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ABSTRACT

The systematic magnification of background sources by the weak gravitational-lensing effects of foreground
matter, also calledosmic magnificatiaris becoming an efficient tool both for measuring cosmological parameters
and for exploring biases in the distribution of galaxies relative to the dark matter. We extend here the formal-
ism of magnification statistics by estimating the contribution of second-order terms in the Taylor expansion of
the magnification and show that the effect of these terms was previously underestimated. We test our analytical
predictions against numerical simulations and demonstrate that including second-order terms allows the accuracy
of magnification-related statistics to be substantially improved. We also show, however, that both humerical and
analytical estimates can provide only lower bounds to real correlation functions. We propose to use count-in-cells
estimators rather than correlation functions for measuring cosmic magnification since they can more easily be re-
lated to correlations measured in numerical simulations.

1. INTRODUCTION of cosmic magnification involves several approximations:

Gravitational lensing by large-scale structures magnifies sourcese the luminosity function of the sources is described by a
and distorts their images. The systematic distortion of faint  power-law over the range probed by the flux limit of the
background galaxies near matter overdensities, dbsmic observation; and

shear has been measured by several groups in the past few

years (Bacon et al. 2000, 2002akmerle et al. 2002; Hoek- e the magnification is assumed to fall into the weak lensing
stra et al. 2002; Kaiser et al. 2000; Maoli et al. 200&fBgier regime, i.e. to deviate weakly from unity. Thus, the mag-
etal. 2002; Rhodes et al. 2001; Van Waerbeke et al. 2000, 2001, nification can with sufficient accuracy be approximated by
2002; Wittman et al. 2000). It was found to be in remarkable its first-order Taylor expansion and its deviation from unity
agreement with theoretical predictions based on the Cold Dark becomes proportional to the lensing convergence alone.
Matter model, and has already provided new constraints on cos-

mological parameters (Van Waerbeke et al. 2001). While the first assumption is comfortably satisfied, in partic-
In a similar way, systematic magnifications of backgroundjlar for quasars, the validity of the second needs to be verified.
sources near foreground matter overdensitiesc®ic mag- This is the goal of the present paper.
nification, can be measured and can provide largely independentoyr paper is structured as follows: first, we introduce the for-
constraints on cosmological parameter(rd & Bartelmann  majism of the effective magnification and its Taylor expansion
2002, Menard et al. 2002). Gravitational magnification has twgn Sect. 2.. We then describe a number of statistics related to the
effects: f|rSt, the flux received from distant sources is |ncrease@,nsing Convergence, and evaluate the amp”tude of the second-
and the solid angle in which they appear is stretched, thus thejfder terms which appear in the Taylor expansion. In Sect. 3.,
density is diluted. The net result of these competing effects dgre describe the numerical simulations we use to test our analyt-
pends on how the loss of sources due to dilution is balanced Ry, results and estimate the accuracy of several approximations
the gain of sources due to flux magnification. Sources with flagy the magnification. As an application, we investigate second-

luminosity functions, like faint galaxies, are depleted by cosmigrder effects on quasar-galaxy correlations in Sect. 4., and we
magnification, while the number density of sources with steegmmarise our results in Sect. 5..

luminosity functions, like quasars, is increased. Thus, cosmic
magnification gives rise to apparent angular cross-correlations

between background sources and foreground matter overden- 2. FORMALISM
sities which are physically completely uncorrelated with the
sources. These overdensities can be traced by using the distribu- 2.1. Expanding the magnification

tion of foreground galaxies.

Numerous studies have confirmed the existence of quas&osmic magnification can be measured statistically through
galaxy correlations on angular scales ranging from one agharacteristic changes in the number density of the background
minute to about one degree, as expected from cosmic lensiagurces. Along a given line-of-sight, this effect depends on two
(for areview, see Bartelmann & Schneider 2001; also Gluaemr quantities:
et al. 2001). However, the measured amplitude of these corre-
lations has been systematically higher than usually theoretically e the magnification factory, which describes whether
predicted. sources are magnified or demagnified, depending on

While cosmic shear can directly be related to observable whether the matter along their lines-of-sight is preferen-
quantities like image ellipticities, the theoretical interpretation tially over- or underdense compared to the mean,



e and the logarithmic slop@& of the source counts as a and the corresponding power spectrum can be expanded in a
function of flux, which quantifies the amplitude of sourcesimilar way,
number-count modifications due to flux magnification. As
mentioned in the introduction, magnification by gravita- Po-1(s) = 4(a — 1) [P(s) +2aPy2(9)] ; (6)
tional lensing not only increases the observed flux, but also
stretches the sky, thus the number density of sources e power spectrun®, »(s) will be defined in Eq. (16) below.
a magnified patch of the sky is reduced. The net magnfFhe last two equations show that the importance of the second-
fication effect, callednagnification biasdepends on the order terms in the expansion (3) increases as the number-count
balance between the number of sources lost by dilutiofunction of the background sources steepens, i.a.iasreases.
and gained by flux magnification. The steeper the number the following, we will usea = 2 unless stated otherwise.
count function of the sources is, the more pronounced is thEnis value applies, for instance, to the number counts of bright
magnification bias. quasars withmg < 19.5 (Pei 1995). For simplicity, we abbrevi-

If the number-count function of the background sources Ca%te(éuém by (W

be described as a power law in a sufficiently wide range around ) _
the flux limit of the observation, the magnification bias is quan- 2.2. Second and Third-Order Correlations

tified by theeffective magnification4r™. It directly expresses e will now estimate severak-related statistical quantities
the changes of the background source density caused by lensifisded in the Taylor expansion of the magnification. For this
through the relation purpose, we first introduce theprojector such that

n(>S.8) = @) no(> ) 1)

whereng(> S) is the intrinsic number-count function of sources
whose observed flux excee8sn the absence of lensing, and
n(> 9) is the corresponding number-count function in presen

