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ABSTRACT
The statistics of gravitationally lensed arcs was recognised earlier as a potentially powerful cosmological probe.

However, while fully numerical models find orders of magnitude difference between the arc probabilities in different
cosmological models, analytic models tend to find markedly different results. We introduce in this paper an analytic
cluster lens model which improves upon existing analytic models in four ways. (1) We use the more realistic
Navarro-Frenk-White profile instead of singular isothermal spheres, (2) we include the effect of cosmology on the
compactness of the lenses, (3) we use elliptical instead of axially symmetric lenses, and (4) we take the intrinsic
ellipticity of sources into account. While these improvements to the analytic model lead to a pronounced increase
of the arc probability, comparisons with numerical models of the same virial mass demonstrate that the analytic
models still fall short by a substantial margin of reproducing the results obtained with numerical models.Using
multipole expansions of cluster mass distributions, we show that the remaining discrepancy can be attributed
to substructure inside clusters and tidal fields contributed by the cluster surroundings, effects that cannot
reasonably and reliably be mimicked in analytic models.

1. INTRODUCTION

Many authors pointed out that the statistics of gravitationally
lensed arcs in galaxy clusters may be a powerful tool for con-
straining cosmological models. They are rare events caused by
a highly nonlinear effect in cluster cores, and are thus not only
sensitive to the cosmologically highly variable number density
of galaxy clusters, but also to their internal structure.

The expected number ofgiant arcs, usually defined as arcs
with a length-to-width ratio exceeding ten and apparentB-
magnitude less than 22.5 [Wu & Hammer 1993], changes by or-
ders of magnitude between low- and high-density universes ac-
cording to the numerical models described in Bartelmann et al.
(1998). They use the ray-tracing technique for studying gravita-
tional lensing by galaxy cluster models taken from N-body sim-
ulations (see also Bartelmann & Weiss 1994; Bartelmann 1995;
Bartelmann, Steinmetz & Weiss 1995; Meneghetti et al. 2000,
2001). This allows the most realistic description of the cluster
lenses because all effects which could play an important role for
the lensing phenomena are by construction taken into account.
Cluster asymmetries, substructure, and the tidal field of the sur-
rounding matter distribution are known to have substantial ef-
fects on arc statistics, and they are automatically included if the
cluster simulations are suitably designed.

In order to extract useful cosmological constraints from arc
statistics, it is essential to perform simulations on a fine grid
in the cosmological parameter space. However, given the long
computation times required for full numerical simulations of
cluster lensing, it is currently not feasible to perform such sim-
ulations for sufficiently many combinations of the essential cos-
mological parameters, i.e. the matter density parameterΩ0 and
the cosmological constantΩΛ. Therefore, conclusions can so far
be drawn only for discrete points in theΩ0–ΩΛ plane.

In a conceptually different approach, simple analytic, axially
symmetric models have been used for describing the density
profiles of cluster lenses (see e.g. Wu & Mao 1996; Cooray,
Quashnock & Miller 1999; Molikawa et al. 1999; Kaufmann &
Straumann 2000; Oguri, Taruya & Suto 2001; Oguri et al. 2002;
Molikawa & Hattori 2001). This method of investigation has the
advantage that the computation of the probability for arcs satis-

fying a specified property is fast and can easily be performed for
a continuous and wide range of cosmological parameters, be-
cause the lensing properties of these models are perfectly known
and fully described by analytic formulae. However, important
effects like substructures or asymmetries in the matter distribu-
tion can at best be taken into account at an approximate level,
and the correspondence between analytic and numerical mod-
els remains unclear. While the analytic studies by Cooray et
al. (1999) and Kaufmann & Straumann (2000) find similar re-
sults as the numerical simulations regarding the sensitivity of
arc statistics to the cosmic density parameter, their results are
almost insensitive to the cosmological constant, in marked con-
trast to Bartelmann et al. (1998), who found order-of-magnitude
changes in the arc cross sections between low-density models
with and without a cosmological constant.

In this paper, we investigate whether the results of the ana-
lytic and numerical approaches can be reconciled using a more
realistic analytic lens model. Previous analytic studies of arc
statistics commonly used the singular isothermal sphere (here-
after SIS), which is computationally convenient, but has an un-
realistic density profile and does not naturally reflect the the-
oretically expected and numerically demonstrated variations in
halo concentration. Instead, we model cluster lenses as haloes
with the density profile found by Navarro, Frenk & White (1997;
hereafter NFW) in high-resolution simulations of haloes with a
wide range of masses. The profile is flatter than isothermal near
the core, and steeper outside, which leads to qualitatively and
quantitatively different lensing properties. We take the change
of halo concentration with halo mass and cosmology into ac-
count, we distort the lensing potential elliptically in order to
mimic cluster asymmetries, and we adapt the ellipticity by fit-
ting numerical cluster models. We then compare the efficiency
for producing arcs with a minimal length-to-width ratio of the
elliptical NFW lenses with fully numerically simulated cluster
lenses, and with the singular isothermal spheres for reference.

The plan of the paper is as follows. In Sect. 2., we define the
lensing cross section of both numerical and analytic models. In
particular, in Sect. 2.1. we describe the ray-tracing simulations,
and we show the lensing cross sections produced by a sample
of five galaxy clusters simulated in three different cosmological
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models. In Sect. 2.2., we deal with the lensing cross sections of
axially symmetric analytic models and discuss the differences
between SIS and NFW models. In Sect. 2.3., we show how the
lensing cross sections change by assuming elliptical instead of
circular sources. In Sect. 2.4., we discuss lensing by elliptically
distorted NFW models and compare their arc cross sections with
those of axially symmetric NFW lenses. In Sect. 3. we compare
the analytic and the numerical models. Our conclusions are pre-
sented in Sect. 4..

