (0.37) (0.32) 0.35) (1.14) (0.83)
4.1. Projection effects
In order to quantify the importance of projection effects on clus- 1000 °
ter mass estimates, we first consider a large number (500) of reli- . 2 e, ; oL . L‘N
able tracers of the gravitational potential (DM particles), with no i 100 %@“ o /
errors on their velocities, positions, and no radial incompleteness = ¢
bias (see Table 1, Id. No. 1). The 500 DM particles are randomly 0.10¢ E
selected along each of three orthogonal line-of-sights for each
cluster, within a cylinder of 1.5h~' Mpc radius. Interlopers are 0.01
then rejected using the procedure described in Sect. 3. The case
studied here is of course an idealized situation never achieved 10.00¢ E
observationally, but this analysis serves to emphasize the impor- K
tance of projection effects on cluster mass estimates, indepen- % "
dently of any other observational bias. =
On average, both the virial mass estimate and the M, esti- 010k ,
mate are accurate to ~10%, but the scatter around the true mass
values for the different projections is quite large (see Fig. 6). 0.01 ‘ ‘ L
The virial estimate somewhat overestimates the true mass, and 1 10 0 20 40 60 80
this is caused by an overestimate of the harmonic mean ra- My (10" h~! Mo) number

dius, while M, somewhat underestimates the true mass, and this
is caused by an underestimate of the velocity dispersion (see
Table 1).

In order to better understand the effects of projection, we ex-
amine the projected phase-space distribution of a stacked cluster
in some detail. The stacked cluster is built as follows. In each
cluster of the simulation set we randomly select 500 DM par-
ticles along three orthogonal projections, and identify the clus-
ter members. We then normalize the clustercentric distances of
these particles by the virial radius of the cluster they belong to,
and their velocities (relative to their cluster mean velocity) by
the velocity dispersion of the cluster they belong to, computed
within one virial radius. We then stack the 62 clusters using the
normalized radii and velocities. Finally, we return to physical
units by multiplying the normalized radii and velocities of the
DM particles in the stacked cluster, respectively by the average
virial radius (0.994~! Mpc), and by the average velocity disper-
sion (657 kms™!) of the 62 clusters.

In Fig. 7 we show the projected phase-space distribution of
a randomly selected subset of the DM particles in the stacked

Fig. 6. The comparison between the masses estimated using only pro-
jected phase-space information and the true cluster masses. Top-left
panel: the ratio between the virial and the true mass, M,/M, vs. the
true mass M,. Filled dots identify those projections where no signifi-
cant evidence for substructure is found at the 0.01 c.l. Top-right panel:
distributions of M, /M, for the projections with and without signifi-
cant evidence for substructure (thin and thick line, respectively). Bottom
panels: same as top panels, but for M, in lieu of M,. The masses M,
and M, are estimated from projected distributions of DM particles.
Initially, 500 DM particles are randomly selected along three orthogo-
nal line-of-sights in each cluster, within a cylinder of 1.5h~! Mpc radius.
Interlopers are then rejected using the procedure described in Sect. 3.
Note that the vertical range is different from that of Fig. 5 and the verti-
cal axis is now logarithmic.

cluster. Three orthogonal projections are stacked together in the
figure. Different symbols are used to represent: i) DM particles
contained within a sphere of 1.5h~! Mpc radius and selected
as cluster members by the interloper rejection procedure (filled
squares); ii) DM particles located within this same sphere yet
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Fig.7. Line-of-sight velocity vs. projected clustercentric distance for
a subset of the DM particles in the stacked cluster (see text). Filled
squares indicate DM particles contained within a sphere of 1.54~! Mpc
radius and selected as cluster members by the interloper rejection pro-
cedure, open squares indicate DM particles located within this same
sphere yet incorrectly rejected as interlopers, and x symbols indicate
DM particles located outside this same sphere and yet selected as clus-
ter members (interlopers).

incorrectly rejected as interlopers (open squares); and
iii) DM particles located outside this same sphere and yet
selected as cluster members (X symbols). Clearly, the interloper
rejection technique excludes only a few DM particles that
are in fact within the 1.5h~' Mpc sphere, but keeps several
DM particles that are outside the 1.54~! Mpc sphere but have
projected velocities that make them indistinguishable from the
real cluster members in the projected phase-space diagram
(what we have called interlopers, see Sect. 4).

