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Distribution of oscillator strength in Gaussian quantum dots:
an energy flow from center-of-mass mode to internal modes
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The energy spectra and oscillator strengths of two, three and four electrons confined by a quasi-
two-dimensional attractive Gaussian-type potential have been calculated for different strength of
confinement ω and potential depth D by using the quantum chemical configuration interaction (CI)
method employing a Cartesian anisotropic Gaussian basis set. A substantial red shift has been
observed for the transitions corresponding to the excitation into the center-of-mass mode (CM).
The oscillator strengths, concentrated exclusively in the center-of-mass excitation in the harmonic
limit, are distributed among the near-lying transitions as a result of the breakdown of the generalized
Kohn theorem. The distribution of the oscillator strengths is limited to the transitions located in
the lower-energy region when ω is large but it extends towards the higher-energy region when ω
becomes small. The analysis of the CI wavefunctions shows that all states in the energy range
covered by the present study can be classified according the polyad quantum number vp defined by
the number of nodal planes summed over all one-particle orbitals in the leading configuration of the
CI wavefunctions. It is shown that the distribution of the oscillator strengths for large ω occurs
among transitions involving excited states with the same value of vp as the center-of-mass excited
state, vp,cm, while it occurs among transitions involving the excited states with vp = vp,cm and vp

= vp,cm + 2 for small ω.

PACS numbers: 31.15.Ar, 68.65.Hb, 71.10.Li, 71.15.Ap, 78.67.Hc

I. INTRODUCTION

Recent advances in semiconductor technology allow
the construction of quantum systems consisting of a
small number of electrons confined in nano-scale poten-
tial wells, referred to as artificial atoms [1] or quantum
dots [2, 3]. These confined quantum systems have cer-
tain similarity with atoms in that they have a discrete
energy-level structure that follows Hund ′s rules [4, 5].

Quantum dots have been modeled by harmonic-
oscillator potentials [2] while atoms are characterized
by Coulomb potentials. The spectral properties of
harmonic-oscillator quantum dots or parabolic quantum
dots [6, 7] are exotic as compared to those of atoms in
that the oscillator strengths are concentrated only in one
dipole-allowed transition. This property of harmonic-
oscillator quantum dots is a direct consequence of the
generalized Kohn theorem [6, 8–13] and is independent
of the number of electrons, the strength of the confine-
ment and the form of the electron-electron interaction
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potential.
On the other hand, when the confining potential de-

viates slightly from the harmonic-oscillator potential,
Kohn’s theorem is no longer applicable and the oscil-
lator strengths are distributed among the transitions
near the original dipole-allowed transition [14–17]. Ac-
cording to the generalized Kohn theorem the dipole-
allowed transition in harmonic oscillator quantum dots
corresponds to the excitation of a center-of-mass mode
(CM) of electrons. Therefore, the fragmentation of the
oscillator strength among the near-lying transitions in
anharmonic quantum dots is due to the interaction be-
tween the center-of-mass mode and internal modes of the
electrons induced by the anharmonicity of the potential.

In the present study, in order to understand the in-
teraction between the center-of-mass mode and the in-
ternal modes represented in the distribution of oscillator
strengths, the spectral properties of N -electrons (N = 2,
3 and 4) confined by a quasi-two-dimensional Gaussian
potential have been studied for all spin states by using
a quantum chemical multi-reference configuration inter-
action (CI) method employing a Cartesian anisotropic
Gaussian basis set with large angular momentum func-
tions. The computed oscillator strengths have been ex-
amined with respect to the nodal pattern in the CI
wavefunctions for the states involved in the transitions.
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Atomic units are used throughout this paper.

II. COMPUTATIONAL METHODOLOGY

A. Schrödinger equation

The Schrödinger equation for N -electrons confined by
a potential W is given by

[H(r) +W(r)]Ψ(1, 2, . . . , N) = EΨ(1, 2, . . . , N), (1)

where the set (1, 2, . . . , N) denotes the orbital and the
spin coordinates of the electrons. The operator H rep-
resents the N -electron operators describing the kinetic
energy and the electron-electron repulsion potentials

H(r) =
N∑

i=1

[− 1
2∇2

i

]
+

N∑

i>j

[
1

|ri − rj |
]

, (2)

where r ≡ {r1, r2, . . . , rN} stands for the spatial coordi-
nates of the electrons. The N -electron interaction poten-
tial is defined as the sum of one-electron contributions

W(r) =
N∑

i=1

w(ri), (3)

where the one-electron confining potential w(ri) is cho-
sen, in the present study, to be the sum of an isotropic
Gaussian-type potential for the x and y directions and a
harmonic-oscillator potential for the z direction

w(ri) = −Dexp
[−γ(x2

i + y2
i )

]
+ 1

2ω2
zz2

i , (4)

where ri = {xi, yi, zi} and D > 0. It is noted that for
sufficiently large values of ωz the electrons of the system
are strongly compressed along the z direction. Therefore,
in this case the system can be regarded as a quantum sys-
tem confined by a two-dimensional Gaussian-type poten-
tial, i.e. as a quasi -two-dimensional Gaussian quantum
dot . Since a Gaussian potential can be approximated
close to the minimum by a harmonic-oscillator poten-
tial, the potential of Eq. (4) is suitable for modeling the
confining potential of semiconductor quantum dots with
anharmonicity [18].