2. CROSS SECTIONS FOR LONG AND THIN ARCS

The efficiency of a given lens for producing arcs with specified
properties can be quantified by means of suitably defined lensing
cross sections. They are defined as the areas on the source plane
where sources must be located in order to be imaged as arcs sat-
isfying the required conditions on, e.g., size, shape, magnitude
and the like. We focus in this paper on the cross sections of clus-
ters for producing long and thin arcs, i.e. for arcs whose length-
to-width ratioL/W exceeds a given minimum value(L/W)min.
In the following subsections, we describe our method for com-
puting strong lensing cross sections of numerically and analyti-
cally modelled galaxy clusters.

2.1. Numerical models

For comparison to the analytic models, we compute the strong
lensing cross sections of five numerically simulated cluster-sized
dark-matter haloes, kindly made available by the GIF collabora-
tion [Kauffmann et al. 1999]. The same clusters have been used
by Bartelmann et al. (1998). They were obtained fromN-body
simulations performed in the framework of three different cos-
mological models. These are an Einstein-de Sitter model (here-
after SCDM); a flat, low-density universe with a matter den-
sity parameterΩ0 = 0.3 and a cosmological constantΩΛ = 0.7
(ΛCDM); and an open, low-density model withΩ0 = 0.3 and
ΩΛ = 0 (OCDM). The initial matter density in these models
is perturbed about the mean according to a CDM power spec-
trum [Bond & Efstathiou 1984] with primordial spectral index
n = 1, normalised such that the local abundance of massive
galaxy clusters is reproduced (e.g. Viana & Liddle 1996). The
complete list of cosmological parameters in these simulations
is given in Bartelmann et al. (1998). The virial masses of
the clusters at redshiftz = 0 range between∼ 5× 1014M�/h
and∼ 2× 1015M�/h. The masses of individual particles are
1.0× 1010h−1M� and 1.4× 1010h−1M� for the high- and the
low-Ω0 models, respectively.

The lensing properties of these clusters are studied using a
ray-shooting technique which was described in detail elsewhere
(Bartelmann et al. 1998; Meneghetti et al. 2000, 2001). Here,
we only briefly discuss some parameters used in these computa-
tions, and refer the reader to the cited papers for a more complete
description.

Since strong lensing only occurs near the very cluster centres,
we select areas of 1.5h−1Mpc comoving side length centred on
the lens centres. For all reasonable combinations of lens and
source redshifts, this region is large enough to encompass the
critical curves of the cluster lens, close to which large arcs form.
A bundle of 2048×2048 rays is shot through a regular grid on
the lens plane, covering the studied region, and their paths to
the source plane are traced. We consider different snapshots of
the cluster simulation at selected redshifts betweenzl = 0 and
zl = 1. For each snapshot, three projections of each simulated
cluster on orthogonal planes are used for performing the lensing
simulations. The typical angular resolution atz≈ 0.3 is 0.18
arcsec, assuming theΛCDM model.

The sources are assumed to all lie on one plane at redshift
zs = 1. Although real galaxy sources are obviously distributed
in redshift, putting them all at the same redshift is acceptable be-
causefirst, observations show that most of the sources which
experience strong lensing effects are generally at redshifts
near unity and second, the critical surface density changes very
little with source redshift, unless it is very close to the lens
redshift. Moreover, we assume sources to be elliptical, with
their axis ratiosb/a uniformly distributed in the range 0.5–1.0.
An initial set of sources is placed on a regular grid covering
the source plane, and additional sources are added on sub-grids
whose resolution is iteratively increased towards the lens caus-
tics. Thus, sources are placed on an adaptive hierarchy of grids
in order to improve the numerical efficiency of the method and
to increase the probability for finding long and thin arcs. For
correcting the statistics of the numerically simulated arcs, we
assign to each source and all of its images a statistical weightw
which is inversely proportional to the squared resolution of the
sub-grid on which the corresponding source was placed. The
finer the grid resolution, the lower is the statistical weight of its
images; see also Eq. (1) below.

Using the ray-tracing technique, we reconstruct the images
of the background sources and measure their length, width and
curvature radius. Our technique for image detection and classi-
fication was described in detail by Bartelmann & Weiss (1994)
and adopted by Bartelmann et al. (1998) and Meneghetti et al.
(2000, 2001). It results in a catalogue of simulated images which
is subsequently analysed statistically.

Each source is taken to represent a fraction of the source
plane. The cells of the sub-grid with the highest resolution have
areaA, and the sources placed on its grid points are given a sta-
tistical weight of unity. The absolute lensing cross sections for
a specified image property are then determined by counting the
statistical weights of the sources whose images have the required
property. Specifically, we search for sources with a length-to-
width ratio exceeding a threshold(L/W)min. If a source has
multiple images with(L/W) ≥ (L/W)min, we multiply its sta-
tistical weight by the number of such images. Therefore, the
lensing cross section is

σ(L/W)min
= A ∑

i
Wiwini , (1)

whereWi is unity if the i-th source has images with(L/W) ≥
(L/W)min and zero otherwise,ni is the number of images of the
i-th source satisfying the required condition, andwi is the statis-
tical weight of the source.

2.2. Axially symmetric models

For sufficiently simple, axially symmetric lens models, the
strong lensing cross sections can be also computed in an ana-
lytic or semi-analytic way. We consider two such models, the
singular isothermal sphere (SIS) for reference, and haloes with
the NFW density profile [Navarro et al. 1997]. The SIS has been
very widely used in many previous studies on arc statistics be-
cause of its computational simplicity. The NFW density profile
fits the results of highly resolved numerical halo simulations and
thus provides a much more realistic description of cluster den-
sity profiles than the SIS profile. We focus on the NFW profile
here, but give some results for SIS lenses for later comparison.

