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Abstract. We present a one-equation subgrid scale model that evolves the turbulence energy corresponding to unresolved
velocity fluctuations in large eddy simulations. The model is derived in the context of the Germano consistent decomposition of
the hydrodynamical equations. The eddy-viscosity closurefor the rate of energy transfer from resolved toward subgridscales
is localised by means of a dynamical procedure for the computation of the closure parameter. Therefore, the subgrid scale
model applies to arbitrary flow geometry and evolution. For the treatment of microscopic viscous dissipation a semi-statistical
approach is used, and the gradient-diffusion hypothesis is adopted for turbulent transport.A priori tests of the localised eddy-
viscosity closure and the gradient-diffusion closure are made by analysing data from direct numerical simulations. As ana
posteriori testing case, the large eddy simulation of thermonuclear combustion in forced isotropic turbulence is discussed.
We intend the formulation of the subgrid scale model in this paper as a basis for more advanced applications in numerical
simulations of complex astrophysical phenomena involvingturbulence.
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1. Introduction

In the last decade, the significance of turbulence in variousas-
trophysical phenomena from stellar to cosmological scaleshas
been recognised. In retrospect, this is hardly surprising,since
virtually all the matter in the Universe is fluid, whereas thesolid
state is encountered as a rare exception. Moreover, both thein-
tegral lengthL and the characteristic velocityV in astrophysical
systems are quite large compared to terrestial standards, while
the viscosityν is comparable to what is found for liquids or
gas on the Earth. For this reason, the dimensionlessReynolds
number

Re= LV/ν (1)

becomes very large. A typical figure is Re∼ 1014 for turbulent
stellar convection.

From the computational point of view, the number of de-
grees of freedom in a fluid dynamical system is given by the
relation (see Landau & Lifshitz 1987)

N ∼ (L/ηK)3 ∼ Re9/4. (2)

The length scaleηK is called theKolmogorov scaleand speci-
fies the smallest dynamically relevant length scale. Due to the
restriction of the CFL time step for compressible flow, the total
number of operations required to compute the evolution over
one sound crossing time is of the order

Ncr ∼ N4/3 ∼ Re3. (3)

Hence,Ncr ∼ 1042 operations would be required to solve the
problem of stellar convection in a direct numerical simulation.

The relevance of the Landau criterion 2 has been ques-
tioned recently on the grounds of theintermittencyof turbu-
lence (Kritsuk et al. 2005). In fact, the number of degrees of
freedomN refers to the ensemble of turbulent flow realisa-
tions. At any particular instant of time, however, turbulent dy-
namics is concentrated in regions of fractal dimensionD < 3.
Topologically, these regions can be either vortex filamentsin
subsonic flow or shocklets in the case of supersonic turbulence.
The fractal dimension of vortex filaments isD = 1, whereas
D = 2 for shocklets. According to theβ model (see Frisch
1995, Sect. 8.5), the effective number of degrees of freedom is
then given by

Neff ∼ Re3D/(D+1). (4)

If an adaptive numerical scheme with maximal efficiency in
tracking the intermittent turbulent regions were applied,the to-
tal computational cost could be lowered substantially in com-
parison to a direct numerical simulation on a static grid. For
example, it would appear feasible to treat subsonic turbulence
up to a Reynolds number of 1010 with an anelastic adaptive
code on high-end platforms in the near future. On account of
the limited efficiency of adaptive schemes, however, the ac-
tual constraint might be lower. Apart from that, gravity, mag-
netohydrodynamic effects and, possibly, reaction networks in-
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crease the work load dramatically in astrophysical applications.
Moreover, we haveNcr ∼ NeffN1/3 ∼ Re11/4 for the partic-
ularly interesting case of supersonic turbulence. As a conse-
quence, even with sophisticated adaptive schemes, it remains
intractable to resolve completely the turbulent fluid dynamics
encountered in astrophysics.

In large eddy simulations (LES), on the other hand, only
a limited number of degrees of freedom, which correspond
to the largest scales of the system, is treated explicitly. For
the turbulent dynamics on smaller scales, a so-calledsubgrid
scale modelis utilised. Among astrophysicists, the most of-
ten used subgrid scale (SGS) model isnumerical dissipation.
This means that all fluctuations on length scales smaller than
the resolution∆ of the numerical grid are smoothed out and
it is assumed that the dynamics on length scales larger than∆

are more or less independent of the smaller scales. This point
of view is motivated by the second similarity hypothesis of
Kolmogorov (1941), which holds that the actual mechanism
of dissipation is insignificant, provided that there is sufficient
scale separation. In other words, on length scalesl >∼ ∆, it is
unimportant whether energy dissipation is caused by the mi-
croscopic viscosityν at the length scaleηK or by numerical
effects at the cutoff length∆. The notion of numerical dissi-
pation has been exhaustively investigated for the piece-wise
parabolic method (PPM) proposed by Colella & Woodward
(1984), which is one of the most popular finite-volume schemes
applied in astrophysics. At least for statistically stationary
isotropic turbulence, the numerical dissipation of the PPMap-
pears to work well as an implicit SGS model (Sytine et al.
2000; Schmidt et al. 2005b).

For the treatment of transient or inhomogeneous turbulent
flow, however, an explicit SGS model becomes mandatory. One
of the most prominent examples in contemporary theoretical
astrophysics are numerical simulations of turbulent combus-
tion in type Ia supernovae (Hillebrandt & Niemeyer 2000). In
this case, the velocity scale associated with SGS turbulence
determines the effective propagation speed of flame fronts
(Niemeyer & Hillebrandt 1995). Part II of this paper will be
dedicated to the problem of type Ia supernova simulations.
The exchange of energy between resolved and subgrid scales
is expected to become dynamically significant in the case of
highly intermittent turbulence, for instance, in collapsing tur-
bulent gas clouds in the interstellar medium (Larson 2003;
Mac Low & Klessen 2004).

In this paper (paper I), we present a general framework for
the formulation of SGS models based upon thefiltering ap-
proachof Germano (1992). The mathematical operation of fil-
tering smoothes the flow on length scales smaller than the pre-
scribed numerical resolution∆. Consequently, a scale separa-
tion is introduced, where the smoothed density, velocity, etc.
are identified with the resolved quantities computed in LES.We
have extended this formalism to compressible flows, using the
Reynolds stress model proposed by Canuto (1997) as a guide-
line. Next we discuss the one-equation SGS turbulence energy
model (Schumann 1975; Sagaut 2001). For the energy trans-
fer across the numerical cutoff, we introduce alocalisededdy-
viscosity closure which makes use of the dynamical procedures
introduced by Germano et al. (1991). Hence, the SGS model

becomes independent ofa priori structural assumptions, in par-
ticular, whether the resolved flow is homogeneous or stationary.
However, it remains a necessary condition that turbulent re-
gions become locally isotropic on length scales comparableto
the numerical cutoff length∆, because the linear eddy-viscosity
closure presumes alignment between the turbulence stress and
the rate-of-strain tensors. In the future, multi-parameter clo-
sures for the turbulent energy transfer which are not subject
to this restriction might be adapted. For the still more compli-
cated non-local transport of kinetic energy on subgrid scales,
we use a simple gradient-diffusion closure. In contrast to what
has been suggested in the literature (Pope 2000, Sect. 10.3),
we find that the optimal diffusivity parameter is larger by about
one order of magnitude than the SGS viscosity parameter, i.e.
the turbulent kinetic Prandtl number is large compared to unity.
Both the localised eddy-viscosity and the statistical gradient-
diffusion closure, respectively, were tested by means of data
from simulations of forced compressible turbulence. As a case
study, we present the LES of turbulent combustion in a periodic
box. Although gravitational effects on subgrid scales, in prin-
ciple, can be incorporated into the model as well, in paper I we
restrict the detailed formulation and application to the case of
negligible gravity. However, a simple closure which accounts
for unresolved buoyancy effects in simulations of thermonu-
clear supernovae will be discussed in paper II.

