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Abstract

Phase steps are an important type of wavefront aberrations generated by large telescopes with segmented
mirrors. In a closed-loop correction cycle these phase steps have to be measured with the highest possible
precision using natural reference stars, that is with a small number of photons. In this paper the classical Fisher
information of statistics is used for calculating the Cramér-Rao minimum variance bound, which determines
the limit to the precision with which the height of the steps can be estimated in an unbiased fashion with
a given number of photons and a given measuring device. Four types of such measurement devices are
discussed: a Shack-Hartmann sensor with one small cylindrical lenslet covering a subaperture centred over
a border, a modified Mach-Zehnder interferometer, a Foucault test, and a curvature sensor. The Cramér-
Rao bound is calculated for all sensors under ideal conditions, that is narrowband measurements including
photon shot noise, but without other forms of noise or disturbances. This limit is compared with the ultimate
quantum statistical limit for the estimate of such a step, which is independent of any measuring device. For
one device, the Shack-Hartmann sensor, the effects on the Cramér-Rao bound of broadband measurements,
finite sampling, and disturbances such as atmospheric seeing and detector readout noise are also investigated.
The methods presented here can be used to compare the precision limits of various devices for measuring
differential segment phases, and for optimising the devices. Under ideal conditions the Shack-Hartmann and
the Foucault devices nearly attain the ultimate quantum statistical limit, whereas the Mach-Zehnder and
the curvature devices each require approximately twenty times as many photons in order to reach the same
precision.

1 Introduction

In future extremely large optical telescopes at least one of the mirrors will probably be segmented. During the
operation of such a telescope the wavefront errors introduced by segmentation have to be reduced to the order
of a few tens of nanometers. If the segments are regarded as rigid bodies, the wavefront errors can only be
generated by tip-tilt errors of individual segments or differential axial displacements. This paper assumes that
the segments are already perfectly aligned in tip and tilt. A correction of remaining piston errors — from now on
called differential segment phases — requires measurements of the heights of the wavefront steps at the borders
of adjacent segments with a precision of a few nanometers, and the suppression of the relative segment phases
by appropriate rigid body movements of the segments.

Several methods are used or have been proposed for the measurement of differential segment phases in seg-
mented mirrors. One of these is based on the Shack-Hartmann technique and applied in a slightly modified
fashion at the Keck telescope [1][2][3]. In an image of the segmented mirror a circular lens is placed over a
subaperture centred on an intersegment border. The phase step across the border is estimated from the form
of the diffraction pattern, for narrowband and broadband measurements, and in the presence of atmospheric
disturbances. Other methods proposed in the literature use spatial filtering in a modified Mach-Zehnder interfer-
ometer [4], measurements in defocussed images and pupils [5] [6] [7] [8], phase filtering techniques [9], or a knife



edge technique in the pyramid wavefront sensor [10][11][14][15]. The performance of four types of sensors will be
evaluated and compared in the Active Phasing Experiment [12][13].

All the sensors discussed in this paper generate diffraction patterns in the plane of a detector. These patterns
can be regarded as a likelihood function p(z | #) describing the “likelihood” to register a photon on the detector as
a function of the spatial variable z on the detector, given a certain value of a parameter, in this paper the relative
segment phase 6. There are various possibilities to define, based on p(z |6) and its derivatives with respect to 6,
an information content in the likelihood function. One of them is the classical Fisher information [16]:

Ir = /_:0 dz p(z|0) (al%ng))2 . (1)

Estimating the differential segment phases is particularly difficult at low light levels, e.g. when only the light of
faint stars is available for the measurements. The question arises: what precision can ultimately be obtained with
a given number of detected photons? In statistics, precision is characterized by the conditional variance of an
estimate of the parameter. For a parameter of interest, in this paper the relative segment phase 8, the minimum
variance of an unbiased estimate of the parameter, the so-called Cramér-Rao minimum variance bound o2gp [16],
is given by the inverse of the classical Fisher information Ir(6):

otrp(8) =1/Ir(0) . (2)

In the following the shorter expression Cramér-Rao bound will be used for the square root ocrp of the Cramér-
Rao minimum variance bound.

Two of the assumptions in the derivation of equation (2) are, unless obvious, checked for all cases investigated
in this paper. First, the integral of the likelihood function over the interval for which it is defined must not
depend on 6, at least not for a particular value of € for which the Fisher information is calculated. Second, the
likelihood function must be regular with respect to 6. Under the first assumption the likelihood function can be
normalised:

+oo
/ dzp(z|6) = 1. (3)

—00

Assuming a 100% quantum efficiency of the detector, this is equivalent to the assumption that one photon passes
through the aperture.

If g(z | §) denotes a real-valued likelihood amplitude, defined by

q(z|6) = Vp(z|0), (4)

the integrand in equation (1), which we will call the Fisher information density iy(x|6), can be written as

2
ir(z]0) =4 (%) . (5)
In principle there is an ambiguity related to the definition of the Fisher information density. This is due the
identity
+o0 9 2 +oo 2
q(x06) __/ 9q(x]0)
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which can be obtained by differentiating equation (3) twice with respect to §. The Fisher information defined as
+o00 d 2 2
_ q(z6) 9q(z]0)

IF_4[m dz A( o)+ Bale) L 1)

would be independent of the choice of A and B provided that A + B = 1. However, the term following the
coefficient B can be negative, possibly giving rise to a negative Fisher information density. Since this seems
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Figure 1: Wavefront phase ¢ with a relative segment phase 6 generated by a segment of width 2w and a centre
at ¢ within a subaperture of width 2a.

unreasonable, B is set to zero and the Fisher information density is defined as in equation (5). The Fisher
information will therefore be computed as

IF=/+OoiF(w|0)=4/+OO dz (WY. (8)
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According to equation (2) the computation of the Fisher information offers a possibility of calculating analytically
the potential bounds to the precision of various measurement methods. These bounds can then be compared
with the ultimate limit which is independent of any measuring device. The latter is calculated in section 3 from
quantum statistical principles.

Section 4 discusses the Cramér-Rao bounds for the Shack-Hartmann, the Mach-Zehnder, the Foucault and
the curvature sensor under ideal conditions, that is for monochromatic light with photon shot noise, but without
any effects introducing additional noise or light losses or aberrations. The effects of broadband measurements,
finite sampling, and external disturbances such as seeing and detector readout noise can also be included in the
calculations. The methods are outlined in detail only for the Shack-Hartmann sensor in section 6, but could
readily be applied to the other sensors as well.

In general, the limit given by the Cramér-Rao bound can only be attained, if an efficient estimator is available
for the analysis of the data. The issue, whether such an efficient estimator exists, will, however, not be discussed
in this paper. Furthermore, all calculations will be carried out for the one-dimensional case, which is sufficient
for all devices discussed below.

