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ABSTRACT

We present numerical simulations of a self-sustaining magnetic field in a differentially rotating non-convective stellar interior. A weak initial
field is wound up by the differential rotation; the resulting azimuthal field becomes unstable and produces a new meridional field component,
which is then wound up anew, thus completing the “dynamo loop”. This effect is observed both with and without a stable stratification. A
self-sustained field is actually obtained more easily in the presence of a stable stratification. The results confirm the analytical expectations of
the role of Tayler instability.
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1. Introduction

It has long been known that magnetic fields can be generated
by a dynamo operating in the convective zone of a differentially
rotating star (e.g. Parker 1979). A toroidal field is produced by
winding-up of the poloidal (meridional) component, and the
bubbles of gas moving upwards and downwards move perpen-
dicular to these toroidal field lines, bending them and creating a
new poloidal component, closing the “dynamo loop”. This type
of dynamo has been the subject of extensive work over several
decades. A process like this has been held responsible for the
magnetism of stars with convective envelopes like the Sun.

Whether or not such direct causation by convection is ac-
tually the correct explanation of dynamos like the solar cycle1,
the predominance of this view has obscured the fact that self-
sustained magnetic fields do not require the presence of convec-
tion or other imposed small scale velocity fields. A magnetic
field can produce small-scale perturbations from its own in-
stability, without recourse to externally imposed perturbations.
There is a well-known example in the context of accretion
discs, where a dynamo was produced when differential rotation
wound up a field which was then subject to magnetohydrody-
namic instability (Hawley et al. 1996).

The same principle was applied by Spruit (2002) to differ-
entially rotating stars. In this scenario, a toroidal field is wound
up by differential rotation from a weak seed field. The field re-
mains predominantly toroidal, subject to decay by instability
of the field, but is continuously regenerated by the winding-
up of irregularities produced by the instability. This scenario

1 It is in fact more likely that buoyant instability of the magnetic
field, rather than convection, is the key process in the solar cycle, cf.
the discussion in Spruit (1999).

has been applied in stellar evolution calculations of the inter-
nal rotation of massive stars by Heger et al. (2003) and Maeder
& Meynet (2003). The process is conceptually similar to the
small-scale self-sustained fields found in MHD simulations of
accretion discs, but operates on a different form of MHD in-
stability (pinch-type or Tayler instability as opposed to magne-
torotational, cf. Spruit 1999).

A self-sustained field of this type could have important im-
plications for not only the magnetism of a star, but also for the
transfer of angular momentum. Differential rotation is created,
when the star is formed, as a consequence of conservation of
angular momentum when parts of it contract or expand, and
through angular momentum loss through a stellar wind (“mag-
netic braking”). In the absence of a magnetic field, kinetic vis-
cosity would eventually damp differential rotation, but only on
a time-scale much longer than the lifetime of the star. If a weak
magnetic field were present in a star with infinite conductiv-
ity, the field would be wound up, its Lorentz force exerting a
force back on the gas, tending to slow the differential rotation.
If we assume that no magnetohydrodynamic instabilities were
present, the energy of the field would become eventually com-
parable to the kinetic energy of the differential rotation, and
the field would exert a force on the gas strong enough to re-
verse the differential rotation. Oscillations would follow, with
energy continuously being transferred from kinetic to magnetic
and back again (Mestel 1953). Finite conductivity would have
the effect of damping these oscillations. However, if the mag-
netic field became unstable, as we expect it to, the energy of
the field need never reach a level comparable to the kinetic
energy and the direction of differential rotation would never
be reversed. Instead, differential rotation would gradually be
slowed, and the magnetic field held at a low steady-state level.
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This could be what has happened in the radiative core of the
Sun, explaining the near-uniform rotation there (Schou et al.
1998; Charbonneau et al. 1999).

While such a dynamo process is plausible, it has so far been
described only in terms of an elementary scaling model (Spruit
2002). With the calculations presented here we verify, first of
all, the existence of a self-sustained field generation process.
At the next level, the goal is to compare the properties of the
numerical results with the predictions of the model, in partic-
ular concerning the central role of Tayler instability. The field
strength resulting from the dynamo process depends on the bal-
ance between the decay of the toroidal field and the winding
up of irregularities. The analytic model only presents the basic
scaling of this balance with parameters like the strength of the
differential rotation; the actual values of the coefficients in this
scaling have to be found by numerical simulations.

