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Abstract We give an overview of the problems and the current status of (core collapse)
supernova modelling, and report on our own recent progress, including the ongoing
development of a code for multi-dimensional supernova simulations at TFlop speeds.
In particular, we focus on the aspects of neutrino transport, and discuss the system of
equations and the algorithm for its solution that are employed in this code. We also
report first benchmark results from this code on an SGI Altix and a NEC SX-8.

1 Introduction

A star more massive than about 8 solar masses ends its live in a cataclysmic
explosion, a supernova. Its quiescent evolution comes to an end, when the pres-
sure in its inner layers is no longer able to balance the inward pull of gravity.
Throughout its life, the star sustained this balance by generating energy through
a sequence of nuclear fusion reactions, forming increasingly heavier elements in
its core. However, when the core consists mainly of iron-group nuclei, central
energy generation ceases. The fusion reactions producing iron-group nuclei re-
locate to the core’s surface, and their “ashes” continuously increase the core’s
mass. Similar to a white dwarf, such a core is stabilized against gravity by the
pressure of its degenerate gas of electrons. However, to remain stable, its mass
must stay smaller than the Chandrasekhar limit. When the core grows larger
than this limit, it collapses to a neutron star, and a huge amount (∼ 1053 erg)
of gravitational binding energy is set free. Most (∼ 99%) of this energy is radi-
ated away in neutrinos, but a small fraction is transferred to the outer stellar
layers and drives the violent mass ejection which disrupts the star in a super-
nova.

Despite 40 years of research, the details of how this energy transfer happens
and how the explosion is initiated are still not well understood. Observational
evidence about the physical processes deep inside the collapsing star is sparse
and almost exclusively indirect. The only direct observational access is via mea-
surements of neutrinos or gravitational waves. To obtain insight into the events
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in the core, one must therefore heavily rely on sophisticated numerical simula-
tions. The enormous amount of computer power required for this purpose has
led to the use of several, often questionable, approximations and numerous am-
biguous results in the past. Fortunately, however, the development of numerical
tools and computational resources has meanwhile advanced to a point, where
it is becoming possible to perform multi-dimensional simulations with unprece-
dented accuracy. Therefore there is hope that the physical processes which are
essential for the explosion can finally be unraveled.

An understanding of the explosion mechanism is required to answer many
important questions of nuclear, gravitational, and astro-physics like the follow-
ing:

• How do the explosion energy, the explosion timescale, and the mass of the
compact remnant depend on the progenitor’s mass? Is the explosion mecha-
nism the same for all progenitors? For which stars are black holes left behind
as compact remnants instead of neutron stars?

• What is the role of rotation during the explosion? How rapidly do newly
formed neutron stars rotate? What are the implications for gamma-ray burst
(“collapsar”) models?

• How do neutron stars receive their natal kicks? Are they accelerated by asym-
metric mass ejection and/or anisotropic neutrino emission?

• How much Fe-group elements and radioactive isotopes (e.g., 22Na, 44Ti,
56,57Ni) are produced during the explosion, how are these elements mixed
into the mantle and envelope of the exploding star, and what does their ob-
servation tell us about the explosion mechanism? Are supernovae responsible
for the production of very massive chemical elements by the so-called “rapid
neutron capture process” or r-process?

• What are the generic properties of the neutrino emission and of the gravita-
tional wave signal that are produced during stellar core collapse and explo-
sion? Up to which distances could these signals be measured with operating
or planned detectors on earth and in space? And what can one learn about
supernova dynamics from a future measurement of such signals in case of
a Galactic supernova?

2 Numerical Models

2.1 History and Constraints

According to theory, a shock wave is launched at the moment of “core bounce”
when the neutron star begins to emerge from the collapsing stellar iron core.
There is general agreement, supported by all “modern” numerical simulations,
that this shock is unable to propagate directly into the stellar mantle and en-
velope, because it looses too much energy in dissociating iron into free nucleons
while it moves through the outer core. The “prompt” shock ultimately stalls.
Thus the currently favored theoretical paradigm makes use of the fact that
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a huge energy reservoir is present in the form of neutrinos, which are abun-
dantly emitted from the hot, nascent neutron star. The absorption of electron
neutrinos and antineutrinos by free nucleons in the post shock layer is thought
to reenergize the shock, and lead to the supernova explosion.