2 Definition of the wavefront error

Figure 1 shows the wavefront after the reflection by the mirror. The one-dimensional spatial variable is denoted
by z, and the pupil defined by the interval —a to +a. An out-of-phase segment, centred at ¢, generates a constant
wavefront error or phase difference p(zp) = € over its full width 2w compared with an also constant phase over
the rest of the pupil. There are two wavefront discontinuities, that is phase steps of height €, at the segment
borders. Apart from an irrelevant average phase, the complex amplitude describing the wavefront is given by

1 .
Us ('Z'p | 0) = \/—2_61 ezk(p(:cp) W(mpa —a, +a') ’ (9)

with the phase function
0 for —a<z,<c—w
plep) =< 0 for c—w<z,<ct+w (10)
0 for c+w<z,<a
and the boxcar function
0 for z, < —a
for —a<z,<+a . (11)
0 for +a<uzp

—_
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Here k = 27/X is the wavenumber and A is the wavelength of the light. The restriction of the definition to
the interval [—a,+a] signifies that only the photons passing through the aperture of width 2a can be used for
estimating the relative segment phase 6, and the factor in front of the exponential in equation (9) normalizes the
wave function such that the number of photons within this subaperture is equal to 1, that is

+a

dzy U (2 |0) Us(zp |0) =1, (12)
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where U denotes the complex conjugate of Us. In addition to the general two-border configuration shown in
figure 1, two special configurations will be discussed in more detail. In the first configuration the segment is
located at the edge of the aperture [—a,+a], that is if ¢ = a — w. This configuration will subsequently be
called the single-border configuration. In the second special configuration, which is a special case of the single-
border configuration, the border is located at the centre of the aperture [—a, +a], that is at ¢ = w = a/2. This
configuration, which is of particular interest for the Shack-Hartmann type sensor, will be called the centred single-
border configuration. For the general configuration the parameter 6 will be referred to as the relative segment
phase, and for the single-border configurations as the phase step.

3 Quantum statistical precision limit for the estimate of a relative
segment phase

The ultimate precision limit for the measurement of differential segment phases can, if at all, be obtained with a
measuring device which is capable of transferring to the data the maximum relevant information contained in the
wavefront immediately after the reflection by the mirror. In addition, one needs an appropriate, that is efficient
data analysis procedure.

As stated in the introduction, the limit on the data side can be obtained from the Fisher information which is
derived from a classical, real-valued likelihood function. However, immediately after the reflection of an incoming
monochromatic plane wavefront by the mirror configuration shown in figure 1, the full information is contained in
a complex quantum statistical wave function v (z | 8), which is equivalent to the complex amplitude function (9)
familiar from optical theory. Therefore, the calculation of the information in the wavefront requires the quantum
statistical equivalent of the expression (8) for the Fisher information. For a pure state ¢ and its complex conjugate

¢* this is given [17] by
2
) W

The first term on the right hand side is similar to the definition of the classical Fisher information density in
equation (8). The second term, in effect, suppresses a dependence of Iqy on an undetectable average phase
across the full aperture [—a, +a].
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By replacing the complex wave function v in equation (13) by the complex amplitude Us of equation (9) one
obtains the quantum statistical equivalent of the Fisher information about the relative segment phase contained
in the complex amplitude immediately after the reflection by the mirrors:

T (9) =4k2% (1_%) . (14)

The quadratic dependence of the quantum statistical information about the segment width, which is independent
of the segment position, is shown in figure 13 by the solid line. The maximum

Iqu,max(6) = K (15)
is obtained, if the segment covers half of the aperture, that is for w = a/2.

For a single photon, the lower bound for the root-mean-square (RMS) of the uncertainty in the estimate of
the parameter 6, that is the quantum statistical equivalent of the Cramér-Rao bound, is given by

1 a

oQu,crB,1(0) = 2k \fw(a—w)

(16)



The minimum value is obtained, if the segment covers half of the pupil:

1 A
min 0)=—-—=— . 17
IQM.CRB, 1 min(f) = = o5 (17)
It depends only on the wavelength of the light, and is of the order of 100 nm for visible wavelengths. For Nppot
registered photons the information Igwm(6) increases by a factor of Npnot, the quantum statistical Cramér-Rao
bound decreases by 1/y/Nphot, and the lower bound for the RMS of the uncertainty in the estimate of the
parameter 6 is correspondingly given by

1 A
0QM,CRB,min(0) = TN (18)
phot

It is important that this fundamental limit does not refer to any particular measurement, device or a particular
data analysis procedure. It is based on the maximum information that can potentially be extracted from the
wavefront, without necessarily implying that such an efficient measurement process exists.

4 Cramér-Rao bounds for the measurement of piston steps with dif-
ferent sensors under ideal conditions

The Cramér-Rao bound for measuring the relative segment phase or phase step 6 is calculated for each of the
four sensors mentioned above, under ideal conditions, that is under the following assumptions: light from a
quasi-monochromatic source, a sufficiently fine sampling, and, apart from the photon shot noise, no additional
noise introduced by atmospheric effects or the readout characteristics of the detector.

The phase corrections in a segmented mirror are performed in two steps. First, after the installation of new
segments, initial large differential segment phases of the order of possibly several wavelengths have to be reduced
to fractions of a wavelength. Usually, this only needs to be performed once and can therefore be done with
bright stars. Since these supply a large number of detectable photons, high precision can be obtained during this
process. Second, during observations, one has to be content with small number of photons, but has to correct
only comparatively small differential segment phases. It is therefore sufficient to calculate the precision limits or
Cramér-Rao bounds only for the case of very small differential segment phases or phase steps, that is for § — 0.

4.1 Shack-Hartmann method

Usually, the Shack-Hartmann method used for phasing measurements consists of placing a circular lens across
the border between two segments. The information on the phase step is contained in the diffraction pattern of
the lens. In a one-dimensional setting, a cylindrical lens is used with its axis parallel to the border, and its centre
ideally exactly placed on the border. The normal configurations for the Shack-Hartmann sensor are therefore the
single-border and the centred single-border configuration, as defined in section 2. However, to be able to compare
the Shack-Hartmann sensor with the other phasing wavefront sensors, the computation of the likelihood function
in the focal plane and the Fisher information, presented in appendix Al, are also carried out for the general
configuration shown in figure 1, that is for a single lens covering the full aperture with one out-of-phase segment
in an arbitrary location. The likelihood function p(£|#) and the Fisher information density ig(£|6) are both
functions of the phase step 6 and a dimensionless position variable £&. The latter is related to the true position
variable z in the focal or detector plane by £ = z/f, where f is the focal length of the lens. The general as well
as the special configurations will be discussed in this section.

Section 4.1.1 discusses the likelihood function, the Fisher information density, and the Fisher information. A
variation of the parameter 6 causes a shift of the location of the maximum of the diffraction pattern as well as a
change of its form. From both characteristics partial information about € can be obtained. Section 4.1.2 shows
that three quarters of the information are contained in the shift of the location of the maximum, and section 4.1.3
that one quarter of the full information is contained in the change of the form.
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Figure 2: Shack-Hartmann sensor: (a) Likelihood functions for four differential segment phases 6 as a function
of a the normalised coordinate in the focal plane of the Shack-Hartmann lens. (b) Likelihood function and
corresponding functions related to the Fisher information for § = 0: normalised likelihood function p(¢ |6)&
(dotted), normalised Fisher information density ir(£|6)&/k? (solid), integrated normalised likelihood function
(dashed-dotted), and integrated normalised Fisher information density (dashed).