1.1. Instability of a toroidal field

Tayler (1973) and Acheson (1978) looked at toroidal fields in
stars, that is, fields that have only an azimuthal component Bφ
in a cylindrical coordinate frame (�, φ, z) with the origin at the
centre of the star. With the energy method, Tayler derived nec-
essary and sufficient stability conditions in adiabatic conditions
(no viscosity, thermal diffusion or magnetic diffusion). The
main conclusion was that such purely toroidal fields are always
unstable at some place in the star, in particular to perturbations
of the m = 1 form, and that stability at any particular place
does not depend on field strength but only on the geometry of
the field configuration. An important corollary of the results of
Tayler (1973, esp. the Appendix) was the proof that instabil-
ity is local in meridional planes. If the necessary and sufficient
condition for instability is satisfied at any point (�, z), there is
an unstable eigenfunction that will fit inside an infinitesimal en-
vironment of this point. The instability is always global in the
azimuthal direction, however. The instability takes place in the
form of a low-azimuthal order displacement in a ring around
the star. Connected with this is the fact that the growth time
of the instability is of the order of the time it takes an Alfvén
wave to travel around the star on a field line. This and other
instabilities were reviewed by Spruit (1999).

In Braithwaite (2006) we investigated the development of
this instability numerically, the results confirming the conclu-
sions from the previous analytical work. We showed that a
toroidal field of strength B = B0�/�0 (where B0 and �0 are
constants) in a stably stratified atmosphere is unstable on the
axis to perturbations of the m = 1 type. We confirmed that the
growth rate σ of the instability is approximately equal to the
local Alfvén frequency ωA, given by:

ωA ≡ vA
�
=

B

�
√

4πρ
=

B0

�0
√

4πρ
, (1)

where vA is the Alfvén speed and ρ is the density. We also con-
firmed that rotation about an axis parallel to the magnetic axis
can suppress the instability if Ω > ωA. However, this stabi-
lization only takes place for the case with neither thermal nor
magnetic diffusion (κ = η = 0). It is not entirely certain what
effect rotation may have when these two are present, although

it seems very likely that in the limit Ω � ωA, the growth rate
is merely reduced by a factor ωA/Ω, so that:

σ ≈ ωA (Ω� ωA), (2)

σ ≈ ω
2
A

Ω
(Ω� ωA). (3)

In the unstratified case where the magnetic diffusivity is zero
(η = 0), all vertical wavelengths are unstable. However, strat-
ification stabilizes the longest vertical length scales. This is
because it discourages any vertical motion, which is greatest
in modes of large vertical scale. Magnetic diffusion stifles the
shortest wavelengths, since fluctuations in the magnetic field
produced by the instability are smoothed out by the diffusion
at a rate which depends on the length scale of the fluctuations.
If n is the vertical wavenumber of the unstable mode, then
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, (4)

where�0 is some measure of the extent of the field in the hor-
izontal direction.

The two effects can conspire to kill the instability com-
pletely when the upper and lower limits on wavelength meet
each other. This puts a lower limit on the field strength for
instability, expressed by the inequalities:

ω3
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ηN2
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0

(Ω� ωA), (5)
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A
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�2
0

(Ω� ωA). (6)

For the core of the present Sun, this yields a minimum field
strength of the order 3 × 103 G.

1.2. Expected properties of the dynamo

In this section we summarize the scenario of Spruit (2002) for
the generation of a self-sustained magnetic by differential rota-
tion in a stably stratification.

A weak initial field is wound up by differential rotation.
After only a few differential turns the field is predominantly
toroidal (Bφ � B� and Bφ � Bz). Eventually the field strength
at which instability sets in will be reached (given by Eqs. (5)
and (6)). There are various time-scales of relevance here, the
shortest being the reciprocal of the Brunt-Väisälä (buoyancy)
frequency N, given by N2 = (g/T )(dT/dz+g/cp). Provided the
star is rotating at less than the break-up rate, the rotational fre-
quencyΩ will be smaller than N. In most stars, Ω will however
be greater than the magnetic frequency ωA (see Eq. (1)). The
differential rotation time-scale is given by

τdr = (�0∂zΩ)−1· (7)

It is this time-scale τdr which will determine how quickly the
initial field is wound up into a predominantly toroidal field.

Spruit (2002) derives properties of the dynamo in the case
where:

N � Ω � ωA. (8)
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This is the most realistic regime. In addition, we expect in a
real star to have τdr of the same order as, but in most regions
probably greater than, Ω−1.

At the time when the instability sets in, the growth time of
the instability is so long (from Eqs. (2) and (3)) that the field is
still being wound up faster than it is able to decay. However, as
the field grows, and the instability growth rate σ rises, a point
will be reached where the field is decaying and being wound up
at the same rate – we call this “saturation”. The time-scale τa

on which the field component Bz is wound up into an azimuthal
component of comparable strength to the existing azimuthal
field is given by

τa = τdr
Bφ
Bz
· (9)

Thus, the greater Bz, the shorter the amplification time-scale.
At this point, we need to know the value of Bz. This is provided
by the instability which produces a vertical component from
the azimuthal field by the unstable fluid displacements. If these
have a vertical length scale l and horizontal scale �0, we have

