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Abstract—Ultraluminous X-ray sources fed by Wolf–Rayet star winds and X-ray bursters in ultracompact
binaries with He or C white dwarfs have accretion disks whose properties may differ significantly from those
of pure Hα-accretion disks. Therefore, we have included the dependence on charge number Z and mean
molecular weights µe/I in the Shakura and Sunyaev (1973) scaling relations for the key parameters of the
disk. Furthermore, we also consider the pseudo-Newtonian potential of Paczyńsky and Wiita (1980). These
scaling relations might become useful, e.g., when estimating the illumination efficiency of the outer parts of
the disk. We also address the changes in the structure of the boundary (spreading) layer on the surfaces of
neutron stars that occurs in the case of H-depleted accretion disks.

PACS numbers : 98.35.Mp
DOI: 10.1134/S1063773706040062

Key words: accretion disks, chemical composition, black holes, neutron stars.

1. INTRODUCTION

Recent observations of galaxies by the CHAN-
DRA X-ray observatory confirm the existence of
compact, ultraluminous X-ray sources (ULXs) emit-
ting at luminosities considerably higher than the Ed-
dington luminosities of neutrons stars or stellar-mass
black holes with 1−15 M� (Liu and Mirabel 2005;
Roberts et al. 2004a, 2004b). The most dramatic
results were obtained by CHANDRA observations
of star-forming galaxies and regions (Grimm et al.
2003), where over the wide luminosity range L =
1036−1040 erg s−1, the corresponding high-mass
X-ray binary (HMXB) luminosity function is well
fitted by a single power law with a strong cut-off at
L ∼ 1040.5 erg s−1, which is more than two orders of
magnitude higher than the Eddington luminosity of a
solar-mass neutron star. Since the HMXB luminos-
ity function does not exhibit a change in slope or other
peculiarities in the region just above the Eddington
limit of stellar-mass black holes, it is plausible to
assume that ULXs represent the high-mass/high-
accretion-rate tail of the “ordinary” HMXB popula-
tion with masses in the range 10−15 M� (King 2002;
Grimm et al. 2002; Gilfanov 2004).

∗The article was translated by the authors.
**E-mail: dunkel@mpa-garching.mpg.de

These new observational results increased strongly
the theoretical interest in the question whether an
accreting object can produce super-Eddington lu-
minosities or whether the Eddington luminosity
provides a real upper limit for the luminosity of ac-
creting objects. In principle, one can think of several
different mechanisms leading to super-Eddington
luminosities and, at present, there is no commonly
accepted model for the huge energy output of ULXs
as yet. For example, young rotation-powered pulsars
or jet sources directed toward us could substantially
increase the observed X-ray flux. Other possibilities
might be slim accretion disks (Abramowicz et al.
1988) or an accretion disk that experiences radiation-
driven inhomogeneities (Begelmann 2002). Alterna-
tively, many observers and theorists believe that the
high luminosity of ULXs is due to accretion onto
an intermediate-mass black hole with 102−104 M�
(Kubota et al. 2002; Miller and Colbert 2004).

On the other hand, there are also several minor
effects (e.g., related to disk inclination and chem-
ical composition), each being, in principle, able to
increase the observable luminosity of an accreting
object by a factor of 2 or 3 (Grimm et al. 2002). Due
to the aforementioned homogeneity of the HMXB
luminosity function, it is worthwhile to carefully re-
consider the contributions of these minor effects, even
though most of them have been known to theorists
for more than 30 years. In this paper, we will focus
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on the case where the chemical composition of the
accreting matter deviates greatly from the standard
cosmic abundances. Obviously, in this case, the mass
per electron in the accreting gas can be higher than
that for a pure H plasma or standard cosmic abun-
dances. It is well known that for completely ionized
He, C, O, N, or Mg plasmas, having a factor of 2
fewer electrons per baryon than H, the Eddington
luminosity is a factor of 2 higher than that for a pure
H plasma.

From an observational point of view, there is ev-
idence that, under certain conditions, the accreting
gas in binary systems can consist only of elements
heavier than H (Hammer et al. 2005). For example,
several observations of X-ray sources in extremely
dense binary systems revealed a neutron star ac-
creting matter supplied by a He, C, O, Ne, or even Mg
white dwarf (Juett and Chakrabarty 2003; Nelemans
et al. 2004; Schulz et al. 2001). The unusual chemical
abundance affects the power release due to nuclear
explosions on the surface of the neutron star, which
are observable as X-ray bursts. The duration of bursts
and their recurrence rate are also affected strongly.