Detailed spherically symmetric hydrodynamic models, which recently include
a very accurate treatment of the time-dependent, multi-flavor, multi-frequency
neutrino transport based on a numerical solution of the Boltzmann transport
equation [1, 2, 3, 4], reveal that this “delayed, neutrino-driven mechanism” does
not work as simply as originally envisioned. Although in principle able to trigger
the explosion (e.g., [5], [6], [7]), neutrino energy transfer to the postshock matter
turned out to be too weak. For inverting the infall of the stellar core and initiating
powerful mass ejection, an increase of the efficiency of neutrino energy deposition
is needed.

A number of physical phenomena have been pointed out that can enhance
neutrino energy deposition behind the stalled supernova shock. They are all
linked to the fact that the real world is multi-dimensional instead of spherically
symmetric (or one-dimensional; 1D) as assumed in the work cited above:

(1) Convective instabilities in the neutrino-heated layer between the neutron
star and the supernova shock develop to violent convective overturn [8]. This
convective overturn is helpful for the explosion, mainly because (a) neutrino-
heated matter rises and increases the pressure behind the shock, thus pushing
the shock further out, and (b) cool matter is able to penetrate closer to the
neutron star where it can absorb neutrino energy more efficiently. Both effects
allow multi-dimensional models to explode easier than spherically symmetric
ones [9, 10, 11].

(2) Recent work [12, 13, 14, 15] has demonstrated that the stalled supernova
shock is also subject to a second non-radial instability which can grow to
a dipolar, global deformation of the shock [15].

(3) Convective energy transport inside the nascent neutron star [16, 17, 18] might
enhance the energy transport to the neutrinosphere and could thus boost
the neutrino luminosities. This would in turn increase the neutrino-heating
behind the shock.

(4) Rapid rotation of the collapsing stellar core and of the neutron star could
lead to direction-dependent neutrino emission [19, 20] and thus anisotropic
neutrino heating [21, 22]. Centrifugal forces, meridional circulation, pole-to-
equator differences of the stellar structure, and magnetic fields could also
have important consequences for the supernova evolution.

This list of multi-dimensional phenomena awaits more detailed exploration
in multi-dimensional simulations. Until recently, such simulations have been per-
formed with only a grossly simplified treatment of the involved microphysics, in
particular of the neutrino transport and neutrino-matter interactions. At best,
grey (i.e., single energy) flux-limited diffusion schemes were employed. All pub-
lished successful simulations of supernova explosions by the convectively aided
neutrino-heating mechanism in two [9, 10, 23, 24] and three dimensions [25, 26]
used such a radical approximation of the neutrino transport.
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Since, however, the role of the neutrinos is crucial for the problem, and be-
cause previous experience shows that the outcome of simulations is indeed very
sensitive to the employed transport approximations, studies of the explosion
mechanism require the best available description of the neutrino physics. This
implies that one has to solve the Boltzmann transport equation for neutrinos.

2.2 Recent Calculations and the Need for TFlop Simulations

We have recently advanced to a new level of accuracy for supernova simulations
by generalizing the Vertex code, a Boltzmann solver for neutrino transport,
from spherical symmetry [27] to multi-dimensional applications [28, 29, 30]. The
corresponding mathematical model, and in particular our method for tackling the
integro-differential transport problem in multi-dimensions, will be summarized
in Sect. 3.

Results of a set of simulations with our code in 1D and 2D for progenitor stars
with different masses have recently been published by [28], and with respect to
the expected gravitational-wave signals from rotating and convective supernova
cores by [31]. The recent progress in supernova modeling was summarized and
set in perspective in a conference article by [29].