Bz ≈ Bφl/�0. (10)

So, Bz is greatest for the unstable modes with greatest vertical
wavelength, i.e. with lowest wavenumber n = 1/l. If we equate
this minimum amplification time-scale to the instability time-
scale σ−1, we get, using Eqs. (4) and (10),

ωA ≈ Ω

Nτdr
, (11)

in the case where Ω � ωA. In the slowly rotating (Ω � ωA)
case, we find that ωA drops out of the equation leaving N =
τ−1

dr 3. In this case, therefore, the field will either grow until it
is strong enough to kill the differential rotation itself, or it will
decay until the Ω � ωA regime is reached. If τa < σ

−1, the
field will grow, i.e. if

N < τ−1
dr . (12)

In real star, of course, this will not be the case except in or
near a convective zone. Therefore, the field will decay until the
regime Ω � ωA is reached.

2. The numerical model

We take advantage of the fact that the Tayler instability is lo-
calised on the meridional plane, and model just a small sec-
tion of the star on the rotation axis. This is similar to the
arrangement used in Braithwaite (2006), where we looked
at the Tayler instability in the absence of differential rota-
tion, modelling only a small volume on the magnetic axis of
symmetry.

Inside the computational box, the plasma is rotating in the
horizontal plane about an axis passing through the centre. The
rotation speed Ω is independent of distance from the axis �
and a function of just height z. The centre of the box lies in
the plane z = 0. The computational box has a height L and
width 2L.

We use a system of Cartesian coordinates. At first glance
one might instead consider using cylindrical coordinates, as

Fig. 1. The computational box. The cylinder represents the volume
where the gas is being acted on by the rotational force in Eq. (13).

these appear to be more suited to the task. This is indeed
the case if one is wanting to handle the problem analyti-
cally. However, cylindrical coordinates not only make numer-
ical modelling more time-consuming per grid box, but also
introduce special points (the axis). This coordinate singularity
is a known problem in all grid-based codes in cylindrical and
spherical coordinates. Since the phenomenon we wish to inves-
tigate lies on the z-axis, it is better to use Cartesians so that we
can be sure that our results are not merely an artefact of the
code. The disadvantage is that some space in the corners of the
computational box is wasted. When the output of the code is
analysed, a conversion into cylindrical coordinates is first per-
formed. The computational setup is illustrated in Fig. 1.

2.1. Implementation of the differential rotation

We want the rotation rate of the gas to have a time-average
dependence on height of the formΩ = Ω0+zdΩ/dz. To achieve
this we apply a force F per unit mass of the form:

F(�, z) = (u0 − u)/τf where u0 =
dΩ
dz

z�eφ (13)

where u is the velocity field, τf is a time-scale, which can be
chosen, and eφ is the azimuthal unit vector. No force was ap-
plied in the vertical direction. The gas at z = 0 is therefore
not rotating. We could in principle add a constant Ω0 to the
rotation speed, but this would result in the gas moving more
quickly, and the time step of the code would go down. It is bet-
ter to include Ω0 indirectly: we transform to the rotating frame
and add the Coriolis force 2u ×Ω0 to the momentum equation.
The centrifugal force can be ignored since its only effect would
be a change in the equilibrium state.

This force F is applied to the gas out to a radius L, i.e. to the
sides of the computational box. This means that the corners es-
cape this force. This was found to be the best way to reduce the
effect of the geometry of the box on the physical phenomenon
of interest – the gas in the corners is roughly stationary and its
effect on the rotating gas in the middle is minimal.
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In a star, differential rotation is driven by two mechanisms:
magnetic braking, which acts on the surface of the star, and
evolution, when radial shells are contracting and expanding.
The former would be difficult to model, as exerting a force at
the boundaries could be expected to cause problems at those
boundaries. Exerting a torque by means of a distributed force,
as is done here, is a good way to model differential rotation
caused by evolution.

2.2. Boundary conditions

In all three directions, we employ mirror-like boundary con-
ditions. This means that unknown quantities just outside the
boundaries are copied from the same quantities just inside the
same boundary. In the case of the magnetic field, this is a little
more complicated. Magnetic field is not a normal vector, un-
like electric current for instance, so the sign of the perpendicu-
lar component is the same on both sides of the boundary, whilst
the parallel components are reversed. This is the opposite of the
way in which the velocity field is handled. To understand why
this has to be, consider how a current coil would look in a mir-
ror, and in which direction the resulting magnetic field would
be pointing.