The problem of nonstandard abundances might
also be of relevance if the accretion onto the HMXB
black hole takes place in a star-forming region or
galaxy. Then, many of the HMXBs are fed by stellar-
wind accretion. A particularly interesting scenario in
this regard corresponds to the case where the donor
star is of the Wolf-Rayet type. During their evolution,
these stars may have lost a significant amount of their
H-rich envelope, leading to stellar winds dominated
by He or, in some cases, even by C and N (Ab-
bott et al. 2004; Crowther et al. 2002; Hamann and
Koesterke 2000; van der Hucht 2001). For instance,
one of the brightest, most luminous X-ray sources in
the Milky Way, Cygnus X-3, is fed by the dense, high-
velocity wind from its He Wolf-Rayet companion (van
Kerkwijk et al. 1992; Lommen et al. 2005).

In the case of accretion onto a black hole, the
plasma density in the region of the main energy re-
lease of a standard H-dominated accretion disk is
not high enough to produce the photons necessary
for creating a blackbody radiation spectrum inside
the disk (Shakura and Sunyaev 1973). Moreover, in
the limit Ṁ/ṀE → 1 and α → 1, the optical depth
becomes rather small (here, as usual, ṀE denotes
the accretion rate corresponding to the Eddington
luminosity and α is the viscosity parameter). There-
fore, the purpose of this paper is to study how the
disk density, temperature, and optical depth depend
on the chemical abundance in the extreme case of
H-poor accretion. By simply repeating the approach
of Shakura and Sunyaev (1973), we will show that
under such peculiar conditions, the density of elec-
trons and nuclei increases, thereby also increasing the

effective optical depth. This might stabilize the disk
against the transition to the two-temperature hot flow
regime (Shapiro et al. 1976).

Recently, Hammer et al. (2005) have performed
numerical simulations to determine the structure in
the outer regions of C/O/Ne-dominated accretion
disks in ultracompact binary systems (for details of
their NLTE-model, see Nagel et al. 2004). Their pri-
mary objective was to explain the observed pecu-
liarities in the optical spectra of these systems by
taking into account the metal-line blanketting and
irradiation by the central object. However, despite
the considerable theoretical interest in the properties
of H-poor accretion disks (Menou et al. 2002), we
failed to find in the literature simple analytical results
describing the power-law scaling relations for the key
parameters of the standard accretion disk with re-
spect to its chemical composition in the extreme case
of H- or even He-depleted accretion flows. Therefore,
the formulas given below, which were originally de-
rived as part of a more complex study, will possibly
be useful when interpreting observational data and
obtaining simple analytical estimates. Finally, it is
also worthwhile to mention that a high abundance of
He or heavier elements not only decreases the disk
(scale) height by a factor of ∼ 2, but also changes the
width and surface brightness of the spreading layer
on the surfaces of neutron stars. Therefore, in the
periods between X-ray bursts, the accretion of heavier
elements also affects the heating of the outer parts of
the disk by X-ray radiation emitted from the central
disk regions (this also applies to the case of accretion
onto black holes) and from the neutron-star surface
(Lyutyi and Sunyaev 1976).

2. THE STRUCTURE OF HELIUM- OR
METAL-DOMINATED ACCRETION DISKS

The hydrodynamic equations considered by
Shakura and Sunyaev (1973) do not explicitly de-
pend on the chemical composition of the disk. More
precisely, in their model, the chemical composition
enters only via the thermodynamic equations for the
pressure and the energy density of the gas:

Pg =
ρkT

µmp
, εg =

3
2

ρkT

µmp
, (1a)

and via the Rosseland mean opacities for Thomson
and free–free processes:

κT =
σT

µemp
=

0.398
µe

cm2 g−1, (1b)

