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Abstract. We present a one-equation subgrid scale model that evdieetitbulence energy corresponding to unresolved
velocity fluctuations in large eddy simulations. The modelérived in the context of the Germano consistent decortiposif

the hydrodynamical equations. The eddy-viscosity clogor¢he rate of energy transfer from resolved toward subgcales

is localised by means of a dynamical procedure for the coatiout of the closure parameter. Therefore, the subgricescal
model applies to arbitrary flow geometry and evolution. Fertreatment of microscopic viscous dissipation a sentissitzal
approach is used, and the gradierfftdiion hypothesis is adopted for turbulent transp@&npriori tests of the localised eddy-
viscosity closure and the gradientfdision closure are made by analysing data from direct nuadesimulations. As ama
posteriori testing case, the large eddy simulation of thermonuclearbastion in forced isotropic turbulence is discussed.
We intend the formulation of the subgrid scale model in thapgr as a basis for more advanced applications in numerical
simulations of complex astrophysical phenomena involtimgulence.
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?—1. Introduction Hence,N,; ~ 10* operations would be required to solve the
problem of stellar convection in a direct numerical simioliat

The relevance of the Landau criterigh 2 has been ques-
tioned recently on the grounds of thermittencyof turbu-
lence (Kritsuk et gll. 2005). In fact, the number of degrees of
freedomN refers to the ensemble of turbulent flow realisa-
Sions. At any particular instant of time, however, turbuldy-
namics is concentrated in regions of fractal dimendor 3.

e In the last decade, the significance of turbulence in varasus
+= trophysical phenomena from stellar to cosmological sdadess

been recognised. In retrospect, this is hardly surprisirge

- = virtually all the matter in the Universe is fluid, whereas soéd
. 2 state is encountered as a rare exception. Moreover, both-th
>< tegral length. and the characteristic velocityin astrophysical
= syste_ms are ql.“te large compared to t_errestlal stan_dar_nlle, WTopoIogicaIIy, these regions can be either vortex filamémts
the viscosityv is comparable to what is found for liquids or

) . . subsonic flow or shocklets in the case of supersonic turlsalen
gifnggrthe Earth. For this reason, the dimensioriesgolds The fractal dimension of vortex filamentss = 1, whereas

D = 2 for shocklets. According to the model (see _Frisch

Re_: L\_//V ) (1) 1995, Sect. 8.5), theflective number of degrees of freedom is
becomes very large. A typical figure is ReL0™ for turbulent then given by

stellar convection.

From the computational point of view, the number of de-
grees of freedom in a fluid dynamical system is given by thean adaptive numerical scheme with maximdi@ency in
relation (se¢ Landau & Lifshliz 1987) tracking the intermittent turbulent regions were applibé,to-

N ~ (L/nx)? ~ Re¥/4, @) tal computational cost could be lowered substantially imeo
_ ~ parison to a direct numerical simulation on a static grick Fo
The length scalg is called thekolmogorov scal@nd speci- gxample, it would appear feasible to treat subsonic turlnsle
fies the smallest dynamically relevant length scale. Duééo tup to a Reynolds number of Qwith an anelastic adaptive
restriction of the CFL time step for compressible flow, th@ko .qqe on high-end platforms in the near future. On account of
number of opera_tion'_s required to compute the evolution oM@k |imited dficiency of adaptive schemes, however, the ac-
one sound crossing time is of the order tual constraint might be lower. Apart from that, gravity, gna
Ner ~ N¥3 ~ RE. (3) netohydrodynamicféects and, possibly, reaction networks in-

Neg ~ Re?P/(O+1), (4)
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crease the work load dramatically in astrophysical appica. becomes independentafriori structural assumptions, in par-
Moreover, we haveN,, ~ NegNY3 ~ RetV4 for the partic- ticular, whether the resolved flow is homogeneous or station
ularly interesting case of supersonic turbulence. As a@onslowever, it remains a necessary condition that turbulent re
quence, even with sophisticated adaptive schemes, it ,smajions become locally isotropic on length scales comparable
intractable to resolve completely the turbulent fluid dyieam the numerical cutfhlengthA, because the linear eddy-viscosity
encountered in astrophysics. closure presumes alignment between the turbulence sndss a

In large eddy simulations (LES), on the other hand, onthe rate-of-strain tensors. In the future, multi-paramete-
a limited number of degrees of freedom, which corresposdres for the turbulent energy transfer which are not stibjec
to the largest scales of the system, is treated explicitly. Ro this restriction might be adapted. For the still more cttmp
the turbulent dynamics on smaller scales, a so-caldzfyrid cated non-local transport of kinetic energy on subgridessal
scale modeis utilised. Among astrophysicists, the most ofwe use a simple gradientftlision closure. In contrast to what
ten used subgrid scale (SGS) modehignerical dissipation has been suggested in the literature (Fopel2000, Sect, 10.3)
This means that all fluctuations on length scales smaller thae find that the optimal diusivity parameter is larger by about
the resolutionA of the numerical grid are smoothed out andne order of magnitude than the SGS viscosity parameter, i.e
it is assumed that the dynamics on length scales largerAhathe turbulent kinetic Prandtl number is large compared ftyun
are more or less independent of the smaller scales. This pdoth the localised eddy-viscosity and the statistical gnatd
of view is motivated by the second similarity hypothesis dfiffusion closure, respectively, were tested by means of data
KolmogoroV (1941), which holds that the actual mechanisfrom simulations of forced compressible turbulence. Asseca
of dissipation is insignificant, provided that there ish&ient study, we present the LES of turbulent combustion in a périod
scale separation. In other words, on length schlesA, it is box. Although gravitationalféects on subgrid scales, in prin-
unimportant whether energy dissipation is caused by the roiple, can be incorporated into the model as well, in papes | w
croscopic viscosity at the length scal@x or by numerical restrict the detailed formulation and application to theecaf
effects at the cutd length A. The notion of numerical dissi- negligible gravity. However, a simple closure which acdsun
pation has been exhaustively investigated for the piese-wfor unresolved buoyancyfiects in simulations of thermonu-
parabolic method (PPM) proposed by _Colella & Woodwarclear supernovae will be discussed in paper Il
(1984), which is one of the most popular finite-volume scheme
applied in astrophysics. At least for statistically statioy o Decomposition of the hydrodynamical
isotropic turbulence, the numerical dissipation of the P&V equations
pears to work well as an implicit SGS model (Sytine et al.
2000; Schmidt et al. 2005b). Large eddy simulations pose the problem of scale separation

For the treatment of transient or inhomogeneous turbulérhie numerically computed flow can conceptually be defined
flow, however, an explicit SGS model becomes mandatory. Opy a set of smoothed fields which correspond to the low-pass
of the most prominent examples in contemporary theoretiddlered physical flow realisation, whekg = 7/A is the cutdf
astrophysics are numerical simulations of turbulent cosnbwavenumber for a numerical grid of resolutian A low-pass
tion in type la supernovae (Hillebrandt & Niemeyer 2000). Ifilter is a convolution operator which is defined by
this case, the velocity scale associated with SGS turbelenc

. . . _ /N _ 3./ r ARy

determines the féective propagation speed of flame fronts a(x,t) = (e = fd X G(x - X', 1)q(x’, 1) (5)
(Niemeyer & Hillebrandi 1995). Part Il of this paper will be

dedicated to the problem of type la supernova simulatioi@" @ Particular kerneB(x — ', ). The Fourier transform, the

The exchange of energy between resolved and subgrid scafe€alled transfer functio(k, 1), drops to zero for wavenum-

is expected to become dynamically significant in the case i'SK % ke. Consequently, only modes of wavenumbers less
highly intermittent turbulence, for instance, in collagpgitur- thank; contribute significantly to the filtered fielg{x, t). The

bulent gas clouds in the interstellar medium (Larson poo@xact, unfiltered variablg(x, t) corresponds to the limk, —
Mac Low & Klessen 2004). 0. The filter operation smoothes out the fluctuatighs oﬁ— q

