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ABSTRACT

We study the statistical properties of the combined emission of a population of discrete sources
(for example, the X-ray emission of a galaxy due to its population of X-ray binaries). Namely,
we consider the dependence of their total luminosity L.y = Y, Ly and of the fractional rmsq
of their variability on the number of sources n or, equivalently, on the normalization of the
luminosity function. We show that, as a result of small number statistics, a regime exists in
which L, grows non-linearly with n, in apparent contradiction with the seemingly obvious
prediction (L) = f L(dN/dL)dL o n. In this non-linear regime, rms, decreases with n
significantly more slowly than expected from the rms o 1/4/n averaging law. For example, for
a power-law luminosity function with a slope of @ = 3/2, in the non-linear regime, L o n’
and rms, does not depend at all on the number of sources n. Only in the limit of n — oo do
these quantities behave as intuitively expected, Ly o n and rms,,, o 1/4/n. We give exact
solutions and derive convenient analytical approximations for L, and rmsy.

Using the total X-ray luminosity of a galaxy due to its X-ray binary population as an example,
we show that the Lx—star formation rate and Lx—M , relations predicted from the respective
‘universal’ luminosity functions of high- and low-mass X-ray binaries are in good agreement
with observations. Although caused by small number statistics, the non-linear regime in these
examples extends as far as SFR < 4-5Mg yr~!' and log(M../ M@) < 10.0-10.5, respectively.
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1 INTRODUCTION AND QUALITATIVE
CONSIDERATIONS

In many astrophysical situations a problem arises to predict or in-
terpret results of measurements of the total (combined) luminosity
of a population of discrete sources. Among many examples are the
total luminosity of X-ray binaries in a galaxy, or the total flux of
background sources detected above the sensitivity limit inside the
field of view of a telescope.

In the following discussion we will use high-mass X-ray binaries
(HMXB) in star-forming galaxies as an example. As was shown
by Grimm, Gilfanov & Sunyaev (2003), the luminosity distribution
of HMXB sources in a galaxy is described to first approximation
by a ‘universal’ luminosity function whose shape is the same in all
galaxies and whose normalization is proportional to the star forma-
tion rate (SFR) of the parent galaxy:

dN
4 * SFRF(L). 1
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In a broad luminosity range, log(Lx) ~ 35.5-40.5, the shape of
the HMXB ‘universal’ luminosity function is close to a power law,
f(L) = L™, with the slope o & 1.6. Importantly, the luminosity
of the compact sources in star-forming galaxies appears to be re-
stricted by a maximum value of L., ~ few x 10* erg s~!. This
cut-off luminosity can be defined, for example, by the Eddington
luminosity limit for the most massive objects associated with the
star-forming regions. Obviously, on the faint side, the luminosity
distribution equation (1) must become flatter or have a cut-off as
well, in order to keep the total number of sources finite. This low-
luminosity cut-off may be caused for example by the propeller effect
(Illarionov & Sunyaev 1975) as discussed by Shtykovskii & Gil-
fanov (2004).

The expectation value for the total number of sources in a galaxy
is given by

+00
dN
(Niot) = / — dL o SFR, @)
, dL

and, naturally, is directly proportional to its star formation rate. The
number of sources actually observed in a given galaxy obeys the
Poisson distribution p,(N) with © defined by equation (2). Apart
from effects of counting statistics, the number of HMXB sources
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found in an arbitrarily chosen galaxy will be close to the above
expectation value.

The problem considered in this paper is the behaviour of the total
luminosity of high-mass X-ray binaries in a galaxy,

N
La=Y_ L 3)
k=1

as a function of its star formation rate.
An apparently obvious expression for L, can be obtained by
integrating the luminosity distribution (1):

+00
dN
(Liot) = / L — dL o SFR. 4)
0 dL

Hence, one might expect that the total X-ray luminosity of HMXB
sources is also directly proportional to the star formation rate of the
host galaxy, as is the total number of sources. This problem, how-
ever, involves some subtleties related to the statistical properties of
the power-law distribution of the sources over luminosity, which
appear not to have been recognized previously, at least in an astro-
physical context [a somewhat related problem has been considered
by Kalogera et al. (2001) in connection with estimating the coa-
lescence rate for neutron star—neutron star binaries in the Galaxy].
Although equation (4) correctly predicts the average X-ray lumi-
nosity computed for a large number of galaxies with similar values
of star formation rate, it fails to describe the relation between the
most probable value of X-ray luminosity of an arbitrarily chosen
galaxy and its SFR. The main surprise of the study presented here
is that, in the low SFR regime, the relation between SFR of the host
galaxy and the total luminosity of its HMXBs is non-linear — with
increase of the star formation rate, the luminosity appears to grow
faster than linear. The relation becomes linear only for sufficiently
high star formation rates, when the total number of objects with a
luminosity close to the maximum possible value, defined by L.y,
becomes sufficiently large.

This can be illustrated by the following simple consideration. For
an arbitrarily chosen galaxy, the brightest source is most likely going
to have a luminosity L nax defined by the condition'

_ o uN
N(L > L) = T dL ~ 1. (5)

Limax

For a power-law luminosity distribution with slope o and with a
cut-off at L., equation (1), the above expression yields

Liax o¢ SFRV@7D
i‘max = Leut

for low SFR,
for high SFR. (6)

As might be intuitively expected, at low SFR, the most proba-
ble luminosity of the brightest source increases with SFR, until it
reaches the maximum value of L.,. The threshold value of the star
formation rate, separating low- and high-SFR regimes, is defined
by the condition N(L ~ L.y) ~ 1, i.e. that there are about a few
sources expected with luminosity close to the cut-off value L.

The most probable value of the total luminosity, L, can then be
computed by integrating the luminosity function from Ly, t0 Lpay:

Lom:
) mex gN
LH%/ —LdL, @)
), dL

min

! Indeed, for example, sources 10 times more luminous will appear on aver-
age in one out of ~10@~1 galaxies.

which, for 1 < o < 2 and Ly, < Ly, leads to

i {SFRW'” for low SFR, ®

ot SFR for high SFR,
i.e. is non-linear in the low-SFR regime and becomes linear only at
high star formation rates.

This can be qualitatively understood as follows. For a slope of
the luminosity distribution 1 < o < 2, the total luminosity of a
galaxy is defined by the brightest sources. The non-linear behaviour
in the low-SFR limit is caused by the fact that an increase of the
SFR leads to a non-linear increase of the luminosity of the brightest
sources. Therefore their total luminosity grows faster than the star
formation rate. This non-linear growth continues until the maximum
possible value of the luminosity of the compact sources is achieved.
Further increase of the star formation rate leads to a linear increase
of the number of the brightest sources in the galaxy, but not of
their individual luminosities. Consequently, the Lx—SFR relation
becomes linear.