This is somewhat more difficult to implement than the peri-
odic conditions used in Braithwaite (2006), but is necessary for
the following reason. The gas in this case is rotating in a hori-
zontal plane; with periodic boundary conditions the gas at the
boundary would be moving in the opposite direction to the gas
immediately adjacent on the other side of the boundary. This
would cause turbulence – we are only interested in one kind
of instability and introducing another would surely confuse the
issue. In fact, periodic boundary conditions were tried at first,
and it was found that a dynamo process was produced even in
the case of uniform rotation (dΩ/dz = 0), as a result of the
hydrodynamic turbulence created at the boundaries. This argu-
ment does not of course hold at the boundaries in the vertical
direction, but there is a good reason for having the same con-
ditions there. Sound and internal gravity waves can propagate
upwards, their amplitude growing as they do so. With periodic
conditions at the vertical boundaries, a wave can go through
the top of the computational box and come back at the bottom,
to continue its upwards travel. Its amplitude rises exponentially
on a timescale roughly equal to N−1 and will eventually get out
of control. In Braithwaite (2006) we prevented this by having
gravity point in opposite directions in the top and bottom halves
of the volume modelled, the drawback being the computational
expense of having to model the same thing twice. The method
used in this study is, as far the the end result in concerned, the
same as that previous method, but computational cost has been
exchanged for programming complexity.

2.3. Initial conditions

We begin with uniform temperature; pressure decreases ex-
ponentially with increasing z, in hydrostatic equilibrium. The
initial velocity field we create by running the code with no
magnetic field until a steady state has been reached. The initial

magnetic field should in principle be unimportant, except that it
must have a vertical component and must be weak. We choose
therefore the simplest field imaginable: a uniform vertical field
B = B0ez, where ez is the vertical unit vector. The field energy
must be weak compared to both the thermal energy and the ki-
netic energy, or in other words, the Alfvén speed must be much
less than both the sound speed and the rotation speed. B0 is
chosen so that the ratio of thermal to magnetic energy densities
β = 105, or so that the ratio of sound to Alfvén speeds is 240.
The ratio of rotation speed to Alfvén speed depends of course
on the values we choose for Ω0 and dΩ/dz. We want the gas to
be rotating as fast as possible (to maximize the chances of cre-
ating a dynamo) but still comfortably below the sound speed.
With a magnetic field this weak, there is still plenty of space to
fit the rotation time scale between the sound and Alfvén time
scales.

2.4. Free parameters

The goal is to produce a self-sustaining magnetic field, but
there are few clues as to precisely what conditions may be nec-
essary. We have a fair number of parameters to play with.

The values of Ω0 and dΩ/dz will have an effect. It is ex-
pected that a value of Ω0 above ωA will slow the growth rate
of the Tayler instability. This would then increase the satura-
tion field strength. Whether this makes a dynamo any more or
less likely to appear in our model is not clear. What is certain,
however, is that a large value of dΩ/dz will be conducive to the
appearance of a self-sustaining field. We set this therefore in all
runs to a high value but such that the flow speed is still com-
fortably below the sound speed. We set dΩ/dz = cs/5L2, so
that the gas is moving at a maximum of one tenth of the sound
speed.

Another choice to be made is the relaxation time-scale τf of
the driving force. Setting it too low would inhibit the instability,
as it would hold the plasma to too stiff a velocity field. Too high
a value, on the other hand, may mean that the driving force is
insufficient to make the plasma rotate in the required manner.
Various values are used in the results reported below.

The code contains an artificial diffusion scheme designed
to maintain stability. It includes terms for all three diffusivities
(kinetic, thermal and magnetic). The adjustable coefficients in
this scheme were set to the experimentally determined mini-
mum value needed for numerical stability. In the simulations
presented in Braithwaite (2006), it was possible to turn off
this scheme completely, since we were dealing with a body of
plasma which was stationary at t = 0 and whose movement
we only wished to follow while the velocities were small. This
is unfortunately not the case here, as the plasma is necessarily
moving fairly quickly.

In an ideal simulation, all unstable wavenumbers would be
modelled between the two limits in Eq. (4). The wavenumbers
accessible numerically are given by the vertical size of the com-
putational box and the spatial resolution (the Nyquist spatial
frequency):

π

dz
> n >

2π
L
· (14)
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To see an instability at all, we need this numerical range to
overlap with (4). We can maximise the chances of this hap-
pening by setting the strength of the seed field to a high value
(as long as the Alfvén speed is still much less than the sound
speed), as this gives high values of both ωA and σ, by keeping
the magnetic diffusivity as low as possible (provided that it is
high enough to ensure the numerical stability of the code), and
by maximising the resolution in the vertical direction. In addi-
tion, in Braithwaite (2006) we found that the vertical scale of
this instability cannot be much greater than the horizontal scale,
but at the same time we want the height of the box as great as
possible so that lower vertical wavenumbers can be modelled,
so we shape the computational box as a compromise so that the
height L is the same as the horizontal scale �0.

