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Abstract. We review various approaches to approximating general relativistic effects in hydrodynamic simulations of stellar
core collapse and post-bounce evolution. Different formulations of a modified Newtonian gravitational potential are presented.
Such an effective relativistic potential can be used in an otherwise standard Newtonian hydrodynamic code. An alternative
approximation of general relativity is the assumption of conformal flatness for the three-metric, and its extension by adding
second post-Newtonian order terms. Using a code which evolves the coupled system of metric and fluid equations, we apply
the various approximation methods to numerically simulateaxisymmetric models for the collapse of rotating massive stellar
cores. We compare the collapse dynamics and gravitational wave signals (which are extracted using the quadrupole formula),
and thereby assess the quality of the individual approximation method. It is shown that while the use of an effective relativistic
potential already poses a significant improvement comparedto a genuinely Newtonian approach, the two conformal-flatness-
based approximation methods yield even more accurate results, which are qualitatively and quantitatively very close to those
of a fully general relativistic code even for rotating models which almost collapse to a black hole.

Keywords: Stellar core collapse, numerical relativity, approximation methods, gravitational waves
PACS: 04.25.Dm, 04.25.Nx, 04.40.Dg, 97.60.-s, 97.60.Jd, 04.30.Db

INTRODUCTION

Gravity is the driving force which at the end of the life of massive stars overcomes the pressure forces and causes
the collapse of the stellar core. Furthermore, the subsequent supernova explosion results from the fact that various
processes tap the enormous amount of gravitational bindingenergy released during the formation of the proto-neutron
star. Therefore, gravity plays an important role during allstages of a core collapse supernova. General relativistic
effects are important in this scenario and cannot be neglected in quantitative models because of the strong compactness
of the proto-neutron star. It is thus essential to include a proper treatment of general relativity (GR) or an appropriate
approximation in the numerical codes that one uses to study core collapse supernovae.

Stellar core collapse is also among the most promising sources of detectable gravitational waves. As the first-stage
gravitational wave interferometer detectors (like TAMA300, GEO600, LIGO, or VIRGO) are already taking data,
the interest in performing core collapse simulations has been further motivated by the necessity of obtaining reliable
gravitational waveform predictions for detector data analysis.

In the last two decades, a number of numerical simulations ofrotating stellar core collapse were performed, paying
particular attention to computing gravitational wave emission (see [1] and references therein). Most simulations were
done using simple analytic equations of state (EOS), and were either restricted to Newtonian gravity or at most
approximations of full GR. Only recently there were severalsuccessful attempts to model rotating core collapse to a
proto-neutron star in full GR [2, 3]. Multi-dimensional simulations involving a sophisticated treatment of microphysics
like a tabulated EOS and neutrino transport are up to now onlyperformed in Newtonian gravity (see, e.g., [4]).

In order to facilitate the numerical investigation of rotating stellar core collapse taking into account effects of GR
in ways which are both accurate and comparatively easy to implement without having to resort to a fully relativistic
formulation, in recent years a number of approximation scenarios were suggested. In this work we summarize several
such methods and apply them to numerical simulations for modeling the collapse of rotating massive stellar cores.
These models, which were investigated in [3] in a full GR framework, feature comparatively extreme initial masses,
rotation states, and collapse parameters, and thus reach very high densities or even collapse to black holes. Therefore,
this is an ideal test scenario to assess the quality of the various approximation methods of full GR.

Throughout the article, we use geometrized units withc = G = 1 and Einstein’s summation convention.



HYDRODYNAMIC EQUATIONS IN FLUX-CONSERVATIVE HYPERBOLIC F ORM

In the following we present the hydrodynamic equations in flux-conservative formulation, which govern the evolution
of matter (approximated as an perfect fluid) in a dynamic spacetimegµν . We adopt the 3+ 1 formalism to foliate
spacetime into a set of non-intersecting spacelike hypersurfacesΣt . The line element then reads

ds2 = gi j dxµdxν = −α 2dt2 + γ i j (dxi + β idt)(dx j + β jdt), (1)

whereα is the lapse function describing the rate of advance of time along a timelike unit vectornµ normal toΣt ,
β i is the spacelike shift three-vector which specifies the motion of coordinates within a surface, andγ i j is the spatial
three-metric. In the Newtonian limitgµν reduces to the flat metric ˆgµν with the associated flat three-metricγ̂ i j .