4.1.1 Likelihood function, Fisher information density and Fisher information

For the centred single-border configuration figure 2a shows the likelihood functions p(¢|8), for four different
phase steps 6 ranging from zero to A/2. The location of the first zero in the diffraction pattern for § = 0 will be
denoted by & = A/(2a). For the centred single-border configuration and for arbitrary 6 the Fisher information
density and the likelihood function are related by

in(€]6) = K2p(€|0—A/2) . (19)

Figure 2b shows that for the case § = 0 the first maxima of the Fisher information density on both sides of
the origin are lying just inside the first minima of the likelihood function, represented by the dotted curve. The
dashed line in figure 2b shows the Fisher information density integrated from & = 0 to the £ value on the abszissa
and divided by k2, and the dashed-dotted line the corresponding integrated likelihood function. The likelihood
function is more concentrated around the origin than the corresponding Fisher information density. For the case
6 = \/2 the likelihood function has a minimum at £ = 0. Consequently, the Fisher information density has
its maximum at £ = 0 and is therefore more concentrated around the origin than the corresponding likelihood
function.

The Fisher information is obtained by integrating the Fisher information density from £ = —o0 to £ = +00.
For the general configuration in the limiting case § — 0 the integration of the Fisher information density given
in equation (A-5) can be done analytically and yields

2 .
Irsn = k? - min(w, [¢]) . (20)

The maximum of min(w, |¢|) equals a/2, confirming that the Fisher information in equation (20) is always
bounded by the quantum statistical information given in equation (15). For the special case of the single-border
configuration this can be seen in figure 13a, which demonstrates the linear dependence of the Fisher information
for the Shack-Hartmann sensor on the segment width 2w.

For the general configuration and for a given w = 0.1a, figure 13b shows the Fisher information for the
Shack-Hartmann sensor as a function of the location of the segment centre. Surprisingly the Fisher information
is zero for a segment in the centre of the aperture.

The Fisher information for the Shack-Hartmann sensor attains its maximum for the centred single-border
configuration, that is for w = |¢| = a/2:
IF,SH,max = k2 ) (21)



and is identical to the quantum statistical information. Therefore, if all the relevant information about the
relative segment phase in the diffraction pattern could be extracted with an efficient estimator, one could reach
the highest possible precision, that is the fundamental bound (15) for the estimate of the phase step 6.

The formulae given above have been derived for one lens covering the full aperture [—a, +a]. However, in a
phasing wavefront sensor, a single lenslet will only cover a subaperture across a border. For these lenslets the
configuration will ideally be the centred single-border configuration. It can readily be verified that, due to the
linear dependence of the Fisher information on the segment width, the information Ir obtained with a single
lens across the full aperture is identical to the information obtained with lenslets across the borders and centred
on the borders, provided that the lenslets cover the full segment width and the segment centre is not too close
to the centre of the aperture. Since the other sensors work over the full aperture, the Fisher information for the
Shack-Hartmann method can therefore be compared with the other methods by using the results for a single lens
covering the full aperture.

4.1.2 Information contained in the shift of the location of the maximum of the likelihood function

Figure 2b, applying to the centred single-border configuration, shows that in the most interesting case of 8 < A
nearly 50% of the Fisher information is contained in the interval between the first zeroes of the likelihood function
on both sides of the origin. The maximum of the likelihood function is well defined, even in case of broadband
measurements or in the presence of atmospheric disturbances as shown in sections 6.1 and 6.2. Furthermore, the
location of the maximum depends on the phase step €, and is not too sensitive to small misalignments between
the centre of the lens and the border between segments. For small phase steps § and small deviations from the
centred single-border configuration, described by the difference ¢ — a/2, that is for k§ < 1 and k(c — a/2) < 1,
one obtains for the location &4 (0) of the maximum of the likelihood function

Je—af2y
a

SIS

3
fmax(o) = _Z (1 - ) - (22)
This equation shows that the location of the maximum is only weakly affected by the misalignment ¢ — a/2
provided that ¢ — a/2 < a. A similar expression for &max(#) without the effect of the decentring has been given

in [2] for circular lenslets.

Therefore, it is of interest to estimate the phase step 6 only from the core of the likelihood function which is
defined here as the interval within which the likelihood function exceeds 20% of its maximum value. Figure 2b
shows that for the centred single-border configuration the integral of the Fisher information density over this
interval is approximately 0.3Ir sH,max, that is approximately 30% of the total information can be extracted from
the core.

The central core can quite accurately be fitted by a Gaussian

0.6ka 0 6rale— e
pgauss(gle) = 7 ¢~ 10-6ka(€—36/(4a))] 7 (23)

and the Fisher information contained therein is given by
Ir gauss = 0.4k = 0.4 Iy SH,max - (24)

This is only marginally larger than the information content 0.3/ si,max in the core. The reason for the small
difference is probably that the integration of the Gaussian probability function extends from —oo to +00, whereas
the one of the diffraction pattern only over the central core.

The shift Aépean of the mean position, that is the centre of gravity of the likelihood function, is not identical
to the shift of the central maximum of the diffraction pattern. Aean should be smaller than A&, since the
shift of A&,ax to one side is accompanied by an increase of the first peak on the opposite side. For the centred
single lens configuration one obtains from equation (A-4) for the centre of gravity

1
- i : 2
Afmean Sha sin(k6) (25)
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Figure 3: Shack-Hartmann sensor: (a) Normalised Fisher information density ir(£|6)&/k* compensated by
various shifts of af/a for the limit § — 0. The values for « are given in the figure. (b) Normalised Fisher
information density in the form of the likelihood function for four phase steps 6.

For k6 <« 1 this becomes

0
Afmean - _%

A comparison with equation (22) shows that this is indeed smaller than the shift Aépax of the maximum by a
factor of 1.5. It is equal to half of the average tilt of the wavefront ¢(z,,) over the aperture in the pupil.

(26)

4.1.3 Information contained in the form of the likelihood function

In some applications a reference pattern generated by the Shack-Hartmann lenslet array may not be available.
Furthermore, an adaptive optics system may partially correct a phase step, in the simplest case by introducing
a constant tilt over a subaperture covered by a lenslet. Such a tilt, the amount of which may not be known, will
lead to a shift of the diffraction pattern. Under such circumstances no information can be obtained from the
position of the diffraction pattern, and the parameter § can only be estimated from the changes in the form of
the likelihood function.