In the more formal language of statistics, such behaviour is related
to the properties of the probability distribution of the collective
luminosity p(Ly.). In particular, it can be understood in terms of
the difference between the expectation mean and the mode of the
probability distribution. The expectation mean is defined as

(Liot) = / P(Lio) Lot dLtot, 9
0

and is given by equation (4). The mode of the statistical distribution,
Lo, is defined as the value of the random variable (L, in our case)
at which the probability distribution p(L ) reaches its maximum
value. Whereas the expectation mean (L) describes the result of
averaging of the X-ray luminosities of many galaxies having similar
values of SFR, it is the mode of the p(Ly) distribution that pre-
dicts the most probable value of the total luminosity of a randomly
chosen galaxy. The non-linear behaviour in the low-SFR regime is
caused by the skewness of the probability distribution p(Ly) re-
sulting in a difference between expectation mean and mode. In the
high-SFR limit, the p(L,) distribution asymptotically approaches
the Gaussian distribution, in accord with the central limit theorem.
The boundary value of the SFR, separating the non-linear and linear
regimes of the L x—SFR relation is defined by the parameters of the
luminosity function.

Interestingly, the fact of the existence of a linear regime in the
Lx-SFR relation is a direct consequence of the cut-off in the lu-
minosity function. Only in the presence of a maximum possible
luminosity for the sources, L., (for instance, Eddington limit for a
neutron star), can a linear regime exist, when the total luminosity of
a galaxy is defined by a sufficiently large number of bright sources
near L.y, and any subsequent increase of the star formation rate
results in linear growth of the total luminosity.

In the above discussion, we used high-mass X-ray binary popula-
tions in star-forming galaxies as an example. Obviously, the effect
considered in this paper is of a broader general interest and is at work
in many situations related to computing/measuring the integrated
luminosity of a finite number of discrete sources. One example re-
lated to the application of stellar synthesis models to observations
of stellar clusters has been independently discovered by Cervino &
Luridana (2004).

This paper is structured as follows. In Section 2 we consider the
statistical properties of the total luminosity, in particular in Sec-
tion 2.1 we derive formulae for the probability distribution p(L ),
using two different approaches, and present results of numerical
calculations in Section 2.2. The variability of the total emission is
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studied in Section 3. In Section 4 we discuss astrophysical applica-
tions, including the properties of the total X-ray emission of a galaxy
due to its population of high-mass (Sections 4.2 and 4.3) and low-
mass (Section 4.4) X-ray binaries. Our results are summarized in
Section 5. In the Appendices we derive convenient approximations
for L, and fractional rms of the total emission and consider their
asymptotic behaviour. A casual reader, not interested in the math-
ematical aspects of the problem, can skip Section 2.1 and proceed
with Section 2.2.

2 TOTAL LUMINOSITY

We consider a population of sources with a luminosity function
(LF):

W arw (10)
o '

The expectation values for the total number of sources and the total
luminosity are

©dN
<n>=/ EdL’ (11)
0
* dN
(le):/ LEdL. (12)
0

It is assumed that both quantities are well defined and finite.

2.1 The probability distribution of the total luminosity

Below we present two methods of computing the probability distri-
bution of the total luminosity. The second of these two methods is
somewhat more convenient computationally.

2.1.1 Method I

To compute the probability distribution for the total luminosity,
p(L), we divide the L,—L, luminosity range into intervals of
infinitesimal width § L, and express the combined luminosity of all
sources as a sum

Lo=Y_ Lo (13)
k

where Ly is the combined luminosity of the sources in the kth
interval, running from L to Ly + 8L;. The number of sources in
the interval (L, Ly + §L;) obeys a Poisson distribution with mean

= dN(L—L )SL (14)
M = qL T kO

For §L; — 0, itis sufficient to consider the occurrence of either zero
or one source per interval whose probabilities are, respectively,

dN 5
p(0) =1— d—LaLk +0(sL}).

dN
pe)) = 7 8Li+ 0(sLy). 15)

The probability distribution for the combined luminosity of the
sources in the kth interval is

(Liotx) = 0(Liors) | 1 dNSL + 8(L L)dNSL (16)
P\ Liork) = tot,k dL k tot,k k dL k>
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where §(x — x) is the delta function. The characteristic function of
this distribution is

P(Liotk) = /p(le,k)eiwL dL

dN dN )
=1— 8Ly + —8L; ek, 17
az o + aL Ot e an
Using the convolution theorem, the characteristic function of the
probability distribution of the total luminosity can be computed as

a product of characteristic functions of p(Lz):

p(Lod = [ [ pZas), (18)
k
. dN AN
In p(Li) = ijln (1 — gy 0L+ g dLie Lk)
dN AN o R
— _zk:d—LaLk +Zk: oLk + 0(sL3)

dN dN |
=— [ —dL — el dL. (19)
dL +/ L ¢

Finally,

pP(Liot) = /i’(Ltot) e wle do

dN .
= /exp </ i el dL — (n) — iwLmt> dw, (20)

where (n) is given by equation (11).

2.1.2 Method 11

The probability distribution of the total number of sources follows
a Poisson distribution P ,(n) = " e */n! with mean u given by
equation (11). The probability distribution of the total luminosity is
PLo) = Pumpa(Lic), 1)
n=0

where p, (L) is the probability distribution of the total luminosity
of exactly n sources. In the majority of practically interesting cases,
the total number of sources is sufficiently large, (rn) > 1, and the
Poisson distribution in equation (21) can be replaced by the delta
function §(n — (n)):

P(Liot) X pu(Lio), n=(n)>1, (22)

where n = (n) is given by equation (11).
The probability distribution of the sum of n random variables,
L = 22:1 Ly, can be calculated using the convolution theorem:

~

Pn = I;\ln7

-~ _ iwL
Pl(w)—/o pi(L)e"dL, 23)

+00 )
Pn(Lio) = / Pu(@) e do,

oo
where p (L) is the probability distribution for the luminosity of
one source, which equals the luminosity function with appropriate
normalization:
1 dN

Ly=— —. 24
pi(L) my dL (24)

The probability distribution p, (L), defined by equation (23),
describes the case when n sources are observed. In contrast, the



1368 M. Gilfanov, H.-J. Grimm and R. Sunyaev

10

T T T
Lo

El
i

T
5
T
&
Lol

10-!

probability p(x)

T
M|

10-2

BREmERL
Ll

probability p(x)

probability p(x)

t a=0.0 q

10-t

—
x

N3

o I \ i
>

o) L - N i
=

=

s

3 n=1

o

=

[}

T
|

10-2

T T
L

T

|
|
|
1
|
|
|
|
|
n=3 7 |
|
|
|
|
i

10-8 I I !