The SIS density profile is given by

ρ(r) =
σ2

v

(2πGr2)
, (2)
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whereσv is the velocity dispersion. The NFW density profile is

ρ(r) =
ρs

(r/rs)(1+ r/rs)2 , (3)

whereρs and rs are characteristic density and distance scales,
respectively (see Navarro et al. 1997). These two parameters
are not independent, but related to a single parameter, which can
be taken as the cluster mass. It is important to note thatρs and
rs also depend on the cosmological model, hence the lensing
properties of haloes with identical mass are different in differ-
ent cosmological models, a crucial property which the simpler
singular isothermal sphere models do not share.For instance,
the halo concentration, which is the ratio between the virial
and the scale radius, changes from∼ 4.4 to ∼ 6.2 for a halo
of mass5×1014h−1M� at redshift 0.3 in low-density cosmo-
logical models with Ω0 = 0.3 if the cosmological constant is
changed fromΩΛ = 0.7 to zero. The NFW halo falls off more
steeply than isothermal at radii beyondrs, but flattens towards
the halo centre. These different features lead to markedly differ-
ent lensing properties of the NFW compared to the SIS model,
as will be shown below (see also the discussion in Perrotta et al.
2002).

For axially symmetric lens models, the lens equation is essen-
tially one-dimensional. Define the optical axis as the line run-
ning from the observer through the lens centre, and introduce
physical distances from the optical axisξ and η, respectively,
on the lens and source planes. Fixing a length scaleξ0 on the
lens plane, we can define the dimensionless distancex≡ ξ/ξ0.
The chosen length scaleξ0 is projected onto the length scale
η0 = ξ0Ds/Dl on the source plane, whereDl and Ds are the
angular-diameter distances to the lens and source planes, respec-
tively. In analogy to the lens plane, a dimensionless distance
from the optical axisy≡ η/η0 can now be defined on the source
plane. The lens equation, relating the position of an image on
the lens plane to that of its source on the source plane is then

y = x−α(x) , (4)

whereα(x) is the reduced deflection angle at distancex from
the lens centre, caused by the lensing mass distribution. It is the
gradient of the lensing potentialψ,

α(x) =
dψ(x)

dx
. (5)

See, e.g. Schneider, Ehlers & Falco (1992) and Narayan &
Bartelmann (1997) for more details.

Local imaging properties are described by the Jacobian ma-
trix of the lens mapping. It has two eigenvalues,λr andλt, which
describe the image distortion in the radial and the tangential di-
rections, respectively. For an axially symmetric lens, they are

λr(x) = 1− dα
dx

, λt(x) = 1− α
x

. (6)

Analytic expressions for the lensing potentialψ(x) at any dis-
tancex are easily obtained for the SIS and the NFW lens models.
Therefore, the eigenvalues of the Jacobian matrix can straight-
forwardly be computed for both lens models considered here.

For a SIS lens, the lensing potential is

ψ(x) = |x| , (7)

if ξ0 = 4π(σv/c)2DlDls/Ds is chosen as a length scale, where
Dls is the angular diameter distance between lens and source.
Hence, the deflection angle and the eigenvalues are

α(x) =
x
|x|

, λr = 1 , λt = 1− 1
|x|

. (8)

For an NFW lens, we takeξ0 = rs for simplicity and define
κs ≡ ρsrsΣ−1

cr , whereΣcr = [c2/(4πG)] [Ds/(DlDls)] is the crit-
ical surface mass density for strong lensing. We then have the
lensing potential

ψ(x) = 4κs

[
1
2

ln2 x
2
−2arctanh2

√
1−x
1+x

]
, (9)

which implies the deflection angle

α(x) =
4κs

x

[
ln

x
2

+
2√

1−x2
arctanh

√
1−x
1+x

]
, (10)

from which the eigenvaluesλr,t can straightforwardly be de-
rived. Several different aspects of lensing by haloes with NFW
or generalised NFW profiles can be found in Bartelmann (1996),
Wright & Brainerd (2000), Li & Ostriker (2002), Wyithe, Turner
& Spergel (2001), Perrotta et al. (2002). It can easily be ver-
ified that the potential [Eq. (9)] satisfies the Poisson equation
∇2ψ = 2κ, with κ given in Bartelmann (1996).

It is an important feature of the NFW lensing potential
[Eq. (9)] thatits radial profile is considerably less curved near
the centre than the SIS potential [Eq. (7)]. Since the local imag-
ing properties are determined by the curvature ofψ, this imme-
diately implies substantial changes to the lensing properties. At
fixed halo mass, the critical curves of an NFW lens are closer
to its centre than for a SIS lens because of its flatter density
profile. There, the potential is less curved, thus the image mag-
nification is larger and decreases more slowly away from the
critical curves. Therefore, NFW lenses are less efficient in im-
age splitting than SIS lenses, but comparably efficient in image
magnification. What is more important here is that any addi-
tional shear added to a flat lensing potential (e.g. by asymme-
tries) much more strongly extends the critical curves than for a
steeper potential. We will see the consequences below.

The inverse of the eigenvaluesλr,t of the Jacobian matrix gives
the radial and the tangential magnifications at the radial dis-
tancex from the lens centre. The points satisfying the conditions
λr,t = 0 form the radial or tangential critical curves, respectively,
where the corresponding magnifications tend to infinity. For SIS
lenses,λr is always unity, hence the radial critical curve does not
exist in this case, so the images are not radially magnified. The
tangential critical curve is the circle|x| = 1. For NFW lenses,
the critical curves have to be found numerically. In the limit of
smallκs, when the critical curves are close to the lens centre, we
find to first order inx

λt ≈ 2exp

(
−1+κs

2κs

)
, λr ≈

λt

2.718
. (11)

By means of the lens equation, the critical curves are mapped
to the corresponding caustic curves in the source plane. For the
axially symmetric lenses we are considering, the tangential caus-
tic degenerates to the point where the optical axis intercepts the
source plane.