The Fisher information contained in the form, from now on called the “form-only Fisher information”, can be
calculated as follows. The likelihood function for a given phase step 6 can be shifted such that its maximum is
closer to the origin. The Fisher information can then be calculated as a function of this shift, with the information
contained in the form being defined as the minimum of the Fisher information as a function of the shift. For the
centred single-border configuration a likelihood function ps shifted by af/a is described by

1 ! !
& (m€)& — a2mB/N)2 (€ — ab/a)

Figure 3a shows for a few values of a the Fisher information densities for § = 0. For arbitrary values of 6 the
minimum Fisher information is analytically obtained for @« = 3/4. According to equation (22), for § < A such
a shift is equivalent to moving the maximum of the likelihood function back to £ = 0. Figure 3b shows the
form-only Fisher information densities for four phase steps ranging from § = 0 to § = A/2. A comparison with
figure 2b shows that for § = 0 the peaks of the Fisher information densities are much lower than in case of the
full information and are located further away from the origin.

ps(£16) ~ [sin(n¢/& — a276/) + 276/)) —sin(2r6/N]> . (27)

For all values of § the minimum Fisher information in the centred single-border configuration is given by
Ir st form = k2 /4 . (28)

Therefore, if an estimate of the phase step 6 can only be based on the form of the likelihood function, one needs
four times the number of photons to reach the same precision as is obtainable from the full information, which
includes the information from the position of the pattern.
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Figure 4: Mach-Zehnder sensor: Principle of a Mach-Zehnder interferometer when used for the detection of
differential segment phases.

4.2 Mach-Zehnder interferometer

The principle of the Mach-Zehnder interferometer as used for the detection of differential segment phases [4] is
shown in figure 4. The incoming light is focussed and split into two beams. One of them, which serves as the
reference beam, contains a spatial filter in the focal plane and a phase plate introducing a phase shift ¢. The
light from the two beams is then recombined behind a second beam splitter, collimated and registered on two
detectors in planes which are conjugated to the entrance pupil. The spatial filter is either a pinhole with a sharp
edge or with a Gaussian transmission function with 100% transmission at the centre. If £ is an dimensionless
coordinate in the focal plane, the transmission functions of the filters are given by

1 for [§]<(
{ 0 for |¢|>¢ sharp — edge

exp(—¢2/(2¢?))  Gaussian

(&) = ; (29)

where (, also in dimensionless coordinates, is either half of the diameter of the sharp pinhole or the RMS of
the Gaussian transmission function. The computation of the likelihood function and of the Fisher information
density is outlined in appendix A2. Figure 5a shows the likelihood functions for sharp-edge pinholes with four
different half-diameters ¢ and § = A\/10, expressed as fractions or multiples of £ = A/(2a). Figure 5b presents
the corresponding Fisher information densities. Similar curves for a Gaussian pinhole are shown in figures 6a and
6b. Obviously, the Fisher information is maximised for some intermediate value of (. On the one hand, for very
small pinhole widths the form of the likelihood function closely resembles the form of the phase in the wavefront
after the reflection by the mirrors. However, since only a small fraction of the light entering the second beam
interferes with the light from the reference beam, the Fisher information is small. In the limit ( — 0 one has
Ir Mz ¢2. On the other hand, for large pinholes the form in the interference pattern and the Fisher information
density are concentrated at the locations of the borders between the segments. In the limit of very large pinhole
sizes, the two beams are, apart from a constant phase shift, identical, and the information content goes to zero
as 1/¢ for ¢ = oo. The maximum Fisher information must therefore be obtained for an intermediate size of the
pinhole. For a segment half-width of w = 0.2a this maximum is obtained for { = 0.8 in case of a sharp pinhole
and for ¢ =~ 0.4¢ in case of a Gaussian pinhole, indicated by the dashed-dotted lines in the figures 5 and 6,
respectively.

For the centred single-border configuration the maxima can be obtained from figure 7a which shows the
normalised sum Ir/k? of the Fisher information in the two beams as a function of the ratio of { to &. In
this case the maximum of the Fisher information is obtained for { ~ 0.465£; in case of a sharp-edge pinhole
and ¢ = 0.235¢ in case of Gaussian pinhole. Figure 7b shows that these sizes of the pinholes maximising the
Fisher information are, for both types of pinholes, comparable to the size of the core of the image in the focal
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Figure 5: Mach-Zehnder sensor: (a) Likelihood functions generated by a Mach-Zehnder interferometer with
sharp edge pinholes with radii of 0.1 (dotted), 0.8 (dashed-dotted), 4 (dashed) and 10 times A/(2a) (solid), for a
relative segment phase § = A\/10. (b) Corresponding normalised Fisher information densities ig/k? for = 0.
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Figure 6: Mach-Zehnder sensor: (a) Likelihood functions generated by a Mach-Zehnder interferometer with
Gaussian pinholes with RMS values of 0.1 (dotted), 0.4 (dashed-dotted), 2 (dashed) and 5 times A/(2a) (solid),
for a relative segment phase § = A/10. (b) Corresponding normalized Fisher information densities ir/k? for
6 =0.

plane. However, even under ideal conditions, the maximum Fisher information is only approximately 12% of the
quantum statistical Fisher information in case of the sharp-edge pinhole, and 9% in case of the Gaussian pinhole.

For the single-border configuration and a width of the pinhole which maximizes the Fisher information the
dotted line in figure 13a shows that Ir mz(#) depends quadratically on the segment width, and figure 13b shows
that for the general configuration the Fisher information is slighly larger for segments closer to the centre of the
aperture. However, if the Mach-Zehnder method is used in a telescope with several segments, the signals from
neighbouring borders have to be well separated. Somewhat arbitrarily it will be defined that this condition is
fulfilled, if the distances between the border and, in case of the sharp-edge pinhole, the first zero, or, in case of
the Gaussian pinhole, the 2-coordinate where the signal has dropped to 10% of the value at the border, are both
approximately equal to w/3, as shown by the solid lines in the figures 5 and 6. This requires widths of { = \/w
for the sharp-edge pinhole and ¢ = A/(2w) for the Gaussian pinhole. Figure 8 shows that with these choices of
the pinhole widths the Fisher information for the single-border configuration is now proportional to the segment
half-width w. However, for such widths of the pinholes the Fisher information is much lower than for the widths
maximising the Fisher information.

For well separated signals the Fisher information densities in the neighbourhood of a border are independent
of the segment position. As long as the signals from both borders in a two-border configuration are well within

10
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Figure 7: Mach-Zehnder sensor: (a) Normalised Fisher information I \iz/k? as a function of the normalised
pinhole radius (/& for pinholes with a sharp edge (solid) and with a Gaussian transmission function (dashed)
for the centred single-border configuration. (b) Intensities filtered with a sharp-edge pinhole (solid), and with
a Gaussian pinhole (dashed) with widths which maximise the Fisher information. The dashed-dotted curve
represents the unfiltered diffraction pattern for a phase step 6 = 0.
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Figure 8: Mach-Zehnder sensor: Normalised Fisher information Ix mz/ k? as a function of half of the segment
half-width w in a single-border configuration with pinhole sizes of A\/w for the sharp edge pinhole (solid), and
A/(2w) for the Gaussian pinhole (dashed).

the aperture, the Fisher information is therefore also independent of the segment location.