Our collection of simulations has helped us to identify a number of effects
which have brought our two-dimensional models close to the threshold of explo-
sion. This makes us optimistic that the solution of the long-standing problem of
how massive stars explode may be in reach. In particular, we have recognized
the following aspects as advantageous:

• Stellar rotation, even at a moderate level, supports the expansion of the
stalled shock by centrifugal forces and instigates overturn motion in the
neutrino-heated postshock matter by meridional circulation flows in addi-
tion to convective instabilities.

• Changing from the current “standard” and most widely used equation of
state (EoS) for stellar core-collapse simulations [32] to alternative descrip-
tions [33, 34], we found in 1D calculations that a higher incompressibility of
the supranuclear phase yields a less dramatic and less rapid recession of the
stalled shock after it has reached its maximum expansion [35]. This finding
suggests that the EoS of [34] might lead to more favorable conditions for
strong postshock convection, and thus more efficient neutrino heating, than
current 2D simulations with the EoS of [32].

• Enlarging the two-dimensional grid from a 90◦ to a full 180◦ wedge, we indeed
discovered global dipolar shock oscillations and a strong tendency for the
growth of l = 1, 2 modes as observed also in previous models with a simplified
treatment of neutrino transport [15]. The dominance of low-mode convection
helped the expansion of the supernova shock in the 180◦-simulation of an
11.2M� star. In fact, the strongly deformed shock had expanded to a radius
of more than 600 km at 226ms post bounce with no tendency to return
(Fig. 1). This model was on the way to an explosion, although probably
a weak one, in contrast to simulations of the same star with a constrained
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Fig. 1. Sequence of snapshots showing the large-scale convective overturn in the
neutrino-heated postshock layer at four post-bounce times (tpb = 141.1ms, 175.2ms,
200.1ms, and 225.7ms, from top left to bottom right) during the evolution of a (non-
rotating) 11.2 M� progenitor star. The entropy is color coded with highest values being
represented by red and yellow, and lowest values by blue and black. The dense neutron
star is visible as a low-entropy circle at the center. A convective layer interior to the
neutrinosphere cannot be visualized with the employed color scale because the entropy
contrast there is small. Convection in this layer is driven by a negative gradient of the
lepton number. The computation was performed with spherical coordinates, assum-
ing axial symmetry, and employing the “ray-by-ray plus” variable Eddington factor
technique for treating neutrino transport in multi-dimensional supernova simulations.
Equatorial symmetry is broken on large scales soon after bounce, and low-mode convec-
tion begins to dominate the flow between the neutron star and the strongly deformed
supernova shock. The model continues to develop a weak explosion. The scale of the
plots is 1200 km in both directions.
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90◦ wedge [29]. Unfortunately, calculating the first 226ms of the evolution
of this model already required about half a year of computer time on a 32
processor IBM p690, so that we were not able to continue the simulation to
still later post-bounce times.

All these effects are potentially important, and some (or even all of them)
may represent crucial ingredients for a successful supernova simulation. So far
no multi-dimensional calculations have been performed, in which two or more
of these items have been taken into account simultaneously, and thus their mu-
tual interaction awaits to be investigated. It should also be kept in mind that
our knowledge of supernova microphysics, and especially the EoS of neutron star
matter, is still incomplete, which implies major uncertainties for supernova mod-
eling. Unfortunately, the impact of different descriptions for this input physics
has so far not been satisfactorily explored with respect to the neutrino-heating
mechanism and the long-time behavior of the supernova shock, in particular in
multi-dimensional models.

From this it is clear that rather extensive parameter studies using multi-
dimensional simulations are required to identify the physical processes which are
essential for the explosion. Since on a dedicated machine performing at a sus-
tained speed of about 30 GFlops already a single 2D simulation has a turn-around
time of more than half a year, these parameter studies are not possible without
TFlop simulations.