Newtonian hydrodynamics

As primitive (physical) hydrodynamic variables of a perfect fluid we choose the rest-mass densityρ , the covariant
three-velocityvi as measured by an Eulerian observer at rest inΣt , and the specific internal energyε. We introduce the
following set of conserved variables:

D = ρ , Si = ρvi , τ = ρ(ε + 1
2vivi).

Then we obtain a first-order, flux-conservative hyperbolic system of hydrodynamic equations in Newtonian gravity,

∂
√

γ̂ U
∂ t

+
∂
√

γ̂ F i

∂xi =
√

γ̂ S, (2)

whereγ̂ is the determinant of̂γ i j . The state vectorU, flux vectorF i , and source vectorS are given by

U = [D,Sj ,τ], F i =
[

Dvi ,Sjv
i + δ i

j P,(τ +P)vi], S=

[

0,−ρ
∂Φ
∂x j ,−ρvi ∂Φ

∂xi

]

.

HereΦ is the Newtonian gravitational potential. An EOS, which relates the fluid pressureP to some thermodynami-
cally independent quantities, e.g.,P = P(ρ ,ε), closes the system of conservation equations.

General relativistic hydrodynamics

The hydrodynamic evolution of a perfect fluid in GR with four-velocity uµ , rest-mass currentJµ = ρuµ , and
energy-momentum tensorTµν = ρhuµuν +Pgµν is determined by a system of local conservation equations,

∇µJµ = 0, ∇µ Tµν = 0, (3)

where∇µ denotes the covariant derivative. The quantityh = 1+ ε + P/ρ is the specific enthalpy, and the three-
velocity is given byvi = ui/(αu0)+ β i/α. Along the same lines as in the Newtonian framework, and following the
work presented in [5], we define the set of conserved variables as

D = ρW, Si = ρhW2vi , τ = ρhW2−P−D.

In the above expressionsW = αu0 is the Lorentz factor, which satisfies the relationW = 1/
√

1− γ i j vivj .
Then the local conservation laws (3) can again be written as afirst-order, flux-conservative hyperbolic system of

hydrodynamic equations in GR gravity,

∂√γ U
∂ t

+
∂
√−gF i

∂xi =
√−gS, (4)

with

U = [D,Sj ,τ], F i =
[

Dv̂i,Sj v̂
i + δ i

j P,τ v̂i +Pvi], S=

[

0,Tµν
(

∂gν j

∂xµ −Γλ
µνgλ j

)

,α
(

Tµ0 ∂ lnα
∂xµ −Tµν Γ0

µν

)]

.

Herev̂i = vi −β i/α, andg andγ are the determinant ofgi j andγ i j , respectively, with
√−g = α√γ. In addition,Γλ

µν
are the Christoffel symbols associated withgµν .



GRAVITATIONAL FIELD EQUATIONS

Effective relativistic potential for Newtonian simulations

Method N: Newtonian potential for a self-gravitating fluid. The Newtonian potentialΦ, whose gradient acts as an
external force in the source of the Newtonian hydrodynamic equations (2), is determined by the Poisson equation

∆Φ = 4πρ . (5)

To approximately include effects of GR gravity, several successful attempts of increasing complexity have been
made [6, 7, 8] to replace the regular Newtonian potentialΦ (called method Nhere), by an effective relativistic
gravitational potentialΦeff for a self-gravitating fluid, which mimics the deeper gravitational well of the GR case.

