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Abstract. We present the results of relativistic hydrodynamic simulations of the collision of two dense shells in a uniform
external medium, as envisaged in the internal shock model for BL Lac jets. The non-thermal radiation produced by highly en-
ergetic electrons injected at the relativistic shocks is computed following their temporal and spatial evolution. The acceleration
of electrons at the relativistic shocks is parametrized using two different models and the corresponding X-ray light curves are
computed. We find that the interaction time scale of the two shells is influenced by an interaction with the external medium.
For the chosen parameter sets, the efficiency of the collision in converting dissipated kinetic energy into the observed X-ray
radiation is of the order of one percent.

Key words. galaxies: BL Lac objects: general X-rays: general galaxies: quasars: general – radiation mectranisms: non-thermal
– acceleration of particles – methods: numerical

1. Introduction

BL Lac objects are thought to be dominated by relativistic
jets seen at small angles to the line of sight (Urry & Padovani
1995), and their remarkably featureless radio-through-X-
ray spectra are well fitted by inhomogeneous jet models
(Bregman et al. 1987). As the measured spectra can be repro-
duced by models with widely different assumptions, the struc-
ture of the relativistic jets remains largely unknown. Only the
analysis of the temporal variations of the emission and com-
bined spectral and temporal information can considerably con-
strain the jet physics. Time scales of the observed light curves
are related to the crossing time of the emission regions which
depend on wavelength and/or the time scales of micro-physical
processes like particle acceleration and radiative losses. The
measured time lags between the light curves at different ener-
gies as well as spectral changes during intensity variations al-
low one to probe the microphysics of particle acceleration and
radiation in the jet.

Recently, several extended observation campaigns on the
prominent BL Lacs PKS 2155−304, Mrk 501, and Mrk 421
by ASCA and BeppoSAX, partly simultaneously with RXTE
and TeV telescopes, have revealed that in general the X-ray
spectral index and the peak energy correlate well with the
source intensity (for a review see Pian 2002). The emission
of the soft X-rays is generally well correlated with that of the
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hard X-rays and lags it by 3−4 ks (Takahashi et al. 1996, 2000;
Zhang et al. 1999; Malizia et al. 2000; Kataoka et al. 2000;
Fossati et al. 2000). However, significant lags of both signs
were detected from several flares (Tanihata et al. 2001). From
XMM-Newton observations of PKS 2155-304 Edelson et al.
(2001) give, however, an upper limit to any time lags of |τ| ≤
0.3 h. They suggest that previous claims of time lags of soft
X-rays with time scales of hours might be an artifact of the
periodic interruptions of the low-Earth orbits of the satellites
every ∼1.6 h. Large flares with time scales of ∼1 day were de-
tected with temporal lags of less than 1.5 h between X-ray and
TeV energies (for Mrk 421 see Takahashi et al. 2000). For all
three sources the structure function and the power density spec-
trum analysis indicate a roll-over with a time scale of the order
of 1 day or longer (Kataoka et al. 2001) which seems to be the
time scale of the successive flare events. On shorter time scales
only small power in the variability is found with a steep slope
of the power density spectrum ∼ f −(2−3) (Tanihata 2002).

These results were obtained from data with a relatively
low signal-to-noise ratio, integrated over wide time inter-
vals (typically one satellite orbit). Uninterrupted data with
high temporal and spectral resolution can now be provided
by XMM-Newton. From an analysis of early data taken with
the XMM-Newton EPIC cameras from Mrk 421, the bright-
est BL Lac object at X-ray and UV wavelengths, for the first
time the evolution of intensity variations could be resolved
on time scales of ∼100 s (Brinkmann et al. 2001). Temporal
variations by a factor of three at highest X-ray energies were
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accompanied by complex spectral variations with only a small
time lag of τ = 265+116

−102 s between the hard and soft photons.
In an extensive study of all currently available

XMM-Newton observations of Mrk 421 Brinkmann et al.
(2003) find that the source exhibits a rather complex and irreg-
ular variability pattern – both, temporarily and spectrally. In
general, an increase in flux is accompanied by a hardening of
the spectrum as expected from a shift of the synchrotron peak
to higher energies. But there are exceptions and the rate of the
spectral changes varies strongly. The shortest variability time
scales appear to be of the order of >∼ks. The lags between the
hard and soft band flux are small and can be of different sign.

Correspondingly, it is hard to deduce the underlying physi-
cal parameters for the radiation process from the observations.
For the currently favored “shock-in-jet” model for the BL Lac
emission (see, for example, Spada et al. 2001) this implies that
we are seeing the emission from multiple shocks which have ei-
ther widely different physical parameters or that we detect the
emission from similar shocks at very different states of their
evolution, additionally being masked by relativistic beaming
and time dilatation effects.

The internal shock scenario assumes that an intermittently
working central machine produces blobs of matter moving at
different velocities along the jet. The interaction of two blobs is
modeled as the collision of two shells whose interaction starts
from the time of collision (Sikora et al. 2001; Spada et al.
2001; Moderski et al. 2003; Tanihata et al. 2003). This time
is estimated from the relative velocity of two shells. During
the interaction an internal shock propagates through the slower
shell and accelerates electrons which produce the observed ra-
diation (Spada et al. 2001; Bicknell & Wagner 2002). These
analytic models can be used to constrain the dimensions and
physical properties of the emitting regions, but they cannot take
into account the detailed hydrodynamic evolution of the inter-
acting shells, nor the influence of the external medium prior to
the interaction. To this end we have simulated the two dimen-
sional axisymmetric evolution of two dense shells moving at
different collinear velocities through a homogeneous external
medium.