(®) = [ dwp(w)BBhc (w).w )

can be written as a weighted line-of-sight projection of the den-
Cﬁty contras® from the observer to the Hubble distanveg. The

of lensing. i :
The local properties of the gravitational lens mapping arBrOJector s
characterised by the convergemcavhich is proportional to the 3 Ho\ 2
surface mass density projected along the line-of-sight, and the (W) = =Qp ( 0)
sheary, which is a two-component quantity and describes the 2 c
gravitational tidal field of the lensing mass distribution. The ef- WH dw fic (W) fic (W —w)
fective magnification is related toandy through X /W aw) ns( )W . (8
a—1 2 211-a
Wt =[1-k)2= ], (2)  wherew is the radial coordinate distanci (w) is the comov-

12 ing angular-diameter distanaas(w) is the normalised distance
where |yl = (V§ +3)"/? is taken as the absolute value of thegistribution of the sources, araiw) is the cosmological scale
shear. In the weak-lensing regime, batand|y| are small com-  factor. Using Limber’s equation, we can then relate the autocor-

_Fl)_arflad to unity, and the previous expression can be expanded ifefation function ok to the dark-matter power spectrups,
aylor series:

2
N w
W = 1 (@ = 1) [26+ (20— DR+ Y] + 0% VD) - (3) K@x@+0) = [ dw ';’gﬁwg
K
Previous studies using analytical formulae for magnification s S
statistics focused only on the first-order term of this expansion, or o <fk(vv)’w) J(sB), (9)

i.e. they used the approximatipdi—! ~ 1+ 2(a — 1)k, which

potentially causes the amplitude of the effect to be underesihere 3 s the zeroth-order Bessel function, and the power spec-
mated. In this section, we investigate the second-order termsji,m, P corresponding to this correlation function is

the expansion and estimate their contribution.

In doing so, we first note tha(8) and|y|2(8) share the same P& (W) s
statistical properties (e.g. Blandford et al. 1991), becausexoth Pe(s) = /dW £2(w) Ps (f(w)’w> . (10)
andy are linear combinations of second-order derivatives of the K k

lensing potential. The identity of their statistics is most easily ag indicated by Eq. (5), the estimation of second-order terms
seen in Fourier space. Since we will only deal with ensemblg,q;ires the computation of the cross-correlation betweamd

ot 2
gyergges of the lmagmﬂ&aﬂor;}_laﬁer mj and|y|“ can bel_c_om- k2. We do this by first introducing a three-point correlation func-
ined into a single variable, which we denotedipr simplicity. o, for k and then identifying two of its three points. As usual,

Thus, we can write for our purposes, we define the three-point function by

2(81.62) = (K(Q)K(9+61) K(P+62)) . (11)
Observable effects are due to departures from the mean value of ) , ) )
the magnification. Therefore, the relevant quantity to correlateSing thex projector defined in (8), we can then write

is ou~1 = p-1 — (u@-1). Then, up to second order k¥, the =
autocorrelation function of the effective magnification is %(01,02) / dwy pe(w1) / dwy pe(Wo) / dws pg(ws)
<5[fK (W)@, W] [ fic (W2) (@+B1), e

BELQHG+8) = 4a—D? [(K(@K(@+8))
+ ak@KG8)] . ©) 31 (W) (@-+ 82), wa ) (12)

Pt =1+2(a - 1) [k +ak?] + O(x?). (4)

X

X



Next, we employ the approximation underlying Limber’s equa- » Without Smoothing
tion, which asserts that the coherence length of the density flué>*"° ‘
tuation field is much smaller than the scales on which the projec- Firaimorder s <
tor pg varies appreciably. Finally, we insert the expression for . Second-order ; 4y T

Sum

the bispectrum of the dark-matter fluctuations detailed in Ap-~*'""

pendix A., and find

2k o ox 2
2(61.8) — [owgw) [ ke ékremw)/m

3.0x1074 -

(2m)? (2m?2
X B5(R1,R2, 7|_('1 — Rz,W) eiRZ'éZ fic (w) , (13) 15x1074 ]
whereBs (ki , k2, ks) is defined by ol
(3(K1)3(K2)3(Ka)) = Bp (Ko + Kz + Ka) By(K, ko, Ka) . (14)

Then, using Eqg. (12) and identifying two points of the three- k407
point correlation functio®; — 6, = 6, we find
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. oL FIGURE 1.—The upper panel shows the amplitude of the two first terms
The term(k (@)k?(9+0)) is a function o only. Its contribution  of the Taylor expansion of the magnification autocorrelation, namely

P.2(s) to the power spectrum of the magnification is given byk(g)k(¢+8)) (dashed line) and# ()k%(¢-+8)) (dotted line), using

the inverse Fourier transform of Eq. (15), which reads a source redshift of unity. The sum of these two terms is shown as the
solid line. The lower panel details the relative contributiRyy of the
3 d2d second-order term for different source redshifts. The figure shows that
. (W) ferent source ved .
.2(9) dw 5 the lowest-order approximatign~ 1+ 2k misses a substantial part of
. fic(w) (2m) the amplitude of the magnification autocorrelation function. Given the
g g _g_%8 accuracy of the bispectrum fitting formulg,,, is accurate te- 2%.
< B (o )G9
fie(w) " fie(w) " fi(w)

e on scales larger than a few degrees, the contribution drops

2.3. Results and predictions to negligible values,

We can now numerically evaluate the first two contributions to o effects become relevant on smaller scales. with a fairly con-
the Taylor expansion of the magnification autocorrelation func-  gtant amplitude from a few degrees down to around 10 arc

tion defined in Eq. (5). As mentioned before, we ase 2 here. minutes,

For evaluating the correlation functions, we use a CDM power
spectrum in a spatially flat Universe parameterised \@gh= e on yet smaller scales, the second-order contribution in-
0.3,08=0.9,h=0.7 andr =0.21. The non-linear evolution of creases steeply, due to the non-linear evolution of the den-

the power spectrum and the bispectrum are computed according  sity field. For sources at redshift 2, the amplitude of the

to the formalisms developed by Peacock & Dodds (1996) and  second term reachémlf of the amplitude of the first term
Scoccimarro et al. (2000), see Appendix A.. The upper panel of  pelow one arc minute.