In this paper (paper 1), we present a general framework fon length scalessmaller tham. Albeit being mathematically
the formulation of SGS models based upon fittering ap- determined by some dynamical equatia, t) is generally
proachof|Germanol(1992). The mathematical operation of fihot computable and therefore will be referred to asideal
tering smoothes the flow on length scales smaller than the pgeantity.
scribed numerical resolutioh. Consequently, a scale separa- The dynamical equation for the ideal velocity field is the
tion is introduced, where the smoothed density, velocity, egeneralisation of the Navier-Stokes equation for cominéss
are identified with the resolved quantities computed in N\&8. fluids (see Landau & L ifshitz 1987):
have extended this formalism to compressible flows, usieg th oo
Reynolds stress model proposed by Canuto (1997) as a guide- 205 _ ‘}" (6)
line. Next we discuss the one-equation SGS turbulence gnerg Dt '
model (Schumann 19775; Sagaut 2001). For the energy tramie diferential operator on the left hand side is tragrangian
fer across the numerical cdfpwe introduce docalisededdy- time derivate
viscosity closure which makes use of the dynamical proasiur

0 o
introduced by Germano etlal. (1991). Hence, the SGS model =50V (1)

0

Q| oz



W. Schmidt et al.: A localised subgrid scale model for fluichdmical simulations | 3

and the fective force density acting upon the fluid is definedhichiGermanol (1992) introduced without mass-weighing for

by incompressible turbulence. We will usg = (pvi, v;) as a
F= ‘5? — _VP+V.o+ F©, (8) shorthand notation for the components of the turbulenesstr
. ) o tensor. The ternd;7;; in the momentum equation stems from
The first term on the right hand side is the pressure gradtent, the non-linear advection term in the Lagrangian time dégiva
second term accounts for viscous dissipation and the #ind t 5nd can be interpreted as the stress exerted by turbuleaityel
is the total external force per unit volume which encompsissgctuations smoothed out by the filter. In the following, we

gravitational and, possibly, stirring forces: will encounter a variety of-terms. For this reason, we define
o0 oo ® 7(-,-) as a generic bilinear form which maps any pair of ideal
FEO=pg+ FO, (9) fields to a mass-weighted smoothed field which is called the

generalised second momefithe resulting field can be scalar,
vectorial or tensorial. Of course, the notion of a geneedlis
moment applies to moments of higher order as well.

Theviscous dissipation tensis defined by

A dynamical equation for the specific kinetic energy,—_
%l?lz, is readily obtained from the contraction of equatibh (6)
with the ideal velocity field:

@ 1(av; 0V Do o «
S ‘E{a_xj+6_xi , (11) pﬁkzv.F. (18)

The mass-weighted filtered kinetic eneldy, t) is defined by

) 000X ococo [ X 100
oij = 2vai*j = 2PV(Sii - §d6ij)’ (10)

wherev is the microscopic viscosity of the fluid,

are the components of thiate-of-strain tensoandd = divi is

the divergence of the ideal flow. oooko
Equation[[6) can be written in a conservative form as k(x,t) = <pw >G, (19)
s . o)e
—pv+V-pvev=F. (12)  cipenn , : . .
ot Filtering equation[{8) results in the following equatiaor f
The equality of the left hand side in both equations foIIowks(X’ b):
from the continuity equation which expresses the conservat D - 0000 o0
f nuity equation which exp p—k—v-sf(k'”)=v-F+v-[v-T(pv,v)] (20)
of mass Dt
al V-pv= (13) " In addition to the turbulence stress term on the right hadel, si

The goal of the filtering approach is the formulation of dyt_here IS ?IEOT'lobcalll IF?E.SpCt).I'tftlel’ui?(\k%\;h!?S |?Ig|v_e n db¥ th((ejnglve
namical equations for smoothed quantities which are amenat enceot ?. ur ?tﬁn ine IICt | ’ ? nuxis de Iln:d{r):
to the numerical computation. We define thavre or mass- € contraction of the completely Symmetric generais

weighted filtered velocity field order moment(pv, v, v). In component notation, we have
o 274" = 755 = 7(pui, v}, 0))
(P)s (14) = —(pvivjvj)c + (pivj)evj — 2Tijv;
1 0 o0 . , N :
= =0 fd3x’ G(Ix = X')p(X’, o (X, 1), Since the filtered kinetic enerdyis a second-order moment
p ]

of the ideal velocity field, contributions from velocity fiua-

tions on all scales are included. For this readodiffers from

wherep = (p)g is the filtered mass density. For a homoge: o 5
neous and time-independent kernel, the filter operation—cc;atnhle specific kinetic energy of the smoothed ﬂ(%W,I » and

mutes with the Lagrangian derivative. Favre filtering the dy 1, 1

namical equatiorf{]12), one obtains Kb = K — Elvl = =57 (22)
ﬁpv +V. <'°5<;j ®v)c = F, (15) can be i(_jentified with thgeneralised turbulenqe energgso-
ot ciated with scales smaller than the characteristic lenftheo

00 filter ( )s. The dynamical equation fdg, is obtained by sub-
whereF = (F)c. The filtered equation can be cast into a forfacting

analogous to equatiofl(6),
D

0000 0. — | =zv =v-(F+V-71 v,0)|. 23
p%v S F+V-1(35.9), (16) “bt (Zl | (2,7) @3)
from equation[[20). The result, in component notation, sead

0000 00 0000 ) D i 000 00 oo 2
T(pv,0) = —(PV V) + PV RV a7 ,Oﬁkturb - 5i7‘~i(km) = 1(pvi, v})Sij — 7(vi, Fi), (24)

by virtue of thegeneralised turbulence stress tensor
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wherer(%:, F:) is the contraction of the tensor and the transport term is given by
7(v,F)=—(v®F)c+v®F. (25) D= ax |27 +ui +{oijvjc|- (37)

In order to put equatioi.{24) into a form which is more adrpq generalised moment
equate for modelling purposes, flux terms are sfiitom the
right hand side. Let us first substitute the definition of the e = _<°;°|§>G +oP (38)
fective force [B):
- . . accounts for the transport of turbulence energy due to press
(01, Fi) = =1(0i, iP) + 7(vi, djoi;) + 7(vi, F©Y).  (26) fluctuations.
For the internal energy, the filtered dynamical equation is
The three resulting generalised moments respectivelyeeorr
spond to pressure, viscous and external forces. Becauise sti pEe.m—V- g(cond) T(z;;, ‘gim)
ring forces usually supply energy on the integral lenigthf Dt (39)
the flow only, it follows thatr (v, Fi(s)) is negligibly small for =pxVT + Q- (EO&>G — PE.
A < L. The first and the second term on the right hand side of
equation[[2B) can be split as follows: The source ternm® accounts for heat generation by chemical or
. . . . nuclear reactions. The transport of heat due to turbulent te
_T(‘{j’i’ai P) = _3”(”5“ P) + 7(d, P), (27) perature fluctuations gives rise to theneralised conductive
o o o 0 o flux,
(vi, 8joij) = 9j7(vi, 7ij) — 7(Sij, 7)) (28) Feond) _ (52 9T) = 55 The — oy VT, (40)
The newz-terms on the right hand s@e are, respecpvelyor fluid of thermal conductivityy. The additional transport
the pressure-dilatationand therate of viscous dissipation .. on the left hand of equatidi]39) side arises from thestra
Substituting the expression for the viscous dissipatian teport of heat by turbulent advection. In the case of buoyancy-

sor [10), it follows that driven turbulence, this transport mechanism is known as con