In Sect. 2 we describe the numerical method we have used
to simulate both the hydrodynamics and the temporal evolu-
tion of non-thermal electrons in the fluid. The shock accelera-
tion process is modeled by two different approaches which are
described in detail in Sect. 3. The results of our study are pre-
sented and discussed in Sect. 4, and the conclusions are given
in Sect. 5.

2. Numerical method

We assume that the dynamics of blazars are dominated by the
thermal (baryonic or cold) matter while their emission is pro-
duced by a non-thermal component, which is in agreement with
Sikora et al. (2001). This is justified in our model because the
number densities of electrons and protons are equal and, thus,
the inertia of the baryons is much larger than that of the leptons.

We have performed a set of two dimensional axisymmetric
simulations (in cylindrical coordinates r and z) of dense shells
of matter moving at different relativistic speeds in the same

direction. The shells collide after some time giving rise to in-
ternal shocks, where part of the internal energy of the thermal
fluid is transferred to relativistic electrons producing the ob-
served synchrotron radiation.

The problem is split into two parts, a thermal and non-
thermal one. The evolution of the thermal or hydrodynamic
component of rest mass density ρ, pressure P, radial velocity vr
and axial velocity vz is simulated by means of a relativistic hy-
drodynamic code. The code also includes a set of N additional
fluid components tracing the evolution of non-thermal relativis-
tic electrons at different energies. The tracer fluids of number
density ni (i = 1, . . . ,N) are advected by the thermal fluid, and
are coupled in energy space by their radiative energy losses.

In the following subsections we detail the algorithms used
for the simulation of the thermal fluid (Sect. 2.1), of the rela-
tivistic electrons (Sect. 2.2) and of the coupling between them
(Sect. 2.4).

2.1. Hydrodynamics

The equations of relativistic hydrodynamics can be cast in a
system of conservation laws of the form

∂U
∂t
+

3∑
k=1

∂Fi

∂xi
= 0, (1)

where U and Fk are the vector of conserved variables and
the flux vectors, respectively (e.g., Marti et al. 1994). In the
case of axial symmetry and expressed in cylindrical coordi-
nates (r, z) Eq. (1) reads

∂U
∂t
+

1
r
∂rF
∂r
+
∂G
∂z
= S, (2)

where

U =
[
ρΓ, ρhΓ2vr, ρhΓ

2vz, ρhΓ
2 − P − ρΓ, ρXΓ

]T
(3)

is the vector of conserved quantities and

F =
[
ρΓvr, ρhΓ

2v2r + P, ρhΓ2vzvr, ρhΓ
2vr − ρΓvr, ρXΓvr

]T
(4)

and

G =
[
ρΓvz, ρhΓ

2vrvz, ρhΓ
2v2z + P, ρhΓ2vz − ρΓvz, ρXΓvz

]T
, (5)

are the corresponding flux vectors in r and z direction, re-
spectively. Note that for reasons of convenience the speed of
light, which is denoted by c elsewhere, is set equal to one in
this subsection. Consequently, the Lorentz factor is given by
Γ ≡ (1−v2r−v2z )−1/2, and the specific enthalpy by h = 1+ε+P/ρ,
where ε is the specific internal energy of the fluid.

S =
[
0,

P
r
, 0, 0, 0

]T

(6)

is the source vector expressing the non-conservation of the
radial momentum in cylindrical coordinates, and

X = [X1, . . . , XN]T , (7)

is an N-component vector with

Xi =
nime

ρ
, i = 1, . . . ,N, (8)
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where me is the electron rest mass, and Xi is the mass fraction
of the tracer species i with respect to the mass of the thermal
fluid.

The conservation laws are integrated with the GENESIS
code of Aloy et al. (1999). This code, which exploits the piece-
wise parabolic method (Colella & Woodward 1984), was suit-
ably modified to passively advect a set of non-thermal species
along with the main thermal fluid. We assume that the thermal
component is a perfect fluid obeying an ideal equation of state
of the form P = (γad − 1)ερ, where γad = 4/3 is the adiabatic
index.

2.2. Non-thermal population

The non-thermal particle population evolves both in space and
time. Limiting the physical conditions in the fluid in such a
way that during a time step non-thermal particles are contained
in a single numerical cell, it is possible to split the evolution
of the non-thermal particles in space and in time. This implies
that there is a minimum magnetic field or, equivalently, a max-
imum allowed Larmor radius that depends on the numerical
resolution employed (see below). We point out, however, that
there are other approaches which treat the evolution of non-
thermal particles by solving the diffusion-convection equation
(Miniati 2001; Jones et al. 1999). The spatial evolution of the
non-thermal particles is done by advecting them along with the
fluid and, thus, their macroscopic velocity field corresponds to
that of the thermal fluid (see Sect. 2.1). The treatment of the
temporal evolution is described in this section.

The non-thermal particle population is assumed to be com-
posed of ultra-relativistic electrons injected at shocks. Its tem-
poral evolution is governed by the kinetic equation (e.g.,
Kardashev 1962):

∂n(γ, t)
∂t

+
∂

∂γ
(γ̇n(γ, t)) = Q(γ), (9)

where n(γ, t) is the number density of electrons having a
Lorentz factor γ at a time t, and γ̇ ≡ dγ/dt represents the radia-
tive losses. In the case of synchrotron radiation the energy loss
in cgs-units is (e.g., Rybicki & Lightman 1979)

γ̇ = −qB2γ2

with

q ≡ − 2e4

3m3
ec5
·

Here, B and e are the magnetic field strength and the electron
charge, respectively.