Fig. 1 shows the first- and second-order contributions (dashed

and dotted lines, respectively) to the Taylor expansion of the Thus, given the amplitude d&,,, the correcting term intro-
magnification for a fixed source redshift of = 1. The sum duced in Eq. (5) is relevant and must be taken into account for
of the two contributions is shown by the solid line. The figurejescribing the magnification autocorrelation with an accuracy
shovv_s that the contribution of the seqond-order term reaches ggtter than 30%- 50% on scales smaller than a few degrees.
amplitude of more than 30% of the first-order term on angular 5o far, we have only investigated the amplitude contributed by
scales smaller than one arc minute. According to Eq. (5) whidfhe second-order term. In order to estimate the remaining con-
describes the Taylor expansion of the magnification autocorrgiputions of all missing terms of the magnification expansion,
lation, we define the relative contribution of the second-ord&fe will now use numerical simulations allowing a direct com-

compared to the first-order term as putation ofpt as a function of the convergeneeand the shear
e o Y-
20 (K(Q)K>(p+0
Ry(@) = 22 MA@ D) an

(K(PK(9+8)) 3. MAGNIFICATION STATISTICS FROM NUMERICAL

i o , SIMULATIONS
The lower panel shows this ratio in per cent for different source
redshifts as a function of angular scale. From the lower to the 3.1. The ray-tracing simulation

upper curves, the source redshifts are.b, 2 and 3. For each
source redshift, the contribution of the second term exhibits or testing the theoretical predictions we performed ray-tracing
similar dependence on angular scale: experiments in a Very Largd-body Simulation (VLS) recently



carried out by the Virgo Consortium (Jenkins et al. 2001, anthys is 4272square degrees. We produced 36 realizations of
see also Yoshida et al. 2001 for simulation detAilEhe sim- the underlying density field by randomly shifting the simulation
ulation was performed using a paralléINP code (MacFarland boxes in the direction perpendicular to the line-of-sight using
et al. 1998) with a force softening length kefs ~ 30h~2kpc. the periodic boundary conditions of ti-body boxes. Note
The simulation employed 532ZDM particles in a cubic box of that the lens planes coming from the same box are shifted in the

479h~1Mpc on a side. It uses a flat cosmological model with %gxme way in order to maintain the clustering of matter in the

gﬁ&%b?g rfg;g%ﬁnojb%_Cofgoilr?ﬁ]iga:ncst?;tap%v;%gégtrlgm We point out that second and higher-order statistics of point-

was computed using CMBFAST (Seljak & Zaldarriaga 1996201”‘3.e magpnifications are generally ill-defined in presence of
assuming a baryonic matter density @f — 0.04. The parti- austic curves because the differential magnification probabil-
cle mass far = 6.86 10'%-1M.) of the simulation is suffi- ity distribution asymptotically decreases|as’ for largep (see

ciently small to guarantee practically no discreteness effects 612" 2)6 T ht'ﬁ IS a dgenertljc f?atﬂﬁ Olf magnlgc?u%r; nearl caus-
dark-matter clustering on scales down to the softening length f‘&s and IS thus inaependent of the lens model. strong lensing

the redshift range of interest for our purposes (Hamana, Yoshig ects on point sources near caustic curves give rise to rare,
& Suto 2002). ut arbitrarily high magnification values in the simulations, and

The multiple-lens plane ray-tracing algorithm we used is degh(?_ref%re lt_lhe varlan::rfz of the tmh_easured S(;at'St!qf ca(ijnno'ijbeb
tailed in Hamana & Mellier (2001; see also Bartelmann & elineéd. However, the smoothing procedure introcuced above

Schneider 1992 and Jain, Seljak & White 2000 for the theore@"ows this problem to be removed because it smoothes out high

ical basics): we thus describe only aspects specific to the V %ensity regions in the dark matter distribution and thus the frac-
; Latzr?nal area of high magnification decreases. In reality, infinite

N-body data in the following. In order to generate the densit ke .

field betweerz = 0 andz ~ 3, we use a stack of ten snapshothagnifications do not occur, for two reasons. First, each astro-

outputs from two runs of thal-body simulation, which differ PhYSical source is extended and its magnification (given the sur-
i face brightness-weighted point-source magnification across its

only in the realisation of the initial fluctuation field. Each cubicSolid angle) remains finite. Second, even point sources would
. . . . -3 3 . . L]
box i divided into 4 sub-boxes of 479 119750 3Mpc® with 0 magnified by a finite value since for them, the geometrical-

the shorter box side being aligned with the line-of-sight direc ~.: s : o ot
tion. TheN-body particles in each sub-box are projected cmtoptlcs approximation fails near critical curves and a wave-optics

the plane perpendicular to the shorter box side and thus to t escription leads to a finite magnification (Schneider et al. 1992,

line-of-sight direction. In this way, the particle distribution be- ap. 7).
tween the observer amd~ 3 is projected onto 38 lens planes — . — .
separated by 1185h~*Mpc. Note that in order to minimise the 10 b .
difference in redshift between a lens plane and an outpiit-of — Small-scale smoothing
body data, only one half of the outputs (i.e. two sub-boxes) at T R L Large—scale smoothing
z=0are used. £ :

The particle distribution on each plane is converted into the 0.1 -

surface density field on either a 16324r 2048 regular grid
using the triangular shaped cloud (TSC) assignment scheme
(Hockney & Eastwood 1988). The two grid sizes are adopted 0.01
for the following reasons: 3
= 1078
e the 1024 grid is chosen to maintain the resolution provideds

by the N-body simulation and removing at the same time& 10-+

the shot noise due to discreteness inNkieody simulation.