The anharmonicity of the Gaussian potential in Eq. (4)
may be characterized by the depth of the Gaussian po-
tential D. By taking the two leading terms of the Taylor
expansion with respect to the minimum the Gaussian
potential is approximated by the harmonic-oscillator po-
tential with ω defined by

ω =
√

2Dγ. (5)

Accordingly, the Gaussian potential may be specified by
D and ω instead of D and γ. When D is much larger
than ω the Gaussian potential has many bound states
and the potential curve follows closely the harmonic os-
cillator potential with ω as illustrated schematically in
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FIG. 1: One-dimensional attractive Gaussian potential with
small (figure (a)) and large (figure (b)) anharmonicity. The
dotted curves represent the corresponding harmonic oscillator
potential with ω defined by Eq. (5). The origin of the energy
axis is chosen to coincide with the minimum of the Gaussian
potential.

figure 1 (a) for a one-dimensional Gaussian potential. In
this case the anharmonicity of the potential is small. On
the other hand, when D is only slightly larger than ω
the Gaussian potential has only few bound states and,
therefore, deviates strongly from the harmonic-oscillator
potential as illustrated in figure 1 (b). In this case the
anharmonicity is large. These observations suggest that
the anharmonicity of the Gaussian potential may be de-
fined by the parameter α, the strength of confinement
over the depth of the potential as

α = ω/D. (6)

The total energies and wavefunctions of the quasi-two-
dimensional Gaussian quantum dot with the confining
potential of Eq. (4) have been calculated as the eigenval-
ues and eigenvectors of the CI matrix. The full CI and
multi-reference CI methods have been used for 2-electron
and 3- and 4-electron quantum dots, respectively. All cal-
culations have been performed by using OpenMol [19],
an object-oriented program that has originated in the



3

Molecular Physics Group of the Max-Planck-Institute for
Astrophysics and is being developed in international co-
operation amongst individual researchers primarily for
their own use. For the study of confined quantum sys-
tems OpenMol has been extended to account for Gaus-
sian and power-series potentials and anisotropic Gaus-
sian basis functions. The electron density plots have been
generated by using the gOpenMol program [20, 21].

B. Basis set

In previous studies of this series [22–24] it has been
demonstrated that a set of properly chosen Cartesian
anisotropic Gaussian-type orbitals (c-aniGTOs) is the
most convenient choice to correctly approximate the
wavefunction of electrons confined by an anisotropic har-
monic oscillator potential. Therefore it is most natural
to explore first the suitability of a c-aniGTO basis set
for expanding the wavefunction of electrons confined by
the potential of Eq. (4). Anisotropic Gaussian basis sets
have been used also in studies of atoms in strong mag-
netic fields [25, 26] and of semiconductor quantum dots
[27, 28].

A Cartesian anisotropic Gaussian-type orbital centered
at (bx, by, bz) is defined by

χ~a,~ζ
ani(~r;~b) = xax

bx
y

ay

by
zaz

bz
exp(−ζxx2

bx
− ζyy2

by
− ζzz

2
bz

), (7)

where xbx = (x−bx), etc. Following the quantum chemi-
cal convention the orbitals are classified as s-type, p-type,
. . . for a = ax + ay + az = 0, 1, . . ., respectively. The
optimal orbital exponents (ζx, ζy, ζz) for approximating
wavefunctions of electrons confined by an anisotropic
harmonic oscillator potential have been found to be
half the strength of confinement, i.e. (ωx/2, ωy/2, ωz/2)
[24]. Since a two-dimensional isotropic Gaussian poten-
tial can be approximated near its minimum by the two-
dimensional isotropic harmonic oscillator potential with
ω (= ωx = ωy) defined by Eq. (5) it is reasonable to
choose half of ω as a first approximation for the optimal
Gaussian orbital exponents.

However, as discussed in the previous subsection, the
quadratic approximation of the Gaussian potential is
valid only if the anharmonicity α of the Gaussian poten-
tial is rather small. If the Gaussian potential is strongly
anharmonic the harmonic oscillator potential with ω de-
fined by Eq. (5) is too localized as compared to the Gaus-
sian potential as shown in figure 1 (b). Consequently, in
this case the eigenfunctions of the harmonic oscillator po-
tential cannot properly span the one-electron space of the
wavefunction of electrons in a Gaussian potential even for
the low-lying states.

One way to overcome this difficulty is to adopt a
smaller ω than that defined by Eq. (5) so that the har-
monic oscillator eigenfunctions cover properly the space
defined by the Gaussian potential. An ω (which will be
denoted by ω̃) appropriate for a given Gaussian potential

may be determined systematically as follows. The angu-
lar momentum in a c-aniGTO basis set is usually limited
to a = 10 (m-type) in order to keep the size of the basis
set within a reasonable limit. This corresponds to vmax =
10 for a one-dimensional harmonic oscillator eigenfunc-
tion. The ω̃ value may be determined as the value for
which the energy of the highest state vmax of the har-
monic oscillator, ω̃(vmax + 1

2 ), coincides with the energy
of the (vmax + 1)-th eigenstate of the one-dimensional
Gaussian potential which is obtained by solving the one-
dimensional Schrödinger equation numerically. In case
the Gaussian potential supports only a smaller number of
eigenstates than vmax, then, ω̃ is chosen such that energy
of the highest bound state, denoted as the K-th eigen-
state, of the Gaussian potential coincides with the energy
of the harmonic oscillator eigenstate with v = K − 1.

In order to check the reliability of the c-aniGTO ba-
sis set with respect to calculating oscillator strengths
for electrons confined by the potential of Eq. (4) the
oscillator strengths of the low-lying transitions of the
singlet manifold of two electrons confined by the quasi-
two-dimensional Gaussian potential with the parameters
(D, ω, ωz) = (0.5, 0.1, 2.0) have been calculated for differ-
ent size basis sets. The exponents of the c-aniGTO basis
sets have been chosen to be half of ω̃ for ζx and ζy and
half of ωz for ζz. Since ωz is twenty times larger than ω
only functions with az = 0 have been selected and used in
the basis sets. This means that the basis sets are reduced
c-aniGTO basis sets as defined in a previous study [29].