10 100
X=YL, /n

Figure 1. Probability distributions of the average luminosity, Z:: | Li/n, of n discrete sources with a power-law LF (equation 25). The lower and upper

luminosity cut-offs were fixed at L = 1 and L, = 10> for all plots. The value of the slope « is indicated in each panel. Each curve is marked according to the
number of sources n. The vertical dashed lines show the expectation mean (L) /7.

distribution p(Ly), defined by equation (20), is parametrized via
the normalization of the luminosity function or, equivalently, via
the expectation value (n), and describes the case when (n) sources
are expected. These two distributions are related via equation (21).
For n > 1, which is often the case, they are nearly identical, and it
can be assumed that n = (n) and both quantities are related to the
normalization of the luminosity function via equation (11).

2.2 Illustrative examples

To illustrate the behaviour of the total luminosity, we assume a
power-law luminosity function:

dN {AL“ ifL; <L <L,

- = ) (25)
dL 0 otherwise.

2.2.1 Probability distribution p,(Li)

The probability distributions p, (L) for various values of the slope
« and the number of sources n are shown in Fig. 1. To facilitate the
comparison of distributions for different values of n, the abscissa
in these plots is the average luminosity Ly /n = ::1 Ly/n. The
values of the luminosity cut-offs were fixedat L; =1 and L, = 10%.

The skewness of the probability distribution p,(L,) leads to a
deviation of its mode L, (the most probable value of the total
luminosity) from the expectation mean (L) indicated in each panel
by the vertical dashed line. The effect is most pronounced for o ~
3/2, is unimportant for shallow luminosity functions with o < 1
and gradually diminishes with increasing « at o > 2.

Forillustration, we also show in Fig. 1 the probability distributions
foraflat LF, & =0, in which case L exactly equals (L ). Naturally,
for any value of « the p, (L) — Gaussian distribution in the limit
of n — 00, in accord with the central limit theorem. Correspondingly
Lt = (L) in this limit.

2.2.2 The most probable value of total luminosity

The dependence of the most probable value of the total luminosity
Lo on the total number of sources n for different values of « and
the ratio L,/L, is shown in Figs 2 and 3. Convenient analytical
approximations for the L—n relation are derived in Appendix A
and its asymptotic behaviour is considered in Appendix A2.

The L,,—n relation is significantly non-linear for a ‘small’ num-
ber of sources or, equivalently, for small values of the LF normal-
ization A. For L < L,, @ > 1, the boundary between the non-
linear and linear regimes, expressed in terms of the normalization A,

© 2004 RAS, MNRAS 351, 1365-1378
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Figure 2. The ratio of the most probable value of the total luminosity L to the expectation mean (L) versus number of sources observed in the L|—L,
luminosity range for different values of the LF slope o and the ratio L,/L . The results of exact calculation using equation (23) are shown by the solid
symbols connected with the solid line. The solid line without symbols shows the approximate relation calculated from equations (A7) and (A3), as described in

Appendix Al.
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Figure 3. The most probable value of the total luminosity L and its intrinsic dispersion versus number of observed sources for different values of the LF
slope . The lower and upper cut-off luminosities were fixed at L| = 1 and L, = 10°. The results of exact calculation using equation (23) are shown. The
behaviour of L is shown by the thicker solid line. The narrower and broader dashed areas correspond to its 67 and 90 per cent intrinsic dispersion. The thinner

solid line shows the linear relation for the expectation mean (L o) X n.

depends only on the LF slope « and its high-luminosity cut-off L,
(see Appendix A2). This is due to the fact that the behaviour of
Ly, is defined by the number of sources near the high-luminosity
cut-off of the luminosity function, rather than by the total number
of sources in the entire L,—L, luminosity range, i.e. the condition
for the linear regime is

dN
N(L~L2)~LZE(L=L2)Z L. (26)

The total number of sources in the L—L, luminosity range, on the
contrary, is defined by the low-luminosity cut-off L; (for o > 1).
For sufficiently large L,/L, the non-linear regime can occur for
an arbitrarily large total number of sources (cf. the curves corre-
sponding to different values of L,/L, in Fig. 2). Interestingly, for

© 2004 RAS, MNRAS 351, 1365-1378

the LF slope in the range of 1 < o < 2, where the effect is strongest,
there is a relatively sharp break separating the non-linear part of the
dependence from the linear part.

Although for small # the most probable value of luminosity Lot
can deviate significantly from the expectation mean (L) (Figs 1
and 2), the condition f P(Lio)Liot dLior = (L) is satisfied for any
n. Consequently, the average of L, over a large number of realiza-
tions with the same n always equals (L ). This equality is achieved
due to the existence of outliers, having values of L, significantly
exceeding both Lo and (L), in accordance with the skewness of
the probability distribution p, (L) for small n. This naturally leads
to enhanced and asymmetric dispersion of the observed values of
Ly in the non-linear regime as illustrated by the shaded areas in
Fig. 3.
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Figure 4. Probability distributions p(L max) of the luminosity of the bright-
est source in a sample of n sources with a power-law LF with slope o« = 1.5
and L1 = 1, L, = 103. Each curve is marked according to the number of
sources 7.

2.3 The luminosity of the brightest source in a sample

The probability distribution for the luminosity of the brightest source
observed in a sample of n sources equals

P(Lmad) = [P1(L < Ling)1"™" p1(Luna)n, (27)

where p (L) is the probability distribution for the luminosity of one
source (e.g. equation 24) and p (L < L ,y) denotes the cumulative
probability pi(L < Luw) = [,™ pi(L)dL.

The p(Lmax) distribution for ¢ = 1.5 is shown in Fig. 4 and
illustrates the intuitively obvious fact that if the number of sources
is sufficiently small the brightest sources most likely will not reach
the highest possible value of L,. An analytical formula for the most
probable value of the luminosity of the brightest source is given by
equation (Al).

3 VARIABILITY OF THE TOTAL EMISSION

For a population of n sources with luminosities L and fractional rms
of aperiodic variability rms;, the fractional rms of the total emission
equals

n 2 2
2 _ Zk:l Ljrmsy

tot (ZZZI Lk)2 )

assuming that variations of the source fluxes are uncorrelated with
each other. In the following we also assume for simplicity that all
sources have the same value of fractional rms, i.e. rms; = rms,.

In the limit of n — oo, corresponding to the linear regime in the
Lo—n relation, the sums in equation (28) can be replaced by the
respective integrals of the LF:

ms;, J L*(dN/dL)dL VR

msg  [[L@n/dLyde]t A Le

rms (28)

(29)

In the linear regime the fractional rms of the collective emission
obeys a o< 1/4/n averaging law, as expected for uncorrelated varia-
tions of individual sources.