4.3 Foucault knife-edge test

Differential segment phases can also be measured by a Foucault test. The incoming beam is focussed, a knife-edge
is placed in the centre of the focal plane, and finally the beam is collimated and detected in a plane conjugated
to the pupil. By replacing the knife-edge with a glass prism, both halves of the beam can be used for the
analysis [10][11][14]. The computation of the likelihood function and the Fisher information density is outlined in
appendix A3. Figure 9a shows the likelihood functions for three locations of the segment centre with a segment
half-width of w = 0.2a and for §/A = 0.1, and figure 9b the Fisher information densities for # = 0. The widths
of the peaks in the Fisher information densities in the neighbourhood of the borders are approximately equal
to the widths of the peaks in the likelihood functions. The ratio of the width of the Fisher information density
in the neighbourhood of a border to the width 2w of the segment is independent of the other parameters, and
approximately equal to 0.2. The information from adjacent borders can therefore always be well separated. A
numerical integration shows that for the centred single-border configuration the Fisher information in one of the
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Figure 9: Foucault sensor: (a) Likelihood function for a relative segment phase § = A/10. (b) Normalised
Fisher information density for a relative segment phase § = 0 and w = 0.2a, and, for both plots, three different
positions ¢ = 0 (solid), ¢ = 0.5a (dashed) and ¢ = 0.8a (dashed-dotted) of the segment centre.

exit pupil equals k?/4. This may intuitively be expected, since only half of the light enters one of the two exit
pupils and only half of the image in the focal plane is used to retrieve information. Adding up the information
in both channels gives Ir rc = k?/2. The Foucault sensor with a glass prism therefore extracts potentially half
of the quantum statistical information.

The dashed-dotted line in figure 13a shows the Fisher information in the single-border configuration as a
function of the segment width. The dependence is quadratic, similar to case of the quantum statistical informa-
tion. For all segment widths the Fisher information of the Foucault sensor equals half of the quantum statistical
information. Figure 13b shows that the Fisher information for the general configuration is effectively independent
of the segment location. Figure 9b shows therefore that the Fisher information density is larger in the neigh-
bourhood of the single-border in the single-border configuration than in the neighbourhood of the two borders
in the general configuration.

4.4 Curvature sensor

In a curvature sensor the detector is placed at a distance [ in front or behind the focal plane, as shown in
figure 10. The diffraction pattern is spread over an interval of approximately 2af/l, and the intensities are
therefore approximately proportional to I/ f. It follows that the detector coordinates in the figures are normalised
by a multiplication with f/(la), and the likelihood function and the Fisher information density are normalised by
a multiplication with I/ f. Except for detector positions very close to the aperture, the diffraction pattern can be
calculated with the Fresnel approximation, which is outlined in appendix A4. In the limit [ — 0 the expressions
for the likelihood function and for the Fisher information density converge to the respective expressions for the
Shack-Hartmann sensor derived in appendix Al. However, the curvature method requires the signals from the
two segment borders to be clearly separated. In other words, the Fisher information densities corresponding
to the two borders should not overlap. For w = 0.2a such a separation in the likelihood function as well as in
the Fisher information density seems to be established for I/f > 0.002, as shown in the figures 11a and 11b.
Figure 12 shows in a log-log-plot, using the same parameters as in figure 11, the Fisher information as a function
of the ratio I/f. The regime where Iy cv is approximately constant is the Fraunhofer regime. Let the pure
curvature regime be defined as the regime where the signals from two adjacent borders are well separated. The
ratio I/ f = 0.002, marking the lower limit for which a separation is guaranteed, lies at the beginning of the regime
with a constant slope in the log-log-plot, where I+ cv o \/f_/l and which extends at least up to l/f ~ 0.1. With
a choice of I/f > 0.002 one is well outside the caustic, that is, the correlation of the subapertures is identical
with that in the pupil.

A precise definition of the signal width which guarantees a separation of signals from adjacent borders is
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Figure 10: Curvature sensor: Principle of the curvature wavefront sensor with the detector plane being out-
of-focus by a distance | with respect to the focal plane of the telescope.
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Figure 11: Curvature sensor: (a) Normalised likelihood function for a defocussing ratio I/f = 0.002 and
6 = A\/10. (b) Normalised Fisher information density for I[/f = 0.002, both as functions of the normalised
detector coordinate zf/(la). For both plots : a = 1m, f = 20m, ¢ = 0.3a, and w = 0.2a.

somewhat arbitrary. Requiring the distance of the first zero of the oscillating pattern to be less than a fraction
1/z of the segment half-width w leads to the condition

l w? !

= > 14+ — . 30

f ( 0.822\f ) (30)
If, for different widths 2w of the segment, the parameter I/ f is always chosen such that the condition (30) is
fulfilled for z = 10, the dependence of the Fisher information on the segment width is linear, as in case of the
Shack-Hartmann sensor, that is in the Fraunhofer limit. However, for the chosen non-overlap condition (30) the
values for the Fisher information are approximately 30 times lower than in the Fraunhofer limit.

Ir,cv(0) is effectively independent of the segment location. This is similar to case of the Shack-Hartmann
sensor, except that the central dip in the curve for the Shack-Hartmann sensor in figure 13 is not present in case
of the curvature sensor with sufficient defocussing.

5 Comparison between the four sensors

The Cramér-Rao bounds for each of the four types of sensors have been discussed in detail in the preceeding
sections. This section provides a comparison of the relative precision limits which can, in principle, be achieved
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Figure 12: Curvature sensor: Normalised Fisher information as a function of the defocussing ratio I/f, and
a=1m, f =20m, ¢ = 0.3a, and w = 0.2a.