2.3. Elliptical sources

The length-to-width ratio of an image depends on the local lens
properties and on the ellipticity of the sources. We derive and
compare results for both circular and elliptical sources. Since
the source galaxies are typically much smaller than the length
scale on which the lens properties change substantially, we can
assume that the length-to-width ratio of the images of a circular
source is given by the ratio of the two eigenvaluesql ≡ λr/λt at
the image position.
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An elegant model for introducing elliptical sources into an-
alytic lensing calculations was recently proposed by Keeton
(2001). Following his approach, the observed length-to-width
ratio L/W is a function of three variables, which are the intrin-
sic axis ratioqs = a/b and the intrinsic position angleθ of the
source, and the eigenvalue ratioql of the lens at the image posi-
tion:

L/W =

[
T +(T2−4Q)1/2

T− (T2−4Q)1/2

]1/2

, (12)

where

T = q2
l +q2

s +(q2
l −1)(q2

s−1)cos2 θ , (13)

Q = q2
l q2

s . (14)

The length-to-width ratioL/W of each image can be related to
the source positiony by means of the lens equation. For sources
with fixed intrinsic shape and orientation lensed by axially sym-
metric lenses,L/W monotonically decreases as the source is
moved fromy = 0 (where the degenerate tangential caustic is
located) away from the lens centre. Thus the lensing cross sec-
tion for arcs withL/W ≥ (L/W)min from sources with intrinsic
axis ratioqs and position angleθ can be written as

σ(L/W)min
(qs,θ) = πy2

min , (15)

whereymin is the distance from the optical axis whereL/W falls
below(L/W)min.

FIG. 1.—Cross sectionsσ7.5 for the formation of arcs with length-to-
width ratio larger than 7.5 as functions of lens redshift. Results are
shown for a virial lens mass ofM = 1015h−1M� in a ΛCDM cosmol-
ogy. Two different lens models are used: the axially symmetric NFW
lens model (solid curves), and the singular isothermal sphere for com-
parison (dashed lines). Thick and thin curves were obtained assuming
intrinsically circular and elliptical sources, respectively.

In order to compute the final lensing cross section, we have
to average these cross sections over all the possible values ofqs
andθ. For doing so, we assume thatθ andq−1

s are uniformly
distributed in the ranges[0,π] and [0.5,1], respectively. This

agrees with the assumptions underlying the numerical simula-
tions. Therefore, the final lensing cross section is given by

σ(L/W)min
=

4
π

∫ 2

1

∫ π/2

0
σ(L/W)min

(qs,θ)dθ
dqs

q2
s

. (16)

Both SIS and NFW lenses can produce multiple images for
suitable source positions. For SIS lenses, multiple images occur
only for sources lying inside the Einstein ring, which has the an-
gular radiusθE = (4πσ2

v/c2)(Dls/Ds). If this is the case, the lens
produces an arc and a counter-arc. As the source moves towards
the Einstein ring, the tangential magnification of the counter-arc
decreases and tends to zero. Then, the counter-arc disappears
(see Narayan & Bartelmann 1997 for further detail). The main
“arc” remains, but its tangential magnification goes to unity as
the source moves away from the optical axis towards infinity.

For NFW lenses, multiple images occur only for sources with
y < yc,r, whereyc,r is the radius of the radial caustic. As shown
by Bartelmann (1996), the NFW density profile always has a
radial critical curve (and thus a radial caustic) for any combi-
nation ofρs andrs. Sources inside the radial caustic therefore
always produce a radial image, an arc, and a counter-arc. We
neglect the radial image because it is radially oriented. As for
SIS lenses, the arc and the counter-arc have different length-to-
width ratiosL/W. In fact, the counter-arc is radially magnified
as the source moves towards the radial caustic, and its length-
to-width ratio decreases more rapidly than that of the main tan-
gential arc. Therefore, two separate cross sections must be com-
puted for both SIS and NFW lens models, one for the arc and
one for the counter-arc, and the total lensing cross section is the
sum of these two contributions.

To give an example, Fig. 1 shows the lensing cross section
for arcs with length-to-width ratioL/W > 7.5 produced from
sources at redshiftzs = 1 by a lens with mass 1015h−1M� at red-
shifts between zero and unity. Results are given for theΛCDM
model. The solid lines correspond to NFW lenses, the dashed
lines to SIS lenses. Thick and thin lines indicate the results for
elliptical and circular sources, respectively.

As expected, the lensing cross section of the NFW model is
smaller than for SIS lenses because of its flatter density pro-
file. In particular, NFW lenses lose their strong-lensing effi-
ciency when the lens approaches the observer or the sources.
Conversely, due to its unrealistically steep and scale-free den-
sity profile, the SIS remains an efficient strong lens even when
it is located very close to the observer or to the source.

The relative increase of the cross section for the intrinsically
elliptical sources is virtually independent of the lens redshift,
but it does depend on the lens model. In fact, the relative change
in the lensing cross sections for NFW lenses is approximately
twice as high as for SIS lenses, quite independent of the lens
redshift. This is again due to the shallower lensing potential of
NFW compared to SIS lenses.