© o 0000 2, 5 c000%2, vection. Thegeneralised convective flisxdefined by
7(Sij, 7ij) = ~(pVIS"I)e — ApvSi))eSij. (29)
o FM = 2(pv, h) = (00, Eint) + K1, (41)
The norm|S*| is defined by the total contraction of the trace-
free part of the rate of strain tensor: whereh = e + P/p is the specific enthalpy.
Adding the budgets of the specific kinetic eneé;m2 and
|§*|z _ Zgu Eu _ |§|z _ E‘a’z (30 internal energyen, we obtain the total energy per unit mass

3 on length scale§ 2 A, i.e. @ = &n + 3[v/°. The dynamical

The norm of the rate-of-strain tensor is a probe of the vejocduation governing the evolution &f; is
fluctuations on the smallest dynamical length scales whieh a D
(cond) (conv)

of the order of the Kolmogorov scatg. We shall assume that pﬁe'tot—v : [T +F - UP]
the characteristic length of the filter is much greater than t

. . . =pxVT +Q+p(1+ 42
Kolmogorov scale. In this case, the rate of strain of therélie PX Q+pld+e) (42)
velocity field is much less than the rate of strain of the ideal +o- [g + &1+ v.1(pv, %")].

velocity field, i.e.|S*|?> < |S*|2. Consequently, the first term on

the right hand side of equatidi{29) dominates the second tef his conservation law in combination with equati@nl(32) ex-
and we can set tends theGermano consistent decomposititncompressible

turbulence. The sum of internal energy and kinetic energy on
T(gij, &) = _<V}",§|§*|Z>G' (31) all scales i + kb = &n + k. Comparing equationE{B2) and
@32), one can see thafa + €) accounts for the dissipation of
Summarising, equatiofi{P4) can be written in the form  turbulence energy into internal energy by compressiteces
and viscous dissipation, respectively. The turbulence&yece
pE kub—D =T +X — p(1 + €), (32) tion termX is related to the energy transfer through the turbu-
Dt lence cascade across the characteristic length of the Tilher
where the source contributions on the right hand side are  injection of energy due to buoyancy and the action of styrin
forces on length scales larger thArs given byo - [g + f©)],

T = (p, vigi)c — pigi, (33) whereas the interaction of gravitational potential enefgy-
Q. tuations and turbulence on length scales smaller thanac-
T =1 Sjj, (34)
. counted for by the terr.
pd =—(dP)g +dP, (35) From the discussion in this Section, it should become clear

o0 that the presumed scale separation in LES is essentialgdbas
e = (vplS*P) (36) i i i
p p G upon the disentanglement of a variety of dynamidiéats.
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This task is considerably complicated by the non-lineagrint The magnitude of SGS velocity fluctuations is givendays
actions across the cutescale, which become manifest in thelhe equation governing the evolution of the specific turbcie
various generalised moments occurring in the equatiafls (28nergyksgs = Ksgs/p is just equationl{32) with the filtef ).
B2), (39) and[4R). Hence, one faces the problem of findik@r the various second-order moments in this equation we wil
closuresfor the generalised moments in the decomposed dgvoke standard algebraic closures. Hence, the implertienta
namical equations. of the SGS model requires the solution of only one additional
In the simplest of all cases, a closure is #isiently con- dynamical equation. The inherent limitations of the singite
vincing argument for neglecting a certain term. This kind &fures are in part compensated by localisation. Therebg@&&
closure is applied in many cases. In the proper sense, a ctmdel becomes basically independentaopriori model pa-
sure is a more or less tentative approximation which is mademmeters which presume certain flow properties such as homo-
grounds of heuristic physical arguments. Two major categorgeneity. In essence, the SGS model which will be formulated
of closures can be distinguished: An algebraic closurensesois robust and particularly well suited for complex flow geeme
function of filtered quantities only. Usually, algebraioslires tries and transients, although requiring relativelydittiompu-
contain at least one free parameter. Depending on whetiser thtional resources.
parameter is a constant or varies in space and time, the clo-There are two dferent sources of SGS turbulence produc-
sure is either statistical or localised. On the other hand, dion. The first one is the SGS gravity teffigys (33) which ac-
namical closures determine generalised moments from adubunts for the conversion of potential into kinetic energg a
tional dynamical equations. However, these equationsirim t vice versa due to correlations between SGS fluctuationseof th
entail closures for higher-order generalised momentss &hi velocity and gravity. A putative closure for SGS buoyancy in
the problem of the infinite hierarchy of equations for fil@rereactive flows will be presented in paper Il. The other preduc
quantities. Inevitably, the hierarchy must be truncatesbate tion term is the rate of energy transfBgs = 7;Sij across

point with the help of algebraic closures. the length scale\es due to non-linear turbulent interactions.
In general, energy transfer is the primary source of SGS tur-

pothesidor the the trace-free part of the SGS turbulence stress
In LES, numerical solutions for the filtered quantities?, T,  tensor (cfl_ Pope 2000, Sect. 10.1.):

v and e, have to be computed from the continuity equation 1

for p, the momentum _equat|0ﬂ16), th_e energy <_:onservat|on Ti*j = vasgssi*j = Zpysgs(sij — §d5ij), (45)
law (43) and the equation of state. The filter operation radlur

introduces a cutdwhich is related to the numerical resolutionwhere

. MR . - . X 1 2
Since the filtering in LES is not necessarily explicit but sm T = Tij = 2Tidij = Tij + = Ksgdij. (46)
times inherent to the numerical scheme, we will subsequentl 3 3
use the generic notatidne;. For example, This closure is formulated analogously to the viscous stres
000 tensor in a Newtonian fluid. The eddy viscositysis assumed
o(x, 1) = (o (X, ))ett (43) to be proportional to the product of the characteristic tang
(PYeti A Of the numerical scheme and the characteristic velocity of

is the mass-weighted velocity field which is to be computed ngC> turbulence (cL_SagHut 2001, Sect. 4.3, land!Pope 2000,
merically. For finite precision, the numerical solutionuaty Sect. 13.6.3),i. e.,

corresponds to a whole ensemble of exact flow realisations. | Vsgs = CVAeﬁkgéi = {,0sgs (47)
this regard, one can think of a reduction of the number of de- . . ]
grees of freedom due to filtering. The length scalé, = C,Aer/ V2 is thus associated with SGS

The length scales smaller than the characteristic length turbulence production. _ o
of the efective filter are thesubgrid scale$SGS). The scales  Among the dissipation terms, the rate of viscous dissipa-
| 2 Aer, ON the other hand, are numerically resolved. A confion ésgs defined in equatiorL{36) dominates in subsonic turbu-
plete set of closures for the generalised moments in the ¢§Pt flows. Assuming a Kolmogorov spectrum, the mean SGS
namical equations constitutes thebgrid scale modeA gen- turbulence energy corresponding to a sharp spectralfteao
eral SGS model which includes dynamical equations for thé related to the mean rate of dissipation:
moments of second and third order was formulated by Canuto o 3 237\ 72
(1994). Unfortunately, the computational cost of solvihg t (ksgo = fn/A Ek)dk = §C<5595> (K) : (48)
whole set of dynamical equations for the generalised mosnent . ,
is considerable. Moreover, the problem of stability appear pience, assuming that ~ 1.65 (Yeung & Zholl 1997),
be non-trivial. 3C\ 2 (ksgo¥? (ksg9®/?

The SGS model which will be discussed in the following “wQ:Ztg) T ~08LE— (49)
involves the solution of the dynamical equation for the sithg
scale turbulence energy only. The definition of the dendity
SGS turbulence energy is as follows: vz

/

1, 1 1{we, ) o Ko _ B (50)
ngs= qusgsz _ETii = E (plv]%err — plv|7]. (44) €sgs = GQ - L. >

Conjecturing that the above relation also holds locallyPcip2
2000, Sect. 13.6.3), we have
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wherel. = 2V2A¢/C. andC, ~ 1. Basically, equatior {30) of closure parameters has turned out to be a powerful tool for

implies that SGS eddies of kinetic energ;qggsare dissipated the treatment of inhomogeneous and non-stationary tunbale

on atime scale £c/0sgs For this reason, we adapted a procedure proposad by Kim et al.