In the non-linear regime, however, for a sufficiently flat lumi-
nosity function, the total luminosity is defined by a few brightest

sources. To first approximation the number of such sources effec-
tively contributing to the sums in equation (28) does not depend on
the LF normalization. Consequently, the fractional rms of the total
emission is constant, independently of the total number of sources
or of their total luminosity. This contradicts the intuitive expecta-
tion that the fractional rms decreases with the number of sources as
rms « 1//n.

To illustrate this behaviour we performed a series of Monte Carlo
simulations for a power-law LE. For each set of parameters and a
given value of the number of sources, in each run n sources were
placed between L, and L, with a power-law luminosity distribution
(equation 25). For each run, the ratio rms2 /rms? was computed
following equation (28). From the results of many runs, the prob-
ability distribution for rms2, /rms} was obtained. The maximum of
this distribution defines the most probable value of rms2, and its
width characterizes the intrinsic dispersion of this quantity. Exam-
ples are shown in Fig. 5 for two values of the LF slope, @ = 1.5
and 2.5. For @« < 1 and o > 3 there is no non-linear regime and
the fractional rms of the total emission obeys the o« 1/4/n law for
any n. In plotting Fig. 5, we converted rmsZ, to rmsy, S0 that the
thick solid curves shows the behaviour of the square root of the most
probable value of the rms2, /rms? ratio.

Approximate formulae for rms2, are derived in Appendix B.

4 ASTROPHYSICAL APPLICATIONS

4.1 Determining LF parameters from total emission of
unresolved sources

The shape of the L,,—A relation (A is the normalization of the lu-
minosity function) is defined by the parameters of the luminosity
function. For 1 < o < 2, it has two distinct power-law regimes,
separated by a break (Figs 2 and 3):

. Al/(afl) for A < Abrez\k,
Lo 0
A for A > Apreax.

The position of the break between the non-linear and linear regimes
is defined by the high-luminosity cut-off of the LF and its slope
as described by equation (A13). This opens a possibility to deter-
mine the LF parameters without actually resolving the individual
sources, but studying large samples of objects (e.g. galaxies) and
the relation between their total emission and the normalization A.
The value of A in many cases can be determined independently from
observations at other wavelengths. For example, the normalizations
of the luminosity functions of high- and low-mass X-ray binaries
are proportional to the star formation rate (Grimm et al. 2003) and
stellar mass (Gilfanov 2004) of the host galaxy, respectively. Both
quantities can be determined from the conventional indicators, such
as radio or near-infrared luminosities.

Of course with the subarcsecond angular resolution of Chandra,
the luminosity distribution of point sources in nearby galaxies can
be studied directly. However, for more distant galaxies, D 2 30—
50 Mpc, even Chandra resolution becomes insufficient and only
the total luminosity of the galaxy can be measured. Provided that
the contaminating contribution of the emission of a central active
galactic nucleus (AGN) and/or of hot X-ray-emitting gas can be
constrained or separated, one can study the relation between the total
luminosity Lx of a (unresolved) galaxy and its star formation rate or
stellar mass. The Lx—SFR or Lx—M, ‘growth curves’ constructed
for large samples of galaxies and spanning a broad range of SFR and
M, can be used to constrain the XLF parameters of X-ray binaries
in distant galaxies including those located at intermediate and high

© 2004 RAS, MNRAS 351, 1365-1378
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Figure 6. Left: The probability distributions p(L/SFR) for different values of SFR. The vertical dashed line shows the expectation mean, defined by
equation (4). Right: The Lx—SFR relation. The open circles are nearby galaxies observed by Chandra, the filled triangles are spatially unresolved nearby
galaxies observed by ASCA and BeppoSAX, for which only total luminosity is available, and the filled circles are distant star-forming galaxies from the Hubble
Deep Field North. The thick grey line is the relation between the SFR and the most probable value of the total luminosity, predicted from the ‘universal’ HMXB
XLF, the shaded area shows its 67 per cent intrinsic spread, and the dashed line is the expectation mean, defined by equation (4). The five nearby galaxies, used
by Grimm et al. (2003) to derive the ‘universal’ HMXB XLF, are marked as crossed boxes.

redshifts. With this, one can study the influence of a number of
factors such as effects of binary evolution, metallicity, regimes of
star formation, etc., on the luminosity distribution of X-ray binaries.

4.2 High-mass X-ray binaries in star-forming galaxies

4.2.1 Lx—SFR relation for star-forming galaxies

The slope of the ‘universal’ luminosity function of HMXBs, o =
1.6, is in the range where the non-linear behaviour of the Li—A
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relation is most pronounced. In the left panel of Fig. 6 we plot the
probability distribution of the total luminosity p(Ly.), computed
for different values of the star formation rate. The distribution is
strongly asymmetric in the non-linear low-SFR regime, which, for
the parameters of the ‘universal’ HMXB X-ray luminosity function
(XLF), corresponds to the formation rate of massive stars below
SFR < 4-5 Mg yr~'. Note that a small value of SFR does not
necessarily imply a small total number of sources, which is defined
by the (unknown) low-luminosity cut-off of the HMXB XLF. For
example, for SFR = 0.2 Mg yr~!, when the non-linear effect is
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very pronounced, the total number of sources might be as large
as ~300 (~1200) for the low-luminosity cut-off of 103* (10%*) erg
s~!. These low values of the star formation rate correspond to the
familiar examples of the Milky Way Galaxy and the Magellanic
Clouds. On the opposite end among the relatively nearby and well-
known galaxies are the Antennae interacting galaxies, which, with
a star formation rate of SFR ~ 7 M yr~', have a nearly symmetric
p(L ) distribution, sufficiently close to the normal distribution.

The predicted Lx—SFR relation is shown in the right panel in
Fig. 6, along with the measured values of X-ray luminosities and the
star formation rates for a number of nearby galaxies and galaxies
observed with Chandra at intermediate redshifts, z ~ 0.2—-1.3, in
the Hubble Deep Field North. The data shown in Fig. 6 are from
Grimm et al. (2003), complemented with the local galaxies data from
Ranalli, Comastri & Seti (2003). In plotting the latter we removed
the duplications and the galaxies likely to be contaminated by the
contribution of low-mass X-ray binaries, unrelated to the current
star formation activity, as discussed by Gilfanov et al. (2004). The
luminosities and star formation rates for the Hubble Deep Field
North galaxies (Brandt et al. 2001) were computed for the following
cosmological parameters: Hy = 70kms~! Mpc~!, Q,, = 0.3 and
A = 0.7, as described in Gilfanov et al. (2004).