Method R: TOV potential for a self-gravitating fluid. As a first approximation, we demand thatΦeff in spherical
symmetry reproduces the solution of hydrostatic equilibrium according to the Tolman–Oppenheimer–Volkoff (TOV)
equation. To obtain an effective relativistic potential also for a nonspherical matter distribution, we construct a
generalized TOV potential [6] as a radial integral over angular averaged matter quantitiesρ ,ε, vr , andP:

ΦTOV(r) = −
∫ ∞

r

dr ′

r ′2
(

m+4πr ′3P
) h

Γ2 . (6)

Herevr is the local radial velocity of the fluid. The TOV massmand metric functionΓ are given by

m(r) = 4π
∫ r

0
dr ′ r ′2ρ (1+ε) , Γ =

√

1+vr
2− 2m

r
. (7)

Then the effective relativistic potentialΦeff can be calculated by substituting the “spherical contribution”

Φ(r) = −4π
∫ ∞

0
dr ′ r ′2

ρ
|r − r ′| (8)

to the multi-dimensional Newtonian gravitational potential Φ by the TOV potentialΦTOV:

Φeff = Φ−Φ+ΦTOV. (9)

When this reference case of the effective relativistic potential, method R, is used in an otherwise Newtonian
simulation, the collapse of a spherical stellar core to a proto-neutron star yields after core bounce and ring-down a
new quasi-equilibrium state which is the exact (numerical)solution of the TOV structure equations of GR.

The effective relativistic potential ofmethod Rhas already been used in simulations of supernova core collapse
in spherical symmetry with sophisticated microphysics including Boltzmann neutrino transport [6, 9] as well as for
rotating stellar core collapse with a simple matter treatment without magnetic fields [7] and with magnetic fields [10].

Method A: Modifications of the TOV potential. In a recent comparison [9] of supernova core collapse in spherical
symmetry it was found that the use of the effective relativistic potential in the form (9) overrates the relativistic effects,
because in combination with Newtonian kinematics it tends to overestimate the infall velocities and to underestimate
the flow inertia in the preshock region. As a consequence, thecompactness of the proto-neutron star is overestimated.

In order to reduce these discrepancies, several modifications of the spherical TOV potential (6) have been tested
recently [7]. In all cases the construction of the multi-dimensional effective relativistic potentialΦeff according to
Eq. (9) remains unchanged. In the most accurate of the variations introduced in [7],method A, an additional factorΓ
is added in the integrand of the equation for the TOV mass (7).SinceΓ < 1 this reduces the gravitational TOV mass
used in the TOV potential (6), and thus attenuates the relativistic corrections in the effective relativistic potential Φeff.

As a consequence, a Newtonian simulation of core collapse using the effective relativistic potential ofmethod Anot
only reproduces the solution of the TOV structure equationsfor a matter configuration in equilibrium to fair accuracy,
but contrary tomethod Ralso closely matches the results from a relativistic simulation during the dynamic phase of
the contraction of the core. This has been demonstrated in numerical studies of collapsing stellar cores in spherical
symmetry with sophisticated microphysics including Boltzmann neutrino transport [7].

The results presented in that work also demonstrate that in axisymmetric collapse calculations for rotating stellar
cores with a wide range of initial conditions and a simple EOS, the new effective relativistic potential ofmethod A
reproduces the characteristics of the relativistic collapse dynamics quantitatively much better than the Newtonian
potential for not too rapid rotation.



Conformal-flatness-based approximations for general relativistic simulations

In the 3+1 formalism, the Einstein equations split into a coupled setof 12 evolution equations for the three-metric
γ i j as well as the extrinsic curvatureK i j , and 4 constraint equations. We use the ADM gauge, whereγ i j can be
decomposed into a conformally flat term with conformal factor φ plus a transverse traceless term:

γ i j = φ4γ̂ i j +hTT
i j , with hTT

i j γ̂ i j = 0, γ̂ ik∇̂khTT
i j = 0, (10)

Method CFC: Conformal flatness condition for the three-metric. In spherical symmetryhTT
i j = 0, i.e. the three-

metric is conformally flat. Thus a reasonable approximationof γ i j for scenarios which do not deviate to strongly from
sphericity is to impose a vanishinghTT

i j in Eq. (10):

γ i j = φ4γ̂ i j . (11)

This is the conformal flatness condition (CFC) or Isenberg–Wilson–Mathews approximation [11, 12]. Using CFC
and assuming the maximal slicing condition, for which the trace of the extrinsic curvature vanishes, the 3+ 1 metric
equations reduce to a set of five coupled elliptic (Poisson-like) equations for the metric components,

∆̂φ = −2πφ5
(

ρhW2−P+
K i j K i j

16π

)

, (12)

∆̂(αφ) = 2παφ5
(

ρh(3W2−2)+5P+
7K i j K i j

16π

)