T T T T T T T T T T T T T T T T T T T T < T T T T T T T T T T T T T T
L 2 i
2
Iy/k (@) | °} f/k (b)
ol Quantum statistical limit Quantum statistical limit
//, M
- ST i
-
.
//
_~ Shack—Hartmann
N L Shack—Hartmann i
o O === A fjmm—m—m———— ===
S e T e e [ Lt
............. Foucault ‘\ /’ Foucault
. ) ‘ /
e ‘L ! Mach—Zehnder
~~~~~~~~~~~~~~~~~ Ao
Mach—Zehnder [omememem 7770 L 2 e T
"""""""""""""""""""""""""""""" Vo Curvature
_____________ BT T TRt v TOT TSNP LS NP
o et ETiTT T 1 v |
0 0.1 0.2 0.3 0.4 w/a 0.5 -0.5 0 0.5 c/a

Figure 13: All sensors: Normalised Fisher information Ir/k? for the single-border configuration as functions
(a) of the segment width 2w and (b) of the segment location for w = 0.1a. Also shown is the limiting quantum
statistical information, which depends quadratically on the segment width. The curves for the Mach-Zehnder
device are valid for a sharp-edge pinhole with a pinhole diameter { = 0.465£y which maximises the information,
and the curves for the curvature sensor for a defocussing which generates a clear separation of signals from
adjacent borders.

with these sensors for the detection of differential segment phases. Figure 13a shows for the single-border
configuration under ideal conditions the performance, defined by the Cramér-Rao bound, of the four sensors
discussed in this paper, together with the corresponding quantum statistical limit.

Figure 13a demonstrates that the performance of the Shack-Hartmann sensor is superior to the one of the
Foucault sensor, which in turn outperforms the Mach-Zehnder sensor for all segment widths. For small segment
widths the Fisher information from the Shack-Hartmann and the Foucault sensors are effectively identical. How-
ever, for non-zero segment widths only the Shack-Hartmann sensor in the centred single-border configuration
and a segment width of w = a attains the quantum statistical limit.

For the Shack-Hartmann sensor the Fisher information depends linearly on the segment widths. The de-
pendence is quadratic for the quantum statistical limit, the Foucault sensor, and the Mach-Zehnder sensor with
pinhole diameters maximising the Fisher information.

For a Mach-Zehnder sensor with large pinhole diameters, which guarantee that the signals from adjacent
borders are well separated, the Fisher information is a linear function of the segment width. The maximum value
which is attained for the centred single-border configuration is approximately 0.03 if the signals from adjacent
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borders are just separated, and decreases with a better separation of the signals. Also the Fisher information of the
curvature sensor depends, like the Shack-Hartmann sensor as its limiting case for small amounts of defocussing,
linearly on the segment width. However, the slope depends strongly on the amount of defocussing, and the
curve in figure 13 has been calculated for a defocussing which guarantees that the half width of the segment
is approximately ten times larger than the distance between a border and the position of the first zero of the
oscillating pattern. See section 4.4 for further details.

Figure 13b shows that for all sensors, except for the Mach-Zehnder device, the Fisher information is effectively
independent of the segment location within the pupil. However, for large pinhole diameters this also applies to
the Mach-Zehnder sensor. The dip in the curve for the Shack-Hartmann sensor is irrelevant: when such a sensor is
used in a telescope the subapertures would always be defined by smaller lenslets covering only the neighbourhood
around a segment border, and the configuration would then be the single-border configuration.

6 Effects of noise and other measurement parameters

The effects of broadband illumination, atmospheric disturbances, detector readout noise, and discrete sampling
of the likelihood function will only be discussed for one sensor, namely the Shack-Hartmann sensor in the centred
single-border configuration. However, the methods used in this section can readily be applied to all other types
of sensors and configurations.

6.1 Effects of broadband measurements

GO - (o) | ip(€l6)€,/ K
5 O e T T PP hocagrase P T, - 4
-2 £/ -2

Figure 14: Shack-Hartmann sensor: (a) Likelihood functions for a phase step § = A/5, (b) normalised
Fisher information densities for § = 0, integrated over different bandpass ratios AX/A.: Monochromatic (solid),
AN/ A = 0.25 (dashed), AX/A; = 0.5 (dashed-dotted). The dotted curve in (a) is the limit to which the likelihood
functions converge for very large phase steps, that is k6 > 1, and a bandpass ratio of AA/A. = 0.5.

The number of available photons can be increased with broadband measurements, that is by using a larger
bandpass of the light. The corresponding gain in the information, being proportional to the number of photons,
is, however, partially compensated by a loss of information due to a modification of the likelihood function. As
shown below, the Cramér-Rao bound decreases with an increase of the bandpass, strongly at small bandpasses,
but only slowly at large bandpasses.

The likelihood function for a broadband measurement is obtained by integrating the monochromatic likelihood
function over the wavenumber k around a central wavenumber k. with a suitable prior probability distribution
or spectral density py(k) as a weight function. In the following calculations py (k) = const is assumed for any
bandpass. Figure 14a shows the likelihood function for three bandpasses and a phase step § = A/5. Apparently,
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for small phase steps, the position of the maximum of the likelihood function and the width of the central core
are only weakly affected by the bandpass.

The dotted line in figure 14 shows the limit to which all curves converge for very large phase steps. For such
large phase steps, that is for k6 > 1, the sine and cosine functions in equation (A-4) containing k8 vary rapidly
with k. Each term containing kf can therefore be replaced by its average value which is 1/2 for the two quadratic
term and (1 — cos(ka€))/2 for the mixed term, respectively. The dotted curve is then given by

ko
pro>1(§) = ﬁ ﬁ /kl dké-ig [1 — cos(ck§) cos(kéa)] (31)

where k; and ky are the integration limits. Figure 14b shows the curves for the Fisher information densities for
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Figure 15: Shack-Hartmann sensor: (a) Normalised Fisher information Ir /k? and (b) normalised Cramér-Rao
bound ocgrp as functions of the ratio of the width AX of the bandpass to the central wavelength A.. Solid: full
information, dashed: form-only information.

the same bandpasses as in figure 14a, but for § = 0. In the ideal case the peaks in the Fisher information density
are, according to equation (1), due to the zeroes or small values of the likelihood function at those locations. The
peaks are now reduced because the zeroes and the small values of the likelihood functions are washed out by the
averaging process. The peaks of the Fisher information density at £3¢/{o for § = 0 disappear nearly completely
for larger bandpasses, and the Fisher information density is therefore concentrated closer to the origin.

Figure 15a shows that, due to the weak dependencies of the form of the core and of the position of the
maximum on the bandpass, the Fisher information per photon as a function of the bandpass decreases only
weakly with the bandpass. This is true for the full information as well as for the form-only information. See
section 4.1 for the definition of form. The decrease of the Fisher information per photon with an increase of the
bandpass is slower than the proportional increase with the number of photons. Therefore the Cramér-Rao bound
ocrB of the error in the estimate of the phase step decreases continuously with an increase of the bandpass.