Its computation follows the procedure described inHamana -5

& Mellier (2001) and Jain et al. (2000). The corresponding

outputs will be labelled witharge-scale smoothing the

following.

10-8

e the 2048 grid is also chosen to examine effects of small- 1077
scale nonlinear structures which are smoothed inatge-
scale smoothingimulation. We should, however, note that  10-8
in this case the shot noise is not sufficiently removed. Ac-
tually, the shot-noise power spectrum amplitude exceeds
the convergence power spectrum on scales belovar- o o
cmin. In the following, therefore, we will only consider FIGURE 2.—Probability d_|str|b_ut|on thhe magnlfl_catlon for our small- _
measured correlation functions on scales larger than 1 £J_1d large-scale smoothing simulations, assuming sources at redshift

cmin.  The corresponding outputs will be labelled withUnty- The power law tail behaviouf () found in the small-scale
small-scale smoothinigelow. smoothing indicates the existence of caustics, while for large-scale

smoothing, no prominent tail is shown which suggests caustics do not
glay a noticeable role.

—_

Having produced surface density fields on all lens plane
1024 rays are traced backwards from the observer’s point us-
ing the multiple-lens plane algorithm (e.g. Schneider, Ehlers &
Falco 1992). The initial ray directions are set on 1D2#ids 3.2. Filtering

with a grid size of @5arcmin, thus the total area covered byThe computation of correlation functions from numerical sim-

The ray-tracing data are available from T. Hamana on requestlations is mainly affected by two effects; on large scales by
hamanatk@cc.nao.ac.jp the finite box size of the dark matter simulation, and on small



scales by the grid size used for computing the surface denskion for (k(@)k2(¢+6)) yields

field from the particle distribution. These boundaries set the

limits for the validity of correlation functions measured in nu- pE(w) [ d’s; s,
merical simulations. In other words, this means that measuring Zsmoott( ) /de4(W) / (2n)2/ (2m)2
a correlation function on a given scale is relevant only if this K

scale falls within the range of scales defined by the simulation. 1(510s) 1(s265) 1([51+ 52/ 65)
As shown in the previous section, our method for computing the S S —5-9
cross-correlation betweenandk? consists of first computing a d < fic (W)’ fe(w)’ fie(w)
three-point correlation functiotk (@)K (@+ 81)k(@+ 6,)), and

then identifying two of its three points. In such a case, one Qfhere [x) = 23X " gimilarly, introducing the smoothing
the correlation lengths of the triple correlator becomes zero, thdgheme into the tXwo—point correlation function gives
necessarily smaller than the smallest relevant scales in any sim-

X

X

w) s (19)

ulation. This prevents us from using any numerical simulation W 6 —B:) = (k(B1)K(D
for directly comparing the results. smoottl |82 —61[) = (K(B1)K(62)) e
pEw) [ &’ (s
/ dw— / 5P W
fe(w) J (2m=" \ f(w)
30[ T \ I » id
‘\‘ Small-scale smoothing @y;y ~— =~~~ =~ X |I(Ses)| el . (20)
. Large—scale smoothing 0yy — 7T - . .
55 VY ’ ’ o The effective smoothing scale depends on two parameters:
. [
L Dipl . L. . .
' " o the evolution of the apparent grid size of the simulation as
' a function of redshift, and
2.0

o the radial selection function of the dark-matter field whose
correlation function has to be measured.

These quantities are plotted in Fig. 3. In order to use a unique
smoothing scale valid on the final convergence map, we define
the effective angular smoothing scale by

o

85— [ dzW(2)8gua(2) (21)

05 whereW(z) is the relevant normalised selection function along

,,,,,,,,,,, the line-of-sight. Measuringis means probing the power spec-
B trum along the line-of-sight, weighted pf (z). Therefore, we
00 05 . . 0 will useW(2) = D2 (2) p_ﬁ(z), whereD (2) is the growth factor.
Redshift In a similar way, we will usaV(z) = D% (z) p3(z) for measur-
iNg Zsmooth The numerical values of the corresponding effective

) ) ) ) angles are presented in Table 1.
FIGURE 3.—Smoothing angle of the simulation as a function of red-

shift f_qr the two ray-tracing schemes. In _order to show the relevant small-scale smoothing _ large-scale smoothing
quantities leading to the effective smoothing angle, we overplot the

iqhti ; _p? 3 Wsmooth 6s=0.40 08s=10.80
weighting functionW(z) = D7 (2) p{(2) (see Egs. [8] and [21]). Zemooth Be— 0.39 Be— 0.78

B4 [aremin]
o
—_— 7T

In order to avoid this problem, and for comparing our an
alytical with numerical results, we will introduce an effective
smoothing into the theoretical calculations, such that each val . ' .
of k at a given positio is evaluated by averaging thevalues The second important difference between analytical calcula-
in a disk of radiusds centred orb. Indeed, the limit imposed tions and measurements in numerical simulations is the finite

by the grid size of the simulation gives rise to an unavoidpox size effect. Indeed, the analytical correlation functions pre-

able smoothing-like effect which cancels all information comSented above were computed taking into account all modes in

; : : the power spectrum. However, the finite size of the box used in
ing from scales smaller than a corresponding smoothing SC4ife simulation introduces an artificial cutoff in the power spec-

Bs. For this purpose, we introduce a smoothed three-point cofym since wavelengths larger than the box size are not sam-
relator, pled by the simulation. This effect can also be taken into ac-
S 4 o o S count in the analytical calculations by simply cancelling all the
Zsmoot 62 — 61,63 — 01) = (K(61)K(82)k(63))es  (18)  power on wavelengths with wave numbex Kmin. The boxes
i i _ we use have a comoving size of 480Mpc which corresponds
- / a8, / d8) / B (K(B)x(B)x (1)) 0 kmin = 0.013hMpc2.