2. Decomposition of the hydrodynamical
equations

Large eddy simulations pose the problem of scale separation.
The numerically computed flow can conceptually be defined
by a set of smoothed fields which correspond to the low-pass
filtered physical flow realisation, wherekc = π/∆ is the cutoff
wavenumber for a numerical grid of resolution∆. A low-pass
filter is a convolution operator which is defined by

q(x, t) = 〈∞q〉G ≡
∫

d3x′G(x − x′, t)
∞
q(x′, t) (5)

for a particular kernelG(x − x′, t). The Fourier transform, the
so-called transfer function̂G(k, t), drops to zero for wavenum-
bersk >∼ kc. Consequently, only modes of wavenumbers less
thankc contribute significantly to the filtered fieldq(x, t). The
exact, unfiltered variable

∞
q(x, t) corresponds to the limitkc →

∞. The filter operation smoothes out the fluctuationsq′ =
∞
q−q

on length scalesl smaller than∆. Albeit being mathematically
determined by some dynamical equation,

∞
q(x, t) is generally

not computable and therefore will be referred to as anideal
quantity.

The dynamical equation for the ideal velocity field is the
generalisation of the Navier-Stokes equation for compressible
fluids (see Landau & Lifshitz 1987):

∞
D
Dt
∞
u =

∞
f . (6)

The differential operator on the left hand side is theLagrangian
time derivate

∞
D
Dt
=
∂

∂t
+
∞
u · ∇, (7)
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and the effective force density acting upon the fluid is defined
by

∞
F =

∞
ρ
∞
f = −∇

∞
P+ ∇ · ∞σ +

∞
F (ext). (8)

The first term on the right hand side is the pressure gradient,the
second term accounts for viscous dissipation and the third term
is the total external force per unit volume which encompasses
gravitational and, possibly, stirring forces:

∞
F (ext) =

∞
ρ
∞
g +

∞
F (s). (9)

Theviscous dissipation tensoris defined by

∞
σi j = 2

∞
ρ
∞
ν
∞
S∗i j = 2

∞
ρ
∞
ν

(
∞
Si j −

1
3

∞
dδi j

)

, (10)

whereν is the microscopic viscosity of the fluid,

∞
Si j =

1
2





∂
∞
v i

∂x j
+
∂
∞
v j

∂xi




, (11)

are the components of therate-of-strain tensorand
∞
d = ∂i

∞
v i is

the divergence of the ideal flow.
Equation (6) can be written in a conservative form as

∂

∂t
∞
ρ
∞
u + ∇ · ∞ρ∞u ⊗ ∞u =

∞
F. (12)

The equality of the left hand side in both equations follows
from the continuity equation which expresses the conservation
of mass

∂

∂t
∞
ρ + ∇ · ∞ρ∞u = 0 (13)

The goal of the filtering approach is the formulation of dy-
namical equations for smoothed quantities which are amenable
to the numerical computation. We define theFavre or mass-
weighted filtered velocity field

u(x, t) =
〈∞ρ∞u〉G
〈∞ρ〉G

=
1
ρ(x, t)

∫

d3x′G(|x − x′|)∞ρ(x′, t)
∞
u(x′, t),

(14)

whereρ = 〈∞ρ〉G is the filtered mass density. For a homoge-
neous and time-independent kernel, the filter operation com-
mutes with the Lagrangian derivative. Favre filtering the dy-
namical equation (12), one obtains

∂

∂t
ρu + ∇ · 〈∞ρ∞u ⊗ ∞u〉G = F, (15)

whereF = 〈
∞
F〉G. The filtered equation can be cast into a form

analogous to equation (6),

ρ
D
Dt
u = F + ∇ · τ(∞ρ∞u ,∞u), (16)

by virtue of thegeneralised turbulence stress tensor

τ(
∞
ρ
∞
u ,
∞
u) = −〈∞ρ∞u ⊗ ∞u〉G + ρu ⊗ u (17)

which Germano (1992) introduced without mass-weighing for
incompressible turbulence. We will useτi j = τ(

∞
ρ
∞
v i ,
∞
v j) as a

shorthand notation for the components of the turbulence stress
tensor. The term∂ jτi j in the momentum equation stems from
the non-linear advection term in the Lagrangian time derivate
and can be interpreted as the stress exerted by turbulent velocity
fluctuations smoothed out by the filter. In the following, we
will encounter a variety ofτ-terms. For this reason, we define
τ(·, ·) as a generic bilinear form which maps any pair of ideal
fields to a mass-weighted smoothed field which is called the
generalised second moment. The resulting field can be scalar,
vectorial or tensorial. Of course, the notion of a generalised
moment applies to moments of higher order as well.

A dynamical equation for the specific kinetic energy,
∞
k =

1
2 |
∞
u |2, is readily obtained from the contraction of equation (6)

with the ideal velocity field
∞
u :

∞
ρ

D
Dt

∞
k =

∞
u ·
∞
F. (18)

The mass-weighted filtered kinetic energyk(x, t) is defined by

k(x, t) =
〈∞ρ
∞
k〉G
〈∞ρ〉G

. (19)

Filtering equation (18) results in the following equation for
k(x, t):

ρ
D
Dt

k− ∇ · F (kin) = u · F + ∇ ·
[

u · τ(∞ρ∞u ,∞u)
]

(20)

In addition to the turbulence stress term on the right hand side,
there is a non-local transport term which is given by the diver-
gence of the turbulent kinetic fluxF (kin). The flux is defined by
the contraction of the completely symmetric generalised third-
order momentτ(

∞
ρ
∞
u ,
∞
u ,
∞
u). In component notation, we have

2F (kin)
i = τi j j ≡ τ(

∞
ρ
∞
vi ,
∞
v j ,
∞
v j)

= −〈∞ρ∞vi
∞
v j
∞
v j〉G + 〈

∞
ρ
∞
vi
∞
v j〉Gv j − 2τi j v j

(21)

Since the filtered kinetic energyk is a second-order moment
of the ideal velocity field, contributions from velocity fluctua-
tions on all scales are included. For this reason,k differs from
the specific kinetic energy of the smoothed flow,1

2 |u|
2, and

kturb = k− 1
2
|u|2 = −1

2
τii (22)

can be identified with thegeneralised turbulence energyasso-
ciated with scales smaller than the characteristic length of the
filter 〈 〉G. The dynamical equation forkturb is obtained by sub-
tracting

ρ
D
Dt

(

1
2
|u|2

)

= u ·
[

F + ∇ · τ(∞ρ∞u ,∞u)
]

. (23)

from equation (20). The result, in component notation, reads

ρ
D
Dt

kturb − ∂iF (kin)
i = τ(

∞
ρ
∞
v i ,
∞
v j)Si j − τ(

∞
v i ,
∞
F i), (24)
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whereτ(
∞
v i ,
∞
F i) is the contraction of the tensor

τ(
∞
u ,
∞
F) = −〈∞u ⊗

∞
F〉G + u ⊗ F. (25)

In order to put equation (24) into a form which is more ad-
equate for modelling purposes, flux terms are split off on the
right hand side. Let us first substitute the definition of the ef-
fective force (8):

τ(
∞
v i ,
∞
F i) = −τ(

∞
v i , ∂i

∞
P) + τ(

∞
v i , ∂ j

∞
σi j ) + τ(

∞
v i ,
∞
F (ext)). (26)

The three resulting generalised moments respectively corre-
spond to pressure, viscous and external forces. Because stir-
ring forces usually supply energy on the integral lengthL of
the flow only, it follows thatτ(vi , F

(s)
i ) is negligibly small for

∆ ≪ L. The first and the second term on the right hand side of
equation (26) can be split as follows:

−τ(∞v i , ∂i

∞
P) = −∂iτ(

∞
v i ,
∞
P) + τ(

∞
d,
∞
P), (27)

τ(
∞
v i , ∂ j

∞
σi j ) = ∂ jτ(

∞
v i ,
∞
σi j ) − τ(

∞
Si j ,

∞
σi j ). (28)

The new τ-terms on the right hand side are, respectively,
the pressure-dilatationand the rate of viscous dissipation.
Substituting the expression for the viscous dissipation ten-
sor (10), it follows that

τ(
∞
Si j ,

∞
σi j ) = −〈

∞
ρ
∞
ν|
∞
S∗|2〉G − 2〈∞ρ∞ν

∞
S∗i j 〉GSi j . (29)

The norm|
∞
S∗| is defined by the total contraction of the trace-

free part of the rate of strain tensor:

|
∞
S∗|2 = 2

∞
S∗i j
∞
S∗i j = |

∞
S|2 − 2

3

∞
d2. (30)