Fig. 6 further illustrates the difference between the mode and
the expectation mean of the p(Ly) probability distribution. The
thick solid line in the right panel shows the SFR dependence of the
mode of p(Ly) and predicts the most probable value of the X-ray
luminosity of a randomly chosen galaxy. If observations of many
(different) galaxies with similar values of SFR are performed, the
obtained values of L, will obey the probability distribution depicted
in the left panel. The average of the measured values of L, will be
equal to the expectation mean given by equation (4) and shown by
the dashed straight lines in the left and right panels. Owing to the
properties of p(Ly), these two quantities are not identical in the
low-SFR limit when the total luminosity is defined by the small
number of the most luminous sources. Only in the large SFR limit
when there are sufficiently many sources with luminosities near the
cut-off of the luminosity function, log(Lx) ~ 40, does the Lx—SFR
relation behave in the intuitively expected way.

Owing to the skewness of the probability distribution p(L ),
large and asymmetric dispersion among the measured values of Ly
is expected in the non-linear low-SFR regime. This asymmetry is
already seen in Fig. 6 — at low SFR values there are more points
above the thick solid curve than below. Moreover, the galaxies lying
significantly above the solid and dashed curves in Fig. 6 should
be expected at low SFR and will inevitably appear as the plot is
populated with more objects. Such behaviour differs from a typical
astrophysical situation and should not be ignored when analysing
and fitting the L x—SFR relation in the low-SFR regime. In particular,
owing to non-Gaussianity of the p(Ly,) distribution, the standard
data analysis techniques — least-squares and x? fitting — become
inadequate.

4.2.2 High-luminosity cut-off in the HMUXB XLF

The position of the break between the non-linear and linear parts
of the Lx—SFR relation depends on the LF slope and its cut-off
luminosity (Fig. 7, equation A13): SFRyreac 0¢ L !, This allows
one to constrain the parameters of the luminosity distribution of
compact sources using the data of spatially unresolved galaxies as
discussed in Section 4.1.

Agreement of the predicted L x—SFR relation with the data both in

high- and low-SFR regimes confirms the universality of the HMXB
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Figure 7. Dependence of the L x—SFR relation on the XLF cut-off luminos-
ity Lcye. The three curves corresponding to different values of L¢y coincide
in the non-linear low-SFR regime but differ in the position of the break
between linear and non-linear regimes. The data are the same as in Fig. 6.

luminosity function, derived by Grimm et al. (2003) from signifi-
cantly fewer galaxies (shown as crossed boxes in Fig. 6) than plot-
ted in Figs 6 and 7. It provides an independent confirmation of the
existence of a cut-off in the HMXB XLF at log(L ) ~ 40.5, in-
cluding HMXBs in spatially unresolved high-redshift galaxies from
the Hubble Deep Field North. This implies, in particular, that ul-
traluminous X-ray sources (ULXs) at redshifts of z ~ 0.2-1.3 were
not significantly more luminous than those observed in the nearby
galaxies.

4.2.3 Aperiodic variability

The X-ray flux from X-ray binaries is known to be variable in a
broad range of time-scales, on the orders of milliseconds to years.
In addition to a number of coherent phenomena and quasi-periodic
oscillations, significant continuum aperiodic variability is often ob-
served. The fractional rms of aperiodic variations depends on the
nature of the binary system and the spectral state of the X-ray source
and is usually in the range from a fraction of a per cent to ~20-30 per
cent. Correspondingly, the combined emission of X-ray binaries in
a galaxy should also be variable in a similarly broad range of time-
scales. It has been suggested by Grimm, Gilfanov & Sunyaev (in
preparation) that, as a result of a large difference in the characteristic
time-scales of the accretion flow on to a stellar-mass object and on to
a supermassive black hole, variability of the X-ray emission from a
galaxy can be used to distinguish between the combined emission of
a population of X-ray binaries and that of an accreting supermassive
black hole in the centre of a galaxy (AGN).

From results of Section 3 and Appendix B one should expect that
in the non-linear low-SFR regime the fractional rms of the total X-
ray emission of a star-forming galaxy is independent of SFR. This
prediction is confirmed by the results of the Monte Carlo simulations
performed as described in Section 3 and shown in Fig. 8. For mod-
erate star formation rates, SFR < 5-10 M yr~!, we predict a rather
large aperiodic variability of the total emission of HMXBs at the
level of about one-third to one-half of the fractional rms of individual
X-ray binaries. At larger values of SFR, corresponding to the linear

© 2004 RAS, MNRAS 351, 1365-1378
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Ly =2 x 10* erg s~!. The dashed line shows the asymptotic behaviour
at large SFR. The filled circles correspond to HMXB sources in the Milky
Way, the SMC and the Antennae galaxies, computed from equation (28),
using the observed luminosities of X-ray sources in these galaxies.

regime in the Lx—SFR relation, it decreases as rms o 1/+/SFR,
in accord with equation (B3). Also shown in Fig. 8 are values of
the fractional rms reduction, computed directly from equation (28)
using the luminosities of the observed HMXBs in the Milky Way
(Grimm et al. 2002), the Small Magellanic Cloud (Yokogawa et al.
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2000) and the Antennae galaxies (Zezas et al. 2002). Note that the
predicted rms—SFR relation can be modified by the luminosity de-
pendence of the rms of individual sources. This factor might become
especially important at large values of SFR when the total luminos-
ity of a star-forming galaxy is dominated by ULXs whose variability
properties we know little about.

4.2.4 Luminosity of the brightest source

As the first Chandra observations of compact sources in nearby
galaxies have become available, it has been noted (e.g. Sarazin et al.
2001; Irwin et al. 2002; Fabbiano & White 2003) that the luminosity
of the brightest X-ray binary in a galaxy might depend on its proper-
ties. In particular, in the case of high-mass X-ray binaries it appeared
to correlate with the star formation rate of the host galaxy. For ex-
ample, in the Antennae galaxies, a number of compact sources have
been discovered with luminosities of ~10% erg s=! (Zezas et al.
2002). On the other hand, the luminosities of the brightest HMXB
sources in the Milky Way do not exceed <10% erg s=! (Grimm
et al. 2002). It has been argued that this might reflect the differ-
ence in the intrinsic source properties, related to the difference in
the galactic environment and in initial conditions for X-ray binary
formation in starburst galaxies and in galaxies with weak and steady
star formation.