The oscillator strength for a transition from a low-lying
state a to a high-lying state b with a transition dipole
moment along the ξ (= x, y, z) coordinate has been cal-
culated as the product of the energy difference between
the two electronic states and the square modulus of the
matrix element of the transition moment along the ξ-axis
as

T ξ(b, a) = 2(Eb − Ea)

∣∣∣∣∣〈Ψb|
N∑

i=1

ξi |Ψa〉
∣∣∣∣∣

2

, (8)

where Ea and Eb represent the energies, Ψa and Ψb rep-
resent the corresponding CI wavefunctions and ξi denotes
the value of the ξ coordinate of the i-th electron. In case
the lower state a is degenerate due to spatial symmetry
the oscillator strength of Eq. (8) is written as

T ξ(b, a) =
2(Eb − Ea)

nd

nd∑

d=1

∣∣∣∣∣〈Ψb|
N∑

i=1

ξi

∣∣Ψd
a

〉
∣∣∣∣∣

2

, (9)

where nd denotes the degree of degeneracy and is always
2 in the present study. Since excitations occur in the low-
energy region only along the x or y coordinate and the
value of T ξ(b, a) is identical for the x and y coordinates
for the isotropic Gaussian potential, the superscript ξ is
omitted hereafter.

The results are summarized in Table I for the dipole-
allowed 11Πu - 11Σ+

g transition corresponding to the
center-of-mass excitation and for the side-band 21Πu -
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TABLE I: Oscillator strengths for the 11Πu - 11Σ+
g and 21Πu

- 11Σ+
g transitions of the two-electron Gaussian quantum dot

with (D, ω, ωz) = (0.5, 0.1, 2.0) for different size basis sets.

11Πu - 11Σ+
g 21Πu - 11Σ+

g

1s1p1d1f1g (15)a 1.991 0.015
1s1p1d1f1g1h (21) 1.968 0.030

1s1p1d1f1g1h1i (28) 1.984 0.024
1s1p1d1f1g1h1i1j (36) 1.974 0.029

1s1p1d1f1g1h1i1j1k (45) 1.968 0.030
1s1p1d1f1g1h1i1j1k1l (55) 1.968 0.029

1s1p1d1f1g1h1i1j1k1l1m (66) 1.968 0.029

aThe number in the round bracket indicates the total number of
basis functions.

11Σ+
g transition where the assignments of the states have

been made by counting the states separately for each
spatial and spin symmetry. As shown in Table I the
oscillator strength for the 11Πu - 11Σ+

g transition con-
verges to the value of 1.968 within 0.001 for the basis
sets equal to and larger than [1s1p1d1f1g1h1i1j1k] of 45
functions. On the other hand, the oscillator strength for
the 21Πu - 11Σ+

g transition fluctuates between 0.030 and
0.029 and it finally converges to 0.029 for the largest ba-
sis set [1s1p1d1f1g1h1i1j1k1l1m] of 66 functions. In order
to study transitions with such small values of oscillator
strengths the reduced basis set [1s1p1d1f1g1h1i1j1k1l1m]
of 66 functions is used in the present study.

III. RESULTS AND DISCUSSION

A. Hartree-Fock orbitals

The closed-shell Hartree-Fock orbital density distribu-
tions for 2-electrons confined by a quasi-two-dimensional
Gaussian potential with (D,ω, ωz) = (0.8, 0.1, 2.0) have
been calculated and presented in figure 2. The density
distribution is displayed in cubes with a side length of
16 au. The z axis is directed along the vertical edge of
the cube. The density at the surface is 1.0×10−3. It is
noted that the nodal pattern of the orbital density dis-
tributions displayed in Fig. 2 are quite similar to those of
quasi-two-dimensional harmonic oscillator quantum dots
obtained in a previous study [29]. Therefore, the same
notation [vx + vy, vz]∆ has been used to label the or-
bitals in Fig. 2 where vx, vy and vz denote one-electron
harmonic-oscillator quantum numbers for the x, y and z
coordinates, respectively, and ∆ denotes the symmetry
labels of the D∞,h group. The vx and vy quantum num-
bers are related to the quantum number of the z com-
ponent of the angular momentum lz and the number of
radial nodal planes n by lz = vx−vy and n = vx+vy−|lz|,
respectively, while the vz quantum number is related to
the number of nodal planes along the z axis that is always
zero in the present study because of the strong confine-
ment along the z direction.

As in the case of the quasi-two-dimensional harmonic
oscillator quantum dots two types of electron modes are
recognized in the nodal pattern of the Hartree-Fock or-
bitals displayed in Fig 2, namely, the circular mode with
angular nodal planes and the breathing mode with ra-
dial nodal planes [29]. For example, the orbitals [1, 0]πu,
[2, 0]δg, [3, 0]φu, etc., have one, two and three angular
nodal planes and therefore these orbitals have excitations
into the circular mode with one, two, and three quanta,
respectively. On the other hand, the orbitals [2, 0]σg

and [4, 0]σg have one and two radial nodal planes, re-
spectively, and therefore these orbitals have excitations
into the breathing mode with one and two quanta, re-
spectively. Besides these orbitals with the ’overtone’ ex-
citations orbitals are present that have excitations into
both the circular and breathing modes. For example, the
[3, 0]πu orbital has one angular nodal plane and one ra-
dial plane and the [4, 0]δg orbital has two angular nodal
planes and one radial nodal plane indicating that they
are orbitals with ’combinational’ excitations.

It is convenient to address here the number of nodal
planes for a given Hartree-Fock orbital. They are
naturally defined by using the one-electron harmonic-
oscillator quantum numbers vx, vy and vz as

v = vx + vy + vz. (10)

Since vz is always zero in the present study v is written
as the sum of angular nodal planes |lz| and radial nodal
planes n

v = n + |lz|. (11)

In the following sections the total number of nodal planes
in the multi-electron wavefunctions have significant roles
in analyzing the interaction among different electron
modes.