, (13)

∆̂β i = 16παφ4Si +2φ10K i j ∇̂j

(

α
φ6

)

− 1
3

∇̂i ∇̂kβ k, (14)

where∇̂ and∆̂ = γ̂ i j ∇̂i ∇̂j are the flat space Nabla and Laplace operators. Additionally, the expression for the extrinsic
curvature becomes time-independent and readsK i j = 1

2α (∇i β j +∇j βi − 2
3γ i j ∇kβ k). As the CFC metric equations (12 –

14) do not contain explicit time derivatives, the metric is calculated by a fully constrained approach.
The accuracy of the CFC approximation has been tested in various works, e.g., for stellar core collapse and

equilibrium models of neutron stars [2, 13, 14, 15, 16, 17], as well as for binary neutron star merger [18, 19]. The
spacetime of rapidly (uniformly or differentially) rotating neutron star models is very well approximated by the CFC
metric (11). Its accuracy degrades only in extreme cases, such as rapidly rotating massive neutron stars or black holes.

Method CFC+: Inclusion of the second post-Newtonian deviation from isotropy. To improve the accuracy of CFC,
we have developed the CFC+ approximation. It consists in adding to the CFC metric (11) the second post-Newtonian
(2PN) deviation from isotropy,

γ i j = φ4γ̂ i j +h2PN
i j (15)

which includes a traceless and transverse termh2PN
i j . In the decomposition (10)h2PN

i j is identical tohTT
i j up to 2PN

order. As described in detail in [20] this correction is the solution of the tensor Poisson equation [21]

∆̂h2PN
i j = γ̂ TTkl

i j

(

−4∇̂kU ∇̂l U −16π (S∗kS∗l )/D∗
)

, (16)

whereU is a Newtonian-like potential which is the solution of the Poisson equation̂∆U =−4πD∗, D∗ =
√

γ/γ̂ D, and
S∗i =

√

γ/γ̂ Si . The integro-differential operator̂γTTkl
i j is the traceless and transverse projector defined in the Appendix

of [20]. Of the CFC metric equations (12 – 14), only the equation (13) for the lapse functionα is affected by the
correctionsh2PN

i j :

∆̂(αφ) =
[

∆̂(αφ)
]

h2PN
i j =0− γ̂ ikγ̂ jl h2PN

i j ∇̂k∇̂l U. (17)

However, the CFC+ corrections couple implicitly to the other metric equations as their source terms depend onα.
Calculatingh2PN

i j by inversion of the tensor Poisson equation (16) is simplified considerably by introducing poten-
tials that are solutions of scalar/vector/tensor Poisson equations [20].

Applying method CFC+to axisymmetric simulations of pulsations in rotating neutron stars and rotational stellar
core collapse to a proto-neutron star, it was recently foundthat relevant quantities show only minute differences
with respect tomethod CFC[20]. By contrast, in scenarios where the CFC approximationis expected to become
increasingly inaccurate, CFC+ is expected to yield resultswhich are closer to full GR.



SIMULATIONS OF THE COLLAPSE OF ROTATING MASSIVE STELLAR COR ES

Setup of models and numerical methods

We follow the work in [3] to set up rapidly rotating initial models of massive stellar cores with baryonic rest
massesMr & 1.5M⊙, supported by electron degeneracy pressure and a possible radiation pressure contribution. Using
Hachisu’s self-consistent field method [22], we construct the initial model as a rotating perfect fluid in equilibrium
obeying a polytropic EOS,P= K0ργ0 andε = P/[ρ(γ0−1)], whereγ0 = 4/3 is the adiabatic index and the polytropic
constant assumes valuesK0 = {5.0, 7.0, 8.0} × 1014 (in cgs units) with increasing contribution from radiation
pressure. The initial core’s central density isρc 0 = 1010 g cm−3. The rotation law is set byj = A2(Ωc−Ω), wherej is
the specific angular momentum,Ωc is the value of the angular velocityΩ at the center, and the constantA determines
the degree of differential rotation. We parameterize the rotational state by two quantities, the rotation rateβ0 which is
the ratio of rotational kinetic energy to gravitational binding energy, and the parameterÂ = A/r e = {∞, 0.25, 0.1},
wherer e is the stellar equatorial radius, which decreases as the differentiality of the rotation profile increases (with
Â= ∞ corresponding to uniform rotation). To initiate the collapse we reduce the pressure,P= K0ργ0(γ1−1)/(γ0−1),
with lowering the adiabatic index toγ1 = 1.31< γ0 and setting the polytropic constant toK1 = 5.0×1014. Note that
this procedure is different from the collapse initiation for the models presented in [2, 14, 15, 20, 23], where both the
pressure and the internal energy are reduced.