3. The numerical code

We use a three-dimensional MHD code developed by Nordlund
& Galsgaard (1995), with extensive modifications, chiefly the
mirror-like boundary conditions described in Sect. 2.2. The
code uses a staggered mesh, so that variables are defined at
different points in the grid-box. For example, ρ is defined in
the centre of each box, but ux in the centre of the face perpen-
dicular to the x-axis, so that the value of x is lower by 1

2 dx.
Interpolations and spatial derivatives are calculated to fifth
and sixth order respectively. The third order predictor-corrector
time-stepping procedure of Hyman (1979) is used.

The high order of the discretization is a bit more expen-
sive per grid point and time step, but the code can be run with
fewer grid points than lower order schemes, for the same ac-
curacy. Because of the steep dependence of computing cost on
grid spacing (4th power for explicit 3D) this results in greater
computing economy.

For stability, high-order diffusive terms are employed.
Explicit use is made of highly localised diffusivities, while
retaining the original form of the partial differential equations.

4. Results

We present results for a number of different setups. First, we
look at the unstratified case, both with and without rotation
(Ω0 = 0 and Ω0 � 0). Then, the stratified case, again both
with and without rotation.

We ran the code with 64 grid points in the horizontal direc-
tions and 32 in the vertical. This is a trade-off between the res-
olution needed to obtain dynamo action and the large number
of time steps needed. The time step is set by the sound crossing
time, but the (Alfvénic) time-scales of interest to us are neces-
sarily much longer. As explained, the high order of the spatial
discretization of the code guarantees a high effective resolution
even at this limited number of grid points, and self-sustained
magnetic fields were readily obtained at this resolution in all
cases studied.

4.1. An unstratified case

In the absence of gravity, there is no maximum to the verti-
cal length scales that are unstable (see Eq. (4)). Since it is the

Fig. 2. Amplitude of the self-sustained magnetic field in an unstratified
case with maximum shear velocity 1/10 of the sound speed. Averages
of B2

φ/8π (solid line) and B2
p/8π (dotted line), in units of the thermal

energy density. The field is predominantly toroidal. Time is in units
of τs, the sound crossing time of the box.

maximum unstable wavelength which determines how quickly
the field is wound up, the dynamo never becomes saturated; the
field simply continues to grow until it is strong enough to kill
the differential rotation.

However, the fact that we are conducting this simulation
inside a box of finite dimensions changes things somewhat, by
imposing an artificial maximum wavelength. This enables the
field to find a saturation level, and the instability operates at the
largest length scale that fits into the numerical box.

With the unstratified setup, the production of a statistically
steady, self-sustained magnetic field was observed. To under-
stand the properties of the field produced, it is useful to see the
evolution of the mean magnetic energy density, split up into
its poloidal and toroidal components. To this end, B2

φ/8π and
B2

p/8π = (B2
z + B2

�)/8π are plotted in Fig. 2. The time on the
horizontal axis of this graph is expressed in units of the sound-
crossing time τs = L/cs. The field, initially poloidal, becomes
mainly toroidal as it is wound up by the differential rotation.
This happens very quickly, over the time-scale τdr. Both com-
ponents then grow, more slowly, until the saturation level is
reached, when the field is being destroyed by the instability at
the same rate at which it is being amplified by the differential
rotation.

Figure 3 shows contour plots of the vertical component of
the magnetic field Bz and of the azimuthal component Bφ, av-
eraged in the azimuthal direction, as a function of� and z. The
nine panels are taken at nine different times: t = 513, 664, 694,
724, 754, 785, 815, 845 and 875τs (in units of the sound cross-
ing time across the box). At the time of the first frame, the az-
imuthal mean of Bz is positive everywhere, as it is at the begin-
ning of the run. Bφ has been produced from the winding-up of
this positive Bz by differential rotation of positive dΩ/dz, so is
also positive almost everywhere. Then the instability produces
a new vertical component which points predominantly down-
wards: Bz switches from positive to negative. The azimuthal
component does likewise.
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Fig. 3. Azimuthal average of Bz (positive values shaded light, negative dark), as a function of� (horizontal axis) and z (vertical axis). Contours
show Bφ (black lines, with ticks pointing towards negative values). The thick lines show where Bz and Bφ are equal to zero. The nine panels are
taken at nine different times: t = 513, 664, 694, 724, 754, 785, 815, 845 and 875τs, arranged top-left, top-middle, top-right, middle-left, etc.
The predominant sign of polarities of both Bz and Bφ changes over this period. Unstratified case (N = 0).

Looking at Fig. 2, it can be seen that the mean field strength
is lower than usual during this reversal period. This reversal in
the prevailing direction of the field happens three times during
this run (also at t = 2200 and 3000τs), and there is no reason
not to presume that it should continue to happen were the run
continued.

A change of the field direction throughout the entire cylin-
drical volume is not surprising when one takes into account the
fact that only the longest wavelengths are unstable. Most of the
unstable range of wavelengths lies outside of the range which
can be seen in this simulation – we cannot see unstable wave-
lengths longer than the size of the computational box. In reality,

we would see instability over a range of length scales; in this
unstratified case, up to infinity.