The underestimate of the velocity dispersion of the cluster
is partly due to the rejection of real cluster members at rel-
atively high velocities. Most of the underestimate is however
due to the inclusion of interlopers that are currently infalling to-
ward the cluster along a filament. These interlopers lie within
<10h~! Mpc from the cluster centre (more distant DM particles
have quite a different recession velocity from the cluster mean
and are rejected by the interloper technique) and their infall mo-
tion makes their velocities resemble the average cluster velocity.
In addition, they have an intrinsically small velocity dispersion
within their filament. As a consequence, the projected velocity
dispersion of these interlopers turns out to be smaller than that of
the cluster within the selected aperture. On the other hand, their
spatial distribution is not as centrally concentrated as that of the
cluster members within the selected aperture, as shown in Fig. 8.
This causes the harmonic mean radius to be overestimated.

Therefore, interlopers cause the overestimate of the har-
monic mean radius, and, at the same time, the underestimate of
the velocity dispersion, as already noted by C97 and Diaferio
et al. (1999). Since the strongest of the two effects is the har-
monic mean radius overestimate, also the virial mass is over-
estimated. On the other hand, M, provides an underestimate
of the mass because it only depends on the velocity dispersion
estimate.

Despite these problems, the interloper selection technique
seems to work reasonably well. On average only ~1% of the
real cluster members are rejected as interlopers, while on aver-
age 18% of the selected members are unrecognized interlopers
(see four in Table 1). However, projection effects can become crit-
ical for individual cases. In 3% of the cases the cluster masses
are overestimated by a factor >2, and in 1% of the cases they
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Fig.8. The projected spatial distribution of the same DM particles
shown in Fig. 7. Symbols are the same as in Fig. 7.
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Fig. 9. The velocity distributions of a random subset of DM particles of
a simulated cluster, along three orthogonal projections. Thin lines indi-
cate the velocity distributions of all DM particles within a cylinder of ra-
dius 1.5h7! Mpc, thick lines the velocity distributions of those DM par-
ticles identified as cluster members, and the hatched histograms show
the velocity distributions of the DM particles located within a sphere of
1.547! Mpc radius.

are underestimated by a factor <1/2, using the virial mass es-
timator (see Fig. 6, and the last two columns in Table 1). Large
errors in the virial mass estimates correspond to extreme cases of
failure of the interloper rejection algorithm, when either a com-
pact dynamical system is artificially split in two by the weighted
gap algorithm, or, more frequently, a physically distinct group
is merged together with the main cluster. This last case is illus-
trated in Fig. 9, where we plot the velocity distributions of i) the
DM particles within a sphere of 1.54~! Mpc radius (hatched his-
togram); ii) all DM particles within the cylinder of same radius
(thin line); and iii) the DM particles identified as cluster mem-
bers (thick line). In one of the three projections (bottom panel of
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Fig. 9) the cluster velocity distribution is heavily contaminated
by that of a foreground group, and the interloper rejection tech-
nique fails to isolate the cluster members. Note, however, that
large errors in the mass estimates generally occur only for one
of the three orthogonal projections considered per cluster.

4.2. Subclustering

The presence of subclustering has long been thought to poten-
tially cause incorrect cluster mass estimates (e.g. Bird 1995).
Several algorithms have been developed over the years to ad-
dress this problem (see, e.g., Girardi & Biviano 2002, and
references therein). One of the most commonly used (and
easy to implement) algorithms is that of Dressler & Shectman
(1988, DS hereafter). Here we apply this algorithm (or, actu-
ally, Biviano et al.’s 2002, version of it) to the simulated clus-
ters seen along each of three orthogonal projections. As before
(see Sect. 4.1) 500 DM particles are randomly selected within
a cylinder of 1.54~! Mpc radius; the DS test is applied on those
particles that are selected as cluster members.

In 59 cases out of 186 the DS test provides a probabil-
ity >0.99 that the cluster, as seen along the chosen projection,
has significant subclustering. The cluster projections with >0.99
subclustering probability are also those with the largest mass
overestimates. As an example, in the case-study illustrated in
Fig. 9, subclustering is detected with high significance along the
projection shown in the bottom panel. Among the 127 cluster
projections without evidence for subclustering, only one has its
virial mass overestimated by a factor >2. As a consequence, the
virial mass estimates are now closer to the true cluster masses,
on average (see Fig. 6 and Table 1, Id. No. 2).