However, as discussed in Section 2.3, the probability distribution
for the luminosity of the brightest source in a galaxy, p(L ), de-
pends on the LF normalization, i.e. on the SFR of the host galaxy in
the case of HMXBs. The luminosity of the brightest source increases
with SFR, until it reaches the maximum possible value, defined by
the high-luminosity cut-off of the LF. The p(L.x) distributions,
computed from equation (27) for the parameters of the ‘universal’
HMXB XLEF, are shown for different values of SFR in the left panel
of Fig. 9. The right panel in Fig. 9 shows the dependence of the
most probable value of the luminosity of the brightest HMXB on
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Figure 9. Left: The probability distribution of the luminosity of the brightest HMXB source for different values of the star formation rate, computed from
equation (27) using the parameters of the ‘universal’ luminosity function of HMXBs. Right: Expected luminosity of the brightest HMXB versus star formation
rate. The thick solid line shows the most probable value of L,k (equation Al), and the shaded area shows its 67 per cent intrinsic dispersion, obtained from
the probability distribution given by equation (27). The filled circles show maximum observed luminosity of HMXBs in the Milky Way and several nearby

star-forming galaxies.
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the SFR of the host galaxy, described by equation (A1), along with its
intrinsic 67 per cent uncertainty. Filled symbols in Fig. 9 are the lu-
minosities of the brightest source observed in star-forming galaxies
from the sample of Grimm et al. (2003, and references therein). Asis
clear from the plot, the large difference in the maximum luminosity
between low- and high-SFR galaxies, e.g. between the Milky Way
and the Antennae galaxies, can be naturally understood in terms of
the properties of the probability distribution p(L .« ). No additional
physical processes affecting HMXB formation in starburst galaxies
need to be invoked.

4.3 Intermediate-mass black holes

The hypothetical intermediate-mass black holes (BHs), probably
reaching masses of ~10>°M), might be produced, for example,
via black hole mergers in dense stellar clusters, and can be associ-
ated with extremely high star formation rates. To accrete efficiently,
they should form close binary systems with normal stars or be lo-
cated in dense molecular clouds. It is natural to expect that such
objects are significantly less frequent than stellar-mass black holes.
The transition from stellar-mass BH HMXB to intermediate-mass
BHs should manifest itself as a step in the luminosity distribution
of compact sources (Fig. 10, left panel). If the cut-off in the HMXB
XLF observed at log(L ) ~ 40.5 corresponds to the maximum pos-
sible luminosity of ‘ordinary’ stellar-mass black holes and if at L >
L. a population of hypothetical intermediate-mass BHs emerges,
it should lead to a drastic change in the slope of the L x—SFR relation
at extreme values of SFR (Fig. 10, right panel). Therefore, observa-
tions of the L x—SFR relation for distant star-forming galaxies with
very high SFR might be an easy way to probe the population of
intermediate-mass black holes.

4.4 Low-mass X-ray binaries
4.4.1 Lx—stellar mass relation and maximum luminosity

As was shown by Gilfanov (2004) the luminosity distribution of
low-mass X-ray binaries in nearby early-type galaxies and bulges
of spiral galaxies can be described by a ‘universal’ XLF whose

shape is approximately the same in different galaxies and whose
normalization is proportional to the stellar mass of a galaxy. The
shape of the ‘universal’ LMXB XLF is significantly more complex
than that of HMXBs. It appears to follow the L~! power law at low
luminosities, gradually steepens at log(Lx) 2 37.0-37.5, and has
a rather abrupt cut-off at log(Lx) ~ 39.0-39.5. In the log(Lx) ~
37.5-38.7 luminosity range, it approximately follows a power law
with the differential slope of ~1.8-1.9.

Given the shape of the XLF, the total luminosity of LMXB sources
in a galaxy is defined by the sources with log(Lx) ~ 37-38, the
contribution of the brighter and, especially, weaker sources being
less significant. Therefore, the non-linear regime in the Lx—M,
relation, although it does exist for log(M,) < 10.0-10.5, is less
important than in the L x—SFR relation for high-mass X-ray binaries
(see, for example, fig. 14 in Gilfanov 2004).

Significantly more pronounced is the dependence of the lumi-
nosity of the brightest source on the LF normalization, i.e. on the
stellar mass of the host galaxy. In order to study this dependence, we
used the broken power-law approximation for the LMXB XLF from
Gilfanov (2004) and performed a series of Monte Carlo simulations,
similar to those described in Section 3. The probability distribution
of the maximum luminosity p(L max), obtained from these simula-
tions, is shown in the left panel in Fig. 11 for different values of
the stellar mass of the host galaxy. The right panel shows the de-
pendence of the most probable value of the maximum luminosity
and of its 67 per cent intrinsic spread on the stellar mass. Its broken
line shape is a result of the broken power-law approximation of the
LMXB XLF used in the simulations. Solid symbols show the ob-
served values of the maximum luminosity for the number of nearby
early-type galaxies, bulges of spiral galaxies and for LMXBs in
the Milky Way from the sample of Gilfanov (2004, and references
therein).

Similarly to HMXBs in star-forming galaxies, it is obvious from
Fig. 11 that the significant difference in the value of the luminosity
of the brightest source can be naturally explained by the properties
of the luminosity function of LMXBs. The same effect leads to an
artificial (unphysical) dependence of the average luminosity of low-
mass X-ray binaries in a galaxy on its stellar mass (e.g. fig. 17 in
Gilfanov 2004). So far there is no evidence for a significant change

© 2004 RAS, MNRAS 351, 1365-1378
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approximation of the ‘universal’ LMXB XLF, used in the calculations.

of intrinsic properties of low-mass X-ray binaries with galactic en-
vironment. The difference between the luminosity of the brightest
LMXB in massive elliptical galaxies and the bulges of spiral galax-
ies can be understood based on the probability arguments.

4.4.2 Variability

As in the case of HMXBs, in the linear large-mass limit, log(M,) 2
10.5, the fractional rms of the aperiodic variability of the combined
emission of LMXBs follows the rms,, o< 1/+/M, averaging law.
Owing to the shape of the LMXB XLF, it decreases rather quickly
with the stellar mass of the galaxy in the non-linear low-mass regime
as well (Fig. 12). Consequently, in massive elliptical galaxies, with
stellar mass log(M ) ~ 11.0-11.5, the fractional rms variability of
the total emission will be suppressed by a factor of ~10-15 with
respect to the rms of individual sources. In a galaxy similar to the
Milky Way, with log(M,) ~ 10.5-10.7, the suppression factor is
~5. Considerable variability on the level of about one-quarter to
one-half of that of individual X-ray binaries can be expected only
for light bulges of spiral galaxies with masses in the log(M,) ~
9.5-10.5 range.

Fig. 13 compares the dependence of the fractional rms on the most
probable value of the total luminosity for high- and low-mass X-ray
binaries. In the bright luminosity end, log(Lx) 2 39.5, the X-ray
emission from early-type galaxies is expected to be significantly, up
to a factor of ~7, less variable than from star-forming galaxies.