This can also be seen in figure 15b which shows ocrp in units of A/(2n) for one photon per nanometer of the
bandpass.

6.2 Effects of atmospheric turbulence

Turbulence and temperature inhomogeneities in the atmosphere lead to a non-planarity of the incoming wavefront.
These disturbances reduce the Fisher information, and consequently reduce the precision with which the phase
step can be estimated.

The effects of the atmosphere can be taken into account by writing the complex amplitude U(z) in equa-
tion (A-2) as a product of the complex amplitude Us(x) related to the relative segment phase and a stochastic
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Figure 16: Shack-Hartmann sensor: (a) Likelihood functions for a phase step # = 0.1\ under different seeing
conditions, (b) corresponding normalised Fisher information densities for § = 0. Seeing conditions: Dotted: no
atmosphere, Dashed-dotted: ro/2a = 2.25, Dashed: 19/2a = 1.5, Solid: ro/2a =0.75.

function Uy (x) describing the disturbance introduced by the atmosphere. The likelihood function in equa-
tion (A-3) can then be written as

k ta ta~zp * * 1kéx
p(&]0) = Zﬁa / dmp’/ dzp, Ug (-Z'pl)US(mpl +7p) < Uatm(mpl + mp)Uatm(mpl) > et (32)

—a —a—zTp

The expression in the brackets is the atmospheric structure function. For Kolmogorov turbulence and neglecting
the effects of the inner and outer scales, it is given by

5/3
< Uatm (zp' + Tp)Uatm (7p") >= exp l—3.44 (i—(‘)’) ] , (33)

where rg is the atmospheric coherence length. It can be shown that the likelihood function for a given wavelength
depends on £ and & only through the ratio £/& and on 79 and a only through the ratio ry/a.

Figure 16a shows, for a phase step of # = 0.1\, the influence of the atmosphere on the likelihood function for
four different seeing conditions, expressed as ratios r9/(2a). As in case of the integration over a finite bandpass,
the location of the maximum does not depend on the seeing conditions. However, the secondary maxima are
washed out and the width of the central core increases strongly with deteriorating seeing conditions.

The Fisher information densities for a phase step 8 = 0 and four different seeing conditions are shown in
figure 16b. As in case of larger bandpasses and for similar reasons as given in the corresponding section 6.1,
under the influence of the atmosphere, the Fisher information density is more concentrated near the origin than
the Fisher information density under ideal conditions. For the design of the wavefront sensor one would usually
assume a given seeing, that is a given value for r¢, and then define the width of the lens. Therefore, figure 17a
shows the normalised Fisher information as a function of the ratio 2a/rg, the full information as the solid line
and the form-only information as the dashed line. The strong dependence of the width of the core on the seeing,
already mentioned above, also explains the strong decrease of the Fisher information with an increase of the ratio
2a/rg. If the diameter of the aperture is equal to 7o, the Fisher information is already reduced by a factor of
approximately 10 compared to the Fisher information under ideal conditions.

On the one hand, the increase of the width of the lens increases the Fisher information due to the larger
number of photons. On the other hand, the Fisher information per photon decreases rapidly with the size of the
lens. The combined effect is given by the product of the Fisher information per photon times the width of the
lens. The corresponding curves for the Cramér-Rao bounds in units of A/(27) are plotted in figure 17b for a flux
density of one photon per millimeter of the subaperture. Contrary to the situation for broadband measurements,
the Cramér-Rao bound has a minimum, which is attained for a ratio 2a/r¢ = 0.4.
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Figure 17: Shack-Hartmann sensor: (a) Normalised Fisher information Ir /k? and (b) normalised Cramér-Rao
bound ocrp as functions of the ratio of the aperture width 2a to the atmospheric coherence length rg.
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Figure 18: Shack-Hartmann sensor: (a) Normalised Fisher information as a function of the readout flux in
units of the flux from the sky source. (b) Normalised Fisher information as a function of the pixel half-width §.

6.2.1 Effects of detector readout noise

The effect of the readout noise of the detector can be modelled by adding a constant background cpg to the
likelihood function in equation (A-4):

p(£]6) = % +po(E]6) (34)
0

Here po (&1 6) is the likelihood function for one photon without background noise. The value of the constant cpg
is the ratio of the constant background to the peak in the ideal likelihood function for 8 = Q.

Figure 18a shows for a narrowband measurement the full Fisher information and the form-only Fisher in-
formation as functions of cpg. The full Fisher information declines initially much faster than the form-only
Fisher information. The reason for this is that the zeroes in the likelihood function, which are, according to
equation (1), responsible for the strong peaks in the full Fisher information density, disappear because of the
constant background. Since, for large backgrounds, the ratio of the full to the form-only Fisher information only
equals approximately two, the full Fisher information is also more strongly affected than the form-only Fisher
information for a large backgrounds. Regarding figure 18b, see next section.
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Figure 19: Shack-Hartmann sensor: (a) Normalised likelihood functions for pixel half-width of § — 0 (solid),
d = 0.5 (dashed), § = & (dashed-dotted), and & = 1.5 (dotted). (b) Corresponding normalised Fisher
information densities.

6.2.2 Effects of the detector pixelization

The effect of finite pixel sizes § can be modelled by a product of a comb function, describing the positions of the
centres of the pixels, and a continuous likelihood function which is obtained by averaging, for each £, the initial
likelihood function over the interval [§ —§/2, £+ 3/2]. Figure 19a shows the likelihood functions for § — 0 (solid),
6 = 0.5¢ (dashed), § = & (dashed-dotted), and § = 1.5¢y (dotted). The corresponding Fisher information
densities are shown in figure 19b for the full information. The strong decline of the Fisher information densities
with the pixel size is also apparent from figure 18b, which shows that the decrease is linear for small pixel widths.
The effect of the finite pixels size is similar for the full Fisher information and the form-only Fisher information.

7 Conclusions

This paper has shown that the quantum statistical information relating to a relative segment phase depends
quadratically on the ratio of the segment width to the width of the aperture. Its maximum, given by the square
of the wavenumber per photon passing through the aperture, is attained for the case where the segment covers
half of the aperture. In this special case the limiting precision for the measurement of the relative segment phase
error is equal A/(27), where A is the wavelength of the light. Under ideal conditions, that is with narrowband
measurements and for negligible atmospheric or detector noise, both the Shack-Hartmann and the Foucault sen-
sor can, for segment sizes that are small compared with the diameter of the full aperture, potentially extract
approximately half of the ultimate quantum statistical information. For the special case where the aperture is
only filled by two segments with the phase step at the centre of the aperture, the Shack-Hartmann device even
attains the ultimate precision limit, and the precision obtained by the Foucault sensor is smaller by a factor of /2.
The other two sensors, Mach-Zehnder and curvature, require in general approximately ten to twenty times the
number of photons in order to reach the same precision as the first two sensors. In case of the Shack-Hartmann