Hence the simple DS test appears to be a useful tool to iden-
tify those cases of large virial mass overestimates. However,
the situation is not so simple. When only 100 DM particles are
selected instead of 500, the DS test gives a probability >0.99
only for 28 out of the 186 cluster projections. Clearly, when the
sample size is reduced the DS statistics is less significant. Yet,
observational results based on even smaller sample sizes, sug-
gest a higher fraction of clusters with subclustering, ~1/3 (e.g.
DS; Biviano et al. 1997). Hence the simulated clusters seem to
display a lower amount of subclustering, on average, than real
clusters.

4.3. Undersampling

In order to study how the accuracy of mass estimates depends
on the number of cluster members available, we randomly select
from 10 to 500 DM particles within cylinders of 1.54~! Mpc
radius, along three orthogonal projections. Cluster members are
then selected using the interloper rejection procedure described
in Sect. 3.

Reducing the sample size increases the scatter of the dynam-
ical estimates and affects the virial mass estimates (see Fig. 10
and Table 1, Id. Nos. 1, 3, and 4). The average r, ,/r, ratio tends
to increase with decreasing number of selected cluster members,
Ny, for N,, S 60, until it reaches a plateau for N, < 20. On the
other hand, the average \/§O'a,p /o, ratio hardly changes with the
size of the sample. As a consequence, for samples of <60 cluster
members, the simpler M, estimate appears to be a better predic-
tor of the true mass than the virial mass estimate, M,, which is
affected by the bias of 7, .

The increasing overestimate of the harmonic mean radius
(and hence of the virial mass) as the size of the sample decreases
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Fig. 10. The ratio of estimated to true dynamical quantities, averaged
over all cluster projections, as a function of the number of DM parti-
cles selected as cluster members. Upper panel: M,/M, (lines above)
and M, /M, (lines below). Lower panel: 5r,,/r, (lines above) and
\/50',,, »/0q (lines below). Dotted lines represent 1-o- c.1. on the averages.
The symbols represent the values obtained using galaxies (rather than
DM particles) as tracers. Empty symbols are for all galaxies; filled sym-
bols for galaxies with z; > 1.25 only. Stars refer to M, /M, and SR/ T,
squares to M, /M, and o0/ .

is mostly due to an increasing fraction of interlopers, from 18%
for N, 2 60, to 23-25% for N,, < 40. Part of the effect is how-
ever induced by a statistical bias that affects the harmonic mean
radius estimate for small sample sizes. This can be seen by com-
puting the harmonic mean radius in projection, but using only
real cluster members. We find that in this case, the ratio 7, /7,
remains close to unity for N,, 2 60, then starts increasing with
decreasing N,,, until it becomes ~1.1 for N, ~ 20.

4.4. Radial-dependent incompleteness

When a cluster field is observed in spectroscopy, completeness
to a given limiting magnitude is rarely achieved. However, apart
from the very bright cluster galaxies, there is no evidence for lu-
minosity segregation in galaxy clusters (e.g. Biviano et al. 1992,
2002; Adami et al. 1998a; Cappi et al. 2003; Goto 2005; Yang
et al. 2005). Hence a random selection of the available galaxies
in a cluster field, even if not complete down to a given magni-
tude, should produce a sample with an unbiased projected phase-
space distribution. In the previous analyses (Sects. 4.1-4.3) such
a random selection was indeed applied. However, this is not al-
ways an easy task to accomplish observationally. In fact, the
number of slits (fibers) per mask in multi-slit (multi-fiber) spec-
trographs is fixed, hence the central, high-density regions of
galaxy clusters are often sampled to a brighter magnitude than
the external regions. As a consequence, the spatial distribution
of the galaxies selected for spectroscopy turns out to be more
extended than the parent spatial distribution of cluster galaxies.
Said otherwise, a higher fraction of galaxies is selected from the
total in the outer regions, i.e. the incompleteness is not random
but depends on radius.



32 A. Biviano et al.: On the efficiency and reliability of cluster mass estimates

Ignoring the problem of radial-dependent incompleteness
can have quite a catastrophic effect on the cluster mass estimate,
as we show in the following. We simulate an observational set-up
in which our clusters are observed with a multi-slit spectrograph
with four quadrants, each 13 arcmin on a side, with a typical slit
separation of 10 arcsec (we remind the reader that the clusters
have been set at a distance of 2504~! Mpc from the observer).
The results are listed in Table 1, Id. No. 5. In comparing these
results to those obtained in the case of a random selection of
tracers (Table 1, Id. No. 1), we note three differences. First, the
average number of selected DM particles is only 198 out of the
initial 500 randomly chosen in a cylinder of 1.5A~! Mpc radius.
Second, the fraction of interlopers is increased (26% vs. 18%).
Third, the harmonic mean radius is strongly overestimated in
projection. All these differences are due to the geometrical con-
straints imposed by the multi-slit single-mask observation, that
forces a sparser sampling of the dense cluster core relatively to
the cluster outskirts. The observational spatial distribution of the
selected tracers is thus less centrally concentrated than the un-
derlying parent distribution.