The norm of the rate-of-strain tensor is a probe of the velocity
fluctuations on the smallest dynamical length scales which are
of the order of the Kolmogorov scaleηK . We shall assume that
the characteristic length of the filter is much greater than the
Kolmogorov scale. In this case, the rate of strain of the filtered
velocity field is much less than the rate of strain of the ideal

velocity field, i.e.|
∞
S∗|2 <∼ |S∗|2. Consequently, the first term on

the right hand side of equation (29) dominates the second term,
and we can set

τ(
∞
Si j ,

∞
σi j ) ≃ −〈ν

∞
ρ|
∞
S∗|2〉G. (31)

Summarising, equation (24) can be written in the form

ρ
D
Dt

kturb −D = Γ + Σ − ρ(λ + ǫ), (32)

where the source contributions on the right hand side are

Γ = 〈∞ρ,∞v i
∞
g i〉G − ρvigi , (33)

Σ = τi j Si j , (34)

ρλ = −〈
∞
d
∞
P〉G + dP, (35)

ρǫ = 〈∞ν∞ρ|
∞
S∗|2〉G, (36)

and the transport termD is given by

D =
∂

∂xi

[

1
2
τi j j + µi + 〈

∞
σi j
∞
v j〉G

]

. (37)

The generalised moment

µ = −〈∞u
∞
P〉G + uP. (38)

accounts for the transport of turbulence energy due to pressure
fluctuations.

For the internal energy, the filtered dynamical equation is

ρ
D
Dt

eint−∇ ·
[

F
(cond)+ τ(

∞
ρ
∞
u ,
∞
eint)

]

= ρχ∇T + Q− 〈
∞
P
∞
d〉G − ρǫ.

(39)

The source termQ accounts for heat generation by chemical or
nuclear reactions. The transport of heat due to turbulent tem-
perature fluctuations gives rise to thegeneralised conductive
flux,

F
(cond)= −τ(∞ρ∞χ,∇

∞
T) = 〈∞ρ∞χ

∞
T〉G − ρχ∇T, (40)

for fluid of thermal conductivity
∞
χ. The additional transport

term on the left hand of equation (39) side arises from the trans-
port of heat by turbulent advection. In the case of buoyancy-
driven turbulence, this transport mechanism is known as con-
vection. Thegeneralised convective fluxis defined by

F
(conv) = τ(

∞
ρ
∞
u ,
∞
h) = τ(

∞
ρ
∞
u ,
∞
eint) + µ, (41)

whereh = eint + P/ρ is the specific enthalpy.
Adding the budgets of the specific kinetic energy1

2 |u|
2 and

internal energyeint, we obtain the total energy per unit mass
on length scalesl >∼ ∆, i.e. etot = eint +

1
2 |u|2. The dynamical

equation governing the evolution ofetot is

ρ
D
Dt

etot−∇ ·
[

F
(cond)+ F (conv)− vP

]

= ρχ∇T + Q+ ρ(λ + ǫ)

+ u ·
[

g + f (s) + ∇ · τ(∞ρ∞u ,∞u)
]

.

(42)

This conservation law in combination with equation (32) ex-
tends theGermano consistent decompositionto compressible
turbulence. The sum of internal energy and kinetic energy on
all scales isetot+ kturb = eint + k. Comparing equations (32) and
(42), one can see thatρ(λ + ǫ) accounts for the dissipation of
turbulence energy into internal energy by compression effects
and viscous dissipation, respectively. The turbulence produc-
tion termΣ is related to the energy transfer through the turbu-
lence cascade across the characteristic length of the filter. The
injection of energy due to buoyancy and the action of stirring
forces on length scales larger than∆ is given byu · [g + f (s)],
whereas the interaction of gravitational potential energyfluc-
tuations and turbulence on length scales smaller than∆ is ac-
counted for by the termΓ.

From the discussion in this Section, it should become clear
that the presumed scale separation in LES is essentially based
upon the disentanglement of a variety of dynamical effects.
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This task is considerably complicated by the non-linear inter-
actions across the cutoff scale, which become manifest in the
various generalised moments occurring in the equations (20),
(32), (39) and (42). Hence, one faces the problem of finding
closuresfor the generalised moments in the decomposed dy-
namical equations.

In the simplest of all cases, a closure is a sufficiently con-
vincing argument for neglecting a certain term. This kind of
closure is applied in many cases. In the proper sense, a clo-
sure is a more or less tentative approximation which is made on
grounds of heuristic physical arguments. Two major categories
of closures can be distinguished: An algebraic closure is some
function of filtered quantities only. Usually, algebraic closures
contain at least one free parameter. Depending on whether this
parameter is a constant or varies in space and time, the clo-
sure is either statistical or localised. On the other hand, dy-
namical closures determine generalised moments from addi-
tional dynamical equations. However, these equations, in turn,
entail closures for higher-order generalised moments. This is
the problem of the infinite hierarchy of equations for filtered
quantities. Inevitably, the hierarchy must be truncated atsome
point with the help of algebraic closures.

3. The subgrid scale turbulence energy model

In LES, numerical solutions for the filtered quantitiesρ, P, T,
u and etot have to be computed from the continuity equation
for ρ, the momentum equation (16), the energy conservation
law (42) and the equation of state. The filter operation naturally
introduces a cutoffwhich is related to the numerical resolution.
Since the filtering in LES is not necessarily explicit but some-
times inherent to the numerical scheme, we will subsequently
use the generic notation〈 〉eff . For example,

u(x, t) =
〈∞ρ∞u(x, t)〉eff
〈∞ρ〉eff

, (43)

is the mass-weighted velocity field which is to be computed nu-
merically. For finite precision, the numerical solution actually
corresponds to a whole ensemble of exact flow realisations. In
this regard, one can think of a reduction of the number of de-
grees of freedom due to filtering.

The length scales smaller than the characteristic length∆eff

of the effective filter are thesubgrid scales(SGS). The scales
l >∼ ∆eff , on the other hand, are numerically resolved. A com-
plete set of closures for the generalised moments in the dy-
namical equations constitutes thesubgrid scale model. A gen-
eral SGS model which includes dynamical equations for the
moments of second and third order was formulated by Canuto
(1994). Unfortunately, the computational cost of solving the
whole set of dynamical equations for the generalised moments
is considerable. Moreover, the problem of stability appears to
be non-trivial.

The SGS model which will be discussed in the following
involves the solution of the dynamical equation for the subgrid
scale turbulence energy only. The definition of the density of
SGS turbulence energy is as follows:

Ksgs≡
1
2
ρq2

sgs= −
1
2
τii =

1
2

[

〈∞ρ|∞u |2〉eff − ρ|u|2
]

. (44)

The magnitude of SGS velocity fluctuations is given byqsgs.
The equation governing the evolution of the specific turbulence
energyksgs = Ksgs/ρ is just equation (32) with the filter〈 〉eff .
For the various second-order moments in this equation we will
invoke standard algebraic closures. Hence, the implementation
of the SGS model requires the solution of only one additional
dynamical equation. The inherent limitations of the simpleclo-
sures are in part compensated by localisation. Thereby, theSGS
model becomes basically independent ofa priori model pa-
rameters which presume certain flow properties such as homo-
geneity. In essence, the SGS model which will be formulated
is robust and particularly well suited for complex flow geome-
tries and transients, although requiring relatively little compu-
tational resources.

There are two different sources of SGS turbulence produc-
tion. The first one is the SGS gravity termΓsgs (33) which ac-
counts for the conversion of potential into kinetic energy and
vice versa due to correlations between SGS fluctuations of the
velocity and gravity. A putative closure for SGS buoyancy in
reactive flows will be presented in paper II. The other produc-
tion term is the rate of energy transferΣsgs = τi j Si j across
the length scale∆eff due to non-linear turbulent interactions.
In general, energy transfer is the primary source of SGS tur-
bulence. A common closure is based on theeddy-viscosity hy-
pothesisfor the the trace-free part of the SGS turbulence stress
tensor (cf. Pope 2000, Sect. 10.1.):

τ∗i j ⊜ 2ρνsgsS
∗
i j = 2ρνsgs

(

Si j −
1
3

dδi j

)

, (45)

where

τ∗i j = τi j −
1
3
τiiδi j = τi j +

2
3

Ksgsδi j . (46)

This closure is formulated analogously to the viscous stress
tensor in a Newtonian fluid. The eddy viscosityνsgs is assumed
to be proportional to the product of the characteristic length
∆eff of the numerical scheme and the characteristic velocity of
SGS turbulence (cf. Sagaut 2001, Sect. 4.3, and Pope 2000,
Sect. 13.6.3), i. e.,

νsgs ⊜ Cν∆effk
1/2
sgs = ℓνqsgs. (47)

The length scaleℓν = Cν∆eff/
√

2 is thus associated with SGS
turbulence production.

