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ABSTRACT
We measure the clustering of galaxy groups in the 2dFGRS Percolation-Inferred Galaxy Group
(2PIGG) catalogue. The 2PIGG sample has 28 877 groups with at least two members. The
clustering amplitude of the full 2PIGG catalogue is weaker than that of 2dFGRS galaxies, in
agreement with theoretical predictions. We have subdivided the 2PIGG catalogue into samples
that span a factor of ≈ 25 in median total luminosity. Our correlation function measurements
span an unprecedented range of clustering strengths, connecting the regimes probed by groups
fainter than L∗ galaxies and rich clusters. There is a steady increase in clustering strength with
group luminosity; the most luminous groups are 10 times more strongly clustered than the full
2PIGG catalogue. We demonstrate that the 2PIGG results are in very good agreement with the
clustering of groups expected in the �CDM model.

Key words: galaxies: clusters: general – galaxies: haloes – large-scale structure of Universe.

1 I N T RO D U C T I O N

Galaxy groups are important tracers of the matter distribution in the
Universe, offering a powerful alternative to individual galaxies. Part

�E-mail: c.m.baugh@durham.ac.uk

of the appeal of galaxy groups lies in the simplicity of their relation to
the dark matter. Theoretically, each dark-matter halo yields a single
group of galaxies. This is a clear advantage over the use of galaxies
to trace mass, as the occupation of haloes by galaxies depends upon
halo mass (e.g. Benson et al. 2000; Berlind et al. 2003). Typical
groups are less elitist than the richest clusters which only account
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for a few per cent of the mass of the Universe (e.g. Jenkins et al.
2001). The measurement of the clustering amplitude of groups as a
function of their mass is an important probe of hierarchical clustering
(Governato et al. 1999; Colberg et al. 2000; Padilla & Baugh 2002).

Previous attempts to measure the clustering of groups have been
hampered by the small size of the samples. For example, Jing &
Zhang (1988) measured the redshift space correlation function of
a sample of 135 groups extracted from the CfA survey by Geller
& Huchra (1983). By the end of the 1990s, this situation had only
improved slightly with an analysis of ∼500 groups in the Updated
Zwicky Catalogue by Merchán, Maia & Lambas (2000). Perhaps
unsurprisingly, these early studies were inconclusive. One dispute
concerned the relative strength of the autocorrelation function of
groups and of galaxies. Kashlinsky (1987) produced an analytic ar-
gument suggesting that a sample of groups corresponding to haloes
less massive than a characteristic mass M∗ (see Section 2.3 for a def-
inition of M∗) should display a weaker clustering signal than that of
their constituent galaxies. Similar conclusions can be reached from
the calculation of the bias of dark-matter haloes first carried out by
Cole & Kaiser (1989), and subsequently by Mo & White (1996) and
Sheth, Mo & Tormen (2001). However, the first results comparing
the clustering of groups and galaxies both confirmed (Jing & Zhang
1988; Maia & da Costa 1990) and contradicted (Ramella, Geller &
Huchra 1990; Girardi, Boschin & da Costa 2000) this theoretical
prediction.

An accurate measurement of the clustering of groups is now par-
ticularly timely as theoretical models have advanced to the point
where detailed predictions can be made for the clustering of galac-
tic systems. Techniques have been developed recently that allow
high-resolution N-body simulations of hierarchical clustering to be
populated with galaxies using semi-analytic models (Kauffmann
et al. 1999; Benson et al. 2000; Helly et al. 2003). The models make
firm predictions for how the luminous baryonic component of the
Universe is partitioned between dark-matter haloes.

A significant advance in statistical studies of group properties
was made possible by the two-degree Field Galaxy Redshift Survey
(2dFGRS; Colless et al. 2001, 2003). Merchán & Zandivarez (2002)
used the 2dFGRS 100k data release to construct a group catalogue,
the 2dFGGC, consisting of 2198 groups with at least four members.
The correlation function of the 2dFGGC in redshift space can be
described by a power law with correlation length s 0 = 8.9 ± 0.3 h−1

Mpc and slope γ = −1.6 ± 0.1 (Zandivarez, Merchán & Padilla
2003). The clustering amplitude of 2dFGGC groups is significantly
higher than that measured for 2dFGRS galaxies, for which s 0 =
6.82 ± 0.28 h−1 Mpc (Hawkins et al. 2003).

The completion of the 2dFGRS has made it possible to construct
a much larger group catalogue, the 2dFGRS Percolation Inferred
Galaxy Group catalogue (hereafter the 2PIGG catalogue; Eke et al.
2004a). The gain is bigger than the simple factor of just over 2 in-
crease in the number of galaxy redshifts; the improved homogeneity
and higher spectroscopic completeness means that group finding is
far more efficient in the final 2dFGRS catalogue. To quantify this
improvement, the number of groups with a minimum of four mem-
bers in the 2PIGG catalogue is 7200, over three times the number
of comparable groups detected by Merchán & Zandivarez (2002).
Moreover, Eke et al. demonstrate that the group-finding algorithm
can be pushed further still to extract groups containing two or more
members, which greatly increases the number of groups.

In this paper, we study the clustering of groups in the 2PIGG cat-
alogue. The properties of the catalogue are summarized in Section
2, along with an explanation of how we construct subsamples of
groups defined by mass. The key role played by mock catalogues

of groups is also outlined in Section 2. The estimation of the cor-
relation function of groups is set out in Section 3. A number of
assumptions need to be made in order to measure the clustering of
groups and these issues are dealt with in Section 4, in which we use
mock catalogues extensively to quantify the likely random and sys-
tematic errors on our measurements. The clustering measurements
for 2dFGRS groups are presented in Section 5. A summary of our
conclusions is given in Section 6.

2 T H E DATA A N D S A M P L E C O N S T RU C T I O N

In this section we describe the catalogue from which measurements
of the clustering of groups are made, the role played by mock data
sets in our analysis and the definition of subsamples of groups.

We use the 2PIGG catalogue constructed by Eke et al. (2004a).
The 2PIGG sample is the largest and most homogenous group cata-
logue currently available and therefore provides a unique tool with
which to study the clustering of galactic systems. The properties
of the 2PIGG are outlined in Section 2.1. An important and novel
feature of the Eke et al. analysis is the extensive use of realistic,
physically motivated mock catalogues to calibrate the performance
of the group-finding algorithm and to understand how the recov-
ered groups relate to the underlying distribution of dark matter. We
utilize these catalogues to assess possible systematic effects in the
measurement of clustering from the 2PIGG sample and to estimate
the errors on our results; a brief outline of the mocks is given in
Section 2.2. We present the rationale behind our definition of sub-
samples extracted from the 2PIGG in Section 2.3. Finally, the choice
of relation between an observed group property and the underlying
group mass is justified in Section 2.4.