In order to avoid this bias, the central cluster regions must be
observed with more masks per unit area than the external cluster
regions. Alternatively, photometric observations can be used to
estimate, and correct for, the radial incompleteness of the spec-
troscopic sampling. When neither option is viable, it is better to
rely on the M, estimate, which is much less affected by prob-
lems of incompleteness since cluster velocity dispersion profiles
have only a mild radial dependence (see, e.g., Girardi et al. 1996
and Fig. 4).

4.5. Other observational effects

Other observational effects that could, in principle, affect a clus-
ter mass determination, are i) a different size of the observational
aperture (the radius of the cylinder within which the tracers are
selected); ii) the uncertainty on the determination of the clus-
ter centre; and iii) errors on the redshifts of cluster galaxies. All
these effects can change the projected phase-space distributions
of the tracers, thereby affecting in principle also the identifica-
tion of cluster members.

In order to estimate the effect that different aperture sizes
have on the cluster mass estimates, we compare the results ob-
tained by selecting DM particles within cylinders of 1.5, 0.75,
and 0.5h~' Mpc radii. As the aperture a of the cylinder is de-
creased, more particles are selected as cluster members out of
the initial 500 distributed in the cylinder, but a higher fraction
of the selected members are actually located outside a sphere
of radius a. As a consequence, the results of the dynamical
analysis are similar for different apertures (compare the results
for an aperture of 0.54~! Mpc with those for an aperture of
1.5h7! Mpc, Id. Nos. 6 and 1, respectively, in Table 1).

In order to simulate the observational uncertainty in the de-
termination of a cluster centre, a random offset is added to
the position of the real cluster centre (see Sect. 3). The off-
set is randomly taken from a lognormal distribution with av-
erage of 40 kpc and dispersion of 50 kpc, modeled after the
observed distribution of uncertainties in the centre positions of
ENACS clusters (Adami et al. 1998b). We find that centering
errors of this size have essentially no effect on the accuracy of
mass estimation.

Velocity errors contribute to increase the estimate of the clus-
ter velocity dispersion. In order to simulate the observational er-
rors on galaxy redshifts, a random velocity offset is added to
the real DM particle velocity. The offset is randomly taken from
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Fig. 11. Same as Fig. 6 but for galaxies instead of DM particles. No dis-
tinction is made here between projections with and without detection of
substructures.

a Gaussian distribution with width of 70 or 210 kms~!. An error
of 70 kms~! is typical for observations of nearby clusters obser-
vations (see, e.g., Katgert et al. 1996), while an error three times
larger corresponds to the observational uncertainties of galaxy
redshifts in distant clusters (e.g. Demarco et al. 2005). As long
as the velocity dispersion estimate is corrected following the pre-
scriptions of Danese et al. (1980), the dynamical estimates are
not significantly affected by errors on the velocities of the tracer
particles. Note however that the 62 clusters used in our analysis
have a median line-of-sight velocity dispersion of 622 kms™!.
Galaxy velocity errors are likely to become more important for
mass estimates of low-velocity dispersion groups.

4.6. Galaxies

The limited number of simulated galaxies per cluster makes it
impossible to study in detail all kinds of different observational
effects, as it was done for the DM particles. But galaxies have the
advantage that early- and late-types can be distinguished, based
on their formation redshift z¢ (see Sect. 2). We start by consid-
ering all available galaxies within a cylinder of 1.5h~" Mpc ra-
dius. The results are shown in Table 1, Id. No. 7 and Fig. 11.
Dynamical estimates based on galaxies are significantly affected
by the presence of interlopers. About 1/4 of the selected clus-
ter members are in fact outside the sphere of 1.54~! Mpc ra-
dius. As a consequence, both r, , and M, overestimate the har-
monic mean radius and the mass, respectively, by about 40%. In
about 1/3 of the projections, the virial mass estimates are wrong
by a factor of two or greater. On the other hand, the o, and M,
estimates are (on average) almost correct (to within 5-6%).