κff = 0.12
Z2

µeµI

(
ρ cm3

mp

)(
T

K

)−7/2

cm2 g−1. (1c)
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Here, Z is the ion charge number, ρ is the mass
density of the matter, k is the Boltzmann constant,
σT is the Thomson scattering cross section, T is
the temperature, mp is the proton mass, µe,I is the
mean molecular weight of the electrons and ions,
respectively, and µ−1 = µ−1

e + µ−1
I . The results for

the disk scale height, surface density, etc. given below
in Eqs. (4)–(6) were obtained by using Eqs. (1)
and following the approach of Shakura and Sun-
yaev (1973). In particular, Eqs. (4)–(6) refer to a
Newtonian potential Φ = −GM/(R2 + z2)1/2, where
R is the cylindrical radius. It is however easy to
see that the scaling relations with respect to the
chemical parameters (see also Table 1) remain also
valid, when including relativistic corrections in the
form of the pseudo-Newtonian potential of Paczyńsky
and Witta (1980), as is evident from the results in
Appendix A. It is convenient to express the results
in terms of nondimensional quantities m = M/M�,
ṁ = Ṁ/ṀE, r = R/r0, and s = 1 − r−1/2, where
r0 = 3rG = 6 GM/c2 = m8.86 km. The total lumi-
nosity of an infinite α-disk ranging from r0 to ∞
reads L∞ = ζṀc2 with an efficiency ζ = 1/12 in
the case of a Newtonian potential and ζ ≈ 0.06 for
a Schwarzschild black hole. The critical Eddington
luminosity that provides an upper limit for spherically
symmetric accretion can then be written as

LE = µeLE,H = µe
2πrGmpc

3

σT
(2)

= µem(1.26 × 1038 erg s−1),

where, in what follows, the quantities labeled by H
refer to the case of a fully ionized, pure H plasma. The
corresponding critical accretion rate obtained from
the condition L∞ = LE reads

ṀE = µeṀE,H (3)

= µeζ
−1m(2.22 × 10−9M� yr−1).

For the inner disk zone (A) characterized by dom-
inating radiation pressure Pg � Pγ and κT � κff, we
find

H = ζ−1mṁs(2.2 km), (4)

Σ = ζµeα
−1ṁ−1r3/2s−1(9.9 × 102 g cm−2),

ρc = ζ2µeα
−1m−1ṁ−2r3/2s−2(2.2 × 10−4 g cm−3),

nec = ζ2α−1m−1ṁ−2r3/2s−2(1.3 × 1020 cm−3),

v̄R = ζ−2αṁ2r−5/2s(−2.5 × 103 km s−1),

εγc = µeα
−1m−1r−3/2(3.1 × 1015 erg cm−3),

Pc = µeα
−1m−1r−3/2(1.0 × 1015 erg cm−3),

Tc = µ1/4
e α−1/4m−1/4r−3/8(2.5 × 107 K),

Relative quantitative changes compared to a pure, fully
ionized H accretion disk with µI = µe = Z = 1 and the
same parameters (α, M, Ṁ).

IZ+ He2+ C6+ N7+ O8+ Mg12+

Z 2 6 7 8 12
µ 4/3 12/7 14/8 16/9 24/13
µe 2 2 2 2 2
µI 4 12 14 16 24
ṀE/ṀE, H 2 2 2 2 2

Zone A

H/HH 0.5 0.5 0.5 0.5 0.5
Σ/ΣH 4 4 4 4 4
ρc/ρc, H 8 8 8 8 8
nec/nec, H 4 4 4 4 4
v̄R/v̄R, H 0.25 0.25 0.25 0.25 0.25
εγc/εγc, H 2 2 2 2 2
Pc/Pc, H 2 2 2 2 2
Tc/Tc, H 1.19 1.19 1.19 1.19 1.19
τc/τc, H 4.18 7.23 7.81 8.35 10.23
tco/tco, H 0.5 0.5 0.5 0.5 0.5

Zone B

H/HH 0.63 0.57 0.57 0.56 0.55
Σ/ΣH 2.51 3.08 3.13 3.17 3.27
ρc/ρc, H 3.99 5.40 5.54 5.64 5.90
nec/nec, H 2.00 2.70 2.77 2.82 2.95
v̄R/v̄R,H 0.40 0.32 0.32 0.32 0.31
εγc/εγc, H 1.26 1.54 1.56 1.58 1.63
Pc/Pc, H 1.59 1.75 1.77 1.78 1.81
Tc/Tc, H 1.06 1.11 1.12 1.12 1.13
τc/τc, H 2.27 5.13 5.66 6.15 7.84
tco/tco, H 0.79 0.65 0.64 0.63 0.61