2.1 The 2PIGG catalogue

The 2PIGG catalogue was constructed from the completed 2dFGRS
as described by Eke et al. (2004a). The group-finding algorithm
requires a small number of parameters to be set. The motivation for
the adopted parameter values and the consequences of these choices
for the accuracy and completeness of the catalogue are discussed at
length by Eke et al. (2004a). Eke et al. find that after applying the
identification algorithm to the 2dFGRS (which contains ∼190 000
galaxies in the two large contiguous regions), 56 per cent of the
galaxies are grouped into 28 877 groups containing at least two
members. These groups have a median velocity dispersion of 190 km
s−1; if groups of four or more members are considered, this value
changes to 260 km s−1. In both cases, the median redshift is z = 0.11.
The 2PIGG catalogue is sufficiently large that it may be divided into
subsamples in order to measure trends in clustering strength with
group properties; the construction of subsamples from the 2PIGG
catalogue is set out in Section 2.3.

2.2 Mock 2PIGG catalogues

Two types of mock catalogue are used in this paper: semi-analytic
mocks and Hubble Volume mocks. These mocks have different un-
derlying physics and play different roles in our analysis.

(i) Semi-analytic mocks. We use the mock 2PIGG catalogues con-
structed by Eke et al. (2004a). These mocks are produced from a
high-resolution N-body simulation which is populated with galaxies
using the semi-analytic model, GALFORM (Cole et al. 2000; Benson
et al. 2002, 2003). The simulation uses standard �CDM param-
eters, with the normalization of the density fluctuations given by
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σ 8 = 0.80 and a primordial spectral index of n = 0.97, in line
with the constraints from the first year of data from the Wilkinson
Microwave Anisotropy Probe (WMAP) (Spergel et al. 2003). The
N-body simulation box is 250 h−1 Mpc on a side and contains 1.25 ×
108 dark-matter particles each of mass 1.04 × 1010 h−1 M
. We
use the z = 0.117 simulation output, which is close to the median
redshift of the 2dFGRS. Dark-matter haloes are identified using a
friends-of-friends algorithm with a linking length of 0.2 times the
mean interparticle separation (Davis et al. 1985).

The halo resolution limit is taken to be 1.04 × 1011 h−1 M
. The
GALFORM code is run for each halo and galaxies are assigned to a
subset of dark-matter particles in the halo following the technique
described by Benson et al. (2000). Around 90 per cent of central
galaxies brighter than M bJ − 5 log10 h = −17.5 are expected to
be in haloes resolved by the simulation. The effective limit of the
catalogue is extended to M bJ − 5 log10 h = −16 using a separate
GALFORM calculation for a grid of halo masses below the resolution
limit of the N-body simulation. These galaxies are assigned to parti-
cles that are not identified as part of a resolved dark-matter halo; such
particles account for approximately 50 per cent of the dark matter in
the z = 0.117 simulation output. The luminosity function predicted
by the semi-analytic model is close to that estimated for the 2dFGRS
(Norberg et al. 2002b): however, we force the luminosity function
of the model galaxies to agree with the 2dFGRS luminosity function
by rescaling the luminosity of the model galaxies. A mock 2dFGRS
is then extracted by placing an observer at a random location within
the simulation cube and applying the radial and angular selection
function of the 2dFGRS (Norberg et al. 2002b). The simulation box
needs to be replicated several times to cover the full 2dFGRS volume
and geometry. For our absolute magnitude limit, the mock 2dFGRS
is complete above z = 0.04. The mock 2dFGRS is then degraded
by applying the redshift completeness mask, and the magnitude and
velocity errors of the 2dFGRS (Norberg et al. 2002b). The Eke et al.
group-finding algorithm is applied to the mock 2dFGRS catalogue
in exactly the same way and with the same parameter values as for
the real data. We will henceforth refer to the resulting mock 2PIGG
catalogue as the GALFORM mock.

The GALFORM mock has three roles to play in our analysis: (1) To
determine which of the observed characteristics of 2PIGG systems
provides the most reliable estimate of the true mass of the underly-
ing dark-matter halo in which the group resides. (2) To assess the
systematic errors in our clustering estimates, by comparing measure-
ments from a 2PIGG mock with the measurement for an equivalent
sample of galaxy groups extracted from the simulation cube (i.e. be-
fore applying the 2dFGRS selection criteria and mask). This allows
us to quantify how well our clustering estimator compensates for
the selection function of the survey and its redshift incompleteness.
The results of these comparisons are used to define sample selection
criteria that, when applied to the 2PIGG catalogue, will yield the
most robust and reliable clustering measurements. The construction
of the equivalent samples is outlined below. (3) To cast the predic-
tions of the �CDM model for the clustering of galactic systems in
a form that can be confronted directly with the observations.

Finally, we explain the criteria used to construct samples of groups
from the N-body simulation cube that can be compared directly
with the groups taken from the GALFORM mock; these samples will
be denoted as equivalent samples. We will employ two approaches
to construct equivalent samples. In the first approach, the spatial
abundance of groups identified in the GALFORM mock is reproduced
in the simulation cube by selecting an appropriate fraction of the
groups at each mass. The second method is in two stages. First,
an effective bias is computed for the groups in the GALFORM mock,

using equation (1) below, and the true mass of each group. Second,
groups more massive than some lower mass limit in the simulation
cube are selected, such that the effective bias of these groups matches
that computed for the mock 2PIGG sample in the first stage. The
correlation functions measured from these equivalent samples are
compared with direct measurements from the GALFORM mock in
Section 4.2.

(ii) Hubble Volume mocks. Eke et al. (2004a) also made use
of mock 2dFGRS catalogues extracted from the �CDM Hubble
Volume simulation (Jenkins et al. 2001; Evrard et al. 2002). In this
case, the ‘galaxies’ are dark-matter particles that are selected in or-
der to have a clustering strength similar to that measured for galaxies
in the flux-limited 2dFGRS (Hawkins et al. 2003). The selection is
based upon the smoothed density of the dark-matter distribution
(Cole et al. 1998; see also Norberg et al. 2002b). The large volume
of the Hubble Volume simulation (27 Gpc3) allows a high number
of independent mock versions of the 2dFGRS to be extracted; the
ensemble that we consider contains 22 2dFGRS mocks. The 2PIGG
group-finding algorithm is run on these Hubble Volume mocks to
produce a set of groups in each mock. The primary aim of these
mocks is to provide an estimate of the error on measured cluster-
ing statistics; these errors naturally include the contribution from
sample variance due to large-scale structure. We compute the rms
scatter over the ensemble of 22 mocks in the manner described by
Norberg et al. (2001). To recap, the correlation function measured
from one of the mocks is considered as the ‘mean’ and the scatter of
the remaining mocks around this mean is computed. This process is
repeated for each mock in turn. The rms scatter is the resulting mean
scatter. This procedure gives an rms scatter that is larger than the
formal variance over the ensemble of mocks, since, to some extent,
it takes into account the covariance between the correlation function
measurements in different bins. The fractional rms scatter obtained
from the mocks is taken as an estimate of the statistical error and is
applied to the measured correlation functions.

2.3 Subsample definition

One could consider dividing the 2PIGG catalogue into either cu-
mulative or differential bins in a property related to group mass.
Naively, one might anticipate that a division into differential mass
bins would give a cleaner trend of clustering amplitude varying with
increasing sample mass, since the clustering signal from cumulative
samples might be dominated by the most massive objects. To inves-
tigate this prejudice, we use theoretical models of the clustering of
dark-matter haloes and ascertain which of these two alternatives is
the best way to split up the 2PIGG catalogue.