As in [2, 3, 14, 15, 23], during the collapse phase we use a simple hybrid ideal gas EOS [24] that consists of
a polytropic contributionPp describing the degenerate electron pressure and at supranuclear densities the pressure
due to repulsive nuclear forces, and a thermal contributionPth which accounts for the heating of the matter by shocks,
P= Pp+Pth, wherePp = K1,2 ργ1,2 andPth = ρε th(γ th−1). To approximate the stiffening of the EOS at densities larger
than nuclear matter densityρnuc= 2.0×1014 g cm−3, the adiabatic index increases toγ2 = 2.5> γ1. For the adiabatic
index of the thermal contribution we chooseγ th = 1.3. The thermal internal energy is calculated asε th = ε − εp,
while the polytropic specific internal energyεp is determined fromPp by the ideal gas relation in combination with
continuity conditions, which also determine the value for the polytropic constantK2 at ρ > ρnuc (for more details,
see [14, 24]). Of the 27 axisymmetric collapse models of rotating massive stellar cores investigated in [3], here we
select 8 representative models. Table 1 summarizes their parameters and establishes the nomenclature of model names.

Our evolution code, which was introduced in [14, 20], utilizes Eulerian spherical polar coordinates{r,θ} restricted
to axisymmetry. We also assume symmetry with respect to the equatorial plane. The finite difference grid consists of
nr = 250 logarithmically spaced radial andnθ = 45 equidistantly spaced angular grid points with a central resolution
∆r c ≃ 250 m. A small part of the grid covers an artificial low-density atmosphere extending beyond the stellar surface.

The hydrodynamic solver performs the time integration of the system of conservation equations, given either by
Eq. (2) formethods N, R, andA, or by Eq. (4) formethods CFCandCFC+. This is done by means of a high-resolution
shock-capturing (HRSC) scheme with third-order accurate PPM reconstruction (for a review of such methods in
numerical GR, see [25]). The numerical fluxes are computed byMarquina’s approximate flux formula [26]. The time
update of the state vectorU is done using the method of lines in combination with a Runge–Kutta scheme with second
order accuracy in time. OnceU is updated in time, the primitive variables are recovered either directly (formethods N,
R, andA) or through an iterative Newton–Raphson method (formethods CFCandCFC+).

When usingmethods N, R, or A we solve the multi-dimensional linear Poisson equation (5)for the Newtonian
potentialΦ by transforming it into an integral equation using a Green’sfunction. The volume integral is numerically
evaluated by expanding the source term into a series of radial functions and associated Legendre polynomials, which
we cut at orderl = 10. It is straightforward to solve the integral equations (6– 8) of the relativistic corrections needed
to finally obtain the effective relativistic potentialΦeff.

The metric solver for obtaining the CFC and CFC+ spacetime metric used in the GR simulations exploits the fact
that Eqs. (12 – 14), supplemented by Eqs. (16, 17) in the case of method CFC+, are written in the form of a system of

TABLE 1. Summary of the model parameters for rotating massive stellar cores.

Model M5a1 M5c2 M7a4 M7b1 M7c3 M8a1 M8c2 M8c4

K0 [1014] 5.0 5.0 7.0 7.0 7.0 8.0 8.0 8.0
Â ∞ 0.10 ∞ 0.25 0.10 ∞ 0.25 0.10
β0 [%] 0.89 1.24 3.67 2.18 1.27 0.88 2.19 1.27



nonlinear coupled equations for a vector of unknownsu with a Laplace operator on the left hand side,∆̂u = S(u). A
common method to solve such equations is to keepS(u) fixed, start with an initial guessu0, and then solve each of the
resulting decoupled linear Poisson equations∆̂us+1 = S(us) in an iteration cycle with stepss until convergence. To
obtain the solution of the now uncoupled, linear Poisson equations, we again employ the expansion described above.
More details are presented in the description of Solver 2 in [15].