Pressure dilatation poses severéidilties because one(1999) for the LES of turbulent combustor flows. Using data

needs to find the correlations between pressure fluctuaimhs from simulations of forced isotropic turbulence, we fouhdltt

compression or rarefaction of the fluid. The first-order Hiapo this procedure yields a significantly better match with thier

esis is that kinetic energy is dissipated if the fluid is cadting of production than the statistical closure with a constamnam-

(d < 0). In the opposite casel (> 0), internal energy is con- eter. For the parameter of dissipati@;, we propose a semi-

verted into mechanical energy which produces turbulenieis. Tstatistical solution: A time-dependent value is determiftem

line of reasoning leads to the closure proposed by Deflrddhe energy budget of the resolved flow in extended spatial re-

1973): gions. Regarding the non-local transport, the gradieflittsion
Asgs = Ciksgd. (51) closure produces satisfactory results if the param@tes de-

Unfortunately, numerical tests reveal that this closurexs termined appropriately.

tremely crude. Since compressibilityffects tend to diminish
toward smaller length scales, the above closure will doHert 4 1  proquction
LES of subsonic turbulence. In the case of supersonic turbu-

lence, however]sgsbecomes more significant. Alternative cloThe rate of productiorZsgs corresponds to dissipation of ki-
sures for pressure-dilatation are described.in CiinUtO_lo:ng netic energy on resolved scales due to tffeat of Subgrid
A customary algebraic closure for the transport term itale turbulence. Pictorially, unresolved eddies draiergyn
equation [[3P) is thgradient-dffusion hypothesitcf. ISagalit from larger eddies at the rafigys This idea motivated theddy-
2001, Sect. 4.3) viscosityclosure [4b) forZsgs Extending further the analogy
9 ok 9 g between viscous and turbulent dissipation, an experirhasta
Dsgs = ——pCoAekl2—2 = — pl, R . (52) sertion known as thiaw of finite dissipatiorcould be carried
S97 Gy PR e sus s T T Byl K s0s gy . P )
over to the production of SGS turbulence: If, in a large eddy
The characteristic length scale ofttision is defined by, = simulation of turbulent flow, all the control parameters leept
C.Aer/ V2 and the SGS dusivity is given byksgs = Clsgs  the same except fakes, which is lowered as much as possible,
The notion of a turbulent diusivity of kinetic energy stems the energy dissipation per unit madggs behaves in a way
from the analogy to the thermalftlision of internal energy on consistent with a finite positive linfit This suggests that the
microscopic scales. This analogy also suggests the defimifi parametelC, in the definition of the turbulent viscositf{47)

a kinetic Prandtl number becomes asymptotically scale-invariant in the litaig/L — O
and assumes a universal value in the stationary limit.
Pryy = 2% = & 53
Min = Ksgs C. (53) We verified this hypothesis by analysing data from nu-

o o _ merical simulations of forced isotropic turbulence. Thée/-dr
Summansmg, lf grawtaﬂonglfécts on_subgrld spales argng force which supplies energy on the characteristic lengt
negligible, we obtain the following dynamical equationfoe scaleL is modelled by a stochastic process in Fourier space

SGS turbulence energy: (Eswaran & Pope _1988; Schmidt 2004). Under the action of
D 1 2 this force, the flow evolves on the characteristic tilmevhich
ﬁksgs—EV ' (pCKAefkaQSVkSgS) is called thdarge-eddy time scalén the statistically stationary

32 (54) limit, the flow velocity is of the ordeY = L/T. In addition, the
= C,Aukl2IS2 - (E + Cl) Keo — C &. weight of solenoidal (divergence-free) relative to ditetaal
Y 98 S0 At (rotation-free) components of the force field can be varigd b

- . L setting the control parametérin the range between 1 and 0.
The remaining problem is the determination of the closure Phoosina diterent characteristic Mach numbatss,, wherec,
rameter<,, C,, C, andC, which are dimensionless similarity. 9 ’

arameters. i .e. the values become asvmptotically SCzaein is the initial sound speed, and valuestofve performed sev-
pars e . : - asymp y eral simulations using the piece-wise parabolic methodPP
ant in statistically stationary isotropic turbulence.

with N = 432 grid cells [Colella & Woodward 1984). A real-
istic equation of state for electron-degenerate matteruses
4. Closure parameters in these simulations (see Reinegtke 2001) and the numerseal d

. . . ipati f PPM ided an implicit subgrid scal del.
In this section, methods for the calculation of closure para sipation o proviced an Implcit subgric scale mode

ters will be discussed. In particular, we will present a atied Itis possible to evaluate generalised moments from the sim-
dynamical proceduréor the computation of the eddy-viscosityulation data on a length scale which is large compared to the
parameteC,. Originally introduced by engineers in order t¢utaf scaleA. To that end, let us introduce new smoothed fields
improve the performance of simple SGS models such as he@ndv™ which are associated with a basis filter. of char-
Smagorinsky model for turbulent flows near walls, the appli-

cation of dynamical procedures for the localised compoitati

2 The formulation is the same as.in Fristh (1995), beginnirgeut.

1 Also known asKolmogorov-Prandtl relation 5.
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Table 1. Closure parameters for selected flow realisations frorerep(™ = (p<)1 andv(™ = (p<v<)1/(p<)7. The stress tensors
three diferent simulations of forced isotropic turbulence associated with the length scalés and A, respectively, are
related by an identity which Germano (Germano 1992) origi-
nally formulated for incompressible turbulence:

Vice ¢ T AJA () Cc  Cc  Pr
042 10 25 69 00512 00653 0401 7.8 71(pv, v) = (T<(pv, V)T + TT(P"V", V7). (59)

8'22 8;2 421.8 2'2 8'83‘7‘; 8'82}13 8'322 9'8 The first term on the right-hand side is the filtered turbuéenc
oso 075 30 G5 0ot Goen osm pir SIESSIETAOrssooaietwih e el salenrens e
139 02 35 161 00370 00986 0481 13. u urou ! !
139 02 60 6.4 0.0422 00806 0515 122 a_lte length scales in bet_wet_m _a_ndAT. For small scaling ra-
tios yr = At/A<, there is significant correlation not only be-
tweentt(ov, v) and{r(ov, v))T, but also betweenr(pv, v) and
71(p v, v°). In particular, this was demonstratedlby Liu €t al.
(1994) from velocity measurements in round jets.

< =(p)e, p<v°= (pv).. (55) Based upon these experimental findings, Kim et al. (1999)

. proposed a similarity hypothesis for the eddy-viscositsapa
If A is suficiently large compared tdes, thenq = (Q)< =  eter:

(qQ)< for any quantityq. This property of low-pass filters be-

acteristic length\..:

(M

: , : - - Ci=Cl=——r—, (60)
comes immediately apparent in spectral space in which the fil v v p(T)ATk_Jl-_/le* M)
ter operation is just a multiplication of Fourier modes witle )
transfer function. Consequently, the turbulence stressoreat WherelS™'"| is the norm of
the level of the basis filter is approximately given b 1
PP yaivenby s = 5 [0 + a7, (61)

7.(pv,v) ~ 7(ov,0) = ~(EV V). + pv ®DV<.  (56)

Evaluatingr.(ov, v), it is possible to determine the eddy
viscosity parameter from the rate of energy transfer adtuss
length scale\. :

and=™ = 7% (p=v5, vT)Si(J-T). The specific turbulence energy
‘corresponding to intermediate velocity fluctuations inassn
the basis and the test filter level is defined by

1 < < < 1 <I,<
C< E< (57) P(T)kT = _ETT(p ] ) = _ETT(PUi,Ui) - <p kful’b>T' (62)

PA K 1571 The second expression f&t follows from the contraction of
the Germano identity[{$9). Thus, the paramefsr for the