Zone C

H/HH 0.64 0.64 0.64 0.64 0.65
Σ/ΣH 2.24 2.42 2.42 2.42 2.39
ρc/ρc, H 3.34 3.76 3.76 3.76 3.69
nec/nec, H 1.67 1.88 1.88 1.88 1.84
v̄R/v̄R, H 0.45 0.41 0.41 0.41 0.42
εγc/εγc, H 2.02 4.03 4.38 4.69 5.73
Pc/Pc, H 1.50 1.56 1.56 1.55 1.54
Tc/Tc, H 1.19 1.41 1.45 1.47 1.55
τc/τc, H 1.50 2.21 2.30 2.38 2.61
tco/tco, H 0.50 0.25 0.23 0.21 0.17

Note. Inner zone A: Pg � Pγ and κT � κff. Intermediate zone B:
Pg � Pγ and κT � κff. Outer zone C: Pg � Pγ and κT � κff.
All values refer to pure disk plasmas containing only a single ion
species. The same results are obtained for the pseudo-Newtonian
potential of Paczyńsky and Witta (1980), see Appendix A.
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τc = Zζ2µ1/16
e µ

−1/2
I α−17/16

× m−1/16ṁ−2r93/32s−2(1.4 × 10−2),

where we note that ṁ = ṁH/µe. Here, the index c is
used to label the midplane values, H is the disk scale
height, Σ is the surface mass density, v̄R is the (verti-
cally averaged) radial velocity, εγc is the radiation en-
ergy density, nec = ρc/(µemp) is the electron number

density, and τ = (κTκff)
1/2 Σ/2 is the effective optical

depth (Shakura and Sunyaev 1973).
Similarly, for the intermediate zone (B) with Pg �

Pγ and κT � κff,

H = ζ−1/5µ−2/5µ1/10
e α−1/10 (5)

× m9/10ṁ1/5r21/20s1/5(1.0 × 10−1 km),

Σ = ζ−3/5µ4/5µ4/5
e α−4/5m1/5

× ṁ3/5r−3/5s3/5(4.7 × 104 g cm−2),

ρc = ζ−2/5µ6/5µ7/10
e α−7/10

× m−7/10ṁ2/5r−33/20s2/5(2.3 g cm−3),

nec = ζ−2/5µ6/5µ−3/10
e α−7/10

× m−7/10ṁ2/5r−33/20s2/5(1.4 × 1024 cm−3),

v̄R = ζ−2/5µ−4/5µ1/5
e α4/5

× m−1/5ṁ2/5r−2/5s−3/5(−5.3 km s−1),

εγc = ζ−8/5µ4/5µ4/5
e α−4/5

× m−4/5ṁ8/5r−18/5s8/5(1.5 × 1018 erg cm−3),

Pc = ζ−4/5µ2/5µ9/10
e α−9/10

× m−9/10ṁ4/5r−51/20s4/5(2.3 × 1016 erg cm−3),

Tc = ζ−2/5µ1/5µ1/5
e α−1/5

× m−1/5ṁ2/5r−9/10s2/5(1.2 × 108 K),

τc = Zζ−1/10µ21/10µ−1/5
e µ

−1/2
I α−4/5

× m1/5ṁ1/10r3/20s1/10(4.5 × 101),

and for the outer zone (C) with Pg � Pγ and
κT � κff,

H = Z1/10ζ−3/20µ−3/8µ1/10
e µ

−1/20
I α−1/10 (6)