B. Ionization potentials

It should be noted before discussing the oscillator
strengths that the quasi-two-dimensional Gaussian po-
tential of Eq. (4) has a critical potential depth below
which the electrons of the system are not bound because
of the electron-electron repulsion interaction. This value
depends on the strength of the confinement ω, the num-
ber of electrons and the spin configuration of the systems.
In order to determine how strongly electrons are bound
for a given potential depth D the first ionization poten-
tials have been calculated for the lowest energy states of
all spin configurations of two, three and four electrons
confined by a potential with a small (ω = 0.1) and one
with a large (ω = 1.0) strength of confinement. The ion-
ization potential IN

a for the state a with N electrons has
been calculated by

IN
a = EN−1

g − EN
a , (12)

where EN
a represent the energy of the state considered

and EN−1
g the ground-state energy of the system with
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FIG. 2: The closed-shell Hartree-Hock orbital density distribution for 2-electrons confined by a quasi-two-dimensional Gaussian
potential with (D, ω, ωz) = (0.8, 0.1, 2.0). The side length of the cube is 16 au. The density at the surface is 1.0×10−3.

TABLE II: Ionization potential (in a.u.) of the quasi-two-dimensional Gaussian quantum dot with ω = 0.1 for different depth
of the potential D .

2e 3e 4e
D 11Σ+

g 13Πu 12Πu 14Σ−g 11Σ+
g 13Σ−g 15∆g

0.2
0.3 0.0035
0.4 0.0926 0.0665
0.5 0.1865 0.1586 0.0083 0.0016
0.6 0.2826 0.2535 0.0981 0.0912
0.7 0.3798 0.3500 0.1911 0.1841 0.0543 0.0648 0.0274
0.8 0.4779 0.4474 0.2861 0.2790 0.1458 0.1568 0.1180
0.9 0.5763 0.5454 0.3823 0.3751 0.2394 0.2508 0.2109
1.0 0.6751 0.6438 0.4793 0.4720 0.3345 0.3461 0.3055

TABLE III: Ionization potential (in a.u.) of the quasi-two-dimensional Gaussian quantum dot with ω = 1.0 for different depth
of the potential D .

2e 3e 4e
D 11Σ+

g 13Πu 12Πu 14Σ−g 11Σ+
g 13Σ−g 15∆g

2.0 0.3477
3.0 1.2482 0.7523 0.1605
4.0 2.2024 1.6626 1.0307 0.6368 0.4973 0.5780
5.0 3.1755 2.6110 1.9585 1.5445 1.3988 1.4851 0.5455
6.0 4.1583 3.5775 2.9124 2.4848 2.3373 2.4267 1.4403
7.0 5.1458 4.5538 3.8800 3.4433 3.2945 3.3862 2.3696
8.0 6.1371 5.5364 4.8566 4.4123 4.2639 4.3568 3.3172
9.0 7.1304 6.5229 5.8385 5.3884 5.2404 5.3344 4.2772
10.0 8.1249 7.5122 6.8241 6.3695 6.2218 6.3166 5.2456
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N −1 electrons. The results are summarized in Tables II
and III for ω = 0.1 and 1.0, respectively.

As shown in Tables II and III the first ionization poten-
tial becomes larger as the depth of the Gaussian potential
D increases. The blanks shown in these tables indicate
that the resultant ionization potential takes a negative
value and therefore the system is unbound. The num-
ber of blanks increases in both tables as the number of
electrons increases. It is noted that Table II representing
the results for the smaller confinement strength ω = 0.1
has more blanks than Table III for the larger confinement
strength ω = 1.0 although the range of the anharmonic-
ity parameter α is the same in both cases 0.1 ≤ α ≤ 0.5.
This indicates that the electron-electron interaction has
a larger effect in the case of ω = 0.1 than of ω = 1.0.
In order to compare the results for the smaller and the
larger ω on the same ground the anharmonicity param-
eter α= 0.125 has been chosen for which all spin states
listed in Tables II and III are bound. The effect of the
electron-electron interaction on the distribution of oscil-
lator strengths has been examined by focusing on the
results with the same value of α, i.e. (D, ω) = (8.0, 1.0)
and (0.8, 0.1).

C. Oscillator strengths

1. Strongly confined electrons: large ω

The distribution of oscillator strengths for transitions
from the lowest states in all spin manifolds of two, three
and four electrons confined by the quasi-two-dimensional
Gaussian potential with (D, ω, ωz) = (8.0, 1.0, 20.0) have
been calculated and displayed in Figs. 3, 4 and 5, respec-
tively. In all these figures the horizontal axes represent
the excitation energies from the lowest states and the dot-
ted lines represent the oscillator strengths of the dipole-
allowed transitions in the harmonic limit , that is, those
of the quasi-two-dimensional harmonic oscillator quan-
tum dot with (ωx, ωy, ωz) = (1.0, 1.0, 20.0). As known
from the B = 0 case of the generalized Kohn theorem,
where B represents the external magnetic field strength,
the excitation energy is equal to the value of the strength
of confinement ω (= ωx = ωy) of 1.0 and the oscillator
strength is equal to the number of electrons.

As shown in Fig. 3 (a) the distribution of oscillator
strengths of the two-electron Gaussian quantum dot in
the singlet manifold is concentrated almost exclusively
in the 11Πu - 11Σ+

g transition although a tiny peak is
observed at ∆E = 2.2420 with an oscillator strength be-
ing as small as 0.0015. The excitation energy 0.9196 of
the main peak is smaller than that of the corresponding
harmonic limit of 1.0 due to the effect of anharmonicity
of the Gaussian potential. The origin of this red shift can
be understood easily from the one-dimensional Gaussian
potential drawn in figure 1 (b). When the confining po-
tential becomes soft the energy level of each bound state
is shifted to lower energies. Since this effect is larger for
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FIG. 3: Distribution of oscillator strengths from the 11Σ+
g

ground state (figure (a)) and from the lowest triplet 13Πu

state (figure (b)) of two electrons confined by a quasi-two-
dimensional Gaussian potential with (D, ω, ωz) = (8.0, 1.0,
20.0). The horizontal axis represents the excitation en-
ergy. The dotted line represents the oscillator strength of the
dipole-allowed transition in the harmonic limit, i.e. D = ∞.

the higher-lying states than for the lower-lying states,
the energy difference between the lowest state and an ex-
cited state becomes smaller than the corresponding value
of the harmonic oscillator.