The theoretical predictions for halo clustering are based upon the
formalism developed by Cole & Kaiser (1989) and Mo & White
(1996, hereafter MW). These authors computed an asymptotic bias
for dark-matter haloes, using extended Press & Schechter (1974)
theory and the spherical collapse model. Sheth et al. (2001, here-
after SMT) improved upon this calculation by incorporating an ellip-
soidal collapse model. Both approaches have been tested extensively
against direct predictions from N-body simulations (Governato et al.
1999; Colberg et al. 2000; SMT; Padilla & Baugh 2002).

The effective bias for a sample of dark-matter haloes is computed
by weighting the bias factor associated with each individual halo,
b(M), by its abundance in the sample (e.g. Baugh et al. 1999; Padilla
& Baugh 2002):

beff =
∫ M2

M1
b(M) (dn(M)/dM) dM∫ M2

M1
(dn(M)/dM) dM

, (1)
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Figure 1. Theoretical predictions for the effective bias factor, beff, of a
sample of dark-matter haloes, as defined by equation (1). The curves show the
expectations for samples of haloes defined using either differential (dashed)
or cumulative mass bins (solid), computed using the formalism developed
by Sheth et al. (2001, SMT). The horizontal line indicates a bias of unity.
The thin lines that intersect the curves and run parallel and perpendicular to
the axes indicate the dynamic range of effective biases for the samples we
use in this paper. The effective bias is computed from the GALFORM mock
and the calculation is described fully in Section 2.4. The thin dashed lines
show the predictions for two or more members per group and the thin solid
lines show the results for a minimum of four members per group.

where dn(M)/dM is the space density of haloes in the mass interval
M to M + δM . In the case of cumulative mass bins, the lower mass
limit, M 1, defines the sample, as M 2 → ∞.

Fig. 1 shows the theoretical predictions for the effective bias as
a function of the median mass of the sample. For differential mass
samples, an interval of one decade in mass is assumed. To make
these predictions, we have adopted the linear theory power spectrum
used in the N-body simulation described in Section 2.2. The cluster-
ing amplitude of the overall dark-matter distribution corresponds to
b = 1. The MW theory predicts that haloes with mass below a char-
acteristic value M∗ (defined as the mass contained within a sphere
for which the linear theory variance is equal to the threshold for
collapse) will display a weaker clustering signal than the overall
mass distribution, i.e. these haloes will have b(M) < 1.

The dynamic range in mass of the 2PIGG samples that we con-
sider is ≈ 1012–1014 h−1 M
. Over this interval, the theoretical
predictions for cumulative and differential mass bins have similar
shapes, so there is no clear advantage in using differential mass bins.
Moreover, the cumulative samples benefit from better statistics. For
these reasons, we will subdivide the 2PIGG sample using cumu-
lative bins in a group property related to mass (see Section 2.4).

2.4 Indicator of group mass

Our goal in this paper is to estimate the clustering of subsamples
of the 2PIGG catalogue, defined by group mass. We therefore need
to find an observed property of the 2PIGGs that displays a tight
correlation with the underlying or ‘true’ group mass. Following Eke
et al. (2004a), we have considered two possibilities: (i) a dynamical
mass estimate that depends upon the rms radius of the group and
its estimated velocity dispersion; (ii) an indirect estimate in which

Figure 2. The corrected total group luminosity plotted as a function of
true mass for groups extracted from the GALFORM mock with z < 0.12. The
grey-scale indicates the number of groups, with a darker shading indicating
a higher number of groups. The solid line shows the median, and the dashed
lines enclose the interval within which 68 per cent of the groups lie.

the corrected total group luminosity is used to infer a mass from the
estimated median mass-to-light ratio of 2PIGGs.

From the GALFORM mock catalogue, it is possible to find the ‘true’
mass of any group by associating it with a dark-matter halo in the
simulation box. The ‘true’ mass of the group is simply the mass of the
halo, as computed by summing the particles identified as members
of the halo by a friends-of-friends group-finding algorithm. Fig. 2
shows the relation between corrected total group luminosity and the
true group mass for the GALFORM mock. The total group luminosity
is obtained by summing the luminosity of the galaxies identified as
members of each group, and then applying a correction to account for
missing galaxies that are fainter than the apparent magnitude limit of
the 2dFGRS. This correction factor is redshift dependent and reaches
a factor of ∼2 at z ∼ 0.12. In Fig. 2, we only show groups with z <

0.12. The shading represents the abundance of groups for a given
total luminosity and true mass; the darker shading indicates a higher
number density of groups. The solid line shows the median true mass
to total luminosity relation, and the dashed lines enclose 68 per cent
of the groups in each mass bin. This relation is reasonably tight over
more than two decades in true mass. The equivalent comparison
between the dynamical mass estimate and the true mass exhibits
much more scatter (see Eke et al. 2004b). The dynamical mass
estimator is a particularly poor indicator of true mass for objects
less massive than 1013 h−1 M
. We therefore choose to employ
the corrected total group luminosity as the indicator of the true
group mass. However, caution is advisable when dealing with very
massive groups, since, as is apparent in Fig. 2, the interval containing
68 per cent of the groups with masses M > 1014 h−1 M
 broadens
considerably. This is due to the fact that such large groups, because
of their rarity, are more likely to be found at higher redshifts, and
therefore require a larger correction to be applied to the observed
group luminosity to infer the total group luminosity.

Further evidence supporting our choice of the total group lumi-
nosity as a mass indicator is given in Fig. 3. Here, we show the ‘true’
mass distributions of samples from the GALFORM mock selected ac-
cording to two criteria: (i) cumulative bins in total luminosity (top
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Figure 3. The distribution of true mass for subsamples of mock 2PIGG
groups with at least two galaxy members. The upper panel shows the mass
distributions for subsamples selected by cumulative total luminosity and the
lower panel shows the results for samples selected by cumulative bins in
dynamical mass; the bins are given by the key in each panel. The points with
error bars show the median and the 10–80 percentile range in true mass for
each bin.

panel), and (ii) cumulative bins in dynamical mass (lower panel).
The sample definitions are given by the key in each panel. These
distributions are for groups with at least two members. The differ-
ent lines in each panel show the corresponding distributions of true
group mass for each subsample. The points with error bars show
the median and the range containing 60 per cent of the groups for
the true mass distributions. It is clear from this plot that the distri-
bution of true mass for samples selected by total group luminosity
spans a larger dynamic range in mass, and the distributions have
tighter percentile intervals. We have performed the same exercise
for groups with a minimum of four members and reach similar con-
clusions. However, we note that in the case of groups with four or
more members, there are fewer low-mass groups as expected.

We now investigate how the clustering signal from group samples
varies with the minimum number of group members, nmin, looking at
the cases where nmin = 2 or 4. We compute an effective bias for each
sample using equation (1). In Fig. 1, the effective bias is plotted at
a representative mass for each sample (indicated by the lines which
intersect the bias curves and run parallel and perpendicular to the
mass axis). This mass is obtained using the GALFORM mocks by
finding the halo mass above which the effective bias of haloes in
the simulation cube matches that of the haloes recovered from the
mock group catalogue. We show the effective bias for the brightest
and faintest cumulative luminosity bins to illustrate the dynamic
range of our clustering measurements. The dashed lines show the
results of this calculation for nmin = 2 and the solid lines show
the case where nmin = 4. The range of effective masses (x-axis)
and clustering strengths (y-axis) probed by the different samples is
widest when considering groups with nmin = 2.