The time-independent source term Q(γ) present in Eq. (9)
gives the number of electrons injected at shocks with Lorentz
factor γ per unit of time. Relativistic electrons are injected
in zones of the computational grid which separate shocked
and unshocked thermal fluid. Shocks are detected using
the standard criterion in the Piecewise Parabolic Method
(Colella & Woodward 1984) applied to the thermal fluid. For
shock acceleration to take place, the magnetic field strength
has to exceed some minimum value such that the correspond-
ing Larmor radius rL of the fastest particle is smaller than the

smallest zone size (∆L). This is consistent with our splitting of
the spatial and temporal evolution of the non-thermal particles
(see above). Therefore, the injection of electrons at shocks is
limited to situations where the inequality

rL

∆L
=

mec2

eB

√
γ2

max − 1
∆L

≤ ξ (10)

holds. Here ξ is a free parameter such that ξ � 1 (in our sim-
ulations we take ξ = 10−1), and γmax is the maximum Lorentz
factor of the particles which are injected into the zone (see be-
low). In terms of the magnetic field strength, condition (10)
becomes

B ≥ mec2

ξe∆L

√
γ2

max − 1, (11)

or numerically

B ≥
(

1.7 × 103cm
ξ∆L

) √
γ2

max − 1 G. (12)

The injected electrons are assumed to have a power-law distri-
bution in the interval [γmin, γmax] with a power law index pinj.
Then the appropriate time-independent source term reads

Q(γ) = Q0γ
−pinjS(γ; γmin, γmax), (13)

where S(x; a, b) is the interval function:

S(x; a, b) =

{
1 if a ≤ x ≤ b
0 otherwise.

The magnetic field B is assumed to be randomly oriented, and
its strength is parametrized by the parameter αB which is de-
fined as the ratio between the energy density of the magnetic
field and the thermal energy density of the fluid:

B2

8π
= αB

p
γad − 1

·

In our simulations the parameter αB was set equal to a value
of 10−3 in order to obtain magnetic field strengths of the order
of 0.1 G in the emitting region (Bicknell & Wagner 2002).

The emissivity j(ν) of the synchrotron radiation for a pop-
ulation of relativistic electrons with a distribution n(γ) is given
by (e.g., Rybicki & Lightman 1979)

j(ν) =

√
3e3B

4πmec2

∫ ∞

1
dγn(γ)F

(
ν/ν0γ

2
)
, (14)

where F(x) = x
∫ ∞

x
dy K5/3(y); K5/3(x) is the modified Bessel

function of index 5/3, and

ν0 =
3eB

4πmec
·

In each zone of the computational grid the non-thermal electron
population is represented by a sum of power laws in N Lorentz
factor intervals

n(γ, t) =
N∑

i=1

ni
0(t)γ−pi(t)S(γ; γi−1, γi), (15)
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where γi−1 and γi are the lower and upper boundaries of the ith
power law distribution, which at time t is normalized to ni

0(t)
and has a power law index pi(t). The γi are logarithmically dis-
tributed according to

γi = γ0

(
γN

γ0

)(i−1)/(N−1)

, i = 1, . . . ,N

where γ0 and γN are the lower and upper limit of the whole
energy interval considered for the non-thermal electron popu-
lation.

Equation (9) can be solved analytically for an initial power
law distribution with no injection, and for a power law injection
with no initial electron distribution (Kardashev 1962). We use
these solutions with a slight modification arising from the fact
that we solve the equation for each energy interval separately.

The solution for the case of an initial power law distribution

n(γ, 0) = n0γ
−p0S(γ; γmin, γmax) (16)

of index p0 with no injection (Q = 0) is

n(γ, t) = n0γ
−p0

(
1 − qB2γt

)p0−2

×S
(
γ/

(
1 − qB2γt

)
; γmin, γmax

)
. (17)

When no electrons are initially present (n(γ, 0) = 0), and when
the injection occurs at a constant rate with a power law of index
pc (pc = 2.2, see Sect. 2.4), i.e.,

Q(γ) = Q0γ
−pcS(γ; γmin, γmax) (18)

the solution is given by

n(γ, t) =
Q0

qB2(pc − 1)
γ−2

(
γ

1−pc

low − γ1−pc

high

)

×S
(
γ; γmin/

(
1 + qB2γmint

)
, γmax

)
. (19)

γlow and γhigh are evaluated according to

(γlow, γhigh) =



(γmin, γmax) ; if
γmax

1 + qB2γmaxt
≤ γ < γmin

(
γmin,

γ

1 − qB2γt

)
; if

γmin

1 + qB2γmint
≤ γ < γmin

(
γ,

γ

1 − qB2γt

)
; if γmin ≤ γ ≤ γmax

1 + qB2γmaxt

(γ, γmax) ; if
γmax

1 + qB2γmaxt
< γ ≤ γmax.

The case γlow = γ, γhigh = γ/(1−qB2γt) is the solution given by
Kardashev (1962). This solution is also recovered in the limit
of an infinite interval (γmin → 0, γmax → ∞).

Because the kinetic equation Eq. (9) is linear in n(γ, t),
it can be solved for the distribution given in Eq. (15) using
Eqs. (17) and (19) for each term in the sum separately. The new
solution is then again approximated in the form of Eq. (15).