× m9/10ṁ3/20r9/8s3/20(6.1 × 10−2 km),

Σ = Z−1/5ζ−7/10µ3/4µ4/5
e µ

1/10
I α−4/5

× m1/5ṁ7/10r−3/4s7/10(1.3 × 105 g cm−2),

ρc = Z−3/10ζ−11/20µ9/8µ7/10
e µ

3/20
I α−7/10

× m−7/10ṁ11/20r−15/8s11/20(1.0 × 101 g cm−3),

nec = Z−3/10ζ−11/20µ9/8µ−3/10
e µ

3/20
I α−7/10

× m−7/10ṁ11/20r−15/8s11/20(6.3 × 1024 cm−3),

v̄R = Z1/5ζ−3/10µ−3/4µ1/5
e µ

−1/10
I α4/5

× m−1/5ṁ3/10r−1/4s−7/10(−2.0 km s−1),

εγc = Z4/5ζ−6/5µµ4/5
e µ

−2/5
I α−4/5

× m−4/5ṁ6/5r−3s6/5(2.7 × 1016 erg cm−3),

Pc = Z−1/10ζ−17/20µ3/8µ9/10
e µ

1/20
I α−9/10

× m−9/10ṁ17/20r−21/8s17/20(3.8 × 1016 erg cm−3),

Tc = Z1/5ζ−3/10µ1/4µ1/5
e µ

−1/10
I α−1/5

× m−1/5ṁ3/10r−3/4s3/10(4.3 × 107 K),

τc = Z3/10ζ−9/20µ7/8µ−1/5
e µ

−3/20
I α−4/5

× m1/5ṁ9/20r−3/8s9/20(1.5 × 103).

The disk zones are labeled by A, B, and C as in
Shakura and Sunyaev (1973). Numerical values
based on the above results for different types of
pure, fully ionized plasmas are given in Table 1. For
example, this table indicates that, compared to a
pure H disk with the same parameters (α,M, Ṁ ),
the disk becomes typically thinner by a factor of 2
if it is dominated by heavier elements. As one can
check using Saha’s equation (Landau and Lifshitz
1980), considering fully ionized He, C, Mg, etc. is
a good approximation in the case of ultracompact
binaries possessing hot accretion disks with small
radial diameters.

In addition to the quantities from Eqs. (4)–(6),
Table 1 lists the relative changes in the characteristic
time scale for Comptonization (Pozdnyakov et al.
1983)

tco =
3
8

mec

σTεγc
. (7)

Another important time scale is given by the equipar-
tition time for the energy exchange between fast elec-
trons and slow ions (Spitzer 1962),

teq =
A

Z2 ln Λ

(
cm−3

nIc

)
(8)

×
(

kTc

mec2

)3/2

(1.1 × 1017 s)

=
AµI

Z2 ln Λ

(
g cm−3

ρc

)(
kTc

mec2

)3/2

(1.9 × 10−7 s),

where nIc = ρc/(µImp) is the ion number density in
the disk mid-plane. The quantities teq and tco can be
compared with, e.g., the time scale of radial motions
tR = R/v̄R, or, alternatively, with the revolution time
scale tΩ = 2πR/Ω. It is worthwhile to note that, in
contrast to teq/co/R, the revolution time scale tΩ is
independent of the chemical composition. A two-
temperature flow regime can develop in the hot, inner
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disk region if the latter becomes optically thin and if
teq � tΩ (Shapiro et al. 1976).

3. THE BOUNDARY (SPREADING) LAYER
OF NEUTRON STARS

The main difference between the accretion onto
black holes and that onto neutron stars is that the
kinetic energy of the accreting matter on the neutron-
star surface transforms into radiation, whereas in the
former case this energy is absorbed by the black hole.
There are several different models for the boundary
layers of neutron stars (Sunyaev and Shakura 1986;
Popham and Sunyaev 2001). In the spreading-layer
model of Inogamov and Sunyaev (1999), two bright
belts located equidistant from the equator on the
surface of the (slowly rotating) star emit radiation
corresponding to the local Eddington flux

qE(θ) =
LE

4πR2
∗

[
1 −

(
vφ(θ)
vK

)2
]

(9)

= µe
GM

R2
∗

mpc

σT

[
1 −

(
vφ(θ)
vK

)2
]

,

where R∗ denotes the radius of the neutron star, θ the
latitude angle (θ = 0 corresponds to the “equatorial”
disk midplane), vK = (GM/R∗)1/2 is Keplerian ve-
locity, and vφ is the rotation velocity on the surface
of the star (to be obtained by solving the boundary-
layer equations of Inogamov and Sunyaev (1999)).
The local Eddington flux qE(θ) is determined by the
difference between the gravitational force and the
centrifugal force due to the rotation of the accreting
matter on the stellar surface. Hence, because of LE =
µeLE,H, formula (9) implies that the flux that may be
emitted from the surface of a neutron star increases
with µe (small deviations from this simple propor-
tionality may occur due to the weak dependence of
vφ on the chemical parameters µe and µ). Therefore,
in the case of He- or metal-rich accretion flows, this
flux increases by a factor of 2 (at the same values of
Ṁ ) compared to a pure H disk. Moreover, similarly to
the scale height H of the disk, the meridional height
HSL of the boundary (spreading) layer, which can be
estimated from the energy balance (Inogamov and
Sunyaev 1999)

Ṁv2
K

2
= LSL = LE

HSL

R∗
= µeLE,H

HSL

R∗
, (10)

decreases at the same values of Ṁ if the disk is
dominated by elements heavier than H.