5 SUMMARY

We studied the statistical properties of the combined emission of a
population of discrete sources. Namely, we considered the properties
of their total luminosity

Ly = ZLk, (3D)
k=1
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Figure 12. Variability of the total emission of low-mass X-ray bina-
ries. The dependence of the ratio rms/rmso on the stellar mass of the
galaxy. The thick solid line shows the most probable value of rmsy/rmsg,
and the shaded area shows its 67 per cent intrinsic dispersion, both obtained
from the Monte Carlo simulations for the ‘universal’ luminosity function
from Gilfanov (2004). The dashed line shows the asymptotic behaviour at
large M,. The filled circles correspond to LMXBs in the Milky Way and
several nearby galaxies, computed from equation (28), using the observed
luminosities of X-ray sources in these galaxies.

and its dependence on the number of sources n or, equivalently, on
the normalization of the luminosity function (LF). Using high-mass
X-ray binaries in star-forming galaxies as an example, L, are the
luminosities of individual X-ray binaries in a galaxy and Ly is its
total X-ray luminosity due to HMXB population. In this example the
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for the respective ‘universal” luminosity functions from Grimm et al. (2003)
and Gilfanov (2004). For both curves, the linear parts at high Lx follow the
rms o 1/4/Lx averaging law.

normalization of the luminosity function, i.e. the number of HMXBs
in the galaxy n, is proportional to its star formation rate. We showed
that, as a result of the statistical properties of the probability distri-
bution p(Ly), the result of a measurement of the total luminosity
of a randomly chosen galaxy might deviate significantly from the
intuitively obvious expression

/+°° dN
(Liot) = L — dL «n o SFR. (32)
o dL

These properties of p(L ) can result in a surprising non-linear de-
pendence of the total luminosity on n. They can also cause anoma-
lous variability of the combined emission in an apparent violation
of the rms oc 1/4/n averaging law for uncorrelated variations of
individual sources.

Our results can be summarized as follows.

(1) The probability distribution p(L,) can be computed numer-
ically from equation (20) or alternatively equation (23). Examples
are shown in Fig. 1.

(ii) The relevant characteristics of the p(L ) distribution are: its
mode L — the value of the random variable Ly, for which P(Lioy)
has the maximum — and the expectation mean (L) defined by
equation (32). It is the mode of the p(Ly) distribution that pre-
dicts the most probable value of the total luminosity of a randomly
chosen galaxy. If many galaxies with approximately the same total
number of sources 7 are observed, the measured values of their total
X-ray luminosities are distributed according to the p(Ly) distri-
bution whose shape depends on the chosen value of n (Fig. 6, left
panel). The average of the measured values of L, is equal to the ex-
pectation mean (L) and is always proportional to n in agreement
with equation (32).

(iii) For small values of the LF normalization, L and (L) do
not equal each other (Fig. 1) and the L.—n relation is non-linear

(Figs 2, 3 and 6). Only in the limit of n > 1 does L = (L) and
Lo depend on 7 linearly. The threshold value of n depends on the
LF shape and can be arbitrarily large.

(iv) The skewness of the p(Ly) probability distribution in the
non-linear regime (Fig. 1) results in an enhanced and significantly
asymmetric intrinsic dispersion of the measured values of L., (Figs 3
and 6). Its non-Gaussianity precludes the use of the standard fitting
techniques in analysing the L, —n relation (e.g. Lx—SFR relation
for star-forming galaxies), such as x> minimization technique.

(v) The variability of the total emission (e.g. aperiodic variability
of X-ray emission of a galaxy due to superposition of variabilities of
individual sources) in the non-linear regime decreases with the num-
ber of sources more slowly than a rms o< 1/4/n law for uncorrelated
variations of individual sources, resulting in anomalously high vari-
ability of the total emission. In the linear regime the rms o< 1//n
dependence is restored (Section 3, Fig. 5).

(vi) The amplitude of the discussed effect depends on the shape
of the luminosity function. For a power-law LF it is strongest for
1 < @ < 2, is unimportant for shallow luminosity functions with
o < 1, and gradually diminishes with increase of o above o = 2
(Figs 1-3).

We illustrate these results using the example of the combined
emission of X-ray binaries in galaxies and its dependence on the
star formation rate and on the stellar mass of the host galaxy.

(1) For the slope of the HMXB ‘universal’ XLF, o ~ 1.6,
the discussed effects are strongest with a significant non-linear
regime in the Lx—SFR relation at SFR < 4-5 Mg yr~!. The pre-
dicted L x—SFR dependence is in good agreement with observations
(Fig. 6). Given the shape of the ‘universal’ LMXB XLF, no signif-
icant non-linearity of the Lx—M, relations is expected, also in a
good agreement with observations.

(i) The Lx—SFR relation can be used to constrain the XLF pa-
rameters of HMXBs in distant unresolved galaxies including the
galaxies observed with Chandra in Hubble Deep Field North at
redshifts z ~ 0.2—1.3 (Sections 4.2.2 and 4.3, Figs 7 and 10).

(iii) For both high- and low-mass X-ray binaries a strong depen-
dence of the luminosity of the brightest source on the SFR and stellar
mass of the host galaxy is expected. The L,,x—SFR and L ,.,x—M .
dependences predicted from the respective ‘universal’ XLFs ex-
plain well the results of Chandra observations of nearby galaxies
(Figs 9 and 11). The significant difference in the luminosity of the
brightest LMXB between bulges of spiral galaxies and giant ellip-
ticals or between the brightest HMXB in the Milky Way and in
starburst galaxies can be understood based solely on probability
arguments.

(iv) We predict enhanced variability of X-ray emission from star-
forming galaxies due to HMXBs, significantly above the o« 1//n
averaging law. For SFR < 5 Mg yr~! the expected fractional rms
of variability of the combined emission of HMXBs does not depend
on the star formation rate and approximately equals about one-third
to one-half of the rms of individual sources (Fig. 8). On the con-
trary, variability of X-ray emission from early-type galaxies due to
LMXBs will be significantly suppressed because of the averaging
effect (Fig. 12), up to ~3-10 times in the ~10'°-10"" M stellar
mass range. For the same total luminosity, star-forming galaxies
are expected to have significantly larger fractional rms than mas-
sive elliptical and SO galaxies assuming that the fractional rms of
individual sources are comparable (Fig. 13).

© 2004 RAS, MNRAS 351, 1365-1378
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APPENDIX A: APPROXIMATE SOLUTION
FOR THE TOTAL LUMINOSITY

‘We consider the case of a power-law LF (equation 25), with a slope
o > 0. The probability distribution for the luminosity of the brightest
source in the sample of n sources is defined by equation (27). The
maximum of this distribution gives the most probable value of the
luminosity of the brightest sources:

Lyax = min(L/ L2)7

max’

Ll/m\x o =1 o — 1 1
L—l =14 o (n— ) (Al)

Similarly, the probability distribution of the minimum luminosity
in the sample is

P(Luin) = [p1(L > Lyin)"™" p1(Luin)n. (A2)

Contrary to p(Lmax), P(Lmin) declines steeply at L > L; for any
n (for ¢ > 0). Within the accuracy of this approximation we can
assume that p(Lpin) = 6(Lin — L1), .. Liin = L.