Among the dissipation terms, the rate of viscous dissipa-
tion ǫsgs defined in equation (36) dominates in subsonic turbu-
lent flows. Assuming a Kolmogorov spectrum, the mean SGS
turbulence energy corresponding to a sharp spectral cut-off can
be related to the mean rate of dissipation:

〈ksgs〉 =
∫

π/∆

∞
E(k)dk =

3
2

C〈ǫsgs〉2/3
(
π

∆

)−2/3
. (48)

Hence, assuming thatC ≈ 1.65 (Yeung & Zhou 1997),

〈ǫsgs〉 = Σ
(

3C
2

)−3/2 〈ksgs〉3/2

∆
≈ 0.81

〈ksgs〉3/2

∆
. (49)

Conjecturing that the above relation also holds locally (cf. Pope
2000, Sect. 13.6.3), we have

ǫsgs ⊜ Cǫ
k3/2

sgs

∆eff
=

q3
sgs

ℓǫ
, (50)
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whereℓǫ = 2
√

2∆eff/Cǫ andCǫ ∼ 1. Basically, equation (50)
implies that SGS eddies of kinetic energy∼ q2

sgsare dissipated
on a time scale∼ ℓǫ/qsgs.

Pressure dilatation poses severe difficulties because one
needs to find the correlations between pressure fluctuationsand
compression or rarefaction of the fluid. The first-order hypoth-
esis is that kinetic energy is dissipated if the fluid is contracting
(d < 0). In the opposite case (d > 0), internal energy is con-
verted into mechanical energy which produces turbulence. This
line of reasoning leads to the closure proposed by Deardorff

(1973):
λsgs⊜ Cλksgsd. (51)

Unfortunately, numerical tests reveal that this closure isex-
tremely crude. Since compressibility effects tend to diminish
toward smaller length scales, the above closure will do for the
LES of subsonic turbulence. In the case of supersonic turbu-
lence, however,λsgsbecomes more significant. Alternative clo-
sures for pressure-dilatation are described in Canuto (1997).

A customary algebraic closure for the transport term in
equation (32) is thegradient-diffusion hypothesis(cf. Sagaut
2001, Sect. 4.3)1

Dsgs⊜
∂

∂xk
ρCκ∆effk

1/2
sgs

∂ksgs

∂xk
=
∂

∂xk
ρℓκq

2
sgs

∂qsgs

∂xk
. (52)

The characteristic length scale of diffusion is defined byℓκ =
Cκ∆eff/

√
2 and the SGS diffusivity is given byκsgs = ℓκqsgs.

The notion of a turbulent diffusivity of kinetic energy stems
from the analogy to the thermal diffusion of internal energy on
microscopic scales. This analogy also suggests the definition of
a kinetic Prandtl number,

Prkin =
νsgs

κsgs
=

Cν
Cκ
. (53)

Summarising, if gravitational effects on subgrid scales are
negligible, we obtain the following dynamical equation forthe
SGS turbulence energy:

D
Dt

ksgs−
1
ρ
∇ ·

(

ρCκ∆effk
1/2
sgs∇ksgs

)

= Cν∆effk
1/2
sgs|S∗|2 −

(

2
3
+Cλ

)

ksgsd−Cǫ
k3/2

sgs

∆eff
.

(54)

The remaining problem is the determination of the closure pa-
rametersCκ, Cν, Cλ andCǫ which are dimensionless similarity
parameters, i.e. the values become asymptotically scale invari-
ant in statistically stationary isotropic turbulence.

4. Closure parameters

In this section, methods for the calculation of closure parame-
ters will be discussed. In particular, we will present a so-called
dynamical procedurefor the computation of the eddy-viscosity
parameterCν. Originally introduced by engineers in order to
improve the performance of simple SGS models such as the
Smagorinsky model for turbulent flows near walls, the appli-
cation of dynamical procedures for the localised computation

1 Also known asKolmogorov-Prandtl relation.

of closure parameters has turned out to be a powerful tool for
the treatment of inhomogeneous and non-stationary turbulence.
For this reason, we adapted a procedure proposed by Kim et al.
(1999) for the LES of turbulent combustor flows. Using data
from simulations of forced isotropic turbulence, we found that
this procedure yields a significantly better match with the rate
of production than the statistical closure with a constant param-
eter. For the parameter of dissipation,Cǫ , we propose a semi-
statistical solution: A time-dependent value is determined from
the energy budget of the resolved flow in extended spatial re-
gions. Regarding the non-local transport, the gradient-diffusion
closure produces satisfactory results if the parameterCκ is de-
termined appropriately.

4.1. Production

The rate of productionΣsgs corresponds to dissipation of ki-
netic energy on resolved scales due to the effect of subgrid
scale turbulence. Pictorially, unresolved eddies drain energy
from larger eddies at the rateΣsgs. This idea motivated theeddy-
viscosityclosure (45) forΣsgs. Extending further the analogy
between viscous and turbulent dissipation, an experimental as-
sertion known as thelaw of finite dissipationcould be carried
over to the production of SGS turbulence: If, in a large eddy
simulation of turbulent flow, all the control parameters arekept
the same except for∆eff , which is lowered as much as possible,
the energy dissipation per unit mass,Σsgs, behaves in a way
consistent with a finite positive limit2. This suggests that the
parameterCν in the definition of the turbulent viscosity (47)
becomes asymptotically scale-invariant in the limit∆eff/L→ 0
and assumes a universal value in the stationary limit.

We verified this hypothesis by analysing data from nu-
merical simulations of forced isotropic turbulence. The driv-
ing force which supplies energy on the characteristic length
scaleL is modelled by a stochastic process in Fourier space
(Eswaran & Pope 1988; Schmidt 2004). Under the action of
this force, the flow evolves on the characteristic timeT which
is called thelarge-eddy time scale. In the statistically stationary
limit, the flow velocity is of the orderV = L/T. In addition, the
weight of solenoidal (divergence-free) relative to dilatational
(rotation-free) components of the force field can be varied by
setting the control parameterζ in the range between 1 and 0.
Choosing different characteristic Mach numbersV/c0, wherec0

is the initial sound speed, and values ofζ, we performed sev-
eral simulations using the piece-wise parabolic method (PPM)
with N = 4323 grid cells (Colella & Woodward 1984). A real-
istic equation of state for electron-degenerate matter wasused
in these simulations (see Reinecke 2001) and the numerical dis-
sipation of PPM provided an implicit subgrid scale model.

It is possible to evaluate generalised moments from the sim-
ulation data on a length scale which is large compared to the
cutoff scale∆. To that end, let us introduce new smoothed fields
ρ< andu< which are associated with a basis filter〈 〉< of char-

2 The formulation is the same as in Frisch (1995), beginning ofSect.
5.
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Table 1. Closure parameters for selected flow realisations from
three different simulations of forced isotropic turbulence

V/c0 ζ t/T ∆</∆ 〈Cν〉 C(vec)
κ C(scl)

κ Prkin

0.42 1.0 2.5 6.9 0.0512 0.0653 0.401 7.8
0.66 0.75 2.0 9.6 0.0447 0.0611 0.401 9.0
0.66 0.75 4.0 6.8 0.0476 0.0649 0.422 8.7
0.66 0.75 9.0 6.5 0.0451 0.0661 0.529 11.7
1.39 0.2 3.5 16.1 0.0370 0.0986 0.481 13.0
1.39 0.2 6.0 6.4 0.0422 0.0806 0.515 12.2

acteristic length∆<:

ρ< = 〈∞ρ〉<, ρ<u<= 〈∞ρ∞u〉<. (55)

If ∆< is sufficiently large compared to∆eff , thenq ≡ 〈∞q〉< ≃
〈q〉< for any quantityq. This property of low-pass filters be-
comes immediately apparent in spectral space in which the fil-
ter operation is just a multiplication of Fourier modes withthe
transfer function. Consequently, the turbulence stress tensor at
the level of the basis filter is approximately given by