In the case of the triplet manifold of the two-electron
system shown in Fig. 3 (b) the distribution of the os-
cillator strengths consists mainly of three peaks at ∆E
= 0.8545, 0.8914 and 0.9309 corresponding to the 13Σ+

g

- 13Πu, 13∆g - 13Πu and 13Σ−g - 13Πu transitions, re-
spectively. It is noted that in the harmonic limit the
three states 13Σ+

g , 13∆g and 13Σ−g become degenerate
and merge into a single peak as displayed by the dot-
ted line in Fig. 3 (b). The summation of the oscillator
strengths for these three transitions amounts to 1.998 in-
dicating that the distribution of oscillator strengths is
concentrated almost exclusively, like in the case of the
singlet manifold, in the transitions corresponding to the
dipole-allowed transitions in the harmonic limit.

In the case of three electrons the distribution of os-
cillator strengths displayed in Figs. 4 (a) and (b) shows
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FIG. 4: Distribution of oscillator strengths from the 12Πu

ground state (figure (a)) and from the lowest quartet 14Σ−g
state (figure (b)) of three electrons confined by a quasi-two-
dimensional Gaussian potential with (D, ω, ωz) = (8.0, 1.0,
20.0). See Fig. 3 for other remarks.

additional structure that is not observed in the distribu-
tion of oscillator strength of two electrons. As shown in
Fig. 4 (a) the distribution of oscillator strengths in the
doublet manifold is dominated, as for the triplet mani-
fold of two electrons, by the close lying three peaks at
∆E = 0.8714, 0.8860 and 0.9119 corresponding to the
22Σ+

g - 12Πu, 22∆g - 12Πu and 12Σ−g - 12Πu transitions,
respectively, which merge into a single peak in the har-
monic limit. However, it is noted that aside from these
main peaks two side-band peaks are observed at ∆E =
0.5822 and 0.7378 corresponding to the 12∆g - 12Πu and
12Σ+

g - 12Πu transitions, respectively. In the case of the
quartet manifold displayed in Fig 4 (b) the distribution
of oscillator strengths consists also of a main peak and
a side-band peak corresponding to the 24Πu - 14Σ−g and
14Πu - 14Σ−g transitions, respectively. Since a system
of thee electrons should have a larger density of states
than a system of two electrons the oscillator strength of
the dipole-allowed transition in the harmonic limit can
be fragmented into the near lying transitions for three
electrons which does not occur for two electrons owing
to the sparse density of states.
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FIG. 5: Distribution of oscillator strengths from the lowest
singlet 11Πu state (figure (a)), from the 13Σ−g ground state
(figure (c)), and from the lowest quintet 15∆g state (figure
(c)) of four electrons confined by a quasi-two-dimensional
Gaussian potential with (D, ω, ωz) = (8.0, 1.0, 20.0). See
Fig. 3 for other remarks.

The last statement is confirmed by the results for four
electrons displayed in Fig. 5. The distribution of oscilla-
tor strengths in the singlet manifold displayed in Fig. 5
(a) has two main peaks corresponding to the 21Πu - 11∆g

and 11Φu - 11∆g transitions and two side-band peaks
corresponding to the 11Πu - 11∆g and 31Πu - 11∆g tran-
sitions. It is noted that the excitation energies of the two
main peaks, ∆E = 0.8584 and 0.8605, are accidentally
close to each other. In the case of the triplet manifold dis-
played in Fig. 5 (b) the distribution of oscillator strengths
consists of three peaks at ∆E = 0.5408, 0.7376 and 0.8674
corresponding to 13Πu - 13Σ−g , 23Πu - 13Σ−g and 33Πu -
13Σ−g transitions, respectively. The first two transitions
are the side-band transitions and the last corresponds to
the dipole-allowed transition in the harmonic limit. In
the case of the quintet manifold displayed in Fig. 5 (c )
the distribution of oscillator strengths, again, consists of
main peaks and side-band peaks. The 15Φu - 15∆g and
25Πu - 15∆g transitions at ∆E = 0.8346 and 0.8575 cor-
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FIG. 6: Distribution of oscillator strengths from the 11Σ+
g

ground state (upper figure) and from the lowest triplet 13Πu

state (lower figure) of two electrons confined by a quasi-two-
dimensional Gaussian potential with (D, ω, ωz) = (0.8, 0.1,
2.0). See Fig. 3 for other remarks.

respond to the dipole-allowed transitions in the harmonic
limit. The other peaks at ∆E = 0.7514 and 0.8883, as-
signed as the 15Πu - 15∆g and 35Πu - 15∆g transitions,
respectively, are the side-band transitions. In all spin
manifolds of four electrons the distribution of oscillator
strengths consists of main peaks and side-band peaks as
observed for the three-electron case.