In order to compare these results with those obtained us-
ing DM particles as tracers of the potential, we randomly select
within each cylinder of 1.54~! Mpc radius a number of DM par-
ticles identical to that of the galaxies in that same cylinder. In
this way we make sure that the effects of undersampling (see
Sect. 4.3) are the same for the samples of galaxies and DM par-
ticles. The results are given in Table 1, Id. No. 8. The differences
are very marginal.

When only early-type galaxies (i.e. those with zz > 1.25)
are selected, the results of the dynamical analysis are quite
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Fig.12. Same as Fig. 11 but only for galaxies with z; > 1.25.

different from the case in which all galaxies are selected (com-
pare Id. Nos. 9 and 7 in Table 1 respectively; see also Fig. 12).
In particular, the average fraction of interlopers is now reduced
to 18%, and the average value of M, is now almost identical to
the real mass value. On the other hand, the M, estimate is 20%
too low, as a consequence of a dynamical segregation effect (see
the discussion below). The number of clusters with a mass esti-
mate wrong by a factor of at least two is still high, about 1/3 of
the total, but this is expected because of the large scatter in the
mass estimates due to the small number of available tracers.

As before, we compare these results with those obtained by
selecting the same number of DM particles as early-type galax-
ies, within the cylinder of 1.5A~! Mpc radius. The results are
listed in Table 1, Id. No. 10, and are quite different from those
obtained using early-type galaxies, since, in particular, the frac-
tion of interlopers is higher, and M, significantly overestimates
the true mass.

In order to understand the differences found between the
mass estimates obtained using DM particles, all galaxies, and
early-type galaxies, we consider their relative distributions in full
phase-space. For this we build a stacked cluster, as in Sect. 2.
The 3d number density profiles of DM particles and galaxies in
the stacked cluster are shown in Fig. 13. Galaxies are clearly
less centrally concentrated than DM particles. This is confirmed
by a Rank-Sum (RS hereafter) statistical test that reject the null
hypothesis that the DM particles and the galaxies have the same
radial distribution with a high confidence level (c.1. in the follow-
ing), >0.999 (see also Nagai & Kravtsov 2005). Interestingly,
this is in agreement with the observations that show a decreasing
mass-to-light ratio as a function of clustercentric distance (e.g.
Biviano & Girardi 2003; Rines et al. 2004). On the other hand,
the distribution of the normalised velocities, |v] /oy, of galaxies
is not significantly different from that of DM particles (RS test
c.l. 0.829; see Fig. 14).

The spatial distribution of early-type galaxies is significantly
more concentrated than that of all galaxies (RS-test c.1. >0.999),
and marginally more concentrated than that of DM particles
(RS-test c.l. 0.939; see Fig. 13). The velocity distribution of
early-type galaxies is significantly different from those of all the
galaxies and the DM particles (RS-test c.l. >0.999; see Fig. 14).
The high significance of this difference is a consequence of
the large size of the data-sets, and does not reflect a large
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Fig.13. The 3d number density profiles of DM particles (solid line),
galaxies with zz > 1.25 (dots), and all galaxies (squared X’s) in the
stacked cluster.
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Fig. 14. The cumulative distributions of the 3-d velocities of DM parti-
cles (solid line), galaxies with z; > 1.25 (dashed line), and all galaxies
(dash-dotted line) in the stacked cluster.
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velocity bias: on average the modulus of the velocities of early-
type galaxies is 0.94 that of DM particles and 0.93 that of all
the galaxies. In real clusters, the different velocity distribution
of early- and late-type galaxies is a well established observa-
tional fact (Moss & Dickens 1977; Sodré et al. 1989). The factor
by which the velocity dispersion of early-type galaxies is lower
than the velocity dispersion of all the cluster galaxies is 0.93, on
average, for the ENACS clusters (as can be derived from the es-
timates given in Biviano et al. 1997), a value identical to the one
found here for simulated galaxies.

The different spatial distributions of all galaxies and DM par-
ticles does not seem to influence the results of the dynami-
cal analysis in projected phase-space. One would expect the
wider spatial distribution of galaxies to result in a larger r,,
and hence r, , estimate. However, the r, , estimate is dominated
by the presence of interlopers. Since the fractions of interlopers
among galaxies and among DM particles are similar, also the 7, ,
estimates are similar.