4.1.1. Torques

One of the main reasons for studying this dynamo is to examine
its effect on differential rotation, and to do this it is necessary to
look at the torque that the magnetic field exerts on the gas. We
would also like to check that the torque really is of magnetic
origin and not of some turbulent kinetic origin.

To do this, we calculate the magnetic torque by inte-
grating the azimuthal component of the Lorentz shear stress,
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Fig. 4. Mean torque from the magnetic field Tm (solid line) and the
velocity field Tv (dotted line), in units of (2/3)πPL3. Non-stratified
(N = 0), non-rotating (Ω0 = 0) case.

multiplied by the lever arm �, over a horizontal plane at
height z. The kinetic torque is calculated in a similar way. The
magnetic torque Tm and kinetic torque Tv are given by:

Tm(z, t) =
∫ 2π

φ=0
� dφ

∫ L

�=0
d��

BφBz

4π
, (15)

Tv(z, t) =
∫ 2π

φ=0
� dφ

∫ L

�=0
d��ρvφvz. (16)

The averages over z of these two torques are plotted in Fig. 4.
This confirms that the torque is chiefly magnetic. The torque
from the velocity field is around ten times smaller, and some-
times negative, i.e. it has the effect of increasing the differential
rotation.

At this point, we can look at the absolute value of this
magnetic torque and make a comparison with the magneto-
rotational instability in accretion discs, which is similar to this
dynamo in some ways. With this in mind, the torques Tm and Tv

were plotted in units of (2/3)πPL3; this is the torque which
would exist if the shear stress were equal to the gas pressure P.
In accretion-disc parlance, this corresponds to a viscosity para-
mater α = 1. That the stress in an accretion disc is of the order
of the gas pressure should not be surprising, since the kinetic
energy of the orbital motion which drives the dynamo is of the
same order as the thermal energy. In a differentially rotating
star, however, the energy available to power the dynamo (the
difference in kinetic energy compared with a uniformly rotat-
ing star with the same angular momentum), is generally much
less than the thermal energy. Since the magnetic energy cannot
be greater than the energy of the differential rotation, we should
expect it also to be much less than the thermal energy. This is
confirmed in Fig. 4.

So, instead of comparing the torque to the gas pressure, it
may be more informative to compare it to the torque which
would exist if the shear stress were equal to the magnetic pres-
sure B2/8π. To do this, we calculate a dimensionless efficiency
coefficient ε, defined such that:

Tm(z, t) = ε(z, t)
∫ 2π

φ=0
� dφ

∫ L

�=0
d��

B2

8π
· (17)

Fig. 5. Efficiency coefficient ε, as defined in Eq. (17) for the run shown
in Fig. 4.

This efficiency ε, or rather, the average of it over all z, is plotted
is Fig. 5. After the initial winding-up phase, its value tends to
stay at around 0.08, except for the field-reversal phases when
the field is weaker.

If the vertical and azimuthal component of the field were
everywhere equal, and if the component in the � direction
were zero, we would have ε = 1. As in the case of MRI tur-
bulence in accretion discs, however, the field is mainly az-
imuthal. In addition to this, the radial component B� is not
zero, indeed, it is found to be comparable to the vertical com-
ponent Bz. Comparing Eqs. (15) and (17), and assuming that
the ratios Bz/Bφ and B�/Bφ are the same everywhere:

ε ≈ BφBz/4π

B2/8π
≈ 2(Bφ/Bz)

1 + (Bz/Bφ)2 + (B�/Bφ)2
· (18)

By looking at Fig. 2, we can estimate that B� ≈ Bz ≈ Bφ/2.5
and the above equation gives us ε ≈ 0.6. The torque observed
in the simulation is much less than this. The main reason for
this is that the ratio Bz/Bφ is not constant, rather, it is high at
small � and low at large �. This is confirmed by looking at
the last frame of Fig. 3, for instance: Bz is strongest very close
to the axis, as the Tayler instability is strongest there, and Bφ is
strongest somewhat further from the axis, because the winding-
up effect is stronger at larger � and because the instability is
weakest there. Indeed, if we assume that Bφ is proportional to�
and that Bz falls linearly from some value at � = 0 to zero at
� = L/2, then we would expect ε ≈ 0.075, close to what we
see in Fig. 5.