The total luminosity of n sources distributed between L, and
Lmax according to the power law with slope o (o # 1, @ % 2) can be
approximated as

2—a 2—a
l—a L — L]

2—q Lla_ 1=’

max

Lo ~n (A3)

Knowing the probability distribution p(L ), the probability dis-
tribution p, (L) can be calculated as

-1
stOl
n L Ol % Lmax ’ A4
Pn(Liot) = p( )<dLmax (A4)
where Ly = Lnax(Lio) s the inverse function to equation (A3)
and p(Lmay) 1s given by equation (27).

The most probable value of L, is defined by the condition

dp,(Liot) _

0. AS
dLio (A)
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With equations (27), (A3) and (A4) the above equation can be trans-
formed to:?

(0 — 2)EX — (@ — 2)(1 + o — n 4+ an)g'*

(A6)
+ (e — D*(1 +n)§* + [1 + (@ — Dnlg* =0,
with &€ = L,«/L,, or, equivalently,
— 2a _ y2\el4a _1\2a __ £2
=(a DE+ 24+ a—a)E T+ (o — 1) & (A7)

(@ = Dlla@ = 2§ — (a — 1)§* + &7]

witho # 1, o # 2. Because of the simplifying assumption p min (L min)
= 8(Lmn — L) and the approximate nature of equation (A3), the
probability distribution defined by equation (A4) is valid only for
L < (L) and is undefined otherwise. This, however, is sufficient
for our purpose as L ,.x ~ L, corresponds to the break in the Li—n
relation (Figs 2 and 3), above which Ly = (Lio).

A.1 The practical recipe

The L—n relation can be computed parametrically using equa-
tions (A7) and (A3) The practical recipe is for a set of values of
Liaxs L1 < Lyax < Lo, to compute n from equation (A7) and Ly
from equation (A3). The pairs of values (L, ) define the Li—n
relation before and up to the break. Above the break, Ly, = (L)
and can be computed from equation (A3) with L,,x = L, and n >
Npreak @ free parameter. The 7 in the obtained L.+—n relation can be
transformed to the normalization A via equation (11).

The approximation defined by the equations (A7) and (A3) is
compared with the results of the exact calculation in Fig. 2. It is
accurate within several per cent everywhere, except for the break
region, where its accuracy is ~10-20 per cent.

A.2 Asymptotics

Using the approximate solution for L, from Appendix A we con-
sider the asymptotic behaviour of the Lo—n relation in the limit of
L,/Ly — o0, > 1.

From equation (A7) variable £ is related to the number of sources
by (see footnote 2):

£ =@—Dn+0(1),  Lypx=%&L, (A8)

in the limit of n > 1 or equivalently L. > L;. Although in the
limit n — oo this approximation is valid for any & > 1, its accuracy
deteriorates considerably for « < 1.6 where it can be improved by
replacing n in equation (AS8):

1+a—a?
(- D@-2)

n—n I <a < 1.6 (A9)

The most probable value of the total luminosity is given by

Lo 1—[@—hny@/eD A10)
(Liot) 1= (Ly/Ly)**
with @ > 1, @ # 2 and n > 1. Using equations (11) and (12) it
can be expressed via the normalization of the luminosity function
A or transformed to the relations for L. As with equation (AS),
the accuracy of equation (A10) can be significantly improved using
equation (A9) for o < 1.6.

2 Note that in equations (A6) and (A7) Lmax is a parameter rather than the
most probable value of the maximum luminosity. The latter is defined by
equation (A1), which is exact.
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For 1 <& < 2 the Ly—n relation shows a sharp break between the
non-linear and linear regimes (Figs 2 and 3). From equation (A10)
one can obtain

1/(@—1) f

~ n Or 1 < Npyreak,

Ltol (08 { (All)
n forn > Npreak.

This is in an agreement with equation (8) based on simple qualitative
arguments. The position of the break in the L,,—n relation can be
obtained from equation (A7) by substituting £ = L,/L, and using
the fact that £ > 1:

1 L !
2
real ~ . A12
Npreak 1<[1) ( )

Expressed in terms of the normalization A of the luminosity function
equation (25) it is

Apreax ~ L5 (A13)

As intuitively expected, the break position expressed in terms of
the normalization of the luminosity function does not depend on
the low-luminosity cut-off L; and is defined only by the slope of the
luminosity function and the high-luminosity cut-off (see discussion
in Section 2.2.2). The total luminosity at the break, however, depends
on the low-luminosity cut-off for a steep luminosity function with
o> 2
L,
22—«

Ltot break ~ a—2

’ L L

2 =2 ifa > 2,
oa—2 Ll

ifl <o <2,

(A14)

as the total luminosity for o > 2 is defined by the sources near the
low-luminosity cut-off.

APPENDIX B: VARIABILITY OF THE TOTAL
EMISSION

In the linear regime of the L,—n relation, the fractional rms? of
the collective emission is inversely proportional to the number of
sources:

Q—-aP 1 .
_ - ifa <1,
(Il—a)3—a)n
2—ap  [(L,\"'1
N O T T
rms2, (@ —1D@B—a) \ L n
— R 3 (B1)
rms; (2-0{)2 L, 1 )
—_— | = — if2 <o <3,
(a— DB —-a)\ L, n
N2
_@-oy 1 ifo >3,
(a—1)(a—=3)n

or, equivalently, to their total luminosity:

2o L
% 2 ifo <2,
3 —a Ly
2 a=2
Mo Q@2 Lo (LY ey ) 3, (B2)
rms; 3—a L\ L,
—2L
d ! ifa > 3.
o — 3 Ly

The above formulae are valid in the limit L < L.

Similarly to the most probable value of the total luminosity
(Appendix A), the fractional rms of the total emission can be approx-
imately calculated substituting L, in equation (29) with some value
L < L. In principle, the probability distribution for the rms
in equation (28) could be derived using the probability distribution
for Lp,x. The maximum of this probability distribution would give
a sufficiently accurate approximation for rms,, /rmsy. However, for
simplicity we use the value of L, from equation (A7). In the limit
L,>» Lyonefindsforl <o <3

rms2, (o= 2)? g3« l
ms?  (@—1)G3—a) E*—1)2n

for n < nyear, Where & is defined by equation (A8) with substitution
of equation (A9) for I < & < 1.6 and ny is defined by equation
(A12). For « < 1 and « > 3 there is no non-linear regime and the
fractional rms,y obeys equations (B1) and (B2) for any n.

From equation (B3) one finds for 1 <o <2

sy, (a0 —2)°

ms; 3 —a)
i.e. in the non-linear regime the fractional rms of the collective
emission does not depend on the number of sources.

The accuracy of equations (B3) and (B4) is sufficiently good for
a 2 1.5 but deteriorates for smaller values of «. In the linear regime
equations (B1) and (B2) are almost precise, their only approximation
is in neglecting higher orders of L,/L,.

(B3)

N < Npreak s (B4)
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