3 M E A S U R I N G T H E C L U S T E R I N G
O F G RO U P S

We now outline the method followed to measure the clustering of the
2PIGG samples. In a sample of groups extracted from a flux-limited

galaxy redshift survey, the space density of groups is a function of
radial distance. An accurate estimate of the radial selection function
of the sample is required to make a robust measurement of the
clustering of groups. The procedure that we follow to obtain the
selection function from the redshift distribution of groups is set
out in Section 3.1. The weighting scheme used to approximate a
minimum variance estimate is given in Section 3.2, along with the
estimator used to infer the correlation function.

3.1 The radial selection function

An accurate estimate of the selection function of groups in the
2PIGG samples is required to permit an analysis of the clustering
signal of the groups.

The most straightforward way of doing this is to use the luminos-
ity function of groups to obtain an estimate of the selection function
which is unaffected by large-scale structure. However, Eke et al.
(in preparation) show, using the GALFORM mock, that estimates of
the group luminosity function are affected by errors in the determi-
nation of total group luminosity and by contamination, leading to
systematic errors in the number density of groups of up to a factor
of 4.

The alternative is to estimate the selection function directly from
the observed redshift distribution. The concern in this case is that
the redshift distribution displays features that are due to large-scale
structure (see the histogram in Fig. 4). Care must be taken when
fitting a parametric form to the observed redshift distribution to avoid
‘overfitting’ the peaks and troughs, thereby inadvertently removing
some of the clustering signal from the estimated correlation function.

With this concern in mind, we explore two procedures to de-
scribe the shape of the observed redshift distribution: fitting paramet-
ric forms or smoothing the observed redshift distribution. We will

Figure 4. The redshift distributions of the 2PIGG catalogue (histograms);
the upper panel corresponds to the NGP region and the lower to the SGP
region. The redshift distribution after smoothing is shown by the dotted
line (see text for details). The dot-dashed lines show volume-weighted fits
(equations 2 and 4), and the dashed lines show unweighted fits (equations 2
and 3).
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explore the influence on the measured correlation function of these
different ways of fitting the redshift distribution in Section 4.1.

We adopt a fit to Nobs(z), the observed 2PIGG redshift distribution,
of the form

Nfit(z)dz = za−1 × exp

(
z

b

)a

dz, (2)

where a and b are parameters set by minimizing the quantity

χ 2
N (z) =

nbins∑
i=1

[Nobs(zi ) − Nfit(zi )]2

N 2
obs(zi )

. (3)

Alternatively, we have experimented with including a weight pro-
portional to the volume of each redshift bin of width 
z,

χ 2
v,N (z) =

nbins∑
i=1

[Nobs(zi ) − Nfit(zi )]2

N 2
obs(zi )

z2
i 
zi . (4)

The effect on the best-fitting parameter values of weighting by vol-
ume is small. From now on, best-fitting parameter values a and b
obtained using equation (3) (and the redshift distribution constructed
using them) will be referred to as unweighted fits, while those found
using equation (4) will be referred to as volume-weighted fits. The
resulting best fits for the full 2PIGG catalogue are shown in Fig. 4,
as indicated by the key in the upper panel.

The parametric form adopted for the fit is particularly attractive
since it can be integrated analytically to give the cumulative redshift
distribution∫ z

0
Nfit(z) dz∫ ∞

0
Nfit(z) dz

= 1 − exp
( z

b

)a

. (5)

The smoothed redshift distribution is obtained by smoothing the
observed redshift distribution, which is tabulated in bins of width

z = 0.0025, with a top-hat window in redshift. The smoothed red-
shift distribution in Fig. 4 was produced by smoothing the observed
distribution with a top-hat of width 
z = 0.01.

3.2 Estimating the correlation function

To obtain a minimum-variance estimate of the correlation function,
each group is assigned a weight given by (Efstathiou 1988):

wi = 1

1 + 4πn(zi )J3(s)c
, (6)

where we assume J 3(s) = 1200 h−3 Mpc3, c is the angular com-
pleteness of the 2dFGRS and n(zi) is the space density of groups at
redshift zi. In Section 4.1 we explore the impact of the choice of J 3

on the measured correlation function. The space density of groups,
n(z), is obtained by integrating over the product of the cosmological
volume element and the adopted description of the redshift distri-
bution; as explained above, this could be a smoothed version of the
redshift distribution or a parametric fit. A catalogue of unclustered
points is produced with the same radial and angular selection func-
tions as the data. The number of random points is set to be 10 times
the number of data points, with a lower limit of 100 000. In the
case of the unclustered catalogue, the weights are scaled in order to
ensure that their sum matches that of the weights of the observed
groups:

wR,i = wR,i∑
j wR, j

∑
j

wD, j , (7)

where R and D indicate unclustered points and data groups,
respectively.

We adopt the Landy & Szalay (1993) estimator for calculating
the redshift-space correlation function,

ξ (s) = DD(s) − 2DR(s) + R R(s)

R R(s)
, (8)

where

XY (s) =
∑

i j

wX ,iwY , j ,

with X and Y representing the actual groups (D) and/or points in
the random catalogue (R); i and j are the indices for each individual
group/random point, and w corresponds to the weight defined above.

We use the same estimator to obtain the correlation function as a
function of pair separation perpendicular (σ ) and parallel (π ) to the
line-of-sight, ξ (σ , π ). From this correlation function, we can define
the projected correlation function

�(σ )

σ
= 2

σ

∫ ∞

0

ξ (σ, π ) dσ. (9)

This quantity is free from redshift-space effects arising from peculiar
motions and can be related directly to the real-space correlation
function (e.g. Norberg et al. 2001).

4 T E S T I N G T H E E S T I M AT I O N O F T H E
C O R R E L AT I O N F U N C T I O N

The measurement of the clustering of groups requires a number of
choices to be made that can have an impact upon the estimated corre-
lation function. In this section, we carry out a careful examination of
our method for measuring the clustering of the mock groups, with the
goal of determining a correlation function that is accurate, i.e. with
minimal systematic errors, and with random measurement errors
that are as small as possible. The mock catalogues described in Sec-
tion 2.2 play a key role in this exercise. The GALFORM mock is used
to assess systematic errors by comparing the correlation functions
measured from the semi-analytic mock group catalogue with the
correlation function of an equivalent sample in the simulation cube
(the construction of such a catalogue is described in Section 2.2).
We stress that the goal of quantifying the systematic errors is to
devise a clustering measurement algorithm that minimizes these er-
rors rather than to correct for them. The Hubble Volume mocks are
used to estimate the random measurement errors, which automati-
cally include the contribution of sample variance from large-scale
structure.

An important test for systematic errors in our clustering measure-
ment is to compare the correlation function recovered from a mock
group catalogue with that of a comparable, equivalent sample drawn
from the distribution of groups in the simulation cube.

The rest of this section is split into two parts. In the first, we present
a systematic study of how various assumptions and approximations
affect the recovered correlation function. We focus attention on the
size of the random measurement errors and on minimizing system-
atic errors in the estimated correlation function. In the second part
of this section, we build on the conclusions of the first part and apply
an optimal method to measure the clustering of mock 2PIGGs to
determine how well we can recover trends in clustering amplitude
for different subsamples of groups.