TABLE 1.—Effective smoothing angles in arc minutes fay
andzs computed from Eq. 21 as a function of simulation resolu-

X \Nes(_»/l - él)Wes(élz - éZ)Wes(éé —63), 3.3. Comparingkk) and (Kk?)

where the functioMg(6') is a normalised top-hat window of With the help of the filtering schemes introduced in the previous
radiusBs. Introducing this smoothing scheme into the expressection, we can now compare our theoretical predictions with



correlation functions measured from the numerical simulationfng changes the amplitude dramatically, and this effect affects
We first compare the amplitude and angular variation of the twall scales (see the dashed line). As discussed before, this is ex-
first terms of the Taylor expansion of the magnification sepgected since we are measuring a three-point correlator on trian-
rately. In the next section, we will then compare their sum to thgles which have one side length smaller than the angular grid
total magnification fully computed from the simulation. size of the simulation. Finally, as shown by the difference be-

tween the dotted and solid lines, cancelling the power on scales

wherek < kmin again improves the agreement on large scales.
[ T 1 The agreement between our analytical and numerical compu-

1 tations of (kk) and (kk?) demonstrates the validity of the for-

malism introduced in Sect. 2. as well as the choice of the effec-
tive smoothing scale (Eq. [21]) for describing the second-order
term in the Taylor expansion of the magnification.

3.4. Deviations from simulated p-statistics

We now want to investigate how well the second-order expan-
sion describes the full magnification expression (2) which can
be computed using maps ofy andw (a net rotation term which
arises from lens-lens coupling and the lensing deflection of the
light ray path; see Van Waerbeke et al. 2001b) obtained from the
simulations (see Hamana et al. 2000 for more detail).
6 , o . Before doing so, we recall that the amplitude of the magnifi-
1070k <x(¢) *(p+0)> o ~ 4 . . P .
g 1 NN cation autocorrelation measured from the simulation depends on
~d the smoothing scale, as seen in Sect. 3.2., gins&onlinear in
TN the density field. Therefore, all the following comparisons are
| valid for a given effective smoothing length only.
: | We further emphasise that two problems will complicate this
L A : comparison. First, our analytical treatment is valid in the weak-
1 L lensing regime only, i.e. as long as convergence and shear are
8 (aremin) small compared to unityx < 1, |y| < 1. While most light
rays traced through the numerical simulations are indeed weakly
FIGURE 4.—Comparison between theoretical predictions and measurtensed, a non-negligible fraction of them will experience magni-
ments from numerical simulations assuming sources at redshift unifycations well above two, say. Such events are restricted to small
The upper and lower curves shaqwk) and (kk?), respectively. The areas with high overdensities and thus affect the magnification
points are measurements from the large-scale smoothing simulatios$atistics only at small angular scales. Second, a separate prob-
with the error bars showing the variance among 36 different realisgem sets in if and where caustics are formed. The magnification
tions. The dotted lines show the analytical computations taking intgf light rays going through caustics is infinite, and the magni-
account the smoothing scale of the simulation. The solid lines addl’l'cation probability distribution near caustics drops m@g for

tionally include a cut in the power spectrum for cancelling the wave- i - _ o
lengths not covered by the simulation. The dashed line presents tt‘Le_’ . As noted above, second- or higher-order statistigs of

same statistics without any smoothing. Obviously, the smoothing ef- T’)n become m]?ar?'ngless t_)eclafuse thﬁy dlvelrg_e. | | il
fects are crucial for thé,KK2> cross-correlation. epartures of the numerical from the analytical results wi

thus have two distinct reasons, viz. the occurrence of non-weak
magnifications which causes the analytical to underestimate the
@umerical results on small angular scales; and the formation
of caustics, which causes second-order magnification statistics
tbreak down entirely. Both effects will be demonstrated be-
ow. They can be controlled or suppressed in numerical simula-
igns by smoothing, which makes lensing weaker, or by masking

Correlation functions

In Fig. 4, we overplot analytical and numerical results. Th
upper curve shows the autocorrelation functior a6 a function
of angular scale. We plot in circles the average measurem
from 36 realisations of the simulation, and the corresponding
o error bars to show the accuracy of the numerical results a A . =C .
function of angular scale. The solid line shows the analytical'dnly magnified light rays or regions containing caustics.
prediction, including effective smoothing and an artificial cut of In F'g' 5; we plot with circles the autocorrelation func-
the power at scales beloky,i,. The agreement is good on all tion {L(¢) u(@+ 6)) measured from the large- and small-scale
scales. For comparison, the dotted line shows the result if we @noothing simulations in the left and right panels, respec-
not impose the large-wavelength cut, and the dashed line is tHeely. The presence of caustics is more pronounced in the
result if no cut and no smoothing are applied. In both cases, ti§@se of small-scale smoothing than in the large-scale smoothing
deviations from the fully filtered calculation remain small sincesimulations. The dotted line shows the theoretical prediction
we are probing angular scales within the range allowed by tt#ven by the first-order term of the Taylor expansion, namely
simulation. 4(k(@)K(¢+0)). This yields a low estimate of the correlation,

The lower curves in Fig. 4 show a quantity proportional towith a discrepancy of order 10% on large scales, and more than
the second-order correction of the Taylor expansion, namely tf29% below a few arc minutes.
correlation functionkk?). In the same way as before, the cir- As expected from the preceding discussion, this level of dis-
cles show average measurements from 36 realisations, and €fiepancy also depends on the effective smoothing scale and can
error bars denote the corresponding Bleviation. The predic- increase if simulations with a smaller grid size are used. Esti-
tion including smoothing and small-wavelength cut (solid line)nating the contribution of the two lowest-order termsu8f?,
shows a relatively good agreement given the expected accuragg computed in Sect. 2.3. a lower bound to this discrepancy for
of the bispectrum fitting formula, which is approximately 15%a real case without smoothing, and found it to reach a level of
(Scoccimarro & Couchman 2000). This time, including smooth25% at large scales, and above 30% below a few arc minutes.



