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ABSTRACT
We investigate how the probability of the formation of giant arcs in galaxy clusters is expected to change in

cosmological models dominated by dark energy with an equation of statep = wρc2 compared to cosmological-
constant or open models. To do so, we use a simple analytic model for arc cross sections based on the Navarro-
Frenk-White density profile which we demonstrate reproduces essential features of numerically determined arc
cross sections. Since analytic lens models are known to be inadequate for accurate absolute quantifications of arc
probabilities, we use them only for studying changes relative to cosmological-constant models. Our main results
are (1) the order of magnitude difference between the arc probabilities in low density, spatially flat and open CDM
models found numerically is reproduced by our analytic model, and (2) dark-energy cosmologies withw > −1
increase the arc optical depth by at most a factor of two and are thus unlikely to reconcile arc statistics with
spatially flat cosmological models with low matter density.

1. INTRODUCTION

The statistics of giant luminous arcs in the cores of galaxy clus-
ters has long been recognised as a potentially powerful cosmo-
logical probe (e.g. Wu & Mao 1996; Bartelmann et al. 1998).
Arcs are formed by gravitational lensing from sources which
happen to lie close to the caustic curves of a cluster lens, where
magnification and distortion are particularly strong.

The cosmological power of arc statistics derives from at least
two, maybe three principal reasons. First, for clusters to be ef-
ficient lenses, they have to be located approximately half-way
between the sources, typically around redshift unity, and the
observer. Depending mostly on the mean cosmic matter den-
sity, parameterised byΩ0, clusters form earlier or later in cos-
mic history if the matter density is low or high, respectively. In
high-density model universes, the cluster population at the red-
shifts mostly relevant for lensing,z∼ 0.3−0.4 is substantially
less rich than in low-density universes, reducing the number
of available efficient lenses dramatically (e.g. Richstone et al.
1992; Bartelmann et al. 1993; Lacey & Cole 1993, 1994).

The second principal reason is that strong lensing is a highly
nonlinear phenomenon in the sense that it requires the lensing
mass distribution to be supercritical for strong lensing, which
means that a suitable combination of surface mass density and
gravitational tidal field needs to be large enough, and that, once
a lens is supercritical, even small changes in both can change
significantly the length of the caustic curves, and thus the lens’
ability for strong lensing.

Different cosmological models predict the mass distribution
in clusters to be more or less concentrated. Numerical simula-
tions consistently show that, the earlier a dark-matter halo forms,
the more concentrated it is because it appears to keep a record
of the mean cosmic density at the time when it formed (Navarro
et al., 1996, 1997). Structure forms later in spatially flat than
in open, low density cosmological models, thus halos in models
with cosmological constant are generally less concentrated than

halos in open models.
A possible third reason is that the gravitational tidal field at

the location of the lens plays a very important role (Bartelmann
et al., 1995; Meneghetti et al., 2001). It is strong if lenses are
highly asymmetric, as clusters frequently are, and if the sur-
rounding matter distribution is highly irregular. It is possible
that, if cosmic structure forms later, cluster mass distributions
are less relaxed and thus more asymmetric, and that also the de-
gree of irregularity in their neighbourhood is different than if
structures formed earlier. On the other hand, clusters forming
earlier are built from subhalos which tend to be more concen-
trated and thus more strongly gravitationally bound, hence sub-
structures could then persist within clusters for a longer time and
contribute to the asymmetry.

Unfortunately, the combination of these effects renders an-
alytic models for arc statistics entirely inadequate for accurate
quantitative predictions of arc probabilities (Meneghetti et al.,
2003). The effects of cosmology on cluster compactness and
asymmetry, and on the tidal field of the matter surrounding the
clusters, cannot be captured by reasonably simple analytic lens
models. Numerical simulations of arc statistics, using clusters
formed in sufficiently largeN-body simulations as lenses, led to
the surprising result that the expected number of giant luminous
arcs on the sky differs by orders of magnitude between different
cosmological models. While a model with critical matter density
and no cosmological constant fell below the observed number of
arcs, extrapolated to the full sky, by two orders of magnitude, a
ΛCDM model withΩ0 = 0.3 failed by one order of magnitude,
and only a low-density open model withΩ0 = 0.3 produced ap-
proximately the right number of arcs (Bartelmann et al., 1998).