sensor, broadband measurements always increase the precision, whereas in the presence of atmospheric distur-
bances the optimum width for the subaperture corresponding to one lenslet approximately equals half of the
atmospheric coherence length. Also detector readout noise and the effects of a finite sampling strongly reduce
the precision. The effects of these disturbances on the other sensors may in detail be different from the effects
on the Shack-Hartmann sensor and remain to be investigated.
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Appendix A : Expressions for the likelihood function and Fisher in-
formation density for the four sensors

In this appendix the expressions for the likelihood functions and Fisher information densities for the four sensors
discussed in the main text are derived.

A1l: Shack-Hartmann sensor

For monochromatic light with wavelength A the Fraunhofer diffraction pattern in the focal plane of an infinitely
long cylindrical lens covering a one-dimensional subaperture of width 2a on the mirror can be calculated with a
Fourier transformation. The diffraction pattern may be viewed as a likelihood function p(£|8) for the detection
of a photon at a coordinate £ in the focal plane. £ is a unitless position variable, related to a physical position
variable z in the focal or detector plane by £ = z/f, where f is the focal length of the lens. If z, and zp’
are coordinates perpendicular to the axis of the cylindrical lens, and U the complex field in the plane of the
cylindrical lens, the likelihood function is given by

k e * —ik€xy"! e ik€zy'

p&[0) = o < dapU* (zp")e = e dap'U(zp' e > (A-1)
k +a +a 'k ! n

= 5 d:cp'/ dz, < U*(z,")U(xp') > etké@e'=z") (A-2)

The bracket denotes a statistical average over a possibly stochastic ensemble of complex amplitudes U. In this
paper such a stochastic ensemble is used for the treatment of atmospheric effects in section 6.2.

After the substitution z, = ' — 2" one gets

k +a +a—zp .
pE|6) = o / dz,’ / dzy < U*(2,)U(zp! +2p) > € (A-3)
—a —a—2zp
Next, the non-stochastic wave function Uy related to the relative segment phase as defined in equation (9), is
introduced for U in equation (A-3). With & = A\/(2a) as the location of the first zero in the diffraction pattern
for 8 = 0 one gets

1 1 in? in?(r 2 — cos(2m
e = & e [sin?(mé /&) + 2sin® (= ¢/60) (1 — cos(2m6/ X))
+2sin(n€ /&) sin(w%ﬁ/&]) (cos(wgg/go — 26/ )\) — cos(gg/go))] . (A-4)

The Fisher information can easily be computed by introducing the amplitude ¢(£ | 6), calculated from equation (A-
4) following equation (4), into equation (8). The lengthy expression for arbitrary values of ¢, w, and 6 is not
quoted here. For the special case of § — 0 one obtains the following much shorter expression:

4k 1

w020 = 5 War

sin’ (n = £/6o) sin® (n 2 €/) - (4-5)

A2: Mach-Zehnder sensor

The amplitude U; in the first, unmodified beam in figure 4 is given by equation (9). After the light in the second
beam passed through the phase plate and the spatial filter, the amplitude Us is given by the convolution

Us(z) = % /_ Y ' U (@)@ — ') (A-6)
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where T'(z) is the inverse Fourier transform of the transmission function (29) of the pinhole. Since the detectors
are in image planes of the pupil, the same coordinates can be used as for the pupil, that is x = x,. The likelihood
functions on the two detectors are then

pia2(z|0) = %{IUl(m |0) + [U2(z | 0)” £ 2Re[Uf (x| )Us(x |6)e]} (A-7)

where the plus sign refers to p; and the minus sign to p,. With the special choice of the phase shift of ¢ = 7/2
and the abbreviations

b= Kk (A-8)
U, = &(-bla+x),blc—w-—1)) (A-9)
Uy = B(blc—w—2x),blc+w—2x)) (A-10)
Uy = &b(c+w—=zx),bla—1z)) (A-11)

_ (2/m) [ dz sinz / z sharp edge pinhole
®u,v) = { (2/+/7) [, dz exp(—2%) Gaussian pinhole ’ (A-12)

one obtains for the two likelihood functions
1 1 .
p172(.'17 | 0) = % {W(IB, a, —a) =+ Z [(\I’L -+ \I»’H)z + lI’%/I + 2COS(k(9)(\IlL -+ \I»’H)‘I’M]
+ sin(k0) [W(z,c — w,c+w) (¥, + Tg)

-(W(z,—a,c—w) + W(zx,c+w,a))¥y]} (A-13)

One of the assumptions for the derivation of equation (2) was that the integrated intensity is independent of
0. In case of the Mach-Zehnder interferometer this is strictly only true for # — 0. For both types of pinholes
the integrated intensity is a symmetric function of § with, according to numerical calculations, a quasi parabolic
behaviour around 6 = 0. Around the maximum at 8 = 0 the derivative of the integrated intensity with respect
to @ is therefore zero.

The Fisher information is identical in the two beams behind the second beamsplitter. With the definition
2 =0 + 03 + 0 (A-14)
the total Fisher information as a sum of the Fisher information from both beams behind the second beamsplitter
is, in the limit § — 0, given by

L 2 e > 322 _ @2 2
Irmz = o [/ dz U3/ (1+ ¥?/4) + /c de (U7 +95)* - 03) / (1+¥2/4)] . (A-15)

—a —w

A3: Foucault sensor

The Fourier transform T'(z) of a Heaviside step function representing the effect of the knife edge in the focal
plane is given by
2

T(z) = -~ (i% + W&(m)) , (A-16)

27

where the signs + and — refer to the two channels with the transmission equal to zero for £ < 0 and £ > 0,
respectively. Introducing equation (A-16) into equation (A-6) gives with the definitions

)2
v, — M (A-17)
( z)?

(a - -76)
Y, = A-18
? b e (a+ )2 ( )

the expression for the likelihood function on the two detectors

1 1 1
U rc(z]6)]? = San? {ZYl? + W (z, —a,a) + 5(1 — cos(kf)) Y2(Y2 — Y1)

tsin(k@)n(W(z,—a,a)Ys — W(z,c —w,c+ w)Y1)} . (A-19)
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The inversion of the sign in front of the sine-term can be understood from the fact that the intensity distribution
must be symmetric with respect to a change of the transmission from £ < 0 to £ > 0 and a simultaneous change
of the sign of the phase step 6. A similar expression for the centred single-border configuration has been derived
in [14].

For one channel alone the requirement for the integrated intensity to be independent of 8 is not fulfilled, since
in the vicinity of 8 = 0 the centre of gravity of the diffraction pattern in the focal plane depends linearly on 6, as
shown by equation (26). However, the requirement is obviously fulfilled for the sum of the integrated intensities
in the two channels. Therefore, the formalism has to use the sum of the Fisher information densities in the two
channels, which are, however, in the limit # — 0, independent of the channel. For # — 0 the sum of the Fisher
information in the two channels is given by

2 +a
Iy pc = Z—a/ (Ya — W(z,c —w,c—w)Yi)? / (72 + Y /4) (A-20)

A4: Curvature sensor

The one-dimensional equivalent of the two-dimensional expression for the complex amplitude in the plane of the
detector given in [5] [7] is

1 : . 2 ta .4 2 2
Ucv(z|6) = ———=——=cFei™ /(Af) dz, Uz, | 0) e'2 @e—f2/D7/p" (A-21)
Af=1D) —a
where U is the complex amplitude in the pupil and
Af(f=1)
_ _ A-22
p 57 (A-22)
With the definition f
n= (@ = Ta)/p (4-23)
equation (A-21) can be written as
i o, (+a—fz/0)/p o,
Ucv(z|0) = \/z\/ze’kf i@ /() dn Us(n|6) ™ /2 . (A-24)
2V (—a—fz/1)/p
The expression for Ugy has been normalised such that
+oo
/ dz |Uoy(z | 0)[2 = 1 (A-25)

Introducing U from equation (9) for U in equation (A-24) one obtains with the abbreviations

Ci = Cl—a—fa/)fp) S = Sl(—a—fa/)/p

Co = Clle—w—fa/l)fp) S2 = S(lc—w-—fa/l)p
Cs = Clle+w—fa/Dfp) Si = Sle+w—fa/llp (A-26)
Ci = Clla—fo/D)p)  Si = Sla—fa/l/p
Cy = C;-GC; Si; = Si—5;
where C and S denote the Fresnel integrals, the following expression for the likelihood function:
Uov (0P = 2 (Chi+ S3 + G+ S+ G + S

+2 cos(kf) [Ca1C32 + S21532 + C32C43 + S32.543]
+2 sin(k0) [512032 — (21832 + S32Cy43 — 032043]
+2C21Cy3 + 2521 543) - (A-27)

The corresponding expression for the Fisher information density can readily be calculated from the equations (5)
and (A-27), and is not presented here.
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