3 The Mathematical Model

The non-linear system of partial differential equations which is solved in our
code consists of the following components:

• The Euler equations of hydrodynamics, supplemented by advection equa-
tions for the electron fraction and the chemical composition of the fluid, and
formulated in spherical coordinates;

• the Poisson equation for calculating the gravitational source terms which
enter the Euler equations, including corrections for general relativistic effects;

• the Boltzmann transport equation which determines the (non-equilibrium)
distribution function of the neutrinos;

• the emission, absorption, and scattering rates of neutrinos, which are required
for the solution of the Boltzmann equation;

• the equation of state of the stellar fluid, which provides the closure relation
between the variables entering the Euler equations, i.e. density, momentum,
energy, electron fraction, composition, and pressure.

In what follows we will briefly summarize the neutrino transport algorithms.
For a more complete description of the entire code we refer the reader to [28], [30],
and the references therein.
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3.1 “Ray-by-ray plus” Variable Eddington Factor Solution
of the Neutrino Transport Problem

The crucial quantity required to determine the source terms for the energy,
momentum, and electron fraction of the fluid owing to its interaction with the
neutrinos is the neutrino distribution function in phase space, f(r, ϑ, φ, ε, Θ, Φ, t).
Equivalently, the neutrino intensity I = c/(2π�c)3 · ε3f may be used. Both are
seven-dimensional functions, as they describe, at every point in space (r, ϑ, φ),
the distribution of neutrinos propagating with energy ε into the direction (Θ,Φ)
at time t (Fig. 2).

The evolution of I (or f) in time is governed by the Boltzmann equation,
and solving this equation is, in general, a six-dimensional problem (since time is
usually not counted as a separate dimension). A solution of this equation by di-
rect discretization (using an SN scheme) would require computational resources
in the PetaFlop range. Although there are attempts by at least one group in
the United States to follow such an approach, we feel that, with the currently
available computational resources, it is mandatory to reduce the dimensionality
of the problem.

Actually this should be possible, since the source terms entering the hydrody-
namic equations are integrals of I over momentum space (i.e. over ε, Θ, and Φ),
and thus only a fraction of the information contained in I is truly required to
compute the dynamics of the flow. It makes therefore sense to consider angular
moments of I, and to solve evolution equations for these moments, instead of
dealing with the Boltzmann equation directly. The 0th to 3rd order moments
are defined as

J,H ,K,L, . . . (r, ϑ, φ, ε, t) =
1
4π

∫

I(r, ϑ, φ, ε, Θ, Φ, t)n0,1,2,3,... dΩ (1)

where dΩ = sinΘ dΘ dΦ, n = (sinΘ cosΦ, sinΘ sinΦ, cosΘ), and exponentia-
tion represents repeated application of the dyadic product. Note that the mo-
ments are tensors of the required rank.

This leaves us with a four-dimensional problem. So far no approximations
have been made. In order to reduce the size of the problem even further, one

Fig. 2. Illustration of the phase space coordi-
nates (see the main text).
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needs to resort to assumptions on its symmetry. At this point, one usually
employs azimuthal symmetry for the stellar matter distribution, i.e. any de-
pendence on the azimuth angle φ is ignored, which implies that the hydro-
dynamics of the problem can be treated in two dimensions. It also implies
I(r, ϑ, ε, Θ, Φ) = I(r, ϑ, ε, Θ,−Φ). If, in addition, it is assumed that I is even
independent of Φ, then each of the angular moments of I becomes a scalar,
which depends on two spatial dimensions, and one dimension in momentum
space: J,H,K,L = J,H,K,L(r, ϑ, ε, t). Thus we have reduced the problem to
three dimensions in total.