. x Q< <l< ~ _1 -
\évgrizaeu%;d; fTr:)(nelU:s ;\J/)esrg\ I ?Ir(;(\jvpr egT{gat_ionszﬁ(g:llr’nvrlJ)lé \:)erav_eddy-viscosity closure at the level of the basis filter isedet
erage values for the whole domain is listed in TdOle 1. V\?gmed by probing the flow at the length scale > A-. This is

hy ( )1 is called atest filter
L : . s
foun_d(CV> 0.05 for developed tu_rbulence, n agreemen_twnw Using data from the simulations of forced isotropic turbu-
the literaturel(Pope 2000). Only in the case of transonic flqw s :
. R X L . : ence, we tested the proposition made above by computing ex-

with a mostly compressive driving force the eddy-viscopily . . .
rameters appears to be systematically lower. Hig. 1 (a) sh licitly the rate of energy transfer across a certain lersgtile

. S app y y lower. Ihig. @s < and comparing it to the eddy-viscosity closure with the clo-
a visualisation of the turbulence energy isosurfaces gbsen

X . . : sure parameter calculated at test filter levels féliedént scal-
b = 0.25V2 with the contour sections of the dimensionless P

< > B Ng ratiosyr. In order to apply approximatioi.{b6), we had
r_ate of energy transfer. = (T_/pOV )X for V/co - 0'66. at to choose a basis filter length. which was at least an or-
timet = 4T. The corresponding contours obtained with thg f itude | h h lutianin the simul
eddy-viscosity closure an@; = 0.0476 are plotted in panel er o Cr)naghnltu ﬁ aLgerdt afnﬁt. e resolut r;n the sllrlnu a-h
(b). Clearly, the rate of energy transfer is not well reproetll tions. On the other hand, affigient range of inertial lengt

. L ) scales greater thaf. is required for the test filter operation.
Althoqgh there IS a S|g_n|f!cant- correlation of abou8 Othe These requirements substantially constrained the chbige.o
magnitude of spatial variations is greatly reduced.

L ; S Further complications come from the so-called bottlendek e
In fact, C; exhibits spatiotemporal variations comparabl P

. fect which causes a distortion of the energy spectrum fancti
tothe mean yalue. In consequence, the ass_umptlon of a_o@nq%;\r wave numbers close to the clitatk; = n/A (Dobler et al.
?52’;55?&2 (il?r?:reagzz%rsegjer}: 28: \;agc.jl'a;(éwlfvfl_’léhs 2003;|Haugen & Brandenbuirg 2004). A detailed discussion of

p Y variatl v val ! ' the kinetic energy spectrum functions and, particulahlg tiot-
A solution to this problem can be found by means of a simil

. . ' . tle k défect in turbul imulati ith PPM is gi [
ity hypothesis which relates the energy transfer acrd&srdnt shece Seo 1 urru ence simuations wi 'S given in

. T Schmidt et al.[(2005b). As one can see in Eg. 2, the match be-
scales. Let us consider a length scalewhich is somewhat )

larger thanA.. Introducing a suitably defined filter operationtween the probability density functions of the dimensissle

- rate of energy transfer and the corresponding localisesiioto
§S>T_o(l;rfhbarzcnteerlstlrcelsir_lc?rt]k‘:r;;E)e ;uerLthI)ePhc: ftrﬁtggéﬁlg ';) deiso ubstantially better than for the closure with constalutye
: g'Vt. Kéb ) xp ! gou '9 198 cosity parameter. This is highlighted by the statistioa-
equationi(3B): ments listed in Tablg]l2. In particular, the variance of the en

71(0~0<,0%) = (v ®@v)r + pMoM @™ (58) ergytransferis largely underestimated by the statisticsiure.
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fig_transf.png fig_closr_ave.png
(a) Explicit (b) Statistical closure
fig_closr_locl.png fig_closr_locl nb.png
(c) Localised closure (d) Localised closure excluding backscattering

Fig. 1. Isosurfaces of the turbulence enekgy, = 0.25V? with contour sections of the dimensionless rate of eneayysfier. The
flow realisation is taken from a simulation with charactézidach numbel/cy = 0.66 at timet = 4T.

This also becomes apparent from the three-dimensionalvisuithe test filter should not be chosen too large in relationto

isations in Fig[L (b) and (c), respectively, which sugghat t Otherwise the mean of the energy transfer will be systemati-

variations of the energy transfer are flattened by a wide maglly underestimated (Fifll 2 and Table 2).

gin in the case of a constant eddy-viscosity parameter.ewhil

the localised closure reproduces local extrema quite \@ail. The variability ofCﬁT) is illustrated by the probability den-

the other hand, it appears that the characteristic lengtbf sity functions plotted in Fid13. The similarity of the fuims
suggest a fairly robust behaviour GtT) for driven isotropic
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pyr—————————————————————————————
V/co = 0.66, ¢ = 0.75

L e

V/co = 0.66, ¢ = 0.75
t/T = 40, Ac/A = 11 ]

(&3]
T

locl.
locl.
locl
locl.

Probability density
N
T
)

t/T =20, Ae/A = 16 ]

explicit
stat.

. closure (y1 = 2.0) ]

closure ;
closure (yr = 4.0) ]
closure (yr = 3.0) ]

closure (y1 = 1.5) 1

0.0

0.5
Dimensionless rate of energy transfer

Fig. 2. Probability density functions for the rate of energy tramaf.

different instants of time.

1.0

Probability density
N o8
T T

explicit

stat. closure ;
locl.
. closure (y1 = 3.0) ]
locl.
locl.

locl

closure (yr = 4.0) ]

closure (y1 = 2.0) ]
closure (y1 = 1.5) 1

0.0

Table 2. Statistical moments of the dimensionless rate of en-

0.5
Dimensionless rate of energy transfer

1.0

across the length scafe. in dimensionless scaling at two

ergy transfer for the probability density functions platti 101y jonm042 ¢-1.00, /125 i
Fig.m (b) o \/cp=0.66, ¢=0.75, t/T=2.0
[ — V/co=0.66, ¢(=0.75, t/T=4.0
[ — V/co=0.66, ¢=0.75, t/T=9.0
8 — v/co=1.39, ¢=0. 7
computation ) o(Z)  skewg.) =2t
explicit 0.330 0.526 3.70 8 4L i
stat. closure 0.293 0.327 3.53 2> [
locl. closure 7 = 1.5) 0.313 0.552 3.71 ERS
locl. closure §+ =2.0) 0.273 0.540 3.88 o AT 7]
locl. closure f+ =3.0) 0.234 0.525 3.73 S
locl. closure 4+ = 4.0) 0.183 0.504 3.51 Sk ]
ol . L L
) i ~0.20 ~0.10 0.00 0.10 0.20
turbulence. In a fraction of roughly 15 to 20 % of the domain, c,

negative values of the closure parameter are found which are

commonly interpreted as inverse energy transfer from tengdgig. 3. Probability density functions for the localised eddy vis-
scales smaller thafsr toward larger scales. This phenomenormosity parameter calculated frontidirent flow realisations.
which is also know as backscattering, is predicted by turbu-

lence theory. However, as we shall argue in $éct. 5, badkscat

ing introduces numerical fliculties in combination with PPM.
But panel (d) in Fig[dL demonstrates that the localised ckos

u

4.2. Dissipation

is superior even when negative values of the eddy-viscasty The |ocalised closure for the rate of production works be-
suppressed.
For the application in LES, the basis filter corresponds {9 mostly determined by interactions between Fourier modes
the dtective filter introduced in the previous Sect., and the tegithin a narrow band around the ciitocConcerning the rate of
filter is applied to the computed fielggx, t) ande(x, t). Then  dissipationesys we encounter an entirely fiérent problem. In

we have

73 (ovi, vj)Si(]T)
Ark%s M)

(63)

cause the energy transfer across a certainfcutavenumber

fact, viscous dissipation takes place on length scaleshndrie
of the order of the Kolmogorov scalg < Aet. There is no ob-
vious similarity between the dissipation on resolved scédeie
to SGS turbulence) and the dissipation on subgrid scalest¢du