2.3. Synchrotron radiation

The frequency dependent synchrotron emission is computed by
substituting n(γ) from Eq. (15) into Eq. (14). Since synchrotron
self-absorption is not significant in the frequency range con-
sidered (1016–1019 Hz), we compute the observed radiation by
summing up the contributions from all zones of the computa-
tional grid in each time step taking into account the light travel
time to the observer.

2.4. Coupling of the thermal and non-thermal
components

In this section we explain how the energy losses of the non-
thermal particles (see Sect. 2.3) are coupled to the thermal
fluid. There are different ways in which Q0 can be computed
from the macroscopic hydrodynamic quantities. It is impor-
tant to point out that the acceleration time scale of the elec-
trons (Bednarz & Ostrowski 1996) is much smaller than the hy-
drodynamic time scale. Therefore, following the arguments of
Jones et al. (1999), we do not treat the shock acceleration pro-
cess microscopically, but instead provide macroscopic models
which describe the effects of the electron injection averaged
over a hydrodynamic time step. Such models are not unique,
and they depend on a number of free parameters, i.e., they
may produce different light curves from the same hydrody-
namic evolution. We will profit from this lack of uniqueness by
comparing our synthetic light curves with actual observations.
This will allow us to disregard injection models which do not
match observed data. In the following two subsections we con-
sider two models of electron acceleration, each with different
choices of free parameters.

2.4.1. Injection model of type-E

Once a shock is detected, we compute ε̇, the change of the inter-
nal energy of the thermal fluid per unit of time behind shocks.
We assume that ε̇acc, the energy density available per unit of
time to accelerate non-thermal electrons, is a fraction αe of ε̇
(Daigne & Mochkovitch 1998; Bykov & Meszaros 1996), i.e.,

ε̇acc = αeε̇ =
αe

γad − 1
ṗ, (20)

where ṗ denotes the temporal change of the fluid pressure be-
hind a shock due to the hydrodynamic evolution. From the
definition of the source term (Eq. (13)) follows

ε̇acc =

∫ γmax

γmin

dγ γmec2 QE
0 γ
−pinj . (21)

The back reaction of the energy loss due to particle accelera-
tion on the flow is incorporated by decreasing the pressure in
the zone(s) where the acceleration takes place during a time
interval ∆t. From Eq. (20) one gets

∆p = −γad − 1
αe
ε̇acc∆t, (22)

where ∆t is computed in the rest frame of the zone.
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Fig. 1. A schematic view of the initial setup: two identical, cylindrical shells of radius Rsh, height Lsh, density ρsh, and initial separation D0

move through an external medium of density ρext < ρsh with velocities V1 and V2 along the symmetry axis (z-direction) such that V2 > V1.

Combining Eqs. (13), (21) and (20) one obtains

QE
0 =

αe(pinj − 2)γ
pinj−2
min

mec2(γad − 1)
(
1 − η2−pinj

) ṗ, (23)

where η ≡ γmax/γmin.
The three free parameters of this injection model are αe, η

and γmin, respectively.

2.4.2. Injection model of type-N

This model similar to the previous one in that the source term
normalization QN

0 satisfies the Eq. (23) but additionally the
number density of electrons nacc

e accelerated within a time
step ∆t is parameterized to be a fraction ζ of the number of
electrons in the zone

nacc
e = ζ

ρ

mp
, (24)

where mp is the proton mass. Using Eq. (13) one finds

nacc
e = ∆t

QN
0

pinj
γ

1−pinj

min

(
1 − η1−pinj

)
. (25)

Using Eqs. (23)–(25) one obtains

γmin =
pinj − 1

pinj − 2
αe

ζ

1 − η1−pinj

1 − η2−pinj

mp

mec2

ṗ∆t
(γad − 1)ρ

, (26)

for the minimum Lorentz factor, and

QN
0 =

ζ

mp

ρ

∆t

pinj − 1

γ
1−pinj

min

(
1 − η1−pinj

) , (27)

for the source normalization, where γmin is given by Eq. (26).
The three free parameters of this injection model are αe, η,

and ζ, respectively.

3. Results

3.1. Hydrodynamic setup

The density of the two colliding, identical shells is ρsh =

104 ρext = 10−22 g cm−3, and their temperature is half the tem-
perature of the external medium Text = 7 × 107 K. The two
shells move with Lorentz factors Γ1 = 3 and Γ2 = 15, re-
spectively. Initially, both shells are of cylindrical shape with

a height Lsh = 1014 cm and a radius Rsh = 1016 cm. The shells
are initially separated by a distance D0 = 5 × 1014 cm. The
initial setup is shown schematically in Fig. 1.

The two colliding shells modeled in our simulations are ini-
tially located near the left boundary of the computational grid
at z = zmin (Sect. 1). When the leading of the two shells ap-
proaches the right boundary of the grid at z = zmax, the grid
is translated into positive z-direction such that both shells are
again located near the left boundary of the grid at z = zmin. In
order to prevent any numerical artifact due to this re-mapping
close to the left grid boundary at zmin, we place the shells suffi-
ciently far from that boundary such that the Riemann structure
emerging from the back of the trailing shell remains practically
unaffected.

The hydrodynamic set up consists of a two-dimensional
computational grid in cylindrical coordinates (r, z) of 40 ×
2000 zones covering a physical domain of 1.5 × 1016 cm by
5×1015 cm. The grid is initially filled with an external medium
at rest, which has a uniform density ρext = 10−26 g cm−3 and
a uniform pressure pext = 10−11 erg cm−3. After every re-
mapping the computational domain ahead of the shells is re-
filled with that external medium.