The System of Equations

With the aforementioned assumptions it can be shown [30], that in order to
compute the source terms for the energy and electron fraction of the fluid, the
following two transport equations need to be solved:
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These are evolution equations for the neutrino energy density, J , and the neu-
trino flux, H, and follow from the zeroth and first moment equations of the
comoving frame (Boltzmann) transport equation in the Newtonian, O(v/c) ap-
proximation. The quantities C(0)(J,H) and C(1)(J,H) are source terms that
result from the collision term of the Boltzmann equation, while βr = vr/c and
βϑ = vϑ/c, where vr and vϑ are the components of the hydrodynamic veloc-
ity, and c is the speed of light. The functional dependences βr = βr(r, ϑ, t),
J = J(r, ϑ, ε, t), etc. are suppressed in the notation. This system includes four
unknown moments (J,H,K,L) but only two equations, and thus needs to be
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supplemented by two more relations. This is done by substituting K = fK · J
and L = fL · J , where fK and fL are the variable Eddington factors, which for
the moment may be regarded as being known, but in general must be determined
from a separate system of equations (see below).

A finite volume discretization of Eqs. (2–3) is sufficient to guarantee exact
conservation of the total neutrino energy. However, and as described in detail
in [27], it is not sufficient to guarantee also exact conservation of the neutrino
number. To achieve this, we discretize and solve a set of two additional equations.
With J = J/ε, H = H/ε, K = K/ε, and L = L/ε, this set of equations reads
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The moment Eqs. (2–5) are very similar to the O(v/c) equations in spherical
symmetry which were solved in the 1D simulations of [27] (see Eqs. (7), (8), (30),
and (31) of the latter work). This similarity has allowed us to reuse a good frac-
tion of the one-dimensional version of Vertex, for coding the multi-dimensional
algorithm. The additional terms necessary for this purpose have been set in
boldface above.

Finally, the changes of the energy, e, and electron fraction, Ye, required for
the hydrodynamics are given by the following two equations
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(for the momentum source terms due to neutrinos see [30]). Here mB is the
baryon mass, and the sum in Eq. (6) runs over all neutrino types. The full system
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consisting of Eqs. (2–7) is stiff, and thus requires an appropriate discretization
scheme for its stable solution.

Method of Solution

In order to discretize Eqs. (2–7), the spatial domain [0, rmax] × [ϑmin, ϑmax] is
covered by Nr radial, and Nϑ angular zones, where ϑmin = 0 and ϑmax = π
correspond to the north and south poles, respectively, of the spherical grid.
(In general, we allow for grids with different radial resolutions in the neutrino
transport and hydrodynamic parts of the code. The number of radial zones for
the hydrodynamics will be denoted by Nhyd

r .) The number of bins used in energy
space is Nε and the number of neutrino types taken into account is Nν .

The equations are solved in two operator-split steps corresponding to a lateral
and a radial sweep.

In the first step, we treat the boldface terms in the respectively first lines
of Eqs. (2–5), which describe the lateral advection of the neutrinos with the
stellar fluid, and thus couple the angular moments of the neutrino distribution
of neighbouring angular zones. For this purpose we consider the equation

1
c

∂Ξ

∂t
+

1
r sinϑ

∂(sinϑβϑΞ)
∂ϑ

= 0 , (8)

where Ξ represents one of the moments J , H, J , or H. Although it has been
suppressed in the above notation, an equation of this form has to be solved
for each radius, for each energy bin, and for each type of neutrino. An explicit
upwind scheme is used for this purpose.

In the second step, the radial sweep is performed. Several points need to be
noted here:

• terms in boldface not yet taken into account in the lateral sweep, need to
be included into the discretization scheme of the radial sweep. This can be
done in a straightforward way since these remaining terms do not include
ϑ-derivatives of the transport variables (J,H) or (J ,H). They only include
ϑ-derivatives of the hydrodynamic velocity vϑ, which is a constant scalar field
for the transport problem.

• the right hand sides (source terms) of the equations and the coupling in
energy space have to be accounted for. The coupling in energy is non-local,
since the source terms of Eqs. (2–5) stem from the Boltzmann equation,
which is an integro-differential equation and couples all the energy bins

• the discretization scheme for the radial sweep is implicit in time. Explicit
schemes would require very small time steps to cope with the stiffness of
the source terms in the optically thick regime, and the small CFL time step
dictated by neutrino propagation with the speed of light in the optically thin
regime. Still, even with an implicit scheme � 105 time steps are required per
simulation. This makes the calculations expensive.