The characteristic length scale of SGS turbulence prodictimicroscopic viscosity). The simplest of all SGS models,alahi

¢, =, depends on the scaling ratig = Ar/Ae and, con-
sequently,£,C,Aer/ V2 is proportional to the parametgr =
Aer/A. ISchmidt et &l.|(200%b) determingd~ 1.6 for the sta-
tistically stationary turbulent regime in simulations vRPM.

is known as the Smagorinsky model, assumes a local equilib-
rium between the dissipation on resolved and subgrid scales
respectively. However, it is the very point of the SGS turbu-

lence energy model that such a balance does not hold locally.
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Nevertheless, the mean rate of energy transfer can bedétateDue to the large number of filtered quantities, the complate n
the rate of viscous dissipation in the case of homogeneaous tmerical computation of the source terms in the above equatio
bulence. If the flow is inhomogeneous, equilibrium might b&ould be rather demanding. For this reason, we drop the con-
assumed at least for some nearly homogeneous regions. Thitgjtions (II) and (lll) while only retaining (1), which ipre-

we attempt to determine the closure paramé€teirom the av- sumably the most significant contribution to the rate of gper
eraged energy budget on the test filter level for a suitabdy chtransfer acrosar. Then(Kr) is approximately given by

sen flow region.

The method is loosely based on the variational approach of E<KT> = <p(T)CVATk_::'_/2|S*(T)|2>
Ghosal et &l.1(1995). They subtracted the test-filtered $GS t dt 5 (70)
bulence energy equatidn{54) from the corresponding eguati -3 <p(T)(de(T) + /lT)> —(Mer).

for the turbulence energy at the level of the test filter ineord

to determineC, as a function of both space and time. Our ap- Invoking the closure dimensional closuEg](50) both for the
proach is an intermediate one, where spatially averageggnesGSs rate of dissipatiogsand the rate of dissipation at the test
equations are considered. For the mean SGS turbulenceyendiiger level, we obtain the following expression for the meate

averaging equatioli{b4) yields of dissipation on length scales in betwekg andAr:
D k 3/2
<Pﬁ ksgs> = (tikSik) — <P(/lsgs+ 5595»‘ (64) (pMer) = E—; <P(T) (_(p p?%S) T kT) - 7Tpkg£/§> (71)

Here it is assumed that the surface contributions fro_m Hrestr Furthermore, setting
port term cancel out or at least can be neglected. Since

< "k > <a k >+< O puk > e  (65) Ar = Cilrd®, (72)
T~ =\ = —— Pl = = B . .
PDr e Pty I VMt B e the closure paramet@; is determined by

[

~0

d 1
2 _ M A1 L2 (T)2 L M
we also neglect thefkect of advection by the resolved flow.Ce = [dt<KT> <CV'O Atk T1S™H > + (3 + Cﬂ) <KTd >]
The turbulence energy density associated with the chaisicte (ke 32 -1
. 0 : T
tic scale of the test filter is defined by the trace of the Gemnan At <p(T) ( pi(;% + kT) —y1p é§>

identity (59)

1 0000 00

1 1 (73)
—5Tlovi, vi) = =5 (Ti)T + STrloui, v)) = (KsgdT + K1,

(66) Contrary to the eddy-viscosity parame@&rwhich varies both

ig space and tim€, is a time-dependent constant for a suit-
ably chosen spatial region. For homogeneous turbuleness th
is only one region encompassing the whole domain of the flow.

whereKt = p(Mky @2). The spatial average of the turbulenc
energy[[BB) is given by the following dynamical equation:

0 /0 o (T In a stratified medium, it is appropriate to average horialiyt
gt Keest Ko} = (rrPui.00S3) (67) ThenC, varies with depth. For turbulent combustion problems,
- <p(,1$gs+ esgd + V(A7 + ET)>_ such as type la supernova explosions, one can distinguésh fu

_ _ o _ the burning zone and the burned material within. For each of
Equations[(64) and{66) in combination with the Germanese three regions a value of the dissipation parametaids-c

identity (89) imply lated as a function of time. For the pressure-dilatatiompes-
d . . terC,, on the other hand, we preliminarily assume the constant,
a(KT> = <TT(pUi,Uk)Si(k) + <Tik>TSi(k) - TikSik> time-independent valug, = —£ for subsonic turbulence (see

Fureby et al. 1997).
- <P(T)(/1T + 6T)> :

Substituting the eddy-viscosity closures for the variowslpc- 4.3, Diffusion

tion terms on the right-hand side, the above equation besome _
As in the case of the energy transfer, we shall first consfaer t

d 5 problem of non-local transport at the level of a basis filter o
K= <p(T)CVATk_J|'_/2|S* (T)|2> -3 (KTd(T)> characteristic length. which is large compared to the numer-
ical cutdT length. The generalised kinetic flux{21) is given by

o

_ <,0(T)/1T> + <,0(T)€T> _ 1 1
#(T) 2 Flin< — _ ={pLivjvj)< + SV {PVjv))<
+ <<stgsSi*k>TSik _Pngésﬂ > (69) ! 2 2" (74)
i * puy)<of = P}
2 ((K ord® —K ﬁ> and the pressurefiiision flux:338 reads
3 s} s} .

(i u =—Pv). + P v=. (75)
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Assuming that the total flux vectd®™ < 4 < is aligned with

the turbulence energy gradieNk; ,, the gradient-dfusion 1.0[ ]
closure can be written as follows: | |
i . B |
g (kin) < +p5 = CIAL ktzrkatErb' (76) ) 0.8 ]
Contracting the above relation wiWky, = and averaging over ER:
. . ‘c 0.6 —
the domain of the flow, one obtains B L
<7:(kin)< + <) - VK 2 r V/cg = 0.86, ¢ = 0.75
C/((vec)< = K kturb. (77) 2 04 [ t//T =20, AG;A =16
A { o V650?) g
o L —— explicit
(veck ey . 0.2 —— scalar closure —
A sample of values fo€; is listed in Tabld1L. In agree- i vectorial closure
ment with a turbulent kinetic Prandtl number of the ordetyni I s tm=20
C"*°* is of the same order of magnitude as the closure param- ~ °9'———————
0.00 0.02 0.04 0.06 0.08

eterC; (see Pope 2000, Sect. 10.3). Contour sections of the Dimensionless flux magnitude
flux magnitudg# “" < + u<| and the corresponding closure at
thek,,, = 0.25 isosurfaces fov/co = 0.66 at timet = 4T are

shown in Fig®. However, as one can see from a comparison g
of the panels (a) and (b), the closure underestimates fhe di
sive flux by about an order of magnitude. Even more clearly,
this is demonstrated by the probability distribution fuons
plotted in Fig.[®. We also investigated the hypothesis of set
ting the turbulent diusivity parameter equal to the localised
eddy-viscosity parameter (see Sagaut 2001; Kimlet al.|1999,
Sect. 4.3). Since negativefilisivity would induce numerical
instability, we truncated the flusivity parameter at zero, i.e.
Cs = CﬁT“. The resulting visualisation in panel (c) of FIg. 4
and the corresponding graph in ALjy. 5, however, show vty lit 0.2
if any improvement compared to the statistical closure.