τ<(
∞
ρ
∞
u ,
∞
u) ≈ τ<(ρu, u) = −〈ρu ⊗ u〉< + ρ<u< ⊗ u<. (56)

Evaluatingτ<(ρu, u), it is possible to determine the eddy-
viscosity parameter from the rate of energy transfer acrossthe
length scale∆< :

C<ν =
Σ<

ρ<∆<

√

k<turb |S< ∗|
, (57)

whereΣ< = τ∗<(ρvi, v j)S<i j and ρ<k<turb ≃ −
1
2τ<(ρvi , vi). We

computedC<ν from several flow realisations. A sample of av-
erage values for the whole domain is listed in Table 1. We
found〈C<ν 〉 ≈ 0.05 for developed turbulence, in agreement with
the literature (Pope 2000). Only in the case of transonic flow
with a mostly compressive driving force the eddy-viscositypa-
rameters appears to be systematically lower. Fig. 1 (a) shows
a visualisation of the turbulence energy isosurfaces givenby
k<turb = 0.25V2 with the contour sections of the dimensionless
rate of energy transfer̃Σ< = (T/ρ0V2)Σ< for V/c0 = 0.66 at
time t = 4T. The corresponding contours obtained with the
eddy-viscosity closure andC<ν = 0.0476 are plotted in panel
(b). Clearly, the rate of energy transfer is not well reproduced.
Although there is a significant correlation of about 0.8, the
magnitude of spatial variations is greatly reduced.

In fact, C<ν exhibits spatiotemporal variations comparable
to the mean value. In consequence, the assumption of a constant
eddy-viscosity closure parameter is not valid. However, the in-
formation about the variation ofCν is not available in a LES.
A solution to this problem can be found by means of a similar-
ity hypothesis which relates the energy transfer across different
scales. Let us consider a length scale∆T which is somewhat
larger than∆<. Introducing a suitably defined filter operation
〈 〉T of characteristic length∆T, the turbulence stressτT(ρu, u)
is given by an expression analogous to the right hand side of
equation (56):

τT(ρ<u<, u<) = −〈ρ<u< ⊗ u<〉T + ρ(T)
u

(T) ⊗ u(T) (58)

Hereρ(T) = 〈ρ<〉T andu(T) = 〈ρ<u<〉T/〈ρ<〉T. The stress tensors
associated with the length scales∆T and∆<, respectively, are
related by an identity which Germano (Germano 1992) origi-
nally formulated for incompressible turbulence:

τT(ρu, u) = 〈τ<(ρu, u)〉T + τT(ρ<u<, u<). (59)

The first term on the right-hand side is the filtered turbulence
stress tensor associated with the length scale∆<, whereas the
second term accounts for the turbulence stress on intermedi-
ate length scales in between∆< and∆T. For small scaling ra-
tios γT = ∆T/∆<, there is significant correlation not only be-
tweenτT(ρu, u) and〈τ<(ρu, u)〉T, but also betweenτT(ρu, u) and
τT(ρ<u<, u<). In particular, this was demonstrated by Liu et al.
(1994) from velocity measurements in round jets.

Based upon these experimental findings, Kim et al. (1999)
proposed a similarity hypothesis for the eddy-viscosity param-
eter:

C<ν = C(T)
ν =

Σ(T)

ρ(T)∆Tk1/2
T |S∗ (T)|

, (60)

where|S∗ (T)| is the norm of

S(T)
i j =

1
2

[

∂ jv
(T)
i + ∂iv

(T)
j

]

, (61)

andΣ(T) = τ∗T(ρ<v<i , v
<
j )S

(T)
i j . The specific turbulence energykT

corresponding to intermediate velocity fluctuations in between
the basis and the test filter level is defined by

ρ(T)kT = −
1
2
τT(ρ<v<i , v

<
i ) = −1

2
τT(ρvi , vi) − 〈ρ<k<turb〉T. (62)

The second expression forkT follows from the contraction of
the Germano identity (59). Thus, the parameterC<ν for the
eddy-viscosity closure at the level of the basis filter is deter-
mined by probing the flow at the length scale∆T > ∆<. This is
why 〈 〉T is called atest filter.

Using data from the simulations of forced isotropic turbu-
lence, we tested the proposition made above by computing ex-
plicitly the rate of energy transfer across a certain lengthscale
∆< and comparing it to the eddy-viscosity closure with the clo-
sure parameter calculated at test filter levels for different scal-
ing ratiosγT. In order to apply approximation (56), we had
to choose a basis filter length∆< which was at least an or-
der of magnitude larger than the resolution∆ in the simula-
tions. On the other hand, a sufficient range of inertial length
scales greater than∆< is required for the test filter operation.
These requirements substantially constrained the choice of ∆<.
Further complications come from the so-called bottleneck ef-
fect which causes a distortion of the energy spectrum function
for wave numbers close to the cutoff at kc = π/∆ (Dobler et al.
2003; Haugen & Brandenburg 2004). A detailed discussion of
the kinetic energy spectrum functions and, particularly, the bot-
tleneck effect in turbulence simulations with PPM is given in
Schmidt et al. (2005b). As one can see in Fig. 2, the match be-
tween the probability density functions of the dimensionless
rate of energy transfer and the corresponding localised closure
is substantially better than for the closure with constant eddy-
viscosity parameter. This is highlighted by the statistical mo-
ments listed in Table 2. In particular, the variance of the en-
ergy transfer is largely underestimated by the statisticalclosure.
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fig transf.png

(a) Explicit

fig closr ave.png

(b) Statistical closure

fig closr locl.png

(c) Localised closure

fig closr locl nb.png

(d) Localised closure excluding backscattering

Fig. 1. Isosurfaces of the turbulence energyk<turb = 0.25V2 with contour sections of the dimensionless rate of energy transfer. The
flow realisation is taken from a simulation with characteristic Mach numberV/c0 = 0.66 at timet = 4T.

This also becomes apparent from the three-dimensional visual-
isations in Fig. 1 (b) and (c), respectively, which suggest that
variations of the energy transfer are flattened by a wide mar-
gin in the case of a constant eddy-viscosity parameter, while
the localised closure reproduces local extrema quite well.On
the other hand, it appears that the characteristic length∆T of

the test filter should not be chosen too large in relation to∆<.
Otherwise the mean of the energy transfer will be systemati-
cally underestimated (Fig. 2 and Table 2).

The variability ofC(T)
ν is illustrated by the probability den-

sity functions plotted in Fig. 3. The similarity of the functions
suggest a fairly robust behaviour ofC(T)

ν for driven isotropic



W. Schmidt et al.: A localised subgrid scale model for fluid dynamical simulations I 9

Fig. 2. Probability density functions for the rate of energy transfer Σ̃< across the length scale∆< in dimensionless scaling at two
different instants of time.

Table 2. Statistical moments of the dimensionless rate of en-
ergy transfer for the probability density functions plotted in
Fig. 2 (b).

computation 〈Σ̃<〉 σ(Σ̃<) skew(Σ<)

explicit 0.330 0.526 3.70
stat. closure 0.293 0.327 3.53
locl. closure (γT = 1.5) 0.313 0.552 3.71
locl. closure (γT = 2.0) 0.273 0.540 3.88
locl. closure (γT = 3.0) 0.234 0.525 3.73
locl. closure (γT = 4.0) 0.183 0.504 3.51

turbulence. In a fraction of roughly 15 to 20 % of the domain,
negative values of the closure parameter are found which are
commonly interpreted as inverse energy transfer from length
scales smaller than∆T toward larger scales. This phenomenon,
which is also know as backscattering, is predicted by turbu-
lence theory. However, as we shall argue in Sect. 5, backscatter-
ing introduces numerical difficulties in combination with PPM.
But panel (d) in Fig. 1 demonstrates that the localised closure
is superior even when negative values of the eddy-viscosityare
suppressed.

For the application in LES, the basis filter corresponds to
the effective filter introduced in the previous Sect., and the test
filter is applied to the computed fieldsρ(x, t) andu(x, t). Then
we have

Cν =
τ∗T(ρvi , v j)S

(T)
i j

∆Tk1/2
T |S∗ (T)|

. (63)

The characteristic length scale of SGS turbulence production,
ℓν =, depends on the scaling ratioγT = ∆T/∆eff and, con-
sequently,ℓνCν∆eff/

√
2 is proportional to the parameterβ =

∆eff/∆. Schmidt et al. (2005b) determinedβ ≈ 1.6 for the sta-
tistically stationary turbulent regime in simulations with PPM.