2.4. Elliptical models

The construction of lens models with elliptical or pseudo-
elliptical isodensity contours is generally quite complicated (see
e.g. Kassiola & Kovner 1993; Kormann, Schneider & Bartel-
mann 1994; Golse & Kneib 2002). Starting from an ellipti-
cal lensing potential is computationally much more tractable,
but has the disadvantage that the mass distribution correspond-
ing to the elliptical potential can become dumbbell-shaped even
for moderate ellipticities, which is unwanted for galaxy lenses.
Galaxy clusters, however, are less relaxed and exhibit substruc-
ture, so for them dumbbell-shaped mass distributions are un-
critical. For this reason, we prefer constructing elliptical cluster
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FIG. 2.—Deflection-angle maps for the axially symmetric (left panel) and the elliptically distorted NFW lens model, for ellipticitiese= 0.2 (central
panel) ande= 0.4 (right panel). The side length of each panel is∼ 6′. See the text for more detail.

lens models starting directly from the effective lensing potential.
Moreover, since the NFW density profile gives a much more re-
alistic reproduction of the simulated clusters than the SIS, we
chose to generalise only the NFW lens model to the elliptical
case.

The lensing potential of an axially symmetric NFW lens was
given in Eq. (9) above. We introduce the ellipticitye≡ 1−b/a,
wherea andb are the major and minor axes of the ellipse, by
substituting

x→ X =

√
x2

1

(1−e)
+x2

2(1−e) , (17)

wherex1 andx2 are the two Cartesian components ofx, x2 =
x2

1 +x2
2. This ensures that the mass inside circles of fixed radius

remains constant as the ellipticity changes.
The Cartesian components of the deflection angle are then

α1 =
∂ψ
∂x1

=
x1

(1−e)X
α̂(X ) ,

α2 =
∂ψ
∂x2

=
x2(1−e)

X
α̂(X ) , (18)

whereα̂(X ) is the unperturbed (i.e. axially-symmetric) deflec-
tion angle at the distanceX from the lens centre.

Using these formulae, deflection-angle fields for different val-
ues of the ellipticityeare readily computed. Some examples for
deflection-angle maps are displayed in Fig. 2. Obviously, the
shape of the contours becomes more and more elliptical ase is
increased. We analyse the lensing properties of these deflection-
angle fields using the ray-tracing technique and, finally, compute
the lensing cross sections, adopting the same techniques as ap-
plied to the numerical models.

Increasing the ellipticity of the lensing potential strengthens
the shear field of the lens, and consequently the tangential caus-
tic expands and changes. Examples for the change of the caus-
tics with ellipticity e are shown in Fig. 3, which refers to a halo
with massM = 1015h−1M� at redshiftz= 0.3, and the under-
lying cosmology is theΛCDM model. As discussed above, the
radial and tangential caustics are a circle and a point, respec-
tively, for the axially symmetric models. Increasinge, the caus-
tics stretch, develop cusps, and enclose a growing area. Thus
the lensing cross sections are expected to grow rapidly. This is
confirmed by Fig. 4, which shows cross sections for arcs with
L/W ≥ 7.5. These results were obtained through ray-tracing

simulations in which deflection angle maps for two haloes of
massM = 7.5×1014h−1M� andM = 1015h−1M� were used.
Again, we adopt theΛCDM model universe and put the lens at
redshiftz= 0.3. Increasing the ellipticity of the lensing potential
from e= 0 toe= 0.5, the cross section increases approximately
by a factor of 30, almost independently of the lens mass consid-
ered.

3. COMPARISON OFANALYTIC AND NUMERICAL MODELS

We can now compare the strong lensing cross sections of the
numerical and analytic models introduced in the preceding sec-
tions. For that purpose, we focus on the lensing cross sections
for the formation of arcs with length-to-width ratiosL/W larger
than 7.5 and 10. As described before, we compare them to
the lensing properties of five numerical models of galaxy clus-
ter haloes, picking simulation snapshots at twelve different red-
shifts between zero and unity. For clarity, we present here the
results obtained for the most massive halo only. The behaviour
of the cross sections for the other numerical models is in good
qualitative and quantitative agreement with that obtained for this
cluster.

The results are illustrated in Fig. 5, where the dotted lines
refer to the fully numerically simulated cluster, while solid and
dashed lines represent the cross sections of NFW and SIS lenses,
respectively, having the same virial mass as the numerical clus-
ter model. Finally, the shaded regions in the same plots show
the cross sections obtained by elliptically distorting the NFW
lensing potential with ellipticitiese in the range betweene= 0.2
ande= 0.4 (lower and upper limits, respectively). Results are
shown forL/W = 7.5 (upper panels) andL/W = 10 (lower pan-
els), and they were obtained for the SCDM (left panels),ΛCDM
(central panels), and OCDM models (bottom panel).

First, we checked the calibration of the analytic relative to
the numerical cross sections. For doing so, we performed ray-
tracing simulations using the axially symmetric deflection angle
maps for the NFW lens model, and used them for determining
the strong-lensing cross sections. The results are shown as filled
dots in the panels of Fig. 5. The very good agreement with the
analytic estimates obtained as explained in Sect. 2.2. demon-
strates the reliability of our numerical technique.

The general trends in the lensing cross sections shown in
Fig. 5 can be understood as follows. The strong-lensing effi-
ciency of a mass distribution depends on several factors. First,
for the light coming from the sources to be focused on the ob-
server, the lens must be located at a suitable distance from both
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FIG. 3.—Caustic curves produced by an NFW halo with massM = 1015h−1M� at redshiftz= 0.3 in aΛCDM universe. Different panels show
results for different ellipticitiese of the lensing potential:e = 0, i.e. axially symmetric (left panel);e = 0.2 (central panel) ande = 0.4 (right
panel). The figure demonstrates that even small or moderate elliptical distortions substantially stretch the caustic curves, and thus cause the arc
cross sections to grow considerably.