APPENDIX

THE PASZYŃSKY-WIITA POTENTIAL

As discussed by Paczyńsky and Witta (1980), the
general relativity effects can be modeled by replacing
the Newtonian potential Φ = −GM/r with the mod-
ified potential

Φ̂(R, z) = − GM

r − rG
, (11)

corresponding to an efficiency factor ζ = 1/16, in
contrast to the Newtonian value of ζ = 1/12. To sim-
plify the subsequent formulas, it is convenient to de-
fine three dimensionless correction factors by

χ0 ≡ R

R − rG
=

r

r − 1/3
, (12a)

χ1 ≡ 3
2
− R +

√
3RrG

2(R − rG)
=

3
2
− r +

√
r

2(r − 1/3)
, (12b)

χ2 ≡ R(3R − rG)
6(R − rG)3

(
2R −

√
3RrG − 3rG

)
(12c)

=
r(3r − 1/3)
6(r − 1/3)3

(
2r −

√
r − 1

)
.

As can be seen from these factors, the relativistic
corrections are important only in the innermost parts
of the disk. Therefore, we will restrict ourselves here
to giving the results for zones A and B.

Zone A: In the case of dominating radiation pres-
sure, Pg � Pγ , and dominating Thomson scattering,
κT � κff, we find

Ĥ(R) = χ−2
0 χ2H, (13)

Σ̂(R) = χ2
0χ1χ

−2
2 Σ,

ρ̂c(R) = χ4
0χ1χ

−3
2 ρc,

n̂ec(R) = χ4
0χ1χ

−3
2 nec,

ˆ̄vR(R) = χ−2
0 χ−1

1 χ2
2v̄R,

ε̂γc(R) = χ2
0χ1χ

−1
2 εγc,

P̂c(R) = χ2
0χ1χ

−1
2 Pc

T̂c(R) = χ
1/2
0 χ

1/4
1 χ

−1/4
2 Tc,

τ̂c(R) = χ
25/8
0 χ

17/16
1 χ

−49/16
2 τc,

where on the right-hand sides the results from
Eqs. (4) are to be inserted (in what follows, the quan-
tities without hats refer to the expressions derived for
the Newtonian potential).

Zone B: In the case of dominating gas pressure,
Pg � Pγ , and dominating Thomson scattering, κT �
κff, we find

Ĥ(R) = χ−1
0 χ

1/10
1 χ

1/10
2 H, (14)
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Σ̂(R) = χ
4/5
1 χ

−1/5
2 Σ,

ρ̂c(R) = χ0χ
7/10
1 χ

−3/10
2 ρc,

n̂ec(R) = χ0χ
7/10
1 χ

−3/10
2 nec,

ˆ̄vR(R) = χ
−4/5
1 χ

1/5
2 v̄R,

ε̂γc(R) = χ
4/5
1 χ

4/5
2 εγc,

P̂c(R) = χ0χ
9/10
1 χ

−1/10
2 Pc,

T̂c(R) = χ
1/5
1 χ

1/5
2 Tc,

τ̂c(R) = χ
1/2
0 χ

4/5
1 χ

−7/10
2 τc,

where on the right-hand sides the results from
Eqs. (5) are to be inserted.

The dimensionless transition radius rAB separat-
ing zones A and B can be determined from the con-
dition T̂A(rAB) = T̂B(rAB); i.e., rAB is given by the
solution of the equation

r21/16s−1χ
5/4
0 χ

1/8
1 χ

−9/8
2 (15)

= 47.3ζ−1µ1/2µ−1/8
e α1/8m1/8ṁ.

The function on the left-hand side attains its mini-
mum value of 14.8 at r = 2.54. Consequently, zone A
exists only if

0.02 < µ1/2µ−1/8
e α1/8m1/8ṁ, (16)

where we have already inserted the efficiency factor
ζ = 1/16.
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