L T RIS IV I

10730
AN AN L
Ey > L
+ +
e e r
3 3
S s 1074
3 3 r
\Y \4 r
. measurement from the simulation measurement from the simulation
- first—order - first—order
first— and second—order k | ,‘075 L first— and second—order
E M|
S0%E T+ '
E| ETor T
= 40%E |'e | .
E 07 = R S 1 I
3 3 E ! . | _
E @ E LN ke TT e
E 20% & | . | T
I E E T |
£ 10% £ ST
E 3 E L
E J E| E 1
00% E . . 3 00% E . .
1 10 1 10

g (arcmin) 6 (arcmin)

FIGURE5.—The upper panel shows a comparison between the magnification autocorrelation measured from the simulation compared to the ana
ical estimation for a source redshift of unity. The circles show averaged measurements from 36 realisations of the simulation and the corresponc
1-0 error bars. The dashed line shows the analytical estimation using the approxipatiba- 2k. The solid line shows the improvement given

by the second-order term of the Taylor expansiop.oThe lower panel shows the relative contributigy, both measured from the simulation

and estimated using expansion termsgiafp to second order. In the right panel, each angular point shows three different measurements, taking
into account the complete magnification maps (solid-line error bars), or maps where pixels were masked where the magnification value exceec
or 4 (dashed-line error bars, from left to right).

The smoothed results taking the additional contribution of theontributions plotted in Fig. 5 are thus of different nature, but
second-order term into account are plotted as solid lines, amde suitable for a relative comparison.
give a much better agreement, as expected. To guantify this "NAs the lower panel of the large-scale smoothing simulation

more detail, the lower panels of the figure show several contrj; ; ; I ;
butions compared to the first-order term, i.e. taKd. $hows, the simple & k) estimate of the magnification misses

20% of the real amplitude near one arc minute. This discrep-
« The symbols show the additional amplitude of the magnif-mcy almost vanishes after adding the contribution of the second-
fication statistics measured from the simulation compareg{der term, which gives at all scales a final agreement on the per
to the first-order term also obtained from the simulation, Ccht level: the additional amplitude reaches 19% at the small-

' est scales of the figure, compared to a value of 20% given by
( (a) (*+é)> the simulation, and agrees within better than one per cent on
@ﬁm: H qiu ql J/num g (22) larger scales. Therefore, taking into account tloe(x?) cor-
4(K(P)K(0+0))num rection allows the accuracy to be increased by a facter @b
compared to the approximatiorikk), in the case of oularge-
The error bars indicate thed deviation across 36 realisa- scale smoothingimulation. On the largest scales, between 6
tions. and 30 arc minutes, the agreement even improves. Above these
- I scales, the numerical results do not allow any relevant compari-
e The solid line shows the contribution of the second—or_d$on because the number of available independent samplings cor-
relative to the first-order term computed from the analyticalesponding to a given separation decreases. On scales below a
expression including the effective smoothing, few arc minutes, the offset between the measured points and the
analytical estimate gives the amplitude of all higher-order terms
(23) neglected in the Taylor expansion of the magnification. As we
can see, their contribution is on the one per cent level for the
large-scale smoothing simulation.

The curves shown in the right panel demonstrate how the
) R, use of a smaller smoothing scale increases the discrepancy be-
_ Ineach case, we use the appropriate referencef@k(¢+  tween the analytical and the numerical results. The fraction of
0)), i.e. the numerical measurement in the first and the analyticabn-weakly magnified light rays increases, and caustics appear
estimation in the second case. Indeed, the measureménkpf which give rise to a power-law tail in the magnification proba-
from the simulation agrees with the analytical estimation withitbility distribution. We investigate the impact of the rare highly
some uncertainty, which is due to numerical effects like the finitmagnified light rays by masking pixels where the simulated
number of dark-matter boxes used for simulating the light conenagnification exceeds 4 or 8, and show that caustics have no
It introduces a bias into our comparisons which is impossiblaoticeable effect on the amplitude of the magnification autocor-
to separate from the real offset due to all higher-order terms oélation function determined from these simulated data. Note,
the Taylor expansion that were not taken into account. The twwowever, that the impact of the caustics depends on the source

mooth_ 20 <K(E’E)K2@+ é)>95
(K(@K(®+8))es

with a = 2.



redshift. The higher the redshift, the more caustics appear, aadtimation of cosmological parameters as well as the amplitude
the larger is their impact on the correlation amplitude. of the galaxy bias.

Imposing lower masking thresholds removes a significant As shown in Bartelmann (1995), the lensing-induced cross-
fraction of the area covered by the simulation, changing theorrelation function between quasars and galaxies can be written
spatial magnification pattern and thus the magnification autes
correlation function. The corresponding measurements are rep- . oL
resented by the dashed error bars in the lower right panel of woc(®) = (dgso(®) Ogal(@+6))

Fig. 5. We note that the error bars Bf;™ computed with the - a1, - =
small-scale smoothing simulation become larger at small scales = (O (9)3ga(9+6)) . (24)
compared to the lower left panel. This reflects the fact tha&lsing the above formalism, we can expand the effective magni-

second-order magnification statistics are ill-defined once caus-_.. - ) .
tics appear. In the next section, we will investigate simila ﬁc;tilr?;tglrﬁyatlorﬁu up to second order and find the cor

smoothing effects on cross-correlations between magnificati
and dark matter fluctuations. These quantities are not affected by

2
problems of poor definition when the smoothing scale becomes Woa(8) = 2(a — 1) [{Kdga)) +a (K“dga] - (25)
small, and therefore do not show larger error bars at small scalﬁz . .

when the smoothing scale decreases. e second term is proportional ¢o(contrary to the factor@

in Eqg. [5]), since there is only one contribution of the magnifi-
cation. Therefore, the expected effects will be roughly half of
lensing magnification statistics. The formalism introduced i hose on the autocorrelation of the effective magnification seen