2. Weakly confined electrons: small ω

The distribution of oscillator strengths becomes sig-
nificantly more complicated when the strength of con-
finement becomes small. The distribution of oscillator
strengths for the same transitions discussed in the last
subsection for two, three and four electrons confined by
a Gaussian potential with (D, ω, ωz) = (0.8, 0.1, 2.0) has
been calculated and displayed in Figs. 6, 7 and 8, respec-
tively. The potential has the same anharmonicity but the
strength of confinement is ten times smaller. In all these
figures the horizontal axes represent the excitation ener-
gies from the lowest states and the dotted lines represent
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FIG. 7: Distribution of oscillator strengths from the 11Σ+
g

ground state (upper figure) and from the lowest triplet 13Πu

state (lower figure) of two electrons confined by a quasi-two-
dimensional Gaussian potential with (D, ω, ωz) = (0.8, 0.1,
2.0). See Fig. 3 for other remarks.

the oscillator strengths of the dipole-allowed transitions
in the harmonic limit.

The result for two electrons in the singlet manifold
displayed in figure 6 (a) has some similarity with the
corresponding result for large ω displayed in figure 3 (a)
in that the main peak at ∆E = 0.08836 corresponds to
the 11Πu - 11Σ+

g transition. However, it is noted that
the distribution displayed in figure 6 (a) shows two addi-
tional peaks in the higher energy region at ∆E = 0.1744
and 0.2334 while the distribution for large ω displayed in
figure 3 (a) shows only a tiny peak as discussed in the
previous subsection. A similar observation is made for
the triplet manifold displayed in figure 6 (b) where aside
from the three main peaks an additional peak assigned
as the 23∆g - 13Πu transition is observed in the higher
energy region at ∆E = 0.2096.

In the case of three and four electrons the distribution
of oscillator strengths has a rich structure as displayed in
figures 7 and 8. The result for three electrons in the dou-
blet manifold displayed in figure 7 (a) shows two pairs
of doublets appearing in the high energy region at about
∆E = 0.13 and 0.16 in addition to the three main peaks
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FIG. 8: Distribution of oscillator strengths from the lowest
singlet 11Πu state (figure (a)), from the 13Σ−g ground state
(figure (c)), and from the lowest quintet 15∆g state (figure
(c)) of four electrons confined by a quasi-two-dimensional
Gaussian potential with (D, ω, ωz) = (0.8, 0.1, 2.0). See Fig. 3
for other remarks.

and a side band peak, 12Σ+
g - 12Πu, for large ω as dis-

played in figure 4 (a). It is noted that the other side band
peak in the low energy region, 12∆g - 12Πu, which has
been observed for large ω displayed in figure 4 (a) can
hardly been observed in figure 7 (a). This indicates that
for small ω the oscillator strength for this 12∆g - 12Πu

transition has been ’used’ for the new transitions in the
high energy region. As for the doublet manifold the dis-
tribution of oscillator strengths in the quartet manifold
has an additional peak in the high energy region at ∆E
= 0.1886 as displayed in figure 7 (b). It is noticed in
figure 7 that the distribution of the quartet manifold is
simpler than the doublet manifold. This is due to the fact
that in the quartet manifold only Π states are accessible
from the lowest 14Σ−g state while in the doublet manifold
both Σ and ∆ states are accessible from the lowest 12Πu

state.
A comparison of figures 5 and 8 shows that observa-

tions similar to those for the two- and three-electron case

can be made for the four-electron case: The oscillator
strengths for the transitions to higher-lying states which
can hardly be observed for large ω acquire certain inten-
sity for small ω. The results for the singlet and triplet
manifolds show a number of states appearing as displayed
in figures 8 (a) and (b). In the case of the quintet mani-
fold no transition are observed in the high energy range
displayed in figure 8 but there exists a transition, 45Πu -
15∆g, in a higher energy region at ∆E = 0.1634.

3. Interpretation: effect of electron-electron interaction

The observations made in the last two subsections show
that the number of excitations into higher-lying states
is increased when the strength of confinement becomes
small. Since the anharmonicity parameter α is the same
for the two cases of large and small ω, that is, the shape
of the confining potential is the same in both cases, the
observed differences must be ascribed to the difference
in the relative importance of the electron-electron in-
teraction. Therefore, it can be said that the energy
absorbed from a radiation field by the center -of -mass
mode can be more efficiently re-distributed internally for
small ω than for large ω through the electron-electron
interaction.

In order to understand the internal energy redistribu-
tion the leading configurations in the CI wavefunctions
for all states displayed in figures 3 - 5 for large ω and
in figures 6 - 8 for small ω have been examined and
listed in Tables IV and V, respectively. The configu-
rations are represented in terms of the notations defined
for the Hartree-Fock orbitals in section III A. The states
with an asterisk at the head of the state-label are the
lowest states for the corresponding spin manifold. The
polyad quantum number denoted as vp that characterizes
the configurations is also listed in Tables IV and V. It
is defined as the number nodal planes summed over all
Hartree-Fock orbitals involved in the leading configura-
tion.

The radiative transitions discussed in the last two sub-
sections can be interpreted consistently by using the
leading configurations listed in Tables IV and V. In
case of the 11Πu - 11Σ+

g transition of two electrons
displayed in figure 3 (a), for example, the lower 11Σ+

g

state and the higher 11Πu state have the configuration
of ([0, 0]σg)2 and ([0, 0]σg)([1, 0]πu), respectively. There-
fore, this transition is interpreted as a one-electron ex-
citation from the lowest [0, 0]σg orbital to the [1, 0]πu

orbital. In the case of the triplet manifold of two elec-
trons displayed in figure 3 (b) the four states 13Πu,
13Σ+

g , 13∆g, and 13Σ−g are involved in the displayed
three transitions. They have the leading configurations
([0, 0]σg)([1, 0]πu), ([0, 0]σg)([2, 0]σg), ([0, 0]σg)([2, 0]δg),
and ([1, 0]πu)([1, 0]πu), respectively. Therefore, the 13Σ+

g

- 13Πu transition is a one-electron excitation from [1, 0]πu

to [2, 0]σg, the 13∆g - 13Πu transition is a one-electron
excitation from [1, 0]πu to [2, 0]δg and the 13Σ−g - 13Πu
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TABLE IV: Leading configurations and their polyad quan-
tum numbers vp for low-lying states of the two, three, and
four electrons confined by the quasi-two-dimensional Gaus-
sian potential with (D, ω, ωz) = (8.0, 1.0, 20.0). The state
with an asterisk at the head of state-label is the lowest state
for the corresponding spin manifold.