4.1.2. Parameter dependence

For the run discussed above the net rotation Ω0 = 0, (the ro-
tation rate at z = 0, the middle of the box), and the damping
time of the applied force τf was set equal to the sound cross-
ing time τs. For values of τf much different from this, a self-
sustaining field was not produced. If too low a value is used, the
velocity field is too “stiff” and the instability is unable to take
hold, although the field does reach the required strength. If τf
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Fig. 6. Mean magnetic energy density against time, for runs with
N = 0 and τf/τs = 0.1 (solid line), 1.0 (dotted), 10 (dashed) and 100
(dot-dashed). Energy density is in units of the thermal energy density,
time in sound crossing times τs. Only in a narrow range of τf/τs is a
statistically steady magnetic field maintained.

is too high, on the other hand, the differential rotation is slowed
down by the Lorentz forces from the magnetic field before the
necessary field strength for instability has been reached.

The code was run with a range of values of τf/τs: 0.1, 1.0,
10 and 100. Figure 6 shows the evolution of the mean magnetic
energy density B2/8π. It can be seen that a self-sustaining field
was observed only around τf/τs = 1. It was also found that the
dynamo is not produced if a lower spatial resolution is used. It
therefore seems that where the dynamo was produced, the con-
ditions were only just sufficient. So it should not be surprising
that it also only works in a narrow range of the parameter τf .
A higher spatial resolution will be needed to obtain dynamo
action in a less restricted range of parameter values.

4.1.3. Rotation

In the above we have shown a working dynamo in simulations
with differential rotation, but with no rotation overall. This is of
course unlikely to be the situation inside a real star, so we shall
now model a plasma with a net rotation by adding a Coriolis
force to the momentum equation. We find that rotation above a
certain speed is able to stop the dynamo from working, presum-
ably because with the given resolution it is only just possible
to see the instability working, and small changes can push the
dynamo action just outside the effective range. We shall see in
the next section that in the stratified case the dynamo is more
vigorous; active in a less restricted range of parameters.

We run the code as above, but with values ofΩ0 which will
put us into the Ω � ωA regime: Ω0/τ

−1
s = 0.1, 0.3 and 1.0.

Figure 7 shows the magnetic energy density as a function of
time, for these runs, as well as for theΩ0 = 0 run. It can be seen
that when the rotation speed is above some certain threshold,
the field, although still wound up at first, decays again without
reaching a steady state. This behavior is not fully understood. It
is expected that rotation will slow the growth of the instability,
and will therefore increase the minimum unstable wavelength

Fig. 7. Mean magnetic energy density against time, for N = 0 runs
with forcing parameter Ω0/τ

−1
s = 0 (solid line), 0.1 (dotted), 0.3

(dashed) and 1.0 (dot-dashed). Energy density in units of the mean
thermal energy density. Sustained magnetic fields are obtained only at
the lower rotation rates.

(Eq. (4)), which depends on diffusivity. This could mean that
the field never becomes unstable.

4.2. The stratified case

In the stratified case, the additional parameter is the buoyancy
frequency N. The main result will turn out to be that a self-
sustaining magnetic field is much easier to create in the strat-
ified case. Whereas in the unstratified case, a self-sustained
field was only produced within a narrow range of parameters,
with stratification the range of parameters is now much wider.
Rotation does not destroy the dynamo, even for rotation fre-
quencyΩ as large as the buoyancy frequency.

There are one or two other differences. The field builds
up to saturation much more slowly – in the unstratified case,
saturation was reached over one or two Alfvén crossing times
(Alfvén crossing times at the initial field strength). In the strat-
ified case, it takes at least five times longer. Also, the field en-
ergy is much steadier; the fluctuations do not seem to be as
large.

Figure 8 shows the toroidal and poloidal components of the
magnetic energy, for a run with N = τ−1

s and τf = 10τs. The
energy in the toroidal component is around 30 times larger than
that in the poloidal component, a larger difference than in the
absence of stratification (cf. Fig. 2).

As in Sect. 4.1.1, we calculate an efficiency coefficient ε
(see Eq. (17)). This is plotted in Fig. 9 for this stratified run.
The value settles a little lower than in the unstratified case, at
around 0.05. In this case, however, the ratio Bφ/Bz is much
greater (comparing Figs. 2 and 8), so we expect a lower effi-
ciency ε. The reason that the same value of ε is measured de-
spite a higher average of the ratio Bφ/Bz must have something
to do with the respective distributions as a function of� of the
vertical and azimuthal components of the field.

We can try using other values of the driving-force time-
scale τf , to see how robust the dynamo is. For these runs, we
used a somewhat stronger initial magnetic field, with β = 103,
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Fig. 8. The means of B2
φ/8π (solid line) and B2

p/8π (dotted line), in
units of the thermal energy density, for a stratified case N = τ−1

s . The
field is even more predominantly toroidal than in the unstratified case
(compare Fig. 2).

Fig. 9. Efficiency coefficient ε, as defined in Eq. (17). Stratified (N =
τ−1

s ), non-rotating case.

as opposed to β = 105 used in the previous runs. This helps to
speed up the initial evolution a little, but has no effect on the
final steady state.