Once the equations for the radial sweep have been discretized in radius and
energy, the resulting solver is applied ray-by-ray for each angle ϑ and for each
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type of neutrino, i.e. for constant ϑ, Nν two-dimensional problems need to be
solved.

The discretization itself is done using a second order accurate scheme with
backward differencing in time according to [27]. This leads to a non-linear system
of algebraic equations, which is solved by Newton-Raphson iteration with explicit
construction and inversion of the corresponding Jacobian matrix.

Inversion of the Jacobians

The Jacobians resulting from the radial sweep are block-pentadiagonal matrices
with 2 × Nr + 1 rows of blocks. The blocks themselves are dense, because of
the non-local coupling in energy. For the transport of electron neutrinos and
antineutrinos, the blocks are of dimension (2 × Nε + 2)2, or (4 × Nε + 2)2,
depending, respectively, on whether only Eqs. (2), (3), (6), and (7) or the full
system consisting of Eqs. (2–7) is solved (see below).

Three alternative direct methods are currently implemented for solving the
resulting linear systems. The first is a Block-Thomas solver which uses opti-
mized routines from the BLAS and LAPACK libraries to perform the necessary
LU decompositions and backsubstitutions of the dense blocks. In this case vec-
torization is used within BLAS, i.e. within the operations on blocks, and the
achievable vector length is determined by the block size.

The second is a block cyclic reduction solver which also uses BLAS and
LAPACK for block operations.

The third is a block cyclic reduction solver that is vectorized along the Jaco-
bians’ diagonals (i.e. along the radius, r) in order to obtain longer vector lengths.
This might be of advantage in case a simulation needs to be set up with a small
resolution in energy space, resulting in a correspondingly small size of the single
blocks.

Variable Eddington Factors

To solve Eqs. (2–7), we need the variable Eddington factors fK = K/J and
fL = L/J . These closure relations are obtained from the solution of a simplified
(“model”) Boltzmann equation. The integro-differential character of this equa-
tion is tackled by expressing the angular integrals in the interaction kernels of
its right-hand side, with the moments J and H, for which estimates are obtained
from a solution of the system of moment equations (2–3), (6) and (7). With the
right-hand side known, the model Boltzmann equation is solved by means of the
so-called tangent ray method (see [36], and [27] for details), and the entire proce-
dure is iterated until convergence of the Eddington factors is achieved (cf. Fig. 3).

Note that this apparently involved procedure is computationally efficient,
because the Eddington factors are geometrical quantities, which vary only slowly,
and thus can be computed relatively cheaply using only a “model” transport
equation. Note also that only the system of Eqs. (2–3), (6) and (7), and not the
full system Eqs. (2–7), is used in the iteration. This allows us to save computer
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Fig. 3. Illustration of the iteration procedure for
calculating the variable Eddington factors. The
boxes labeled ME and BE represent the solution
algorithms for the moment equations, and the
“model” Boltzmann equation, respectively (see the
text for details).

time. Once the Eddington factors are known, the complete system Eqs. (2–7),
enforcing conservation of energy and neutrino number, is solved once, in order
to update the energy and electron fraction (lepton number) of the fluid.

In contrast to previous work [27, 30], our latest code version takes into
account that the Eddington factors are functions of radius and angle, fK =
fK(r, ϑ, t) and fL = fL(r, ϑ, t), and thus the iteration procedure shown in Fig. 3
is applied on each ray, i.e. for each ϑ.

4 Implementation and First Benchmarks

The Vertex routines, that have been described above, have been coupled to the
hydrodynamics code Prometheus, to obtain the full supernova code Prome-
theus/Vertex. In a typical low-resolution supernova simulation, like the one
shown in Fig. 1 and corresponding to setup “S” of Table 1, the Vertex transport
routines typically account for 99.5%, and the hydrodynamics for about 0.5% of
the entire execution time. The ratio of computing times is expected to tilt even
further towards the transport side when the larger setups in Table 1 are investi-
gated (especially the one with 34 energy bins), since a good fraction of the total
time is spent in inverting the Jacobians. It is thus imperative to achieve good par-
allel scalability, and good vector performance of the neutrino transport routines.