state configuration vp

2e *11Σ+
g ([0, 0]σg)2 0

11Πu ([0, 0]σg)([1, 0]πu) 1
*13Πu ([0, 0]σg)([1, 0]πu) 1
13Σ+

g ([0, 0]σg)([2, 0]σg) 2
13∆g ([0, 0]σg)([2, 0]δg) 2
13Σ−g ([1, 0]πu)([1, 0]πu) 2

3e *12Πu ([0, 0]σg)2([1, 0]πu) 1
12∆g ([0, 0]σg)([1, 0]πu)2 2
12Σ+

g ([0, 0]σg)2([2, 0]σg) 2
22Σ+

g ([0, 0]σg)([1, 0]πu)2 2
22∆g ([0, 0]σg)2([2, 0]δg) 2
12Σ−g ([0, 0]σg)([1, 0]πu)([1, 0]πu) 2

*14Σ−g ([0, 0]σg)([1, 0]πu)([1, 0]πu) 2
14Πu ([0, 0]σg)([1, 0]πu)([2, 0]σg) 3
24Πu ([0, 0]σg)([1, 0]πu)([2, 0]δg) 3

4e *11∆g ([0, 0]σg)2([1, 0]πu)2 2
11Πu ([0, 0]σg)2([1, 0]πu)([2, 0]δg) 3
21Πu ([0, 0]σg)2([1, 0]πu)([2, 0]σg) 3
11Φu ([0, 0]σg)2([1, 0]πu)([2, 0]δg) 3
31Πu ([0, 0]σg)([1, 0]πu)2([1, 0]πu) 3

*13Σ−g ([0, 0]σg)2([1, 0]πu)([1, 0]πu) 2
13Πu ([0, 0]σg)([1, 0]πu)2([1, 0]πu) 3
23Πu ([0, 0]σg)2([1, 0]πu)([2, 0]σg) 3
33Πu ([0, 0]σg)2([1, 0]πu)([2, 0]δg) 3

*15∆g ([0, 0]σg)([1, 0]πu)([1, 0]πu)([2, 0]δg) 4
15Πu ([0, 0]σg)([1, 0]πu)([1, 0]πu)([3, 0]πu) 5
15Φu ([0, 0]σg)([1, 0]πu)([1, 0]πu)([3, 0]φu) 5
25Πu ([0, 0]σg)([1, 0]πu)([2, 0]δg)([2, 0]δg) 5
35Πu ([0, 0]σg)([1, 0]πu)([2, 0]δg)([2, 0]σg) 5

transition is a one-electron excitation from [0, 0]σg to
[1, 0]πu, and so on.

According to the analysis of the leading configurations
all these states can be classified into sets of groups, each
of which is characterized by a different value of the polyad
quantum number defined previously as the number nodal
planes summed over all Hartree-Fock orbitals involved in
the leading configuration. The number of nodal planes
for each orbital is equal to the value of vx + vy as de-
fined in section III A. For example, the leading config-
uration of the 35Πu state of four electrons listed at the
bottom of Table IV consists of the four orbitals ([0, 0]σg),
([1, 0]πu), ([2, 0]δg), and ([2, 0]σg) having 0, 1, 2, and
2 nodal planes, respectively, summing to vp = 5. The
idea of polyads has a long history in molecular vibra-
tional spectroscopy [30, 31] and has been used for assign-
ing vibrational states of polyatomic molecules when it
is difficult to specify all normal -mode vibrational quan-
tum numbers owing to prevalence of anharmonic coupling
among the normal modes [32–35]. In this case, instead of
assigning a set of quantum numbers to each vibrational

TABLE V: Leading configurations and their polyad quantum
numbers vp for low-lying states of the two, three, and four
electrons confined by the quasi-two-dimensional Gaussian po-
tential with (D, ω, ωz) = (0.8, 0.1, 2.0). The state with an
asterisk at the head of state-label is the lowest state for the
corresponding spin manifold.

state configuration vp

2e *11Σ+
g ([0, 0]σg)2 0

11Πu ([0, 0]σg)([1, 0]πu) 1
21Πu ([1, 0]πu)([2, 0]σg) 3
31Πu ([0, 0]σg)([3, 0]πu) 3

*13Πu ([0, 0]σg)([1, 0]πu) 1
13Σ+

g ([0, 0]σg)([2, 0]σg) 2
13∆g ([0, 0]σg)([2, 0]δg) 2
13Σ−g ([1, 0]πu)([1, 0]πu) 2
23∆g ([0, 0]σg)([4, 0]δg) 4

3e *12Πu ([0, 0]σg)2([1, 0]πu) 1
12Σ+

g ([0, 0]σg)2([2, 0]σg) 2
22Σ+

g ([0, 0]σg)([1, 0]πu)2 2
22∆g ([0, 0]σg)2([2, 0]δg) 2
12Σ−g ([0, 0]σg)([1, 0]πu)([1, 0]πu) 2
22Σ−g ([0, 0]σg)([2, 0]δg)([2, 0]δg) 4
32∆g ([0, 0]σg)([2, 0]δg)([2, 0]σg) 4
32Σ+

g ([0, 0]σg)([2, 0]σg)2 4
32Σ−g ([0, 0]σg)([1, 0]πu)([3, 0]πu) 4

*14Σ−g ([0, 0]σg)([1, 0]πu)([1, 0]πu) 2
14Πu ([0, 0]σg)([1, 0]πu)([2, 0]σg) 3
24Πu ([0, 0]σg)([1, 0]πu)([2, 0]δg) 3
34Πu ([0, 0]σg)([1, 0]πu)([4, 0]δg) 5