Sect. 2. allows second-order corrections to be described with Byt1€ Previous section. Assuming a linear setween galazx-
without smoothing of the density field. This provides a betteleS and dark matter, the cross-correlation betw&gnandk
description of the correlation functions, but still gives a lowefa@n be written as

amplitude than the simulation results. As we noticed, the ana-

These comparisons show that the approximagiea 1 + 2k
misses a non-negligible part of the total amplitude of wea

P P
lytic computation based on the Taylor expansion is sufficiently (Bgal( @)K (9+6)) = b (3pm (@) K“(¢+6))
accurate only in the weak lensing regime. In reality, however, o PRW) ps(W) [ dPs [ dPs
the strong lensing, which can not be taken into account in the an- = / dw 2 (w) / 22 ] (22

. K .

alytic formalism, has a significant impact on the magnification
(26)

correlation especially at small scales as shown in the small-scale S1 L —S1—9 w) &si
smoothing simulation. Therefore, one should carefully take the 3 fi(w)” f(w)” fi(w) )
strong lensing effect into consideration when one interprets the
magnification related correlation functions. However, we Willyhereps(w) is the normalised distance distribution of the galax-
see in the next section that counts-in-cells estimators are less gfs. For this example, we will use
fected by the strong lensing than correlation functions and thus
enable better comparisons of observations with results from sim- B 2\ B
ulations. Ps(2)dz= ————— exp|— <> dz 27
() p ; ( )
T (3/B) 2
4. APPLICATIONS TO QUASARGALAXY CORRELATIONS with B = 1.5 andzy = 0.3.

) o o ) The results are shown in Fig. 6. As we can see, previous esti-
As a direct application of the formalism introduced previouslymates using the approximatian~ 2k missed approximately
we now investigate the effects of second-order terms on a weli5% of the amplitude on small scales for quasars at redshift
known magnification-induced correlation, namely the quasatmity. Using quasars at redshift 2, these effects reach up to 25%.
galaxy cross-correlation (the results can also be applied tthese offsets, which are only lower limits, would lead to biased
galaxy-galaxy correlations induced by magnification; Moessestimates of2; or b, for example.
ner & Jain 1998). In order to estimate cosmological parame- As for the magnification autocorrelation, we can compare
ters from this kind of correlations, we then suggest the use @jfur theoretical estimates against numerical estimations. We can
a more suitable estimator using counts-in-cells rather than tw@rst introduce a coefficien®s, describing the accuracy of our
point correlation functions. It has the advantage of making théecond-order correction:
observational results more easily reconciled with the ones from
numerical simulations. o (3(P)K2(P+6))

4.1. Formalism and correcting terms o _
We plot the results in Fig. 7. Note that contrary to the magni-

The magnification bias of large-scale structures, combined wifftation autocorrelation, this quantity does not suffer from poor
galaxy biasing, leads to a cross-correlation of distant quasadefinition, even without smoothing. The difference can be seen
with foreground galaxies. The existence of this cross-correlatidoy the same size of the error bars between the two simulation
has firmly been established (e.g. Btez & Martinez-Gonalez results at small scales, whereas they were larger in the case of
1995; Williams & Irwin 1998; Norman & Impey 1999; Norman () for the small-scale smoothing simulation (Fig. 5). The re-
& Williams 2000; Bentez et al. 2001; Norman & Impey 2001). sults for R, are very similar those obtained f&,,: for the
Ménard & Bartelmann (2002) showed that the Sloan Digital Skiarge-scale smoothing ray-tracing we find very good agreement
Survey (York et al. 2000) will allow this correlation function to which reaches the one percent level on small scales. However,
be measured with a high accuracy. Its amplitude and angulashen the smoothing length decreases, we see from the small-
shape contain information on cosmological parameters and teeale smoothing outputs that we are missing a part of the total
galaxy bias factor. Thus, it is important to accurately describamplitude on small scales, which shows that higher-order terms
these magnification-related statistics in order to avoid a biasgday a non negligible role on those scales.
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FIGURE6.—The upper panel shows the amplitude of the normaliseBiGURE 7.—Comparison oRs, given by the theoretical calculation
quasar-galaxy correlationgg/2(a — 1) as a function of angular sep- and measured from the numerical simulation. The results are shown for
aration. We show the first two terms of the Taylor expansion of thithe large- and small-scale smoothing simulations from bottom to top.
correlation, namely3(¢)k(¢+ 8)) (dashed line) and(B(§)k2(¢+6))  They show that a second-order description of({ii# cross-correlation
(dotted line), using a source redshift of unity. The sum of these tw8ives good results when the smoothing is large, but misses some part of
terms is shown as the solid line. The lower panel details the relatie total amplitude in the case of our small-scale smoothing ray-tracing.
contributionRg, and of the second-order term for different source red-
shifts, namelyz= 1, 15, 2 and 3 from bottom to top.

Using a first-order Taylor expansion for the magnification, the

new estimatowgg(6) can be written

4.2. Using count-in-cells estimators

: I : Woc(6) Pk (W) ps(w) [ sds
For precisely estimating cosmological parameters as well as the 2(0—1b / W on
amplitude of the galaxy bias, it is necessary to employ theo- K
retical magnification statistics that closely describe the observ- S W 1(s8)[2 (30)
ables. However, we have seen in Sect. 3. that analytical esti- fi(w)’ ’

mates as well as numerical simulations have intrinsic limitations

and prevent us from accurately describing usupbint correla-  \yhere (x) = 23X This expression differs from the 2-point
tion functions related to magnification statistics. correlation function (9) by its Fourier-space filtering of the
Besides, it is possible to focus on another estimator closepbwer spectrum. The additional smoothing wipes out the power
related to correlation functions, namely a count-in-cells estiman scales smaller than the physical scale corresponding to the
tor, which naturally smoothes effects originating from the denangular smoothing sca® For any observational result to be
sity field and can thus more easily be reconciled with numergompared to a numerical simulatighand the smoothing scale
cal simulations. So far, quasar-galaxy or galaxy-galaxy correlgsed in the simulation will have to be carefully adapted to each
tions have been quantified measuring the excess of backgrouggher and to the redshift distribution of the foreground galaxy
foreground pairs at a given angular separation. Instead, we cgitribution.
correlate the amplitude of the background and foreground fluctu- Note that gravitational lensing by the foreground galaxies
ations, both measured inside a given aperture. We will therefofgemselves is entirely irrelevant here. The angular scale on

introduce a count-in-cells estimator, which galaxies act as efficient lenses is on the order of one arc
B ~ ~ second and below, much smaller than the angular scales we are