0.8

0.6

V/co = 0.66, ¢ = 0.75
/ t/T = 4.0, Ag/b = 11

/ —— explicit

—— scalar closure —
vectorial closure 1

0.4

Probability distribution

—— ok =1 (y1=20) 4
The reason for the discrepancies is the flawed assumpton .,/ 7]
of alignment between the turbulent flux vector and the energy 0.00 0.02 0.04 0.06 0.08
gradient. Settlng Dimensionless flux magnitude

(sch< _ (FUM< 4+ p=)) : P ; Kin< , <
C>¢r = , (78) Fig.5. Probability distribution functions fojF" + p~| and
Ac <|th<urb|\/ f,rb> the corresponding gradienttiision closures with dierent

) ) ~_turbulent difusivity parameters.
where an equality of the flux magnitude but not the direction

is presumed, results in significantly larger turbuletifudivity

(see Tabl€ll). In particular, panel (d) in Fig. 4 and the proba i .

bility distribution functions shown in Fid] 5 reveal a verpse corresponding to the turbulentfilisivity

match between the explicitly evaluated turbulent flux arel th _ 1/2

gradient-difusion closure with the parametef*™~ = 0.422. #sgs = 0:4pAerrgs (60)
Remarkably, the implied turbulent kinetic Prandtl numisesfi According to our numerical investigatio@, ~ 0.4 is represen-
the order of ten rather than unity. tative for stationary isotropic turbulence of Mach numiset.

It appears that the gradientfiision closure provides a dif- In the case of developing turbulence, theets of turbulent
fusive mechanism which accounts for the intensity of tuebtil transport are rather marginal, and the deviations intrediny
transport but fails to reproduce anisotropic propertiethsfl- the statistical dfusivity (80) are not overly important for the
order generalised moment. This is why advanced statistieal subgrid scale dynamics. For higher Mach numbers, however,
ories of turbulence abandon the gradierftdiion closure and there appears to be a trend towards systematically larger di
introduce dynamical equations for the third-order moments sivity.
make use of other, more sophisticated closures (Canutd; 1997 In a similar fashion as the gradientfision hypothesis, a
Canuto & Dubovikov 1998). Such equations have been sugrbulent conductivityysgs for the generalised conductive flux
gested for the application in SGS models as well_(Canuiofluid of heat capacitgr and thermal conductivity can be
1994). On account of the fliiculties solving these equationsjntroduced:
however, we prefer the simple algebraic closiird (52) with a FD = hep(y + xsgd VT (81)

constant diusivity parameter . . .
yp For the generalised convective flgx©"d, a closure might

Cc~04 (79) be based upon the super-adiabatic gradizent (Canuto 1994).



12 W. Schmidt et al.: A localised subgrid scale model for fldythamical simulations |

fig diff.png fig.diff_closr_vec.png
(a) Explicit (b) C, = 0.065 (vectorial)
fig. diff_locl_nb.png fig. diff_closr_scl.png
(©C.=c" (d) C, = 0.422 (scalar)

Fig. 4. Turbulence energy isosurfaces as in Eig. 1 with contour@esbf the dimensionless flux magnitude of turbulent tramnsp

Moreover, in some combustion problems or in simulations &f these simulations, we utilised a greatly simplified react

multi-phase media the turbulent mixing of particle spedges scheme, where the products of thermonuclear fusion arehick

yet another challenge. These problems are left for futumkwoand alpha particles. The thermonuclear burning zones prop-
agate in a fashion similar to premixed chemical flames. For
the chosen mass densipy ~ 2.9 - 1Bgcnt3, the width of

5. Turbulent burning in a box the flames isSe ~ 0.006 cm (cf.. Timmes & Woosléy 1992).

eHgnce, the flame fronts are appropriately represented by dis

As a simple testing scenario, we performed LES of turbul oo X , X
greq.ptmees for the numerical resolutign= 2 - 10°cm in the

thermonuclear deflagration in degenerate carbon and oxy
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simulations we run. The front propagation is numerically inscale becomeks ~ 10°°L ~ 0.1cm. Note that the Gibson
plemented by means of thevel set metho¢Osher & Sethian length is still large compared to the flame thickness. Tleesf
1988;|Reinecke et Al. 1999). The domain of the flow is cubilbe internal structure of the burning zones is not disturtped
with periodic boundary conditions (BCs). In this scenatiie, turbulent velocity fluctuations, i.e. tHiamelet regimef turbu-
burning process consumes all nuclear fuel within finite tim&nt combustion applies (Peférs 10999).

We setX = 216A = 4.32 km for the size of the domain, which . . .
. . Running a LES with the parameters outlined above and set-
is comparable to the resolution of the large scale superno\

va . - ) .
simulations to be discussed in paper Il. Since self-graigity Ing eight small ignition spots on a numerical gridiof= 216

insignificant on length scales of the order of a few kilo trece”S' the expectation was that the burning process would in
9 9 e tially proceed slowly, but as turbulence was developingtdue

we apply an external solenoidal force field in order to pr@ﬁu?he action of the driving forcegsgs would eventually exceed

turbulent flow. Each Fourier mode of the force field is evoIve&i1 ; .
as a distinct stochastic process of the Ornstein-Uhlent the laminar flame speed and substantially accelerate the flam
b propagation. Indeed, this is what can be seen in[Big. 6 which

The characteristic wavelengtthof the forcing modes is half the hows plots of statistical quantities as functions of tifiae

size of the domairl. can be interpreted as integral length scale : T .
corresponding flame evolution is illustrated in the seqeenc

O.f the flpw. An detailed de_scrlptl_on Of. the_ met_hodology andgf three-dimensional visualisations in Fig. 7 40d 8, wheee t
discussion of nhumerous simulations is given_ in_ Schmidtlet al

(005h) Colour shading indicates the contour sectiongjgt in loga-
e rithmic scaling. Initially, the spherical blobs of burningate-

The LES of turbulent combustion is a particularly appror-i(?I are expanding slowly and become gradually elongated an

priate case study for the performance of subgrid scale m[i?l'ded by the onsetting flow which is produced by the driving

els because the evolution of the system is strongly couple orce. As the SGS turbulence velociyys exceeds the laminar
the SGS turbulence energy via the turbulent flame speed re-" . ) )
btirning speediam in an increasing volume of space, the spa-

lation. For the notion of a turbulent flame speed |see Po‘:h?%% averaged rate of nuclear energy reledBe,o), is increas-
(1994) [Niemeyer & Hillebrand{ (1955) afd Petdrs (1999). It~ ¢ 9y g

the framework of the filtering formalism, the underlying hyIng rapidly (Fig.[§). Eventually(Pn.c) assumes a peak value

o L . at dimensionless timé = t/T ~ 1.8 which coincides with
pothesis is the following: If the flow is smoothed on a certal{he maximum of turbulence enerav. Subsequentlv. the flow an-
length scale\, then the ective propagation spees,p,(A) of 9y- q Y, P

a burning front is of the order of the turbulent velocity ﬂucproaches statistical equilibrium between mechanical wrod

tuationsy’ ~ k[lu/rzb’ provided thath  Ie. The length scale tion and dissipation of kinetic energy. Thus, the greatet pa

Ig is called theGibson scalelt specifies the minimal size of the fuel is burned within one large-eddy turn-over time @ th