Fig. 3. Probability density functions for the localised eddy vis-
cosity parameter calculated from different flow realisations.

4.2. Dissipation

The localised closure for the rate of production works be-
cause the energy transfer across a certain cutoff wavenumber
is mostly determined by interactions between Fourier modes
within a narrow band around the cutoff. Concerning the rate of
dissipationǫsgs, we encounter an entirely different problem. In
fact, viscous dissipation takes place on length scales which are
of the order of the Kolmogorov scaleηK <∼ ∆eff . There is no ob-
vious similarity between the dissipation on resolved scales (due
to SGS turbulence) and the dissipation on subgrid scales (due to
microscopic viscosity). The simplest of all SGS models, which
is known as the Smagorinsky model, assumes a local equilib-
rium between the dissipation on resolved and subgrid scales,
respectively. However, it is the very point of the SGS turbu-
lence energy model that such a balance does not hold locally.
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Nevertheless, the mean rate of energy transfer can be related to
the rate of viscous dissipation in the case of homogeneous tur-
bulence. If the flow is inhomogeneous, equilibrium might be
assumed at least for some nearly homogeneous regions. Thus,
we attempt to determine the closure parameterCǫ from the av-
eraged energy budget on the test filter level for a suitably cho-
sen flow region.

The method is loosely based on the variational approach of
Ghosal et al. (1995). They subtracted the test-filtered SGS tur-
bulence energy equation (54) from the corresponding equation
for the turbulence energy at the level of the test filter in order
to determineCǫ as a function of both space and time. Our ap-
proach is an intermediate one, where spatially averages energy
equations are considered. For the mean SGS turbulence energy,
averaging equation (54) yields

〈

ρ
D
Dt

ksgs

〉

= 〈τikSik〉 −
〈

ρ(λsgs+ ǫsgs)
〉

. (64)

Here it is assumed that the surface contributions from the trans-
port term cancel out or at least can be neglected. Since

〈

ρ
D
Dt

ksgs

〉

=

〈

∂

∂t
ρksgs

〉

+

〈

∂

∂xi
ρviksgs

〉

︸         ︷︷         ︸

≃0

≃ d
dt
〈Ksgs〉, (65)

we also neglect the effect of advection by the resolved flow.
The turbulence energy density associated with the characteris-
tic scale of the test filter is defined by the trace of the Germano
identity (59)

−1
2
τT(
∞
ρ
∞
vi ,
∞
vi) = −

1
2
〈τii 〉T +

1
2
τT(ρvi , vi) = 〈Ksgs〉T + KT, (66)

whereKT = ρ
(T)kT (62). The spatial average of the turbulence

energy (66) is given by the following dynamical equation:

∂

∂t
〈Ksgs+ KT〉 =

〈

τT(
∞
ρ
∞
vi ,
∞
vk)S

(T)
ik

〉

−
〈

ρ(λsgs+ ǫsgs) + ρ(T)(λT + ǫT)
〉

.

(67)

Equations (64) and (66) in combination with the Germano
identity (59) imply

d
dt
〈KT〉 =

〈

τT(ρvi , vk)S
(T)
ik + 〈τik〉TS(T)

ik − τikSik

〉

−
〈

ρ(T)(λT + ǫT)
〉

.

(68)

Substituting the eddy-viscosity closures for the various produc-
tion terms on the right-hand side, the above equation becomes

d
dt
〈KT〉 ≃

〈

ρ(T)Cν∆Tk1/2
T |S

∗ (T)|2
〉

− 2
3

〈

KTd(T)
〉

︸                                         ︷︷                                         ︸

(I)

− 〈ρ(T)λT〉 + 〈ρ(T)ǫT〉
+

〈

〈ρνsgsS
∗
ik〉TS∗ (T)

ik − ρνsgs|S∗|2
〉

︸                                 ︷︷                                 ︸

(II)

− 2
3

〈

〈Ksgs〉Td(T) − Ksgsd
〉

︸                     ︷︷                     ︸

(III)

.

(69)

Due to the large number of filtered quantities, the complete nu-
merical computation of the source terms in the above equation
would be rather demanding. For this reason, we drop the con-
tributions (II) and (III) while only retaining (I), which ispre-
sumably the most significant contribution to the rate of energy
transfer across∆T. Then〈KT〉 is approximately given by

d
dt
〈KT〉 =

〈

ρ(T)Cν∆Tk1/2
T |S

∗ (T)|2
〉

− 2
3

〈

ρ(T)(kTd(T) + λT)
〉

− 〈ρ(T)ǫT〉.
(70)

Invoking the closure dimensional closure (50) both for the
SGS rate of dissipationǫsgsand the rate of dissipation at the test
filter level, we obtain the following expression for the meanrate
of dissipation on length scales in between∆eff and∆T:

〈ρ(T)ǫT〉 ⊜
Cǫ
∆T

〈

ρ(T)

( 〈ρksgs〉T
ρ(T)

+ kT

)3/2

− γTρk
3/2
sgs

〉

(71)

Furthermore, setting

λT ⊜ CλkTd(T), (72)

the closure parameterCǫ is determined by

Cǫ = −
[

d
dt
〈KT〉 −

〈

Cνρ
(T)∆Tk1/2

T |S
∗ (T)|2

〉

+

(

1
3
+Cλ

)
〈

KTd(T)
〉
]

× ∆T

〈

ρ(T)

( 〈ρksgs〉T
ρ(T)

+ kT

)3/2

− γTρk
3/2
sgs

〉−1

.

(73)

Contrary to the eddy-viscosity parameterCν which varies both
in space and timeCǫ is a time-dependent constant for a suit-
ably chosen spatial region. For homogeneous turbulence, there
is only one region encompassing the whole domain of the flow.
In a stratified medium, it is appropriate to average horizontally.
ThenCǫ varies with depth. For turbulent combustion problems,
such as type Ia supernova explosions, one can distinguish fuel,
the burning zone and the burned material within. For each of
these three regions a value of the dissipation parameter is calcu-
lated as a function of time. For the pressure-dilatation parame-
terCλ, on the other hand, we preliminarily assume the constant,
time-independent valueCλ = − 1

5 for subsonic turbulence (see
Fureby et al. 1997).

4.3. Diffusion

As in the case of the energy transfer, we shall first consider the
problem of non-local transport at the level of a basis filter of
characteristic length∆< which is large compared to the numer-
ical cutoff length. The generalised kinetic flux (21) is given by

F (kin)<
i = − 1

2
〈ρviv jv j〉< +

1
2
v<i 〈ρv jv j〉<

+ 〈ρviv j〉<v<j − ρ<v<i v<j v<j
(74)

and the pressure diffusion flux 38 reads

µ = −〈Pu〉< + P<u<. (75)
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Assuming that the total flux vectorF (kin)< + µ< is aligned with
the turbulence energy gradient∇k<turb, the gradient-diffusion
closure can be written as follows:

F
(kin)< + µ< ⊜ C<κ ∆<

√

k<turb∇k<turb. (76)

Contracting the above relation with∇k<turb and averaging over
the domain of the flow, one obtains

C(vec)<
κ =

〈F (kin)< + µ<〉 · ∇k<turb

∆<

〈√

k<turb |∇k<turb|2
〉 . (77)

A sample of values forC(vec)<
κ is listed in Table 1. In agree-

ment with a turbulent kinetic Prandtl number of the order unity,
C(vec)<
κ is of the same order of magnitude as the closure param-

eterC<ν (see Pope 2000, Sect. 10.3). Contour sections of the
flux magnitude|F (kin)< + µ<| and the corresponding closure at
thek<turb = 0.25 isosurfaces forV/c0 = 0.66 at timet = 4T are
shown in Fig. 4. However, as one can see from a comparison
of the panels (a) and (b), the closure underestimates the diffu-
sive flux by about an order of magnitude. Even more clearly,
this is demonstrated by the probability distribution functions
plotted in Fig. 5. We also investigated the hypothesis of set-
ting the turbulent diffusivity parameter equal to the localised
eddy-viscosity parameter (see Sagaut 2001; Kim et al. 1999,
Sect. 4.3). Since negative diffusivity would induce numerical
instability, we truncated the diffusivity parameter at zero, i.e.
C<κ = C(T)+

ν . The resulting visualisation in panel (c) of Fig. 4
and the corresponding graph in Fig. 5, however, show very little
if any improvement compared to the statistical closure.