We use values of τf/τs of 1, 10 and 100. In this last case, the
time-scale τf is much greater than other relevant time-scales,
which will also be the case in a real star. The magnetic energy
in these runs is plotted in Fig. 10. A self-sustaining field ap-
pears in all three cases, although the saturation field strength
does depend to some extent on the value of τf . This in fact
does reflect reality – the faster the differential rotation is being
driven, the stronger we expect the excited field to be.

We have now looked at three cases: non-rotating unstrat-
ified; rotating unstratified; and non-rotating stratified. The
fourth combination – rotating stratified (Ω� ωA and N � ωA)
– will exist in almost the entire non-convective zone of almost
all stars, and is therefore the most interesting to us. To be sure
that we are in this regime, we shall set both N and Ω0 to the
reciprocal of the sound-crossing time, i.e. to τ−1

s .

Fig. 10. Mean magnetic energy density against time, for the stratified
case N = τ−1

s . τf/τs = 1 (solid line), 10 (dotted) and 100 (dashed). A
self-exciting field is produced in all three cases.

Fig. 11. Mean magnetic energy density against time, for a rotating,
stratified case. τf/τs = 1 (solid line), 10 (dotted) and 100 (dashed).
A self-exciting field is produced in all three cases, and an oscillatory
behaviour is seen in at least one case.

It is found that the self-sustaining field is still produced,
unlike when rotation was added to the unstratified case. The
field produced is of comparable strength to that produced when
rotation is absent, but oscillates in a seemingly regular fashion.
The mean values of Bφ and Bz go from positive to negative, and
back again. We saw something like this in Sect. 4.1, but there,
the reversal of the field was a more chaotic process with, one
presumes, no regular period. Figure 11 is the rotating equiva-
lent of Fig. 10. Except at the highest value of τf , the field energy
can be seen to jump up and down in a regular way.

5. Discussion and conclusions

We have demonstrated by direct numerical simulation a dy-
namo process as envisaged by analytical arguments in Spruit
(2002). It feeds off differential rotation only, and not from any
imposed small-scale velocity field. The toroidal (azimuthal)
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component of the field is produced from the winding-up of the
existing poloidal (meridional) component. This toroidal field is
unstable, and produces, as a result of its decay, a new poloidal
component, which can then be wound up itself – in this way,
the “dynamo loop” is closed. A weak seed field is amplified in
this way until a certain saturation level is reached, at which the
field is being wound up by differential rotation at the same rate
as it is decaying through its inherent magnetohydrodynamic
instability.

This dynamo is therefore different from the traditional
convection-powered dynamo models for stars with convective
envelopes, in which the dynamo loop is closed by poloidal
components induced by an additional, non-magnetic process.
The dynamo found here is, in this sense, similar to the MRI tur-
bulence in accretion disk (Hawley et al. 1996) which is pow-
ered by the gradient in orbital rotation in the disk.

A dominant factor in the case of differential rotation in
a star is the effect of the stable stratification. It strongly re-
stricts the types of instability that can occur in the azimuthal
field produced by winding up in the differential rotation. In
Spruit (1999) we have shown that the first instability to set in as
the magnetic field strength increases by this process is Tayler-
instability (a pinch-type instability) rather than magnetic
buoyancy instabilities.

In the simulations presented here we have considered sep-
arately the effects of rapid net rotation and a stabilizing strat-
ification. Perhaps somewhat surprisingly, dynamo action was
found to set in more readily (at lower spatial resolution) in the
stratified cases than in the unstratified case. This is the oppo-
site of what would be expected if buoyancy instabilities were
the dominant mechanism closing the dynamo loop. This con-
firms the conclusion in Spruit (2002) that differential rotation in
a stable stratification leads to a self-sustained magnetic field in
which Tayler instability of the azimuthal field is the dominant
process closing the dynamo cycle.

The results presented were obtained only at a resolution
close to the minimum required to obtain dynamo action. As
a result, the field configurations obtained show only minimal
structure in the vertical direction. Effectively, they cover
only vertical length comparable with the characteristic vertical

length scale of the process (which is governed by the strength
of the stratification, cf. Spruit 2002).

For further progress, simulations at higher resolution will
allow more detailed comparison with the analytical estimates.
An important step forward, however, would be the develop-
ment of code more suited to the nearly-incompressible, highly
stratified conditions relevant for stellar interiors. With the ex-
isting codes, the time step limitations due to sound speed and
the buoyancy frequency limit the degree of realism that can be
achieved. In an anelastic code (see for example Lantz & Fan
1999 or Gough 1969), the continuity equation is simplified,
removing various processes such as the propagation of sound
waves, and with them, the shortest time-scale. This allows an
incease in the time-step and therefore opens up a greater range
of parameter space to investigation. An anelastic code is there-
fore likely to be the appropriate tool for further study of this
dynamo.
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