We point out that the ratio χ = ρc2/4p is rather large
(according to Bicknell & Wagner 2002) in the shells initially
(χ ≈ 4.5×104), but it decreases considerably during the hydro-
dynamic evolution (see next section).

3.2. Hydrodynamic evolution

As the shells are set up as sharp discontinuities in a uniform
external medium they experience some hydrodynamic evolu-
tion before the actual collision, which starts when the Riemann
structure trailing the slower leading shell meets the bow shock
of the fast trailing shell. This pre-collision evolution is rather
similar for both shells, and can be estimated analytically using
an exact one dimensional Riemann solver. In Fig. 2 the two top
panels show the analytic evolution of the flow conditions. The
front (with respect to the direction of motion) discontinuity of
each shells decays into a bow shock (S 1b and S 2b), a contact
discontinuity (in Fig. 2 we only show a zoom of the one cor-
responding to the leading shell, CD1R), and a reverse shock
(S 1a and S 2a). The back discontinuity of each shells develops
into a rarefaction (R1b and R2b) that connects the still
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R2a

R2b

R1b

R1a

S1a

S2b
S2a

S1b

S1b
R1b

R1a

CD1L

CD1R

S1a

Fig. 2. Snapshot illustrating the flow structure along the symmetry axis arising from the setup described in Fig. 1 just before the two shells start
to interact (t = 27 ks). The lower panel shows the density (solid line) and pressure (dashed line) distribution measured in units of ρext and ρextc2,
respectively. The dash-dotted line gives the Lorentz factor of the fluid which is moving towards the right. The upper left (right) panel displays
the exact solution of the one dimensional Riemann problem defined by the trailing (leading) edge of the right shell. Labeled are the two bow
shocks S 1b and S 2b, the two reverse shocks S 1a and S 2a, the four rarefactions R1a, R1b, R2a and R2b, and (in the top panels only) the contact
discontinuities CD1L and CD1R.

unperturbed state inside the shell with a contact discontinu-
ity separating shell matter from the external medium (in Fig. 2
only the leading shell is labelled, CD1L), and into a second
rarefaction that connects the contact discontinuity with the ex-
ternal medium (R1a and R2a).

The pre-collision evolution is qualitatively similar when in-
stead of sharp discontinuities a more smooth transition between
the shells and the external medium is assumed. The Riemann
structure emerging from the edges of the shells will be the

same, i.e., it will consists of the same structure of shocks and
rarefactions as with our set up. However, the exact values of the
state variables in the intermediate states connecting the condi-
tions in the shells with the external medium will be obviously
different.

The pre-collision hydrodynamics has two direct conse-
quences. Firstly, each shell is heated by a reverse shock (S 1a
and S 2a) which increases χ by about two orders of magnitude
(Fig. 2). Secondly, both shells are spread in z direction as
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T=163.5 ks

T=382.9 ksT=260.8 ks

T=0 s
ba

c d

Fig. 3. Snapshots of the rest mass density (solid line; in units of 10−26 g cm−3), pressure (dashed line; in units of 10−5 erg cm−3), and Lorentz
factor of the fluid (dash-dotted line) along the symmetry axis of the computational grid at four different stages of the evolution.

external medium shocked in the bow shocks (S 1b and S 2b)
piles up in front of the shells. The latter effect is complicated
in case of the faster trailing shell by the fact that its bow
shock (S 2b) soon starts to interact with the rarefaction (R1a)
of the slower leading shell. Thereby the bow shock speeds up,
and it eventually catches up with the slower leading shell. Our
simulations show that the resulting interaction of the two shells
occurs at a distance which is slightly smaller than the distance
derived from an analytic estimate (see below). The accelerat-
ing bow shock S 2b drags along the whole Riemann structure.
This explains why the state behind S 2b is not uniform (as in
case of the slower leading shell), but shows a monotonically
decreasing density and pressure distribution (Fig. 2). It fur-
ther explains why the density behind the reverse shock of the
faster shell (S 2a) is always less than that behind the reverse
shock (S 1a) of the slower shell.

Before the bow shock S 2b of the faster trailing shell can
enter the interior of the slower shell where ρ = ρsh, it has to
cross the rarefaction R1b, i.e., it has to propagate through a
steadily increasing density. Hence, the emission produced by
the shock will increases gradually during this epoch until it be-
comes an internal shock propagating through the slower shell
(Figs. 3 and 4). We point out that in the analytic model the

internal shock does appear instantaneously when the two shells
touch each other.

Using our initial conditions (see previous section) an ana-
lytic estimate of the time when the two shells collide is given by

T an
c =

D0

V2 − V1

=
D0

c

(√
1 − Γ−2

2 −
√

1 − Γ−2
1

)−1

= 280.7 ks.

(28)

From our simulation we find that T10 = 0.913 T an
c , T50 =

0.977 T an
c and T90 = 1.009 T an

c , where T10, T50 and T90 are
three moments of time at which the minimum density ahead
of the faster shell is 10%, 50% and 90% of the instantaneous
maximum density ρmax on the faster shell. Note that ρmax does
not coincide, in general, with the initial density of the faster
shell because the shell has undergone some hydrodynamic evo-
lution. However, ρmax is only a few per cent larger than ρsh for
the models under consideration.