4.1 An optimal measurement of clustering

The main results of this subsection are presented in Fig. 5. Each
plot in this figure is divided into two panels. The top panel in all
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Figure 5. The accuracy with which the correlation function can be measured from the GALFORM mock catalogue for different assumptions and approximations.
In each plot, the upper panel shows the systematic error on the measured correlation function, expressed as the ratio of the correlation function measured from
a mock 2PIGG sample to that measured from an idealized, comparable sample. The errors on this ratio come from the rms scatter over the ensemble of Hubble
Volume mocks; these are used to plot the logarithm of the relative errors in the lower panel of each plot. The different plots show how well the correlation
function can be measured when the following are varied: (a) The sample definition, as given in the text: the solid lines shows results for a sample of groups
brighter than a minimum luminosity, the dotted line shows a sample of groups more massive than a minimum dynamical mass limit and the dashed line shows
the case of groups within a differential luminosity bin. (b) The minimum group membership. The thinner lines show results for a brighter sample of groups
(L > 1010.9 h−2 L
). (c) The description of the redshift distribution used to model the selection function of groups. (d) The maximum redshift used to define
the catalogue; again the thinner lines show results for a brighter sample.

cases compares the correlation function recovered from a GALFORM

mock group catalogue with the correlation function of an equiva-
lent sample, drawn from the simulation cube, of groups generated by
GALFORM. The errors on this ratio are the rms scatter over the ensem-

ble of 22 Hubble Volume group mocks. Note that this estimate of
errors includes cosmic variance, and therefore somewhat overesti-
mates the error bars in a comparison between results from the mock
and the simulation cube, since both come from the same simulated
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volume. In the absence of systematic errors in the clustering mea-
surement, this ratio would be consistent with unity, indicated by the
horizontal line. The lower panel in each plot shows the logarithm of
the relative error on the measured correlation function, as deduced
from the rms scatter over the Hubble Volume mocks. The horizontal
line indicates an error of 100 per cent. To improve the clarity of the
presentation, we have used a power-law fit to the correlation func-
tion for separations larger than 8 h−1 Mpc in the definition of the
relative error, which avoids dividing by small or negative numbers.
The correlation function of the equivalent sample of groups falls
below a power law on large scales, typically s � 15 h−1 Mpc, so
the plotted error is a lower limit to the true relative error on these
scales. We now go through the set of choices or assumptions that
needs to be made in our clustering measurement method, directing
the reader to Fig. 5 where appropriate.

(i) Choice of 2dFGRS region. The differences between the cor-
relation functions measured in the NGP and SGP regions provide
a crude estimate of the errors; these differences are comparable to
the errors inferred from the Hubble Volume mocks. We find that
the correlation functions measured in mock NGP and SGP 2dFGRS
regions are consistent within the errors. Combining the pair counts
of groups in the two regions reduces the Poisson noise and sample
variance in the clustering measurement. Henceforth, our results will
be for combined NGP and SGP samples.

(ii) Choice of J3 in the radial weight. The weight assigned to
each group to compensate for the radial selection function requires
a value for the integral of the two-point correlation function, J 3(s)
(equation 6). We have explored using constant values in the range
400 < J 3/h−3 Mpc3 < 2400, and find that the changes in the esti-
mated correlation function are small and within the statistical errors.
We adopt J 3 = 1200 h−3 Mpc3, which corresponds to the typical
asymptotic value of J 3(s) for separations s > 10 h−1 Mpc in the
Hubble Volume mocks.

(iii) Sample definition. Fig. 5(a) compares the correlation func-
tion measured for samples defined in different ways: by setting (i) a
lower limit on total group luminosity, L > 1010.2 h−2 L
 (solid line),
(ii) a lower limit on dynamical mass, M dyn > 1012.4 h−1 M
 (dotted
line), which, for the median mass-to-light ratio of the 2PIGGs (Eke
et al. 2004b), corresponds to the luminosity cut in (i), and (iii) a
differential luminosity sample defined by 1010.25 < L/h−2 L
 <

1010.55 (dashed line). The correlation function measured for the sam-
ple of groups brighter than the luminosity threshold in (i) has the
smallest systematic and random errors. This adds further weight to
the preference arrived at for cumulative bins in luminosity in Sec-
tion 2.4. The three remaining panels, Figs 5(b)–(d) show the errors
on ξ (s) for samples of mock groups with L > 1010.2 h−2 L
 (shown
by solid lines), and in some cases for a brighter sample with L >

1010.9 h−1 M
 (indicated by thin lines).
(iv) Minimum number of group members. We compare the accu-

racy of the correlation function for groups with a minimum number
of members of nmin = 2 (solid lines) and nmin = 4 (dashed lines)
in Fig. 5(b). The systematic errors on the correlation functions re-
covered from the mocks are roughly comparable in the two cases.
The random errors, however, are smaller for the case of nmin = 2.
This is expected since this sample contains more groups. We recall
that samples of groups with nmin = 2 span a wider range in mass
(see Fig 3 in Section 2.4). The dashed lines in Fig. 5(b) show the
results for a brighter sample of groups, as explained at the end of (iii)
above. This sample contains fewer groups and so the random errors
are somewhat larger than before, particularly at small separations.
The systematic errors in the correlation function recovered from the

mock 2PIGG also become significant below s ≈ 2 h−1 Mpc for the
brighter sample.

(v) Selection function model. The impact on the correlation func-
tion of using different approximations to the form of the redshift
distribution of groups to model their selection function is shown in
Fig. 5(c). The solid line shows how well the correlation function
can be measured using a parametric fit to the redshift distribution of
groups in the mock, as described in Section 3.1; the dotted line shows
the results when a volume weighting is applied to determine the best-
fitting parameters. On small scales, s < 3 h−1 Mpc, the systematic
and random errors are very similar in these two cases. On larger
scales, however, the unweighted fit results in a more faithful and
less noisy measurement of the correlation function. The evidence in
this panel shows that the approach of using the smoothed redshift
distribution of groups to model their selection function (dashed line)
is clearly flawed, leading to a significantly discrepant estimate of
the correlation function for separations s > 1 h−1 Mpc.

(vi) Sample redshift limit. An increase in the redshift limit of
the sample leads to a larger volume and the associated increase
in the size of the sample. However, these additional groups come at
the expense of requiring a larger correction to the observed group
luminosity to deduce the total group luminosity. The consequences
of varying the maximum redshift limit of the sample are presented in
Fig. 5(d), where the cases zmax = 0.12 (light lines) and zmax = 0.15
(dark lines) are considered. There is a negligible difference in the
random measurement errors for these redshift limits. The correlation
function is more accurately recovered for zmax = 0.12.

The conclusions of this subsection are that an optimal measure-
ment of the clustering of the 2PIGG catalogue will be obtained under
the following conditions:

(i) The pair counts in the NGP and SGP regions of the 2dFGRS
are combined.

(ii) The value of J 3 is taken to be 1200 h−3 Mpc3, though the
results are fairly insensitive to the exact value.

(iii) Cumulative bins in luminosity are used to define subsamples
of groups from the 2PIGG catalogue.