4e *11∆g ([0, 0]σg)2([1, 0]πu)2 2
11Πu ([0, 0]σg)2([1, 0]πu)([2, 0]δg) 3
21Πu ([0, 0]σg)2([1, 0]πu)([2, 0]σg) 3
11Φu ([0, 0]σg)2([1, 0]πu)([2, 0]δg) 3
31Πu ([0, 0]σg)([1, 0]πu)2([1, 0]πu) 3
31Φu ([0, 0]σg)2([1, 0]πu)([4, 0]γg) 5
51Πu ([0, 0]σg)2([1, 0]πu)([4, 0]σg) 5
41Φu ([1, 0]πu)([1, 0]πu)2([2, 0]δg) 5

*13Σ−g ([0, 0]σg)2([1, 0]πu)([1, 0]πu) 2
23Πu ([0, 0]σg)2([1, 0]πu)([2, 0]σg) 3
33Πu ([0, 0]σg)2([1, 0]πu)([2, 0]δg) 3
43Πu ([0, 0]σg)2([1, 0]πu)([1, 0]πu)([3, 0]πu) 5
53Πu ([0, 0]σg)2([1, 0]πu)([2, 0]δg)([2, 0]δg) 5

*15∆g ([0, 0]σg)([1, 0]πu)([1, 0]πu)([2, 0]δg) 4
15Φu ([0, 0]σg)([1, 0]πu)([2, 0]δg)([2, 0]σg) 5
15Πu ([0, 0]σg)([1, 0]πu)([1, 0]πu)([3, 0]πu) 5
25Φu ([0, 0]σg)([1, 0]πu)([1, 0]πu)([3, 0]φu) 5
25Πu ([0, 0]σg)([1, 0]πu)([2, 0]δg)([2, 0]δg) 5
35Πu ([0, 0]σg)([1, 0]πu)([2, 0]δg)([2, 0]σg) 5

state a group of states is assigned simultaneously by a
polyad quantum number.

As shown in Table IV representing the result for large
ω all states in each spin manifold have the same polyad
quantum number vp except the lowest state for which vp

is smaller by one quantum. For example, in case of the
doublet manifold of three electrons the lowest 12Πu state
has a polyad quantum number of vp = 1 while all five
excited states 12∆g, 12Σ+

g , 22Σ+
g , 22∆g, and 12Σ−g , have
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the polyad quantum number vp = 2. This observation
indicates that the photon energy absorbed by the low-
est state generates the center-of-mass excited states by
creating one nodal plane in the lowest state. The ab-
sorbed energy is then transferred from the CM excited
states to the states with the same value of vp. In the
above example of the doublet manifold of three electrons
the radiation field excites the lowest 12Πu state into the
three center-of-mass excited states 22Σ+

g , 22∆g and 12Σ−g
and subsequently the two states 12∆g and 12Σ+

g with the
same vp and the same symmetry as the corresponding
CM excited state are excited.

On the other hand, in case of small ω = 0.1 listed in
Table V three different values of vp are observed for each
spin manifold: a value for the lowest state, a value for
the center-of-mass excited states and for states close to
them, and a value for higher-lying states that is greater
by two than the value of the CM excited states. For ex-
ample, in case of the doublet manifold of three electrons
the value of vp for the lowest state and for the four ex-
cited states including the CM excited states is 1 and 2,
respectively, as for large ω. But the additional four states
22Σ−g , 32∆g, 32Σ+

g and 32Σ−g have a value of vp = 4. It is
noted that states with a polyad quantum number larger
by one quantum than the values for the center-of-mass
excited states cannot be coupled to the CM excited states
and therefore cannot be excited since such states must
have a different spatial symmetry. These observations
indicate that for the case ω = 0.1 the energy absorbed
from the radiation field is not only distributed among the
states with vp = vp,cm, i.e. within the same polyad as
the center-of-mass excited states but also transferred to
states with vp = vp,cm + 2. Since the electron-electron
interaction plays a more important role in case of small
ω than in case of large ω the electron-electron interac-
tion appears to promote the inter -polyad energy transfer
between the states with vp = vp,cm and those with vp =
vp,cm + 2.

IV. SUMMARY

In the present study the energy spectra and oscilla-
tor strengths of two, three, and four electrons confined

by a quasi-two-dimensional Gaussian potential have been
calculated for different strength of confinement ω and po-
tential depth D by using the quantum chemical configu-
ration interaction method employing reduced Cartesian
anisotropic Gaussian basis sets. An optimum basis set
has been constructed by checking the convergence of the
calculated oscillator strengths.

The first ionization potential has been calculated for
ω = 1.0 and 0.1 by changing the potential depth D in
order to identify the critical potential depth with which
all electrons of the system can be bound. A substan-
tial red shift has been observed for the transitions corre-
sponding to the excitation into the center-of-mass mode.
The oscillator strengths, concentrated exclusively in the
center-of-mass excitation in the harmonic limit, are dis-
tributed among the near-lying transitions. It is shown
that the distribution of the oscillator strengths is limited
to transitions located in the lower-energy region for ω =
1.0 but extends towards the higher-energy region for ω
= 0.1. The analysis of the leading configurations in the
CI wavefunctions shows that all states studied can be
classified according to the value of the polyad quantum
number vp defined as the number of nodal planes summed
over all one-particle Hartree-Fock orbitals in the configu-
ration. It is shown that the distribution of the oscillator
strengths for larger ω occurs among transitions involving
excited states with the same polyad quantum number
vp as the center-of-mass-mode excited state, vp,cm, while
for the smaller ω it occurs among transitions involving
excited states with vp = vp,cm and vp = vp,cm + 2.
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