An analytic estimate of the time at which an observer lo-
cated at a distance ct0 from the initial position of the faster
shell will receive the first light is

T an
arr = T an

c (1 − V2/c) + t0. (29)
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a T=0s

b T=163.551 ks

c T=260.847 ks

d T=382.94 ks

Fig. 4. Contour plots of the logarithm of the rest mass density at the same moments of time as in Fig. 3. The coordinate values at both the r
and z-axis are in units of 1016 cm. The grid re-mapping procedure (see Sect. 3.1) is the cause for the shift of the computational domain seen in
panels b)–d).

As mentioned in the previous section, the ratio χ decreases dur-
ing the interaction by almost four orders of magnitude because
of the large pressure increase (from its initial value≈104; Fig. 3
panel), while the density only increases by a factor of ≈2. We
note that the interaction region is the only one which produces
a significant amount of all observed radiation. Hence, the value
of χ in that region is the one relevant for observations and not
the initial one.

3.3. Setup of the non-thermal component

The non-thermal electrons are binned into N = 48 logarithmi-
cally spaced intervals covering a total Lorentz factor interval
[γ1 = 1, γN = 108] (Sect. 2.2). The source term describing
the electron injection at shocks (Sect. 2.4) has a power law in-
dex pinj = 2.2, which is compatible with the value found by
Bednarz & Ostrowski (1998). The injection source terms are
computed for the model type-E (Sect. 2.4.1) with the param-
eters αe = 10−2, η = 104 and γmin = 50, and for the model
type-N (Sect. 2.4.2) with the parameters αe = 10−2, η = 104

and ζ = 10−2, respectively.
In order to produce light curves, the synchrotron emissiv-

ity in each radiating zone is computed in 24 logarithmically
spaced frequency bands ranging from 1016 Hz to 1019 Hz. In
a subsequent step a soft and a hard light curve is obtained by
integrating the computed synchrotron spectra over a prescribed
energy interval. For the soft light curve we considered photon
energies between 0.1 and 1 keV, and for the hard light curve
energies between 2 and 10 keV.

3.4. Evolution of the non-thermal component

Figure 5 shows the normalized soft and hard X-ray light curves
computed from the hydrodynamic evolution using the

a

b

Fig. 5. Normalized soft (solid line) and hard (dotted line) X-ray light
curves in the observer’s frame for injection of type-E a) and type-N
b), respectively. The light curves are binned into 20 s time bins. The
vertical lines correspond to T10 (solid), T50 (dotted), T90 (dashed),
and T an

arr (dash-dotted), respectively (for a definition of these times see
Sect. 3.2). Note that the time coordinate is renormalized to the time at
which the count rate first exceeds 10−3 of the count rate at maximum.

procedure described in the previous section. Because the shells
start to interact earlier than predicted by commonly used an-
alytic estimates (see, e.g., Spada et al. 2001) the first peak of
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S1a

S2b
S2a

S1b

CD1R

R1a

R1b

R2b

Fig. 6. Snapshot illustrating the flow structure along the symmetry axis after the two shells start to interact (t = 212 ks). The figure shows
the density (solid line) and pressure (dashed line) distribution measured in units of ρext and ρextc2, respectively. The dash-dotted line gives
the Lorentz factor of the fluid which is moving towards the right. Labeled are the two bow shocks S 1b and S 2b, the two reverse shocks S 1a
and S 2a, the rarefactions R1a, R1b and R2b, and the contact discontinuity CD1R. At this time the Riemann structure emerging from the leading
edge of the faster shell is interacting with the trailing Riemann structure from the rear edge of the slower shell. This leads to the effective
disappearance of the contact discontinuity CD1L and to the interchange of the position of R1a and S 2b.

the light curve is observed well before the time T90 defined at
the end of Sect. 3.2 (Fig. 5, panel b) for the injection model of
type-N. Such an effect is not present in the injection model of
type-E. The analytically predicted arrival time of the radiation
T an

arr (Eq. (29)) should provide a good marker for the onset of
the light curve. However, T an

arr depends on the exact location of
the emitting zones and on the specific injection model used.
In the simulated collisions the spatial arrangement of the emit-
ting zones (shocks) is different from that of non-evolving shells
(analytic case), because some hydrodynamic evolution already
takes place before the shells directly interact. The arrival time
computed from our simulations is hence smaller than T an

arr.

Our simulations show that the double peak structure of the
light curves is caused by the bow shock S 2b propagating into
the slower leading shell, and by the reverse shock S 2a propa-
gating through the faster trailing shell (see Fig. 2). Both of these
two shocks are boosted after the actual shell interaction starts.
We further find that the relative height of the light curve peaks
depends on the injection model. In case of the model type-E
(Fig. 5, panel a) the first light curve peak caused by the (for-
mer) bow shock S 2b is higher than the second peak caused by
the reverse shock S 2a, because the rate of change of the energy
density per unit of volume in shock S 2b is found to be larger
than in the reverse shock S 2a. Hence, shock S 2b provides a
larger amount of dissipation than shock S 2a (see Eq. (20)),
i.e., more electrons are accelerated in the shock S 2b than in

the shock S 2a. In case of the model type-N (Fig. 5, panel b) we
find that less electrons are accelerated in the shock S 2b than in
the case of model type-E, because their number density, which
is proportional to the fluid density (Eq. (24)), is smaller in the
(former) bow shock S 2b than in the reverse shock S 2a (see
Fig. 6).

Both light curves are binned into 20s time bins. Thus, if
the temporal resolution of an observations is much worse (ef-
fectively it is �80 s due to signal-to-noise ratio limitations;
Brinkmann et al. 2003), the finest time structures of our com-
puted light curves will partially or even completely be smeared
out, i.e., the differences between the two injection models could
not be resolved.