Two parallel code versions of Prometheus/Vertex are currently available.
The first uses a two-level hierarchical parallel programming model that exploits
instruction level parallelism through vectorization and shared memory paral-
lelism by macrotasking with OpenMP directives. The second code version is
similar to the first one, but adds to these two levels also distributed memory
parallelism using message passing with MPI.

The nature of the employed algorithms naturally lends itself to a hierarchical
programming model because of the fact that directional (operator) splitting is
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used in both the hydrodynamic as well as the neutrino transport parts of the
code. Thus one needs to perform logically independent, lower-dimensional sub-
integrations in order to solve a multi-dimensional problem. For instance, the
Nϑ × Nν and Nr × Nε × Nν integrations resulting within the r and ϑ trans-
port sweeps, respectively, can be performed in parallel with coarse granularity.
The routines used to perform the lower-dimensional sub-integrations are then
completely vectorized.

Figure 4 shows scaling results of the OpenMP code version on an SGI Altix
3700 Bx2 (using Itanium2 CPUs with 6 MB L3 caches). The measurements
are for the S and M setups of Table 1. The Thomas solver has been used to
invert the Jacobians. The speedup is initially superlinear, while on 64 processors
it is close to 60, demonstrating the efficiency of the employed parallelization
strategy. Note that static scheduling of the parallel sub-integrations has been
applied, because the Altix is a ccNUMA machine which requires a minimization
of remote memory references to achieve good scaling. Dynamic scheduling would
not guarantee this, although it would actually be preferable from the algorithmic
point of view, to obtain optimal load balancing.

Table 1. Some typical setups with different resolutions.

Setup Nhyd
r Nr Nϑ Nε Nν

XS 400 234 32 17 3
S 400 234 126 17 3
M 400 234 256 17 3
L 800 468 512 17 3

XL 800 468 512 34 3

Fig. 4. Scaling of Prometheus/Vertex on the SGI Altix 3700 Bx2.
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Table 2. First measurements of the OpenMP code version on (a single compute node
of) an NEC SX-6+ and an NEC SX-8. Times are given in seconds.

Measurements on the SX-6+

Setup NCPUs (avg.) wallclock time/cycle Speedup MFLOPs/sec

XS 1 211.25 1.00 2708
XS 4 59.67 3.54 9339
XS 8 34.42 6.14 15844

Measurements on the SX-8

Setup NCPUs (avg.) wallclock time/cycle Speedup MFLOPs/sec

XS 1 139.08 1.00 4119
XS 4 39.17 3.43 14181
XS 8 22.75 6.11 23773

S 1 457.71 1.00 4203
S 4 133.43 3.43 13870
S 8 78.43 5.83 22838

M 1 926.14 1.00 4203
M 4 268.29 3.45 13937
M 8 159.14 5.82 22759

The behaviour of the same code on the (cacheless) NEC SX-6+ and NEC
SX-8 is shown in Table 2. One can note that (for the same number of processors)
the measured speedups are noticeably smaller than on the SGI. Moreover the
larger problem setups (with more angular zones) scale worse than the smaller
ones, indicating that a load imbalance is present. On these “flat memory” ma-
chines with their very fast processors a good load balance is apparently much
more crucial for obtaining good scalability, and dynamic scheduling of the sub-
integrations might have been the better choice. Table 2 also lists the FLOP rates
for the entire code (including I/O, initializations and other overhead). The vec-
tor performance achieved with the listed setups on a single CPU of the NEC
machines is between 26% and 30% of the peak performance. Given that in any
case only 17 energy bins have been used in these tests, and that therefore the
average vector length achieved in the calculations was only about 110 (on an
architecture where vector lengths � 256 are considered optimal), this computa-
tional rate appears quite satisfactory. Improvements are still possible, though,
and optimization of the code on NEC machines is in progress.
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