FIG. 4.—Strong-lensing cross sectionσ7.5 of elliptically distorted
NFW lenses for arcs with length-to-width ratio larger than 7.5 as a
function of the ellipticity e of the lensing potential. Tick and thin
lines were calculated for haloes of massM = 1015h−1M� andM =
7.5 × 1014h−1M�, respectively, both placed atz = 0.3 in a ΛCDM
cosmology.

the observer and the sources. Second, the larger the (virial) mass
of the lens is, the stronger are the lensing effects it produces
close to its centre. Finally, the more concentrated the lens is, the
thinner are the long arcs expected to be.

Since the lens mass grows with decreasing redshift because
new material is accreted by the halo and deepens its potential
well, the lensing cross sections are expected to grow as well.
On the other hand, when the lens is too close to the observer, the
cross section is geometrically suppressed, unless the lens surface
density profile is sufficiently steep and scale-free, as for the SIS
lenses. In fact, in this case the focusing by the lens is strong
enough to allow observers to see strongly distorted images of

background sources also in very near lenses, i.e. at relatively
small redshifts (see also Fig. 1).

Moreover, the results are expected to depend on cosmology.
In fact, in the OCDM andΛCDM models, galaxy clusters be-
come efficient lenses at higher redshift than in the SCDM sce-
nario, because they form earlier and are centrally more con-
centrated. This is confirmed by our numerical results. In the
Einstein-de Sitter case bothσ7.5 andσ10 are completely negli-
gible for redshiftsz & 0.4–0.5 and peak atz≈ 0.2, while for
low-density models the cross sections are largest in the redshift
range 0.3 . z. 0.5. A more complete discussion on the depen-
dence of lensing cross sections on cosmology can be found in
Bartelmann et al. (1998).

In this paper, we concentrate on comparing the cross sections
of the analytic and numerical models. As Fig. 5 shows, the nu-
merical models generally have much larger cross sections than
the analytic models. In particular, the cross sections for axi-
ally symmetric NFW lenses are almost two orders of magnitude
smaller, quite independent of the cosmological models consid-
ered. For SIS lenses, the discrepancy with the numerical models
is only partially compensated by the unrealistically steep central
density profile, but the estimated values ofσ7.5 andσ10 remain
too low. Introducing the elliptical distortion into the NFW lens
model allows the cross section to increase by roughly an order
of magnitude compared to the axially symmetric NFW model,
but even then the analytic cross sections fail to reproduce the nu-
merical cross sections unless unrealistically high values ofeare
adopted.

Fig. 5 also demonstrates that apart from the cross-section
amplitude, the analytic models miss another important feature
of the numerical results, which show steep increases and de-
creases reflecting merger events. While a merging sublump ap-
proaches a cluster, the cross section tends to increase because
of the increasing tidal field, and as the cluster relaxes following
the merger event, the cross section decreases again. It becomes
quite clear from Fig. 5 that such events play an important role
in understanding realistic cluster cross sections, and they can-
not reasonably be captured in analytic models unless their prime
advantage of being computationally fast is sacrificed.

3.1. Ellipticity estimates

It is important to check which ellipticities are typical for the
lensing potential of the numerical clusters. To this end, we
compare the deflection-angle maps constructed for the numer-
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FIG. 5.—Lensing cross sections for arcs with length-to-width ratio larger than 7.5 (σ7.5; top panels) and 10 (σ10; bottom panels) as a function of
the lens redshift. Results for different cosmologies are shown: SCDM (left panels),ΛCDM (central panels) and OCDM (right panels). Dotted
lines show results obtained from the analysis of the most massive halo in the numerically simulated sample; solid and dashed lines represent the
cross sections predicted by the axially symmetric NFW and SIS models, respectively, with the same virial mass as the numerically modelled halo.
The shaded regions mark the cross sections obtained with the elliptically distorted NFW lens model, with ellipticities ranging betweene= 0.2 and
e= 0.4 (lower and upper limits, respectively). The filled dots are the lensing cross sections found by ray-tracing simulations with the deflection
angle maps of the axially symmetric NFW lens model. Their agreement with the analytic curves demonstrates the reliability of our numerical
method.

ical haloes with those obtained for elliptical NFW lenses with
identical virial mass. We estimate the best-fit ellipticitye by
minimising the mean-square deviation

χ2 = ∑
i

(
αi − α̂i

α̂i

)2

, (19)

whereαi andα̂i are the deflection angles of the light ray pass-
ing through thei-th grid point on the numerical and the elliptical
lens model, respectively. The summation is done over all grid
points contained in the central region of roughly∼ 200h−1kpc
comoving side length. This way, we measure the ellipticity of
the lensing potential in the central region close to the critical
curves which is the most relevant for our purposes. For this test,
we use the simulation snapshots atz= 0.27, which is approxi-
mately the redshift where the numerical haloes reach their max-
imum lensing efficiency. The complete sample of five numerical
clusters and three independent projections per cluster was used
for this analysis.

The results are reported in Tab. 1. Median ellipticities of
e∼ 0.3 are found, with only a weak dependence on cosmol-
ogy. Indeed, only little evolution of the ellipticity is found go-
ing from low to high-density cosmological models. The median
ellipticities in the OCDM and theΛCDM models are slightly
smaller than in the SCDM case, as expected, given that clus-
ters form earlier in these models and have more time to relax.

Anyway, as the semi-interquartile ranges (SIQR) show, the el-
lipticity distributions are quite broad, in particular for SCDM.
The same analysis has also been repeated using other simulation
snapshots, corresponding to redshifts in the range 0.2. z. 0.7.
The results are quite similar to the previous ones and therefore
not given in the table. The typical median ofe is around 0.3,
and exceeds 0.4 in only a few cases. In conclusion, the elliptic-
ities measured in the lensing potential of the numerical clusters
are insufficient for reconciling the cross sections of elliptically
distorted NFW models with the fully numerical results.