The reason for the discrepancies is the flawed assumption
of alignment between the turbulent flux vector and the energy
gradient. Setting

C(scl)<
κ =

〈|F (kin)< + µ<|〉

∆<

〈

|∇k<turb|
√

k<turb

〉 , (78)

where an equality of the flux magnitude but not the direction
is presumed, results in significantly larger turbulent diffusivity
(see Table 1). In particular, panel (d) in Fig. 4 and the proba-
bility distribution functions shown in Fig. 5 reveal a very close
match between the explicitly evaluated turbulent flux and the
gradient-diffusion closure with the parameterC(scl)<

κ = 0.422.
Remarkably, the implied turbulent kinetic Prandtl number is of
the order of ten rather than unity.

It appears that the gradient-diffusion closure provides a dif-
fusive mechanism which accounts for the intensity of turbulent
transport but fails to reproduce anisotropic properties ofthird-
order generalised moment. This is why advanced statisticalthe-
ories of turbulence abandon the gradient-diffusion closure and
introduce dynamical equations for the third-order momentsor
make use of other, more sophisticated closures (Canuto 1997;
Canuto & Dubovikov 1998). Such equations have been sug-
gested for the application in SGS models as well (Canuto
1994). On account of the difficulties solving these equations,
however, we prefer the simple algebraic closure (52) with a
constant diffusivity parameter

Cκ ≈ 0.4 (79)

Fig. 5. Probability distribution functions for|F (kin)< + µ< | and
the corresponding gradient-diffusion closures with different
turbulent diffusivity parameters.

corresponding to the turbulent diffusivity

κsgs= 0.4ρ∆effk
1/2
sgs. (80)

According to our numerical investigation,Cκ ≈ 0.4 is represen-
tative for stationary isotropic turbulence of Mach number<∼ 1.
In the case of developing turbulence, the effects of turbulent
transport are rather marginal, and the deviations introduced by
the statistical diffusivity (80) are not overly important for the
subgrid scale dynamics. For higher Mach numbers, however,
there appears to be a trend towards systematically larger diffu-
sivity.

In a similar fashion as the gradient-diffusion hypothesis, a
turbulent conductivityχsgs for the generalised conductive flux
in fluid of heat capacitycP and thermal conductivityχ can be
introduced:

F
(cond) ⊜ ρcP(χ + χsgs)∇T. (81)

For the generalised convective fluxF (cond), a closure might
be based upon the super-adiabatic gradient (Canuto 1994).
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fig diff.png

(a) Explicit

fig diff closr vec.png

(b) Cκ = 0.065 (vectorial)

fig diff locl nb.png

(c) Cκ = C(T)+
ν

fig diff closr scl.png

(d) Cκ = 0.422 (scalar)

Fig. 4. Turbulence energy isosurfaces as in Fig. 1 with contour sections of the dimensionless flux magnitude of turbulent transport.

Moreover, in some combustion problems or in simulations of
multi-phase media the turbulent mixing of particle speciesis
yet another challenge. These problems are left for future work.

5. Turbulent burning in a box

As a simple testing scenario, we performed LES of turbulent
thermonuclear deflagration in degenerate carbon and oxygen.

In these simulations, we utilised a greatly simplified reaction
scheme, where the products of thermonuclear fusion are nickel
and alpha particles. The thermonuclear burning zones prop-
agate in a fashion similar to premixed chemical flames. For
the chosen mass density,ρ0 ≈ 2.9 · 108 g cm−3, the width of
the flames isδF ≈ 0.006 cm (cf. Timmes & Woosley 1992).
Hence, the flame fronts are appropriately represented by dis-
continuities for the numerical resolution∆ = 2 · 103 cm in the
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simulations we run. The front propagation is numerically im-
plemented by means of thelevel set method(Osher & Sethian
1988; Reinecke et al. 1999). The domain of the flow is cubic
with periodic boundary conditions (BCs). In this scenario,the
burning process consumes all nuclear fuel within finite time.
We setX = 216∆ = 4.32 km for the size of the domain, which
is comparable to the resolution of the large scale supernova
simulations to be discussed in paper II. Since self-gravityis
insignificant on length scales of the order of a few kilometres,
we apply an external solenoidal force field in order to produce
turbulent flow. Each Fourier mode of the force field is evolved
as a distinct stochastic process of the Ornstein-Uhlenbecktype.
The characteristic wavelengthL of the forcing modes is half the
size of the domain.L can be interpreted as integral length scale
of the flow. An detailed description of the methodology and a
discussion of numerous simulations is given in Schmidt et al.
(2005a).

The LES of turbulent combustion is a particularly appro-
priate case study for the performance of subgrid scale mod-
els because the evolution of the system is strongly coupled to
the SGS turbulence energy via the turbulent flame speed re-
lation. For the notion of a turbulent flame speed see Pocheau
(1994), Niemeyer & Hillebrandt (1995) and Peters (1999). In
the framework of the filtering formalism, the underlying hy-
pothesis is the following: If the flow is smoothed on a certain
length scale∆, then the effective propagation speedsturb(∆) of
a burning front is of the order of the turbulent velocity fluc-
tuationsv ′ ∼ k1/2

turb, provided that∆ ≫ lG. The length scale
lG is called theGibson scale. It specifies the minimal size of
turbulent eddies affecting the flame front propagation. In the
context of a LES, we havesturb ∼ qsgs for the turbulent flame
speed. Consequently, the SGS model determines the propaga-
tion speed of turbulent flames. IflG . ∆, on the other hand,
the front propagation is determined by the microscopic con-
ductivity of the fuel. The corresponding propagation speedis
called the laminar flame speed and is denoted byslam. Since
slam is determined by the balance between thermal conduction
and thermonuclear heat generation, conduction effects are im-
plicitly treated by the level set method. For this reason, wedo
not include the conduction terms in equation (42) for the total
energy.

Both limiting cases of turbulent and laminar burning, re-
spectively, are accommodated in the flame speed relation pro-
posed by Pocheau (1994):

sturb

slam
=



1+Ct

(
qsgs

slam

)2


1/2

. (82)

The coefficientCt is of the order unity and determines the ratio
of sturb andqsgs in the turbulent burning regime. Peters (1999)
proposesCt = 4/3, whileCt ≈ 20/3 is suggested by Kim et al.
(1999). Here we setCt = 1 corresponding to the asymp-
totic relationsturb ≃ qsgs assumed by Niemeyer & Hillebrandt
(1995). For a study of the influence ofCt see Schmidt et al.
(2005a). The laminar flame speed for an initial mass density of
2.90·108 g cm−3 is slam ≈ 9.78·105 cm s−1. Choosing a charac-
teristic velocityV = L/T = 100slam, whereT is the autocorre-
lation time of the stochastic force driving the flow, the Gibson

scale becomeslG ∼ 10−6L ∼ 0.1 cm. Note that the Gibson
length is still large compared to the flame thickness. Therefore,
the internal structure of the burning zones is not disturbedby
turbulent velocity fluctuations, i.e. theflamelet regimeof turbu-
lent combustion applies (Peters 1999).

Running a LES with the parameters outlined above and set-
ting eight small ignition spots on a numerical grid ofN = 2163

cells, the expectation was that the burning process would ini-
tially proceed slowly, but as turbulence was developing dueto
the action of the driving force,qsgs would eventually exceed
the laminar flame speed and substantially accelerate the flame
propagation. Indeed, this is what can be seen in Fig. 6 which
shows plots of statistical quantities as functions of time.The
corresponding flame evolution is illustrated in the sequence
of three-dimensional visualisations in Fig. 7 and 8, where the
colour shading indicates the contour sections ofqsgs in loga-
rithmic scaling. Initially, the spherical blobs of burningmate-
rial are expanding slowly and become gradually elongated and
folded by the onsetting flow which is produced by the driving
force. As the SGS turbulence velocityqsgsexceeds the laminar
burning speedslam in an increasing volume of space, the spa-
tially averaged rate of nuclear energy release,〈Pnuc〉, is increas-
ing rapidly (Fig. 6). Eventually,〈Pnuc〉 assumes a peak value
at dimensionless timẽt = t/T ≈ 1.8 which coincides with
the maximum of turbulence energy. Subsequently, the flow ap-
proaches statistical equilibrium between mechanical produc-
tion and dissipation of kinetic energy. Thus, the greater part of
the fuel is burned within one large-eddy turn-over time of the
turbulent flow. This observation in combination with the tight
correlation between the growth of the mean rate of nuclear en-
ergy release and the SGS turbulence velocity verifies that the
burning process is dominated by turbulence.