(iv) nmin = 2 is used, which leads to the most reliable measure-
ments.

(v) The most accurate model of the selection function is obtained
by a simple parametric fit to the observed group redshift distribution.

(vi) A conservative redshift of zmax = 0.12 is used.

4.2 The clustering of subsamples of groups

We now investigate how well we can distinguish between the clus-
tering signals displayed by different samples of groups defined by
mass. We also test our clustering measurement algorithm to see
how faithfully the clustering signal can reproduce an idealized mea-
surement. This is an important consideration, as this determines the
strength of the constraints we can place on theoretical models of the
clustering of galactic systems.

The errors on the measured correlation function are obtained from
the rms scatter over the ensemble of Hubble Volume mock 2PIGG
catalogues. We show these relative errors in Fig. 6. The horizontal
line marks an error of 100 per cent. This plot indicates that we should
be able to get a robust measurement of the correlation function out to
pair separations of s ∼ 30 h−1 Mpc. The small-scale limit depends
more upon the sample under consideration, due to the changing
space density of groups. For the full group sample, the correlation
function can be measured down to separations below s ∼ 1 h−1 Mpc;
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Figure 6. The relative errors on our measurement of ξ (s), obtained by
dividing the rms scatter in ξ (s) from the Hubble Volume mocks by the mean
value of ξ (s) for s < 8 h−1 Mpc, and a fit to the mean ξ (s) (over 8 < s/(h−1

Mpc) < 15) for s > 8 h−1 Mpc. The horizontal black line shows the 100 per
cent error limit. Different line types correspond to different subsamples as
indicated by the key.

for the most luminous sample, which has a much lower space density,
the smallest pair separation that can be probed is s ≈ 3 h−1 Mpc.

To test the accuracy of our clustering measurements, we have ex-
tracted samples of groups from the GALFORM mock catalogue defined
by a series of lower limits in total group luminosity as discussed ear-
lier. The clustering measured for these samples is compared with
that of samples drawn from the simulation cube using two differ-
ent criteria to construct equivalent samples as discussed earlier. The
samples drawn from the simulation cube are idealized in the sense
that they do not have a radial or angular selection function imposed
upon them as is the case for the mock 2PIGG catalogue. Moreover,
the groups occupy dark-matter haloes identified by a friends-of-
friends group finder. The mass of a group in the simulation cube
is known very accurately: it is simply the sum of the mass of the
dark-matter particles connected by the group finder.

The correlation functions measured for mock group subsamples
defined by a lower limit on total group luminosity are compared
with the results for the equivalent samples drawn from the simula-
tion cube in Fig. 7. The top row of this figure shows the comparison
when the equivalent samples are set up to reproduce the mass func-
tion of groups recovered from the mock group catalogue for each
luminosity subsample. The bottom row shows the comparison for
equivalent samples constructed to match the effective bias estimated
from the mock subsamples. The left-hand column shows the results
for groups with a minimum membership nmin = 2, and the right-
hand column for nmin = 4. The clustering measurements from the
mock subsamples are in impressively good agreement with the re-
sults obtained for the equivalent samples in the simulation cube,
particularly for the case of nmin = 2. The equivalent samples con-
structed to reproduce the effective bias of mock group subsamples
are in somewhat better agreement with the measurements from the
mocks for the brighter group samples.

The agreement in clustering amplitude between samples of groups
taken from a mock and those extracted from an idealized simulation
is significant; it means that we fully understand the impact of making
a mock group catalogue on the measurement of the clustering of

groups and can use the clustering of 2PIGG samples to constrain
theoretical models of structure formation.

5 2 P I G G R E S U LT S

In this section we measure the clustering amplitude of the real
2PIGGs for samples defined by total group luminosity. Some basic
properties of the samples are given in Table 1. We apply the optimal
clustering measurement algorithm set out at the end of Section 4.1.
We combine the pair counts in these regions to estimate the cor-
relation function. We have checked that the measurements for the
individual regions agree within the errors.

An important test of the integrity of a group catalogue is the form
of the correlation function measured in bins of pair separation par-
allel (π ) and perpendicular (σ ) to the line of sight, ξ (σ , π ). Padilla
& Lambas (2003a,b) explored different techniques used in the con-
struction of group and cluster catalogues. They found that the shape
of ξ (σ , π ) is a powerful way to reveal spurious agglomerations
of galaxies. A tell-tale sign of problems with the composition of
galaxy groups is a significant enhancement of the correlation func-
tion, ξ (σ , π ), in the π direction, as seen in the early analyses of
Abell catalogue clusters (e.g. Bahcall & Soneira 1983; Sutherland
1988). Such a distortion of the clustering pattern is seen for 2dFGRS
galaxies, due to the large peculiar motions inside massive virialized
structures (Peacock et al. 2001; Hawkins et al. 2003). However,
for the case of groups and clusters, such virialized structures are
not predicted in viable models of structure formation (Kaiser 1987;
Padilla et al. 2001; Padilla & Baugh 2002). The correlation function,
ξ (σ , π ), for samples of 2PIGGs is shown in Fig. 8. There is no en-
hancement of the clustering signal in the π direction. The contours
of constant clustering amplitude are, however, affected by peculiar
motions, showing the flattening due to the infall motions expected in
the gravitational instability paradigm (Padilla et al. 2001; Peacock
et al. 2001). There is also a clear increase in clustering amplitude
with sample luminosity.

The projected correlation function, �(σ )/σ , is the integral of
ξ (σ , π ) over the π direction (e.g. Norberg et al. 2001). This statistic
is unaffected by peculiar motions. In Fig. 9, we show the projected
correlation functions for selected samples of 2PIGGs. The black line
shows the best fit to the projected correlation function of galaxies in
the 2dFGRS for comparison (Hawkins et al. 2003). We find that the
lowest-luminosity sample plotted is less strongly clustered than the
galaxy distribution, a point to which we return later on in this section.
The brightest sample of groups displays a clustering amplitude that
is an order of magnitude stronger than that measured for 2dFGRS
galaxies.

The projected correlation function, due to the way it is calculated,
can be unreliable if the correlation function is noisy on large scales.
A more robust quantity in such cases is the redshift space correlation
function, ξ (s). This quantity is the average of ξ (σ , π ) within annuli
of radius s = (σ 2 + π2)1/2. The redshift space correlation function
measured for 2PIGG samples with membership nmin � 2 is plotted
in the left-hand panel of Fig. 10. For reference, we also plot the
redshift space correlation function of 2dFGRS galaxies measured
by Hawkins et al. (2003). The correlation function of the group
samples has a similar shape to that obtained for galaxies, on scales
where a comparison is reliable. There is, however, a dramatic change
in clustering amplitude with group luminosity, mirroring that seen
for the projected correlation function in Fig. 9. These points are
emphasized in the right-hand panel of Fig. 10, in which we plot
the group correlation function divided by the galaxy correlation
function. There is a relative bias between the spatial distribution
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Figure 7. The correlation functions measured in the GALFORM 2PIGG mock for samples defined by lower group luminosity limits (symbols with error bars).
In the left-hand column, results are shown for nmin = 2 and in the right for nmin = 4. These measurements are compared with the correlation functions of
equivalent samples of groups taken from the simulation cube (lines). Two different methods of constructing these equivalent samples have been used. In the
top row, the equivalent samples have the same mass function as the groups in the sample from the mock 2PIGG catalogue. In the bottom row, the equivalent
samples are complete above some halo mass, chosen so that the groups have the same effective bias as those recovered from the mock 2PIGG catalogue.