3.2. Substructure estimates

The remaining difference between numerical and analytical
cross sections must be attributed to some factors which are
missing from the analytical models. The most important of
those is certainly the presence of substructure in the lensing
mass distribution.

Deviations of the projected mass distribution of a numer-
ically simulated cluster from the predictions of circular or
elliptical models can be quantified by means of a multipole
expansion of its surface density field. For performing this
analysis, we first define a reference frame whose origin co-
incides with the surface density peak of the cluster. Then,
starting from the particle positions in the N-body simula-
tions, we compute the surface density at discrete radiirn and
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FIG. 6.—Integrated multipole power as a function of redshift for the most massive cluster in our numerically simulated sample. Results for three
different cosmologies are shown; SCDM (left panel),ΛCDM (central panel) and OCDM (right panel). Heavy dotted and dashed lines show
the results of multipole expansions of the cluster surface mass density at cluster-centric distances ofr1 = 1.25h−1Mpc andr0 = 155h−1kpc,
respectively, and heavy solid lines show the area-weighted averages of the integrated power withinr1 (see text for more details). Light lines show
the results of rescaling the heavy curves with the cluster virial masses and the effective lensing distance.

TABLE 1.—Ellipticities e of the lensing potential obtained by
fitting the deflection-angle maps of the elliptically distorted
NFW lens model to fully numerical deflection angles. We give
the medians (second column) and semi-interquartiles ranges
(SIQR; third column) for the ellipticities found in our cluster
sample for different cosmological models (indicated in the first
column). Results are shown for the simulation snapshots at red-
shift z= 0.27.

cosmological model median SIQR
SCDM 0.320 0.102
ΛCDM 0.305 0.032
OCDM 0.270 0.052

position anglesφk, with rn and φk taken from the intervals
[0,1.5]h−1Mpc and [0,2π], respectively. For any givenrn,
each discrete sample of dataΣ(rn,φk) can be expanded into a
Fourier series in the position angle,

Σ(rn,φk) =
∞

∑
l=0

Sl (rn)e−ilφk , (20)

where the coefficientsSl (rn) are given by

Sl (rn) =
∞

∑
k=0

Σ(rn,φk)eilφk , (21)

and can be computed using fast-Fourier techniques. We de-
fine the power spectrumPn(l) of the multipole expansionl as
Pn(l) = |Sl (rn)|2.

Axially symmetric and elliptical models have very simple
multipole expansions. For a circular mass distribution, only
the monopole,l = 0, contributes to the sum in Eq. (20). An
elliptical mass distribution has one more contribution from
the quadrupole, l = 2. The dipole term, l = 1, is zero for both
these models. Of course, the surface density fields of numer-
ically simulated clusters are much more complex than those
of our analytic models. Their multipole expansions contain
a dipole and also multipoles of higher order than two, which
correspond to substructures spanning opening angles of or-
der ∼ π/l when seen from the cluster centre.

Therefore, in order to quantify the amount of substruc-
ture and the degree of asymmetry in the mass distributions
of our numerically simulated lenses at any distancern from
the cluster centre, we can use the power spectraPn(l). In
particular, we define an integrated powerPint(rn), which is
the sum of the power spectral densities of the dipole and of
all multipoles of higher order than two, i.e. we subtract the
monopole and quadrupole contributions from the total inte-
grated power,

Pint(rn) =
∞

∑
l=0

Pn(l)−Pn(0)−Pn(2) . (22)

This quantity measures the deviation from an elliptical dis-
tribution of the surface mass density at a given distancern
from the cluster centre. In order to suppress the dependency
on the radial coordinate, we also compute the area-weighted
averaged value ofPint inside radius r as

P̄int(r) =
2
r2 ∑

rn≤r
Pint(rn) rn∆rn . (23)

In Fig. 6, we show how the integrated powerP̄int(r)
changes as a function of the cluster redshift for those lenses
whose cross sections were plotted in Fig. 5. Again, we show
the results for all three cosmological models. For making
the integrated power at different radii comparable, we nor-
malise them to the power of the corresponding monopole.
Moreover, we average the results obtained for the three pro-
jections of the same cluster. The heavy dotted and dashed
lines show the results for radiir1 = 1.25h−1Mpc, comparable
to the cluster virial radius, and r0 = 155h−1kpc. For compar-
ison, the heavy solid curves indicate the area-weighted power
inside circles of radiusr1 as a function of redshift. The small
values reached by the heavy dashed curves indicate that in
the very central region of the cluster the mass distribution
is dominated by the monopole and the quadrupole terms,
i.e. in the innermost regions of the clusters, the surface mass
density has elliptical iso-contours. Moreover, these curves
are flat, which means that the surface density contours re-
main elliptical at all redshifts between zero and unity. On
the other hand, as shown by the heavy dotted and solid lines,
at distances comparable to the virial radius or smaller the
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contribution to the power from the dipole and the multipoles
of higher order than two is large and can even exceed15%
of the monopole contribution.

A quick comparison of these curves to the lensing cross
sections in Fig. 5 shows that the redshifts where the con-
tributions of the dipole and the higher-order multipoles are
largest correspond quite well to those where the numerical
cross sections deviate most strongly from those of the ellipti-
cal models.