The calculation of the CFC or CFC+ metric is computationallyvery expensive. Hence, for these methods the metric
is updated only once every 100/10/50 hydrodynamic time steps before/during/after core bounce, and extrapolated in
between, as described in [14]. We also note that we have performed grid resolution tests to ascertain that the grid
resolution specified above is appropriate. When using the CFC/CFC+ metric equations, the degrees of freedom repre-
senting gravitational waves are removed from the spacetime. Therefore, in all simulations gravitational waveforms are
obtained in a post-processing step with the help of the quadrupole formula.

Results and discussion

Comparing typical quantities that describe the collapse dynamics (like the maximum densityρmax b, maximum
rotation rateβmax b, or minimal value of the lapseαmin b during core bounce) from our approximate GR simulations
with those obtained in full GR [3], we find excellent agreement for bothmethod CFCandCFC+. In the case of models
which do not collapse to a black hole, our results forρmax b (which we present in Table 2) deviate from the full GR
ones by typically less than about 2% for models with moderatecore mass and moderate or rapid rotation. The deviation
for ρmax b increases to at most 20% for the most extreme model M8c4, which has a baryonic rest mass ofMr = 3.05
and a slow rotation rate. Consequently, this model reachesαmin = 0.29 and thus almost collapses to a black hole.

When the less accurate approximationmethods AandR are used, the values forρmax b as expected deviate more
strongly from full GR and approach the ones obtained using a genuinely Newtonian simulation. Concerning the quality
of our approximations, we find equivalent results for the values ofρmax b, βmax b, andαmin b (with the latter obviously
only defined formethods CFCandCFC+). Note also that thoughmethod Acompared tomethod Ryields results closer
to full GR in spherical symmetry, the influence of rotation reverses this behavior, as already discussed in [7].

A very important property of any approximation method for GRsimulations is that it should correctly reproduce the
collapse type of a specific model for a range in parameter space as broad as possible. For the investigated models,
following [3] we denote by BH, NS, O-A, and O-B the collapse toa black hole, a neutron star, an oscillating
star withρmax b≥ ρnuc, and an oscillating star withρmax b < ρnuc as end state, respectively. As shown in Table 3,
methods CFCandCFC+ correctly capture the collapse type for all investigated cases. The identification of the end
state of model M7a4 (as well as of model M7a3) as a black hole in[3] is most probably due to insufficient resolution
of the inner parts of the numerical grid, which results in fall-back to the already formed proto-neutron star leading to
its recollapse to a black hole. We find that behavior in a resolution study of these two models. This is also supported
by independent simulations in full GR without symmetry assumptions [27]. We thus classify model M7a4 as NS.

Fig. 1 displays the time evolution of the maximum densityρmax and the gravitational wave signal amplitudeAE2
20

(i.e. the gravitational radiation waveform; for a definition of AE2
20, see, e.g., [23]) for models M5a1 and M7a4, which

are all of collapse type NS in a full GR simulation. As the results of method CFCandCFC+ are almost identical,
we do not show the latter in Fig. 1. We emphasize that even for these rather extreme stellar core collapse models, the

TABLE 2. Maximum densityρmax b in units of 1014 g cm−3 during core bounce for the investigated rotating
core collapse models from simulations usingmethods N, R, A, CFC, and CFC+. The relative deviations
ρmax b/ρGR

max b from the value obtained in a full GR simulation (given in the last column) are shown in
parentheses. The dash denotes models for which the approximate or full GR simulation produces a black hole.