When only early-type galaxies are selected, the fraction of
interlopers decreases because the fraction of early-type galax-
ies outside clusters is low, 29%, much lower than the fraction
of early-type galaxies within clusters (see Sect. 2). As a conse-
quence, also the cluster r,, , estimate is closer to the real r, value,
than in the case of DM particles, although still ~20% too high.
The r, overestimate does not result in an overestimate of the
virial mass because o, underestimates the real o, by ~10%.
This underestimate is caused by the narrower velocity distribu-
tion of early-type galaxies relatively to DM particles.
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In conclusion, galaxies have a biased distribution relative
to DM particles. Considering all the cluster galaxies, they have
a wider spatial distribution than DM particles, but a similar ve-
locity distribution. Considering instead only “early-type” galax-
ies, these have both a narrower spatial distribution and a nar-
rower velocity distribution than DM particles. Differences in
spatial distributions have no effect on the dynamical mass es-
timates, since the estimate of the harmonic mean radius is
dominated by the influence of interlopers. Selecting early-type
galaxies helps improve the accuracy of the virial mass estimate
because fewer interlopers enter the sample. On the other hand,
the different velocity distribution of early-type galaxies with re-
spect to that of DM particles results in M, estimates that are too
small.

5. Discussion

We have used a sample of 62 galaxy clusters extracted from
a cosmological simulation, each with at least 10 galaxies within
the cluster virial radius, to study the reliability of cluster mass
estimates based on the distribution of their member galaxies.
Galaxies in the simulation have been typed “early” or “late”
based on the average formation redshift of their stellar popu-
lation. The projected phase-space distributions of both the early-
and the late-type galaxies of the simulation have been shown to
be similar to those observed in real galaxy clusters (see Sect. 2).

Two mass estimators have been considered in our analysis.
One is the classical virial theorem estimate (corrected for the
surface pressure term), and the other is an estimate based en-
tirely on the cluster velocity dispersion (M., see Sect. 3). By
application to the set of simulated clusters in full phase-space,
we have shown these estimators to be unbiased, and the clusters
to be virialized (on average) as expected for z ~ O clusters in
a ACDM cosmology.

In order to study how efficient these mass estimators are
when applied to observed clusters, we have analysed our set
of 62 simulated clusters in projection. Three orthogonal pro-
jections have been considered for each cluster. DM particles or
galaxies have been selected in cylinders of given aperture radius
and ~200A~! Mpc depth, in order to simulate the effect of inter-
lopers. Cluster members have then been selected with methods
commonly used in the recent literature (see Sect. 3). DM parti-
cles have been considered as tracers of the potential, instead of
galaxies, when we wanted to explore the effects of particular ob-
servational conditions with sufficiently good statistics. However,
the results of the dynamical analysis are very similar when us-
ing the same number of DM particles or galaxies, except when
galaxies of a given type are specifically selected. Hence we think
that our conclusions based on the analyses of clusters of DM par-
ticles should be applicable to the real world, when no distinction
is made between galaxies of different types.

Projection effects significantly affect the reliability of clus-
ter mass estimates through the inclusion of interlopers among
the samples of presumed cluster members (see Sect. 4.1). They
are responsible for large errors in the mass estimates of some
clusters, depending on the projection direction. However, de-
spite a few catastrophic cases, the virial mass estimates are,
on average, within 10% of the true values, if a sufficient
number of DM particles are used as tracers of the potential,
260. Nowadays, having a spectroscopic sample of 260 mem-
ber galaxies per cluster does not represent a challenging ob-
servational target, even for distant clusters (Demarco et al.
2005), thanks to the multiplexing capabilities of instruments like
VIMOS at the VLT (e.g. Czoske et al. 2002) and LRIS at Keck

(e.g. Goto et al. 2005). This was not the case for large spectro-
scopic surveys of galaxy clusters in the past (Katgert et al. 1996;
Carlberg et al. 1997b).

Subclustering and the presence of groups along the line-
of-sight to a cluster are responsible for the few catastrophic
cases of strong mass under- and overestimation. Using the sim-
ple DS-test for subclustering it is however possible to identify
the worst cases and eventually remove them from the sample
(see Sect. 4.2). Similar conclusions have already been reached
by vH97 on their simulated clusters, and by Bird (1995) obser-
vationally. Note however that it becomes increasingly difficult
to identify clusters whose masses are overestimated because of
subclustering, when the size of the data-sample is decreased.
Even with ~100 tracers of the gravitational potential per clus-
ter, 3/4 of the cases of significant subclustering previously found
using ~500 tracers can no longer be identified.