Wog(8) = <6Qso(<p) 6ga|((p)> concerned with. Moreover, the probability for a quasar to be

= 0 strongly lensed by a galaxy is well below one per cent. Bartel-

<5HG_1((P) 6ga'(3p)>e : (29) mann & Schneider (1991) demonstrated this point explicitly by

including galaxies into their numerical simulations and showing

where the subscriitindicates averaging @qso(9) anddgai(¢) they had no noticeable effect.

inside a cell of radiu®. In practice, this estimator is intended to

be applied to galaxy-galaxy rather than to quasar-galaxy corre- 5. CONCLUSION

lations, since the average angular separation between bright dis-

tant quasars is of order one degree for current surveys, thus av&s surveys mapping the large-scale structure of the Universe
aging the source counts inside cells with radii of several arc mitbecome wider and deeper, measuring cosmological parameters
utes will not be relevant. Using galaxies as background sourcexs well as the galaxy bias with cosmic magnification will be-
this limitation occurs at much smaller scales. come increasingly efficient and reliable. Therefore, an accurate



theoretical quantification of magnification statistics becomes iwhere 3@ is of order(é(l))2 and represents departures from

creasingly important. Gaussian behaviour, yields the bispectrum
Previous estimates of cosmic magnification relied on the as-
sumption that the magnification deviates sufficiently little from (518,85) =~ <5(11>5<21>5gl)> + <5(11>5<21>5<32>>
unity that it can be accurately approximated by its first-order + cyclic terms (231, 312) (32)

Taylor expansion about unity, i.a.~ 1+ 2k. In this paper, we

have tested the validity of this assumption in the framework
magnification statistics, by investigating the second-order ter
in the Taylor expansion qi. We have shown that:

e first term in Eq. (32) vanishes because the density fluctua-
MDn field is Gaussian to first order, hence the third moment of

3 is zero. Thus, the leading term in Eq. (32) is of the order of

1) <(1) (2 ipe .
e Second-order terms can be related to the cross—correlati@(u.)gz '87) and can be quantified using second-order pertur-
betweerk andk?, bation theory.
The bispectrunBs(ki, ko, ks) is defined only for closed trian-

§fes formed by the wave vectoks, k», ks. It can be expressed
as a function of the second-order kerRék;, ko) and the power

« their amplitude isot negligible: for the magnification au- spectrum
tocorrelation, their contribution is typically on the order of

e their importance increases as the number-count function
the background sources steepens, i.@ axreases,

—

30%-50% at scales below one degree. Therefore, previous Bs(ki,k2,ks) = 2F(Ky,k2) P(k1)P(ko)
estimates of cosmic magnification were systematically low. L 2F (Rz T@,) P(k2)P(ks)
For testing our theoretical calculations, we have compared our +  2F(ki,ks) P(ky)P(ks) . (33)

results to magnification statistics found in numerical simulations
by performing ray-tracing experiments in a very lafgéody For describing the bispectrum on all scales, we use the fitting
simulation. We have first checked the validity of our formal-formula derived by Scoccimarro & Couchman (2000) for the
ism describing the correlatiofxk?), and demonstrated the im- non-linear evolution of the bispectrum in numerical simulations
portance of including an effective smoothing into the analytica®f CDM models, extending previous work for scale-free initial
calculations. Indeed; is nonlinear in the density field and the conditions. In that case, we have

amplitude of magnification statistics measured from numerical

simulations depends therefore on the available resolution. F(Rl,ﬁz) — S a(n, kp)a(n, k)
Using a simulation with an effective smoothing scale of 7
0.8 arc minutes, we found that our second-order formalism is 1k -k (ki ko
accurate to the percent level for describing magnification auto- T ok (k + k> b(n, ky)b(n, kz)
correlations. Compared to previous estimates, this improves the 172 22 !
accuracy by a factor o 20. For smaller effective smoothing 2 (ki -k
scales, the contribution of third- and higher-order terms becomes + 2 ek c(n,kp)c(n, ka), (34)
important on scales below a few arc minutes. 112
Finally we have applied our formalism to observed corre-
lations, like quasar-galaxy and galaxy-galaxy correlations duaith
to lensing. We have shown that second-order corrections in- o 1/2
crease their amplitude by 15% to 25% on scales below one de-  z(n k) — 1+05%%(2)[0.7 Qs(n)] "% (q/4)™35
gree. These correlations are valuable tools to probe cosmolog- ’ 1+ (g/4)35
ical parameters as well as the galaxy bias. However, even in- 1+0.4 (n+3) g3
cluding our correcting terms, analytical or numerical estimates b(n,k) = 1+qr3s
of magnification statistics can only provide lower bounds to the 4 ne3
real amplitude of the correlation functions in the weak-lensing c(nk) = 1+45/ [1'5+ (n+3) } (29) , (35)
regime. Thus, we propose using count-in-cells estimators rather 1+ (2q)"+35

than correlation functions since the intrinsic smoothing in deter-
mining counts-in-cells allow the observational results to be mor@nd q = k/knL(2), where 41, P (ki) = 1, andP_(K) is the
directly related to those obtained in numerical simulations.  linear power spectrum at the desired redshift. The effective spec-
tral index is taken from the linear power spectrum as well. The
functionQs(n) is given by
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