Model Method N Method R Method A Method CFC Method CFC+ GR

M5a1 3.8 (0.58) 6.1 (0.92) 5.6 (0.85) 6.6 (1.00) 6.6 (1.00) 6.6
M5c2 1.1 (0.22) 3.3 (0.66) 2.9 (0.58) 4.9 (0.98) 4.9 (0.98) 5.0
M7a4 5.6 — — — 14 — 14 — 14 — —
M7b1 0.10 (0.13) 0.40 (0.51) 0.31 (0.39) 0.83 (1.05) 0.85 (1.08) 0.79
M7c3 1.2 (0.13) 5.3 (0.58) 4.2 (0.46) 9.2 (1.00) 9.2 (1.00) 9.2
M8a1 4.5 — — — 17 — — — — — —
M8c2 0.19 (0.04) 1.5 (0.28) 9.0 (0.17) 5.3 (0.98) 5.2 (0.96) 5.4
M8c4 1.2 (0.08) 7.1 (0.47) 5.1 (0.34) 17 (1.13) 12 (0.80) 15



2PN deviation from isotropy inmethod CFC+remains very small,h2PN
i j ∼ 0.001 – 0.01≪ 1. Only for models like

M8c4 which reach extremely high densities and low values of the lapse function, the components ofh2PN
i j increase

to 0.02. This further supports the observation thatmethod CFCalready is an excellent approximation of full GR. For
all models the purely Newtonian simulation,method N, yields maximum densities far below the values in CFC both
during and after core bounce. These results for rotatingmassivestellar cores are in accordance with the findings for
rotatingregular stellar cores in [23, 28]. There the typically higher waveform amplitudes at core bounce inmethod N
compared tomethod CFCfor many models of type NS, observed here as well in Fig. 1, arealso found and explained.

In model M5a1 (top panel) the post-bounce value ofρmax for approximationmethod Amatches best the result
with method CFC, which (withmethod CFC+) is closest to full GR, whilemethod Rgives too large values. A similar
behavior was found and discussed for the rotating core collapse model A1B3G1 in [7]. The inadequacy ofmethod Rfor

TABLE 3. Collapse type of the investigated rotating core collapse models from simulations using
methods N, R, A, CFC, andCFC+. The simulations which yield the correct collapse type obtained in a
full GR simulation (given in the last column) are marked by a box. See the main text for the definition
of the collapse types. For model M7a4 the full GR simulation in [3] predicts BH instead of NS as final
state, which is apparently due to lack of resolution.

Model Method N Method R Method A Method CFC Method CFC+ GR

M5a1 NS NS NS NS NS NS
M5c2 O-B O-A O-A O-A → NS O-A → NS O-A → NS
M7a4 NS BH NS NS NS NS / BH
M7b1 O-B O-B O-B O-B O-B O-B
M7c3 O-B NS O-A → NS NS NS NS
M8a1 NS BH NS BH BH BH
M8c2 O-B O-B O-B O-A O-A O-A
M8c4 O-B NS NS NS NS NS
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FIGURE 1. Time evolution of the maximum densityρmax (left panels) and the gravitational wave signal amplitudeAE2
20 (right

panels) for the rotational core collapse models M5a1 (top panels) and M7a4 (lower panels) from simulations usingmethod N(blue
dash-dotted lines),method R(green dotted lines),method A(red dashed lines), andmethod CFC(black solid lines). The thin black
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reproducing the collapse type of certain models is evident for model M7a4 (bottom panel), where the collapse proceeds
unhalted and thus thepromptformation of a black hole is predicted, while the other approximation methods capture
the collapse type right. Beyond employing a good approximation of GR, it is also crucial to use a numerical grid with
sufficiently accuracy. On a grid with a low central and globalresolution ofnr = 100,nθ = 20, and∆r c ≃ 500 m, the
core of model M7a4 (and many other models as well) simulated in method CFCsuffers from matter fall-back after
core bounce, recollapses, and predicts thedelayedformation of a black hole as in [27] (see left bottom panel of Fig. 1).

SUMMARY AND OUTLOOK

We have presented several recently introduced methods for approximating GR effects in hydrodynamic simulations of
stellar core collapse. When applied to axisymmetric test models for the collapse of rotating massive stellar cores which
reach high densities and rotation rates, these approximations as expected offer much better results than a genuinely
Newtonian treatment of gravity. While the accuracy of methods using an effective relativistic potential in an otherwise
Newtonian code degrades at rapid rotation (which can be remedied by a new formulation [8]) and these methods
reach their limit for high densities and/or strong rotation, approximations based on conformal flatness prove to yield
excellent matching with full GR for all investigated models.
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