3.5. Energy

Initially, the kinetic (Eini
k ) and thermal (Eini

th ) energies of the two
shells are

Eini
k = LshR2

shπρsh(Γ1 + Γ2 − 2)c2 = 4.4 × 1046 erg (30)

and

Eini
th = LshR2

shπ
psh

γad − 1
= 4.7 × 1040 erg = 9.4 × 10−7 Eini

k , (31)
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respectively. Beyond the time (t = 382.9 ks) at which no radi-
ation is being produced anymore, the kinetic and internal ener-
gies of the fluid are

Efin
k = 4.35 × 1046 erg = 0.99Eini

k , (32)

and

Efin
th = 4.4 × 1044 erg = 0.01Eini

k , (33)

respectively. The total radiated energy obtained by integrating
the light curve derived from the integrated synchrotron spectra
between 0.1 and 10 keV in time is (using model type-N):

EX
rad = 1.4 × 1043 erg = 0.03 Efin

Th (34)

with a peak luminosity of 5.8 × 1039 erg s−1. Therefore, the ef-
ficiency of converting thermal energy into X-ray radiation is
EX

rad/E
fin
th � 0.03.

We notice that after the collision the resulting merged shell
is much hotter than the initial two shells (Efin

th � Eini
th ). This

heating caused by the internal shocks, and by the pre-collision
hydrodynamic evolution of the shells.

4. Discussion

Many of the effects found in our axisymmetric simulations can
also be quite accurately modeled assuming a one-dimensional
hydrodynamic evolution. Indeed, the initial set-up is explicitly
chosen to match this one-dimensionality, because we want to
compare our simulation results with those obtained from pre-
vious analytic one-zone 1D models. However, we stress that
1D models represent only a first and rough attempt to model
the physics of blazars, which have a multidimensional nature.
In the previous sections we have demonstrated that our sim-
ulation results match qualitatively with those of previous 1D
models. Thus, we are able to explore different initial configu-
rations where multidimensional effects are expected to play a
more important role (e.g., interaction of shells of different shell
radii, inhomogeneities in the external medium, etc.).

4.1. Shell interaction

Concerning the temperature of the shells, which is chosen to be
half the temperature of the external medium (Sect. 3.1), we do
not expect any significant change of the dynamic evolution or
the non-thermal emission, as long as density and pressure con-
trast between the shells and the external medium is sufficiently
large, and as long as the temperature within the shells does not
greatly exceed that of the ambient medium. If the latter require-
ment were to be violated, which is not expected according to
observational data, the shells would emit a significant amount
of radiation before they collide.

A qualitatively similar shell evolution and shell interaction
is to be expected if instead of two perfectly (sharp) cylindrical
shells one were to consider shells having a Gaussian (smooth)
distribution of density, pressure, and Lorentz factor. Of course,
the exact values of the arrival time, the time of interaction, etc.,
would be slightly different in this case. Decreasing the density,
pressure, or Lorentz factor contrast between the shell and the

external medium will decrease the speed of propagation of the
Riemann structures emerging both from the leading and trail-
ing edges (normal to the direction of propagation) of the shell.
Hence, the collision time would be even closer to the analytic
estimate, and the shells would experience less pre-collision hy-
drodynamic evolution (Sect. 3.2).

It would be particularly interesting to study the influence of
a moving external medium mimicking the flow of an underly-
ing rarefied jet. In this situation the Lorentz factor contrast be-
tween the shells and the external medium can be substantially
smaller (even close to zero, if the jet moves almost as fast as
the slower shell). Thus, the size and the depth of the Riemann
structures produced by the shells will be much smaller. This
has the important consequence that the effect of the rarefac-
tions trailing the slower shell on the leading edge of the faster
shell will be reduced.

Decreasing the velocity difference between the two shells
prolongs the pre-collision epoch, and reduces the strength of
the internal shocks. Under these circumstances one expects that
a smaller amount of energy is emitted in the X-rays bands.

4.2. Shock acceleration models

The time scale τacc of the shock acceleration process (τacc ≈
0.2 s for, e.g., B = 0.1 G and γ = 5 × 105; see Sect. 2.4) is
much shorter than the typical hydrodynamic time step ∆t of the
simulation (∆t ≈ 15 s). Therefore, we have to parameterize the
effect of the shock acceleration process on time scales of the
order of the hydrodynamic time scale.

The two different parameterizations of the shock acceler-
ation process discussed in Sect. 2.4 produce qualitatively dif-
ferent light curves. An increase of the fraction of dissipated
energy available for the acceleration of electrons (αe) produces
either more electrons (injection model type-E; Sect. 2.4.1) or
injects electrons at higher energies (injection model type-N;
Sect. 2.4.2). Increasing the ratio between the upper and lower
Lorentz factor limit of the injection interval (η ≡ γmax/γmin)
produces more electrons at higher energies. Our particular
choice of parameters is constrained by the fact that the max-
imum of the X-ray synchrotron emission is assumed to occur
around 1016–1017 Hz. The particular choice of the parameter ζ
(the fraction of electrons accelerated in a zone within a hy-
drodynamic time step; Sect. 2.4.2) is suggested by fits of ob-
served blazar spectra which imply electron number densities in
the range of 103−104 cm−3 (Maraschi et al. 2003).