Table 1. The properties of the 2PIGG samples used. A maximum redshift of z = 0.12 is adopted and there are a minimum of two
galaxies per group. The first column gives the sample label (0 denotes the full group sample), the second gives the lower luminosity limit
that defines each sample, the third column gives the median luminosity of groups in the sample, the fourth column gives the mean number
of galaxies per group (the value in brackets gives the median number of group members), the fifth column gives the median velocity
dispersion along with half the interval containing 68 per cent of the groups, the sixth column gives the median mass of the groups (group
mass is obtained using equation 4.7 from Eke et al. 2004a), the seventh column gives the combined number of groups in the NGP and
SGP regions, the eighth column gives the mean separation of groups and column nine gives the redshift space correlation length.

Sample luminosity cut median luminosity N member 〈σ g〉 median mass Number dc s 0

ID log10(L/h−2 L
) (1010 h−2 L
) mean [median] (km s−1) (1012 h−1 M
) of groups (h−1 Mpc) (h−1 Mpc)

0 all 1.8 4.0 [2] 149 ± 187 5.0 15938 4.0 5.5 ± 0.1
1 >10.2 3.0 5.3 [3] 181 ± 184 9.4 8914 7.5 6.0 ± 0.2
2 >10.6 5.5 9.0 [5] 229 ± 175 22 3530 10.1 7.8 ± 0.3
3 >10.9 12 19 [12] 318 ± 166 64 1020 16.2 11.1 ± 0.9
4 >11.1 19 29 [20] 378 ± 196 110 467 23.4 12.6 ± 1.0
5 >11.3 30 45 [32] 460 ± 200 200 211 32.9 16.0 ± 1.7
6 >11.5 42 60 [47] 539 ± 161 310 119 46.0 19.4 ± 2.9
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Figure 8. The correlation function, ξ (σ , π ), for selected 2PIGG samples, as indicated by the label on each panel. The grey-scale indicates the amplitude of
the correlation function, with darker shading indicating stronger clustering: ξ (σ , π ) > 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 2, 3 and 5 are shown. The ξ = 1 contour
is also marked by a thick black line. The thin black lines show the expected shape of the ξ (σ , π ) contours in the absence of redshift-space distortions of the
clustering pattern.

of groups and galaxies. For the full 2PIGG sample, and also for
the next-faintest luminosity sample, this relative bias is actually an
antibias; these groups are more weakly clustered than the galaxies.
The brightest groups, on the other hand, are almost 10 times more
strongly clustered than the galaxy distribution.

A useful summary of the clustering measurements can be made by
plotting the correlation length, s 0, as a function of the mean group
separation, dc, which is related to the space density of groups, n,
by dc = 1/n1/3. The space density of groups is estimated using the
cumulative bJ-band luminosity function of 2PIGGs out to z = 0.12
(Eke et al. 2004b). The space density of each subsample is simply
the luminosity function evaluated at the appropriate lower limit in
luminosity. We estimate the correlation length [defined by ξ (s 0) =
1] by fitting a power law to the measured redshift space correlation
function for pair separations in the range 0.4 < log10(s/h−1 Mpc) <

1.3. Our results are fairly insensitive to perturbations to this range.
The clustering strength of 2PIGG samples versus mean group

separation is plotted in Fig. 11. There is an increase in clustering

strength with the mean separation of groups in each sample; the
clustering strength increases slightly less rapidly than the change
in group separation. There is very good agreement between the
results for nmin = 2 and nmin = 4 for group separations for which a
comparison is possible. Fig. 11 also shows the s 0–dc relation in the
GALFORM mock 2PIGG catalogue with nmin = 2, which is in very
close agreement with the results from the real 2PIGG samples. The
solid and dotted lines show the measurements for equivalent samples
of groups drawn from the simulation cube. The solid line gives the
s 0–dc relation in redshift space and the dotted line shows the real-
space results. The clustering amplitude is typically 10–20 per cent
weaker in real space than in redshift space.

The 2PIGG results are compared with a selection of measure-
ments taken from the literature in Fig. 12. This comparison between
data sets should be treated with caution due to a number of differ-
ences in the way the various samples have been defined and anal-
ysed: namely, in decreasing order of seriousness: (i) the technique
used to identify groups and clusters, (ii) the derivation of a value

C© 2004 RAS, MNRAS 352, 211–225



222 N. D. Padilla et al.

Figure 9. The projected correlation function of selected 2PIGG samples.
The samples are indicated by the key; error bars are plotted on the mea-
surements for selected samples for clarity. The solid line shows a fit to the
projected correlation function of 2dFGRS galaxies taken from Hawkins et al.
(2003).

for the mean intergroup separation and (iii) the calculation of the
correlation length.

Zandivarez et al. (2003) measured the clustering of groups in a
catalogue constructed from the 100k release of 2dFGRS data by
Merchán & Zandivarez (2002). The two most abundant samples
of groups analysed by Zandivarez et al. have a significantly higher
clustering amplitude than we recover for 2PIGG groups of compa-
rable abundance. Zandivarez et al. estimated dc from a dynamical
estimate of the group mass which they translated into a spatial abun-
dance using the measured mass function of groups (Martı́nez et al.
2002). Moreover, Zandivarez et al. only consider groups with nmin =
4; such groups are probably only associated with low-mass systems

Figure 10. Left panel: the redshift-space correlation function, ξ (s), measured for samples of 2PIGGs. The samples are shown by the key. Error bars are
plotted for selected samples for clarity. The solid line shows ξ (s) for 2dFGRS galaxies, measured by Hawkins et al. (2003). Right panel: the ratio of the group
correlation function to the galaxy correlation function, plotted on a logarithmic scale.

Figure 11. The correlation length in redshift space, s 0, plotted as a function
of the mean group separation, dc. The 2PIGG results are shown by filled
squares for nmin = 2. Also shown for comparison are measurements from
the GALFORM mock plotted with triangles. The solid line shows the s 0–
dc relation obtained from the simulation cube for equivalent samples of
groups (see text). The dotted line shows how these results change when the
correlation length is measured in real space.

through errors in the dynamical mass estimates. The abundance of
groups in the Updated Zwicky Catalogue was estimated in a similar
way by Merchán et al. (2000). Bahcall et al. (2003) have applied a
photometric technique (Annis et al., in preparation) to a subset of
the Sloan survey data to obtain a sample of clusters that overlaps
with the most luminous 2PIGG groups and with APM Survey clus-
ters (Croft et al. 1997; Dalton et al. 1997). The Sloan measurements
are in reasonable agreement with the results from APM clusters and
are marginally lower than the 2PIGG values at comparable abun-
dances. However, both the SDSS and APM clusters are identified in
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Figure 12. A comparison of the s 0–dc relation for different samples. The
squares show the results from the 2PIGGs for nmin = 2. The other symbols
show a selection of data taken from the literature, as indicated by the key.
The lines show fits to subsets of the data, with sources indicated by the key.