This is most obvious between redshifts 0.2 and 0.4, where
also the geometrical lensing efficiency is largest. At lower
and higher redshifts, the lensing cross sections drop for two
major reasons; first, the lenses are too close to the observer
or to the sources; second, the cluster virial mass decreases
with increasing redshift. For better comparing the depen-
dences on redshift of the integrated power and the lensing
cross sections, we rescalēPint with the effective lensing dis-
tance, D = DlDds/Ds and with the virial cluster mass. The
thin lines in Fig. 6 show P̄int after rescaling. The damping
effect almost completely removes the peaks in the integrated
power at redshifts higher than z∼ 0.5−0.6, as well as those
at redshifts lower than z∼ 0.2, and make the curves much
more similar to the curves displaying the lensing cross sec-
tions as a function of redshift in Fig.5.

This correlation between the higher-order multipoles of
the mass distributions and the cross sections proves that sub-
structures and asymmetries are the dominant reason for the
discrepancy between numerical and analytical lensing cross
sections. We verified that the peaks in the integrated power
P̄int occur when clumps of matter enter within the virial ra-
dius of the respective clusters. Then, the lensing cross sec-
tion grows for two reasons; first, because the cluster mass
increases, and second, because of the increased shear pro-
duced by the substructures falling towards the cluster cen-
tres.

4. SUMMARY AND DISCUSSION

In this paper, we have investigated an analytic lens model
with NFW density profile and elliptically distorted lensing
potential for its ability to reproduce the statistics of strong-
lensing events in galaxy clusters.It improves upon previously
used models in four ways. First, the commonly adopted singu-
lar isothermal density profile is replaced by the NFW profile,
which is much more adequate for cluster-sized haloes. Second,
this model allows the effect of cosmology on the lens concentra-
tion to be included. Third, we elliptically perturb the model for
approximating the substantial effect of cluster asymmetries on
their strong-lensing cross sections. Fourth, we take into account
that sources are intrinsically elliptical rather than circular. We
adapt the ellipticity of this lens model to fit numerically simu-
lated clusters and compare the strong-lensing cross sections of
the analytic model to those of fully numerically simulated clus-
ters. Results for singular isothermal sphere lenses are given for
comparison. Our results can be summarised as follows:

• The cross section of the axially symmetric NFW lens model
for arcs with length-to-width ratio larger than 7.5 and 10
are almost two orders of magnitude smaller than those of
simulated clusters.

• The axially symmetric singular isothermal lens model is
more efficient for strong lensing because its density profile
is steeper in the core, but its large-arc cross sections are still
smaller than the numerical ones by typically an order of
magnitude, except at low redshift where both the numerical

models and the NFW model fail in producing any lensing
effect.

• The comparatively flat lensing potential of haloes with the
NFW density profile makes NFW lenses poor image split-
ters, but efficient magnifiers. In addition, the flat potential
renders the lensing properties very sensitive to changes in
the tidal field, because small deformations of the potential
can lead to large shifts of the critical curves.

• The cross sections of our new elliptical model increase
steeply and monotonically as a function of ellipticity. An
ellipticity of ≈ 0.3 typically increases the cross sections by
an order of magnitude. However, for the model to repro-
duce the arc cross sections of the numerical clusters, unre-
alistically high ellipticitiese& 0.5 are required.

• Comparing the deflection angle maps to those of elliptical
NFW lens models with variablee, we estimated the ellip-
ticity of the lensing potential in the central region of the
numerically modelled haloes and found typical ellipticities
of e∼ 0.3, substantially below values required to solve the
discrepancy between analytic and numerical lens models.

• The change of the fully numerical cluster cross sections
with time exhibits pronounced signatures of merger events.
As merging sublumps approach the cluster centre, their
tidal field markedly increases the strong-lensing cross sec-
tion. We have verified this by means of a multipole ex-
pansion of the cluster surface density field, which shows
that larger deviations of the lensing cross section of the
numerical clusters from the prediction of the analytic
models arise when the contribution to the surface den-
sity power spectra from the dipole and from higher-
order multipoles is large. Our comparison of elliptical an-
alytic lens models with fully numerical models shows that
an adequate description of such events is necessary for an
accurate calculation of arc cross sections.

We conclude that even our improved analytic model is un-
able to reproduce the strong lensing properties of realistic clus-
ter models, which we assume the fully numerically simulated
haloes to be. We have seen that the axially symmetric NFW lens
model underpredicts the number of arcs with length-to-width ra-
tio exceeding a given threshold by approximately two orders of
magnitude compared to the fully numerical results.

At present, the NFW density profile can be considered the
most realistic model profile for cluster haloes (see, however,
Moore et al. 1999; Jing & Suto 2000). Moreover, it allows
to take the effect of varying halo concentration on the strong
lensing efficiency into account, which is a substantial advantage
compared to the commonly used SIS density profile. Finally,
the profile permits analytical calculations of the relevant lens-
ing properties. Therefore, the NFW density profile appears ide-
ally suited for constructing analytic models for strong lensing by
clusters, in particular if elliptical distortions are included, as we
have done in our extension of the model.

However, the differences remaining between the fully numer-
ical and analytic approaches indicate that analytic modelling is
still insufficient for properly and accurately describing strong
lensing by galaxy clusters. We showed that the most important
missing factors are the presence of substructures within the clus-
ters, and the tidal field of the surrounding matter distribution. In
fact, significant substructure is abundant in and around numeri-
cally simulated haloes. They enhance the shear field around the
clusters, increasing the length of the critical curves and conse-
quently increase the probability of forming long arcs.

9



Of course, the elliptically distorted NFW lens model is ad-
equate for good qualitative calculations of arc probability, as
Fig. 5 shows. Detailed cluster mass models have demon-
strated that lensing in individual clusters can be reproduced
at an impressively accurate level (e.g. Kneib et al. 1993).
However, for deriving precise constraints on cosmology or
the structure and evolution of the cluster population as a
whole, full numerical simulations of many clusters seem to
be the only reliable choice.
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