As a further indicator for the reliability of the SGS model,
we varied the resolution in a sequence of LES, while main-
taining the physical parameters unaltered. The resulting global
statistics is shown in Fig. 9. In particular, the time evolution of
〈Pnuc〉 appears to be quite robust with respect to the numerical
resolution. The deviations which can be discerned in the height,
width and location of the peak are mostly a consequence of the
different flow realisations due to the random nature of the driv-
ing force. Actually, even if we had used identical sequencesof
random numbers to compute the stochastic force field in each
simulation, the dependence of the time steps on the numerical
resolution nevertheless would have produced different discrete
realisations. Thus, we initialised the random number sequences
differently and restricted the resolution study to statisticalcom-
parisons. The evolution of the mass-weighted SGS turbulence
velocity which is plotted in panel (b) of Fig. 9 reveals that tur-
bulence is developing slightly faster in the caseN = 1923.
This can be attributed to a somewhat larger root mean square
force field during the first large-eddy turn-over in this simu-
lation. Consequently, the burning process proceeds systemati-
cally faster. Note, however, that the level of SGS turbulence be-
comes monotonically lower with increasing resolution for the
almost stationary flow at timẽt = 3.0.The deviations for the
LES with the lowest resolution (N = 1203), on the other hand,
are likely to be spurious. For this reason, it would appear that
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(a) Thermonuclear burning (b) SGS turbulence

Fig. 6. Evolution of statistical quantities in a LES of thermonuclear deflagration in a cubic domain subject to periodic boundary
conditions withN = 2163 numerical cells. In panel (a) the spatially averaged rate ofnuclear energy generation in combination
with the mass fractions of unprocessed material (carbon andoxygen), alpha particles and nickel are plotted. The mean aswell as
the standard deviation of the SGS turbulence velocityqsgsare shown in panel (b).

the minimal resolution for sufficient convergence has to be set
in betweenN = 1203 andN = 1603.

This conclusion is also supported by the turbulence energy
spectra plotted in Fig. 10. We computed the normalised energy
spectrum functions for the transversal modes of the velocity
fields after two integral time scales have elapsed. Details of
the computation of discrete spectrum functions are discussed
in Schmidt et al. (2005b). One can clearly discern maxima
in the vicinity of the normalised characteristic wave number
k̃ = Lk/2π = 1.0 of the driving force. For the LES withN
greater than 1203, an inertial subrange emerges in the inter-
val 2 . k̃ . 6. The dimensionless cutoff wave number in the
caseN = 2163 is k̃ = 54. As demonstrated in Schmidt et al.
(2005b), the numerical dissipation of PPM, which was used to
solve the hydrodynamical equations, noticeably smoothes the
flow for wavenumbers̃k & 54/9 = 6. This is exactly what is
observed in Fig. 10. ForN = 1203, on the other hand, virtu-
ally all wavenumbers not directly affected by stochastic forc-
ing are subject to numerical dissipation, i.e. there is no inertial
subrange at all. Considering the more common power-of-two
numbers of cells, a grid ofN = 1283 cells will provide only
marginally sufficient resolution, whereas one will be on the safe
side withN = 2563. In paper II, however, it is shown that still
higher resolutions might be required for LES of non-stationary
inhomogeneous turbulence such as in the case of thermonu-
clear supernova simulations.

It is also argued in Schmidt et al. (2005b) that the intrin-
sic mean rate of dissipation produced by PPM closely agrees
with the prediction of the Smagorinsky model for stationary

isotropic turbulence. This suggests that the numerical dissipa-
tion can be utilised as an implicit SGS model with regard to
the velocity field. In fact, the LES presented in Fig. 6, 7 and 8
was computed without including the SGS stress term in the
dynamical equation (16), while the total energyetot, which is
conserved by PPM, was coupled to the SGS turbulence energy
ksgs. One can think ofksgs as a buffer between the resolved ki-
netic energy1

2 |u|2 and the internal energyeint. Apart from the
energy budget, the SGS model influences the resolved dynam-
ics via the turbulent flame speed. For the LES with varying
resolution (Fig. 9 and 10), on the other hand, we applied com-
plete coupling of the SGS model, i.e. the turbulent stress term
in the momentum equation was included as well. Comparing
Fig. 6 (a) and 9 (a) forN = 2163, it appears that the burning
process is slightly delayed in the latter case. As is discussed
at length in Schmidt et al. (2005a), the discrepancy can be at-
tributed to a difficulty related to inverse energy transfer. Since
backscattering injects energy on the smallest resolved scales,
which are sizeably affected by numerical dissipation, the ki-
netic energy added to the flow is more or less instantaneously
converted into internal energy. Thus, the backscattering of en-
ergy from subgrid scales to the resolved flow results in an arti-
ficially enhanced dissipation which depletes turbulence energy.
Using partial coupling, this unwanted effect is simply ignored.
For consistency, one must then introduce a cutoff for the eddy-
viscosity parameterCν in order to dispose of negative viscosi-
ties. Mending the shortcoming of the treatment of inverse en-
ergy transfer is the subject of ongoing research. For the time be-
ing, the partial coupling of the SGS model with backscattering
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fig burn01.png

(a) t = 0.25T

fig burn02.png

(b) t = 0.50T

fig burn03.png

(c) t = 0.75T

fig burn04.png

(d) t = 1.00T

Fig. 7. LES of thermonuclear deflagration in a cubic domain with periodic BCs. Shown are snapshots of the flame fronts with
contour sections of the SGS turbulence velocity in logarithmic scaling.

suppressed serves as a pragmatic solution in hydrodynamical
simulations with PPM.

6. Conclusion

The localised SGS turbulence energy model offers robustness
and flexibility at relatively low computational cost. For this

reason, it is particularly suitable for the application in LES
of astrophysical fluid dynamics. The energy transfer from re-
solved toward subgrid scales is modelled with the standard
eddy-viscosity closure, where the closure parameter is com-
puted from local properties of the flow. Hence, there are noa
priori assumption about the resolved flow incorporated in the
model. Non-local transport is treated with the down-gradient
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fig burn05.png

(a) t = 1.25T

fig burn06.png

(b) t = 1.50T

fig burn07.png

(c) t = 1.75T

fig burn08.png

(d) t = 2.00T

Fig. 8. Fig. 7 continued.

closure, using a constant statistical parameter. With a turbu-
lent kinetic Prandtl number significantly larger than unity, it
is possible to reproduce the magnitude of diffusive flux quite
well. The rate of viscous dissipation appears to be particularly
challenging. We found that a semi-statistical approach yields
satisfactory results.

The SGS model was implemented in a code for the LES
of turbulent thermonuclear combustion in a periodic box using

the piece-wise parabolic method (PPM) for the resolved hydro-
dynamics and the level set method for the flame front propaga-
tion. Since PPM produces significant numerical dissipation, we
found it favourable to decouple the SGS model form the mo-
mentum equation and suppressing inverse energy transfer from
unresolved toward resolved scales. In this kind of application,
the SGS turbulence energy serves as a buffer between the re-
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(a) Rate of burning (b) SGS turbulence

Fig. 9. Evolution of the mean dimensionless rate of nuclear energy generation (a) and the ratio of the mass-weighted mean SGS
turbulence velocity to laminar burning speed (b) in a sequence of LES with varying resolution.

solved kinetic energy and the internal energy and supplies a
velocity scale for calculation of the turbulent burning speed.

Furthermore, gravitational and thermal effects can be in-
cluded in the SGS model, although closures specific to a cer-
tain physical system have to be formulated. An example is pre-
sented in paper II, where the application of the SGS model to
Rayleigh-Taylor-driven thermonuclear combustion in typeIa
supernova is discussed. Adapting the model to other applica-
tions, possibly with different numerical techniques, is the goal
of on-going research.
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