: . . turbulent flow. This observation in combination with thehtig
turbulent eddies féecting the flame front propagation. In the :

correlation between the growth of the mean rate of nuclear en
context of a LES, we havaum ~ Osgsfor the turbulent flame

speed. Consequently, the SGS model determines the prOp%{’%i;eleiiieir;disﬂ(;iiﬁit:érguItebur:(t:)il\é?\t):ty verifies teat th
tion speed of turbulent flames. Il§ < A, on the other hand, gp y ’
the front propagation is determined by the microscopic con- As a further indicator for the reliability of the SGS model,
ductivity of the fuel. The corresponding propagation spisedwe varied the resolution in a sequence of LES, while main-
called the laminar flame speed and is denotedshy. Since taining the physical parameters unaltered. The resultiolgad
Sam iS determined by the balance between thermal conductigtatistics is shown in Fi] 9. In particular, the time evimotof
and thermonuclear heat generation, conductiteces are im- (Pnyc) appears to be quite robust with respect to the numerical
plicitly treated by the level set method. For this reasondae resolution. The deviations which can be discerned in thgtiei
not include the conduction terms in equatibnl (42) for thaltotwidth and location of the peak are mostly a consequence of the
energy. different flow realisations due to the random nature of the driv-
Both limiting cases of turbulent and laminar burning, reing force. Actually, even if we had used identical sequemées
spectively, are accommodated in the flame speed relation prandom numbers to compute the stochastic force field in each
posed by Pocheal (1994): simulation, the dependence of the time steps on the nunherica
resolution nevertheless would have producetédent discrete
211/2 L .
Surb Osgs realisations. Thus, we initialised the random number seces
Sam = [1 +Ci (%) } : (82) differently and restricted the resolution study to statistoah-
parisons. The evolution of the mass-weighted SGS turbalenc
The codficientC; is of the order unity and determines the rati@elocity which is plotted in panel (b) of Fifil 9 reveals that-t
of surp andgsgsin the turbulent burning regime._Peters (1999ulence is developing slightly faster in the cdse= 192
propose€£; = 4/3, whileC; ~ 20/3 is suggested kiy Kim etlal. This can be attributed to a somewhat larger root mean square
(1999). Here we se€; = 1 corresponding to the asymp-orce field during the first large-eddy turn-over in this simu
totic relationsum = 0sgs assumed by Niemeyer & Hillebrandtlation. Consequently, the burning process proceeds sgstem
(199%). For a study of the influence 6 seel Schmidt et al. cally faster. Note, however, that the level of SGS turbuddme-
(20058). The laminar flame speed for an initial mass densitya@mes monotonically lower with increasing resolution foe t
2.90-10%gcn3is Sam ~ 9.78-10° cm sL. Choosing a charac- almost stationary flow at tim& = 3.0.The deviations for the
teristic velocityV = L/T = 100sam, whereT is the autocorre- LES with the lowest resolutiorN = 12%), on the other hand,
lation time of the stochastic force driving the flow, the Gibs are likely to be spurious. For this reason, it would appeat th
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Fig. 6. Evolution of statistical quantities in a LES of thermonweldeflagration in a cubic domain subject to periodic boupdar
conditions withN = 216® numerical cells. In panel (a) the spatially averaged rateucfear energy generation in combination
with the mass fractions of unprocessed material (carboroangen), alpha particles and nickel are plotted. The meavefisas
the standard deviation of the SGS turbulence velagigyare shown in panel (b).

the minimal resolution for dficient convergence has to be seisotropic turbulence. This suggests that the numericallis
in betweerN = 120° andN = 16C. tion can be utilised as an implicit SGS model with regard to

This conclusion is also supported by the turbulence enerd\ velocity field. In fact, the LES presented in Hip[6, 7 Bhd 8
spectra plotted in Fi—10. We computed the normalised gneMjas computed without including the SGS stress term in the
spectrum functions for the transversal modes of the vglocAynamical equatior{{16), while the total enemgy, which is
fields after two integral time scales have elapsed. Detdils @nserved by PPM, was coupled to the SGS turbulence energy
the computation of discrete spectrum functions are diszlis&sgs One can think oksgsas a bifer between the resolved ki-
in [Schmidt et al. [(2005b). One can clearly discern maxinftgtic energys[ol? and the internal energgi.. Apart from the
in the vicinity of the normalised characteristic wave numb@&nergy budget, the SGS model influences the resolved dynam-
k = Lk/2r = 1.0 of the driving force. For the LES witi ics via the turbulent flame speed. For the LES with varying
greater than 1) an inertial subrange emerges in the intefesolution (FigEP anf10), on the other hand, we applied com-
val 2 < k < 6. The dimensionless cufavave number in the plete coupling of the SGS model, i.e. the turbulent stresa te
caseN = 216 is k = 54. As demonstrated fn_Schmidt e! alin the momentum equation was included as well. Comparing
(2005b), the numerical dissipation of PPM, which was used fig. B (2) andD (a) foN = 216, it appears that the burning
solve the hydrodynamical equations, noticeably smoothes Process is slightly delayed in the latter case. As is dismiiss
flow for wavenumber& > 54/9 = 6. This is exactly what is at length in_.Schmidt et all (2005a), the discrepancy canbe at
observed in FigiZ10. FoX = 123, on the other hand, virtu- tributed to a dificulty related to inverse energy transfer. Since
ally all wavenumbers not directlyfizcted by stochastic forc- backscattering injects energy on the smallest resolveldssca
ing are subject to numerical dissipation, i.e. there is motial Which are sizeably fiected by numerical dissipation, the ki-
subrange at all. Considering the more common power-of-tigtic energy added to the flow is more or less instantaneously
numbers of cells, a grid dfl = 1288 cells will provide only converted into internal energy. Thus, the backscatterirene
marginally sdficient resolution, whereas one will be on the safergy from subgrid scales to the resolved flow results in an art
side withN = 256%. In paper II, however, it is shown that still ficially enhanced dissipation which depletes turbulenezgyn
higher resolutions might be required for LES of non-staaign Using partial coupling, this unwantedect is simply ignored.
inhomogeneous turbulence such as in the case of thermohn@t consistency, one must then introduce a it the eddy-
clear supernova simulations. viscosity parameteC, in order to dispose of negative viscosi-

It is also argued ih_Schmidt etlal. (2005b) that the intrirfi€S- Mending the shortcoming of the treatment of inverse en

sic mean rate of dissipation produced by PPM closely agré&gV transfer s the subject of ongoing research. For the bies
with the prediction of the Smagorinsky model for stationai§?9: the partial coupling of the SGS model with backscatigri
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Fig.7. LES of thermonuclear deflagration in a cubic domain with @i BCs. Shown are snapshots of the flame fronts with
contour sections of the SGS turbulence velocity in logamithscaling.

suppressed serves as a pragmatic solution in hydrodynamieason, it is particularly suitable for the application iE%
simulations with PPM. of astrophysical fluid dynamics. The energy transfer from re
solved toward subgrid scales is modelled with the standard
eddy-viscosity closure, where the closure parameter is-com
puted from local properties of the flow. Hence, there ar@no
The localised SGS turbulence energy mod&is robustness priori assumption about the resolved flow incorporated in the
and flexibility at relatively low computational cost. Forish model. Non-local transport is treated with the down-gratie

6. Conclusion
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Fig. 8. Fig.[d continued.

closure, using a constant statistical parameter. With lautur the piece-wise parabolic method (PPM) for the resolveddwydr
lent kinetic Prandtl number significantly larger than upity dynamics and the level set method for the flame front propaga-
is possible to reproduce the magnitude dfuliive flux quite tion. Since PPM produces significant numerical dissipatian
well. The rate of viscous dissipation appears to be pagitul found it favourable to decouple the SGS model form the mo-
challenging. We found that a semi-statistical approacldgie mentum equation and suppressing inverse energy transfar fr
satisfactory results. unresolved toward resolved scales. In this kind of appboat
The SGS model was implemented in a code for the LBBe SGS turbulence energy serves as fiiebibetween the re-
of turbulent thermonuclear combustion in a periodic boxgsi
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Fig. 9. Evolution of the mean dimensionless rate of nuclear eneegieation (a) and the ratio of the mass-weighted mean SGS
turbulence velocity to laminar burning speed (b) in a seqaer LES with varying resolution.

solved kinetic energy and the internal energy and supplies a
velocity scale for calculation of the turbulent burning ege F !

163 |

Furthermore, gravitational and thermdfexts can be in- i - S - ?923
cluded in the SGS model, although closures specific to a cer- 'Y & N e ]
tain physical system have to be formulated. An example is pre_ N = 1208 ]

sented in paper Il, where the application of the SGS model to:
Rayleigh-Taylor-driven thermonuclear combustion in type <
supernova is discussed. Adapting the model to other applica:
tions, possibly with diferent numerical techniques, is the goalg 0.0010 F

of on-going research. &

~—

0.0100 F
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Fig. 10. Transversal kinetic energy spectrum functions at time
t = 2T for the same sequence of LES as inHig 9.
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