The (positive) bias of virial mass estimates strongly in-
creases as the number of tracers of the potential is decreased
below ~60 (see Sect. 4.3). Since cluster velocity dispersions are
always slightly underestimated (by ~5%) the bias has to do with
an overestimate of the harmonic mean radius. This in turn has
its origin in the presence of interlopers among the particles iden-
tified as members. As already noticed by C97, these interlopers
are characterized by a kinematic component of their velocities
that cancels the difference in the cosmological components of
the particle and cluster velocities, i.e., these DM particles are in-
falling into the cluster. Since they are outside the cluster, their
spatial distribution is not as centrally concentrated as that of real
cluster member particles, hence they contribute to increase the
harmonic mean radius estimate. Diaferio et al. (1999) came to
essentially the same conclusions.

In order to reduce the mass discrepancies when $60 mem-
bers per clusters are available, one could take advantage of the
fact that the M, estimates become less biased as the size of the
sample is decreased, i.e., if the sampling of a cluster is poor, it is
better to use M, rather than the virial mass. This is also the case
when there is considerable uncertainty in the completeness of
the selected sample of tracers (see Sect. 4.4). Sampling the same
number of tracers within denser cluster regions (i.e. reducing the
aperture size of the observational set-up) does not significantly
improve the virial mass estimate, but could be observationally
more convenient.

When using galaxies instead of DM particles as tracers, it
is possible to draw subsamples selected on the basis of the
galaxy properties. When only early-type galaxies are selected,
the bias in the virial mass estimate is strongly suppressed, even
if the average number of cluster members is very small. A sim-
ilar conclusion was reached observationally by Biviano et al.
(1997), who suggested to exclude emission-line galaxies from
the sample of objects to be used in a cluster virial mass deter-
mination (see also Sanchis et al. 2004). The improvement in
the virial mass estimate obtained using only early-type galax-
ies depends on the fact that the fraction of early-type galaxies
is higher among cluster members than in the field, the so-called
morphology-density relation (Dressler 1980) which is evident
also in our simulated clusters. Hence, the interloper contamina-
tion is substantially reduced, compared to the case in which all
galaxies (or DM particles) are selected.

A comparison of our results with previous works is not
straightforward, because of several differences in the analy-
ses. Some of the previous works did not use the virial mass
estimates at the estimated virial radius, but only the o es-
timate (Frenk et al. 1990; vH97), or isothermal mass esti-
mates derived from o, (C97; RB99), without using the spatial
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distribution of cluster members (i.e. the harmonic mean radius
estimate). The M, estimate used here differs from the isother-
mal mass estimates used in C97 and RB99 because their masses
are derived within fixed linear radii, and hence have a o2 depen-
dence, while M, is the mass within ry, and hence has a 0"3, de-
pendence. Both Sanchis et al. (2004) and Lokas et al. (2005)
derived the cluster masses from the application of the isotropic
Jeans equation. Since this method requires a sufficient number of
tracers, Sanchis et al. (2004) and Lokas et al. (2005) only con-
sidered the case where 400, respectively 300, DM particles are
available in each simulated cluster.

Most previous analyses were based on the classical 3-o clip-
ping method of Yahil & Vidal (1977), while the algorithm for
the identification of interlopers used in this work is more so-
phisticated. However, the methods used by Sanchis et al. (2004)
and Lokas et al. (2005) have several similarities with the one
used in this paper. Moreover, vH97 did consider the method of
den Hartog & Katgert (1996), which is part of the technique
used in this paper (see Sect. 3); vH97 indeed concluded that
this method performs better than Yahil & Vidal’s, particularly
in the presence of substructures. We do not expect to see a rad-
ical change in the average performance of the virial mass esti-
mator as a consequence of using a different interloper rejection
technique. First of all, it has been shown by several authors that
different interloper rejection techniques generally lead to similar
cluster mass estimates, when the number of sampled galaxies is
sufficiently large (e.g. Girardi et al. 1993; Adami et al. 1998c;
Biviano & Girardi 2003; Pimbblet et al. 2005). Since a cluster
velocity dispersion decreases with radius (see Fig. 7; see also
den Hartog & Katgert 1996; Biviano & Katgert 2004) an in-
terloper rejection method based on galaxy velocities only (like,
e.g., Yahil & Vidal’s) will probably reject more cluster members
near the cluster centre, while accepting more interlopers at the
cluster edge, relative to a method that takes into account galaxy
velocities and positions. However, the radial gradient of a cluster
velocity dispersion is not strong, and the effect of neglecting the
radial variation of a cluster velocity dispersion on the estimate
of global cluster quantities, like its mass and velocity dispersion,
is likely to be negligible, unless there is substantial substructure.
Substructure is definitely identified much more efficiently by us-
ing the combined spatial and velocity information than with ve-
locity information alone (see, e.g., Girardi & Biviano 2002, and
references therein). A detailed comparison of various methods of
interloper rejection is however deferred to a forthcoming paper
(Girardi et al., in preparation).