4.3. Efficiency

The particular shell collision which we have simulated has an
efficiency of the order of 1% in converting thermal energy to
X-ray radiation (see Sect. 3.5). However, if the flow contains
more than two shells at the same time, the total efficiency of
converting thermal to radiation energy might be larger.
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4.4. Light curves

The typical time scale of the flare in the observer’s frame is
found to be of the order of one kilosecond (Fig. 5). However
this finding could be influenced by our particular choice of the
shell width and the magnetic field strength. The shape of the
light curve will depend on the relation between the time scales
associated with the radiation processes and the physical size
of the shells (Mastichiadis & Kirl 2002). On the one hand, the
synchrotron cooling time scale τc of the non-thermal electrons
in the comoving frame of the shell is τc = (qB2γ)−1 = 1.6 ×
104 s for B = 0.25 G and γ = 5 × 105 (see Sect. 2.2). On the
other hand, this time scale is comparable to the light crossing
time of the shell in the same frame (TLC = Lsh/cΓ � 3.4×104 s;
see Sect. 3.1). Thus, electrons have sufficient time to radiate
away a large fraction of their energy before they leave the shell.

The light curves show a fast-rise slow-decline structure in
both the soft and the hard energy band (Fig. 5). It can be recog-
nized that in the shell collision considered in our simulation no
significant time delays are observed between the hard and soft
X-rays.

We have checked that the patterns displayed by, at least,
the hard light curves (Fig. 5) are similar to the ones found by
Brinkmann et al. (2003) for Mrk 421 in their Figs. 6 and 9
(corresponding to different orbits of XMM), respectively. We
point out that the time scales of the observed light curves of
Mrk 421 are several times longer than ours. However, this does
not invalidate our comparison, because the duration of the syn-
thetic light curves depends on the exact physical size of the
shells (the wider they are in the z-direction, the longer the
duration).

5. Conclusions

We have performed relativistic hydrodynamic simulations of
dense shells of plasma moving in a rarefied medium, and com-
puted the X-ray light curves produced during their collision.
Our simulations improve existing analytic (one-zone) models
(e.g., Spada et al. 2001) by computing a more realistic hydro-
dynamic evolution of the fluid.

The physical conditions in the external medium corre-
spond to the standard jet conditions in blazars (Takahashi et al.
2000), while those of the shells, in particular the density con-
trast between the shells and the external medium, are in agree-
ment with the estimates of Bicknell & Wagner (2002). These
two facts enable us to properly address the physics of in-
ternal shocks in blazars (in contrast to what is claimed in
Bicknell & Wagner 2002). Indeed, we have demonstrated the
ability of our method to produce synthetic light curves from
relativistic hydrodynamic simulations including the back reac-
tion of the emitted radiation on the thermal fluid. We find that
both the total radiated energy and the light curves agree well
with observational data. With our method the total efficiency
of conversion of thermal energy into radiation energy need not
be assumed, but can be directly computed. For the physical pa-
rameters used in our simulations we obtain a total efficiency of
about 1%.

Our results show that the detailed structure of the synthetic
light curves depends on the particular choice of the macro-
scopic parameterization of the process of particle accelera-
tion. By comparing our results with observed light curves of
Mrk 421 we find that both models of particle acceleration used
in our simulations provide light curve patterns that can be iden-
tified in observed light curves. However, it seems that our injec-
tion model type-E (where a prescribed fraction of the change of
the internal energy of the thermal fluid per unit time is used to
accelerate non-thermal electrons) fits both the soft and the hard
light curves equally well, while the injection model type-N
(similar to type-E, but where only a prescribed fraction of the
available electrons is accelerated) fits only the hard part of the
light curve. The different results obtained with the two models
of injection are related to the fact that while the injection model
type-E accounts for the strength of the shocks (the number of
particles injected is proportional to the rate of change of energy
per unit of volume behind the shock), the model type-N does
not.

The light curve produced by a single collision of two shells
does not necessarily produce a single bumped flare, but can
consist of several peaks as our simulations demonstrate. These
peaks result from shocks which form after the actual interaction
starts. One of these shocks propagates into the slower leading
shell, while the second shock propagates into the faster trailing
shell. This behavior is clearly different from that of one-zone
models, which only predict a single peak from a single inter-
action. A comparison of our results with observed light curves
of Mrk 421 shows that some of the observed flares display a
multiple peak structure that can be well accommodated by our
model. As a further consequence we note that our model can
explain variability in the light curves with fewer components
(shells) than one-zone models.

The results presented in this paper represent the beginning
of a set of studies where we will consider different initial con-
figurations to study the influence of such different initial con-
ditions on the light curves of blazars. Among the possibilities
arising we can immediately include more shells in the simu-
lations, or we can vary the size of the shells. The latter vari-
ation, particularly, will allow us to include multidimensional
effects by considering shells of different radial size. A further
improvement of the method will be to include inverse Compton
processes in the treatment of the radiation, which is of particu-
lar relevance in the study of blazars.

The present approach relies on the assumption that the
magnetic field is dynamically negligible, randomly oriented,
and its energy density is proportional to the thermal pressure.
Thus, another step forward is to include dynamically impor-
tant magnetic fields in the simulations. Finally, we also con-
sider the possibility of performing 3D simulations which are
better adapted to the configurations expected in nature (e.g.,
non-aligned shells, multidimensional shell trajectories, gen-
uine 3D shell shapes, etc.). In fact both GENESIS and the
newly coded radiative part are written (and tested) for 3D ap-
plications. However, due to the huge amount of computational
power required for a 3D simulation, we have not performed
such simulations yet.
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