Figure 13. A comparison of the s 0–dc relation for 2PIGG groups (squares)
and for 2dFGRS galaxies (stars, taken from Norberg et al. 2002a). The solid
line is a fit to the 2PIGG clustering data, excluding the lowest luminosity
sample; the dotted line is a fit to the 2PIGG results including the faintest
sample. The dashed line shows the fit to the clustering strength–luminosity
relation fitted to 2dFGRS data by Norberg et al. (2001).

projection. The trend of clustering strength versus abundance found
for 2PIGGs agrees quite well with the measurements from X-ray-
selected cluster samples (Abadi, Lambas & Muriel 1998; Collins
et al. 2000; Lee & Park 2002).

The dotted line in Fig. 12 shows the s 0–dc relation advocated
by Bahcall & West (1992), whereas the dot-dashed line is the rela-
tion proposed by Bahcall et al. (2003); the dashed line is the fit of
Zandivarez et al. (2003) to their data. The analogous fit to the 2PIGG
results is plotted in Fig. 13 for clarity. If the faintest groups are ig-
nored, the 2PIGG results are described by the relation s 0 = 1.67d0.65

c .
This is somewhat steeper than the fit of Bahcall et al. (2003).

We compare the clustering of 2PIGG groups with 2dFGRS galax-
ies in Fig. 13. The clustering amplitude of 2dFGRS galaxies is taken
from Norberg et al. (2002a), who analysed volume-limited samples
defined by galaxy luminosity. The curve plotted over the galaxy
clustering measurements shows the predictions of the simple rela-
tion between relative clustering strength and luminosity deduced by
Norberg et al. (2001). The full sample of 2PIGGs is more weakly
clustered than L∗ and brighter galaxies. On the other hand, the trend
of clustering strength with pair separation is stronger for groups than
it is for galaxies.

6 C O N C L U S I O N S

We have measured the clustering of groups in the 2PIGG sample
constructed from the 2dFGRS by Eke et al. (2004a). The group
catalogue, made up of galactic systems with a minimum of two
members, contains ∼29 000 groups, out of which ∼16 000 are at z <

0.12. The sample is sufficiently large and homogenous that a robust
measurement of clustering is possible for subsamples of groups
defined by their corrected total luminosity. Our analysis has relied
extensively on the use of various mock group catalogues constructed
using high-resolution N-body simulations populated with galaxies
using the GALFORM semi-analytic model (Benson et al. 2000, 2003;
Cole et al. 2000).

In summary, the main conclusions we have reached are the fol-
lowing:

(i) The main goals of this paper were to make a robust measure-
ment of the clustering of galaxy groups with the aim of exploring
the dependence of the clustering amplitude on a property related to
group mass (for example the total group luminosity) and to com-
pare the results with theoretical predictions. We have tested our
algorithm for estimating the correlation function by comparing re-
sults obtained from a mock 2PIGG catalogue with those derived
from equivalent samples drawn from the N-body simulation cube.
The success of this comparison is significant for two reasons. First,
in order to make a robust measurement of the clustering of groups
from a flux-limited galaxy survey, it is necessary to make a number
of approximations and to choose certain parameter values (see Sec-
tion 4.1). We have tuned the algorithm for measuring the clustering
of 2PIGG groups by requiring a close match between the corre-
lation functions estimated from the mocks and the original results
from the simulation cube. Second, the ability to extract equivalent
samples of groups from a simulation volume with the same cluster-
ing as samples taken from mock 2PIGG catalogues make it possible
to interpret the 2PIGG clustering results in the context of structure
formation models.

(ii) We find that clustering amplitude increases substantially with
total group luminosity. The 2PIGG catalogue allows clustering mea-
surements to be made for samples spanning a factor of 25 in median
total luminosity. The correlation function increases in amplitude
by an order of magnitude over this luminosity interval. Another
way of expressing this is that the redshift space correlation length
changes by a factor ≈3.5 from the faintest to the brightest sample.
The most luminous groups we consider have a mean pair separation
that is ≈5.5 times greater than that of the full group sample. There
is little change in the shape of the correlation function with group
luminosity.

(iii) The shape of the redshift-space correlation function of
groups is very similar to that measured for 2dFGRS galaxies on
the scales for which a comparison is possible. The full 2PIGG sam-
ple has a weaker clustering amplitude than is measured for 2dFGRS
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galaxies; the correlation length of the 2PIGG sample with nmin = 2
is s 0 = 5.5 ± 0.1 h−1 Mpc, while that of 2dFGRS galaxies is 6.82 ±
0.28 h−1 Mpc (Hawkins et al. 2003). However, the clustering am-
plitude of brighter samples of groups is much greater than that of
2dFGRS galaxies.

(iv) The correlation functions measured for 2PIGG samples are in
very good agreement with the predictions of a semi-analytic model
of galaxy formation, the GALFORM model (Cole et al. 2000; Benson
et al. 2003), in a cold dark matter universe with a cosmological con-
stant (�CDM). Previous work has compared the predictions of the
�CDM model with measurements of the correlation length versus
abundance relation for rich clusters (Governato et al. 1999; Colberg
et al. 2000). To extend the theoretical calculations down to group-
sized systems, it is essential to extend the predictions of the spatial
distribution of dark-matter haloes in the �CDM cosmology with a
model for galaxy formation. The galaxy-formation model predicts
how the dark-matter haloes should be populated with galaxies. For
this reason, the clustering of groups provides a more stringent test
of theories of galaxy formation than the clustering of the richest
clusters.

(v) The trend of correlation length (measured in redshift space)
against mean intergroup separation can be quantified as: s 0 =
1.67 d0.65

c . The 2PIGG catalogue has made possible a robust mea-
surement of the clustering of galactic systems, ranging from poor
groups to rich clusters, from one sample for the first time. Our re-
sults are in general agreement with those obtained previously for
rich groups and clusters.

Galaxies and groups of galaxies trace the underlying distribution
of dark-matter haloes in different ways. Galaxies trace the halo dis-
tribution in a complex way. The halo occupation distribution (HOD),
which depends strongly on halo mass, has been used extensively to
constrain theoretical models (e.g. Benson et al. 2000; Peacock &
Smith 2000; Seljak 2000; Berlind et al. 2003). In principle, the
group sample should trace the halo distribution in a simple fash-
ion, with every halo above some mass spawning one galaxy group.
However, in practice, the identification of groups in real surveys is
complicated, making this ideal difficult to attain. Because of this
it is essential to devise a scheme to quantify the fidelity of a group
catalogue and to uncover any biases in comparisons with theoretical
models by applying the group finder to mock catalogues (Eke et al.
2004a).

The difference between the clustering amplitude measured for
the full 2PIGG and the full 2dFGRS galaxy samples can be readily
understood in terms of the HOD. Ideally, the groups have a one-to-
one correspondence with the underlying dark-matter haloes within
some mass interval. The galaxies obviously sample haloes in the
same mass range, but with a weight that increases with halo mass,
since the most massive haloes host more than one galaxy. Thus, the
more massive haloes, which are the more strongly clustered, make
a larger contribution to the correlation function of 2dFGRS galaxies
than they do in the case of the full 2PIGG sample. The clustering of
galaxy groups as a function of group luminosity therefore provides
an important new test of theories of galaxy formation.
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