Both Sanchis et al. (2004) and Lokas et al. (2005) concluded
that the virial masses of clusters can be reliably estimated us-
ing several hundreds of tracers of the gravitational potential, and
we substantially agree on this. The method they used to estimate
cluster masses are however different from the methods we con-
sidered in this paper. Both Sanchis et al. (2004) and Lokas et al.
(2005, see their Fig. 2) found that their method yields a mild sys-
tematic underestimate of the cluster masses. On the other hand,
for similar numbers of tracers, our methods provide mass esti-
mates within ~+10% of the true values. Their method is how-
ever aimed at deriving not only cluster masses, but also internal
velocity anisotropies of the tracers population.

The role of interlopers in the overestimate of the harmonic
mean radius was emphasized by C97 and Diaferio et al. (1999),
and is in agreement with our findings. The systematic underes-
timate of o, by den Hartog & Katgert’s (1996) method was al-
ready noted by vH97, but the effect was claimed to be larger than
we see here, ~100 kms~! vs. our estimate of only <50 km g1
on average. C97 and vH97 suggested that the mass estimate bias

decreases with the mass of the system, and increases with the
aperture used to select the tracers. In our analysis we find that
these trends are very marginal, if they are present at all. Perhaps
this is due to our use of a more efficient interloper rejection al-
gorithm.

The issue of a velocity bias of galaxies relatively to DM has
been raised several times, with some authors claiming it to be
rather strong (Frenk et al. 1996), and others rather mild (Berlind
et al. 2003; Faltenbacher et al. 2005). We find that the result de-
pends on which galaxies are selected, since the bias is negligible
when all galaxies are considered, but significant, although small
(0.94, on average), when only early-type galaxies are considered
(see Sect. 4.6). The dependence of the velocity bias on galaxy
mass will be explored in a future paper.

6. Conclusions

Using a set of 62 clusters extracted from a ACDM cosmologi-
cal simulation, we investigated the behaviour of mass estimators
based on the projected phase-space of galaxies. Several obser-
vational effects were considered, like the presence of interlopers
and subclusters, the sample size, the size of the observational
aperture, incompleteness and the selection of different tracers
of the gravitational potential (early-type galaxies, all galaxies,
DM particles).

Our results show that the virial mass estimator is almost un-
biased for samples of 260 tracers. The average bias is 1.10, with
a scatter of 0.30 (0.40) for samples of 400 (60) cluster mem-
bers. For smaller data-sets, the bias of the virial mass estima-
tor increases with decreasing sample sizes, reaching a maximum
of ~1.5-1.6 when the number of cluster members is decreased
to ~15-20. The virial mass estimates can be improved by re-
moving clusters with significant evidence of subclustering, or
by selecting early-type galaxies as tracers. The M, estimator,
based entirely on the cluster velocity dispersion, has a bias of
~(.90 for sample sizes *60 members, and is essentially unbiased
for smaller data-sets. The scatter of the M, estimator increases
from ~0.30 for samples of 260 cluster members, to ~0.60 for
samples of only 10 cluster members. Since early-type galaxies
have on average a lower velocity dispersion than DM particles,
the M, estimator based on early-type galaxies only is biased low.

Our analysis therefore suggests that the distribution of galax-
ies in projected phase-space can be used to provide reliable esti-
mates of a cluster mass. In order to optimize the mass estimate,
early-type galaxies should be preferentially used as tracers, if
a virial mass estimate is required. A simpler, more robust and
less biased estimate, especially for small data-sets, can however
be obtained from an estimate of the velocity dispersion of all
galaxies identified as cluster members. However, it is not within
the scope of this paper to set up an optimized observational strat-
egy for the determination of cluster masses. The interloper rejec-
tion technique adopted in our analysis has been proven to work
efficiently, but perhaps there is room for improvement. We will
compare different interloper rejection techniques in a forthcom-
ing paper (Girardi et al., in preparation). Further progress is to
be expected by increasing the resolution of the simulations to
check the stability of the phase-space sampling of galaxies, and
by a more realistic galaxy classification, e.g. based on colours.
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