The statistics of quasars multiply imaged by galaxies has of-
ten been used for constraining cosmological parameters. The
basic argument is that the number of lenses and their redshifts
should increase asΩΛ increases, which typically yields upper
limits on ΩΛ . 0.6−0.7 (Kochanek, 1996; Falco et al., 1998;
Quast & Helbig, 1999), although discrepant results have also
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been found (Chiba & Yoshii, 1999; Helbig, 1999; Keeton, 2002).
We emphasise that the sensitivity of cluster lensing toΩΛ is of
a different nature. Since clusters form much later in cosmic
history than galaxies, the volume effect is negligible, butΩΛ
changes the dynamics of cluster formation and thus their core
structure, to which strong lensing is highly sensitive.

These numerical results of Bartelmann et al. (1998) were
tested by Cooray (1999) and Kaufmann & Straumann (2000) us-
ing analytic models based on singular isothermal spheres. They
could confirm the sensitivity of arc statistics toΩ0, but found
only a very weak dependence onΩΛ, in contrast to the numer-
ical results. The isothermal sphere has two disadvantages with
respect to arc statistics. First, arc cross sections are very sensi-
tive to asymmetries in the cluster mass distribution, thus axially
symmetric models lack a property which is crucially important
for arc statistics. Second, numerical simulations show that the
central density concentration of clusters depends on cosmology,
and this potentially important feature is not reproduced by the
scale-free isothermal models either. We shall construct in this
paper an analytic model which qualitatively reproduces the ear-
lier numerical results.

Bartelmann et al. (1998) used two completely different types
of N-body codes for simulating galaxy clusters. Numerous sub-
sequent tests of the results showed that the arc numbers derived
could be off by factors of perhaps 1.5 to 2, but that there was
no way how order-of-magnitude differences could be bridged
(Meneghetti et al., 2000; Flores et al., 2000). The problem be-
came substantially more acute when measurements of the cos-
mic microwave background (CMB), combined with observa-
tions of supernovae of type Ia and large-scale galaxy surveys,
left very little room for model universes which are not spatially
flat and have density parameters much different fromΩ0 ≈ 0.3
(e.g. Riess et al. 1998; Perlmutter et al. 1999; Lee et al. 2001;
Abroe et al. 2002; Efstathiou et al. 2002; Netterfield et al. 2002;
Wang et al. 2002; Halverson et al. 2002). Obviously, there is
an interesting discrepancy between the statistics of arcs seen on
the sky, and the probability for arcs produced in cosmological
models which are convincingly required by various other obser-
vations. While observations consistently indicate a high proba-
bility for arc formation in clusters (Le F̀evre et al., 1994; Gioia
& Luppino, 1994; Luppino et al., 1999; Zaritsky & Gonzalez,
2003; Gladders et al., 2003), we should point out that the dis-
crepancy between theory and observations is so far only based
on a single set of simulated clusters.

A spatially flat universe with low matter density and a cos-
mological constant is extremely difficult to justify theoretically.
The vacuum energy density provided by the cosmological con-
stant is tens of orders of magnitudes below any natural scale
which is conceivable in particle physics (see Carroll 2001 for
a review on the cosmological constant problem). This diffi-
culty motivated the introduction of a more general concept for
a vacuum energy cosmological component, now widely known
as dark energy. The theoretical and observational aspects of the
dark energy are one of the most important issues in modern cos-
mology (see Peebles & Ratra 2002 for a review). In general,
the most important difference of a dark energy component com-
pared to a cosmological constant is that its equation of state,w,
can be different from−1, generally implying a time variation. It
should be noted that recent analyses of CMB data seem to favour
a value ofw very close to−1, albeit these results suffer to some
degree from parameter degeneracies and are typically obtained
under restrictive assumptions (Douspis et al., 2003; Melchiorri
et al., 2003; Spergel et al., 2003).

Recently, Bartelmann et al. (2002) argued that dark matter ha-
los in simple dark energy models should be more concentrated
than in cosmological constant models with the same dark en-

ergy density today. The main reason is that halos form earlier in
dark energy models, allowing them to be more compact. Sev-
eral different recipes for describing halo concentrations found
in numerical simulations as a function of their formation time
lead to consistent results. The halo concentration increases no-
ticeably in the interval−1≤ w≤ −0.6. For higher values of
w, which are too high for the cosmic acceleration to agree with
recent data (Riess et al., 1998; Perlmutter et al., 1999), there is a
strongly opposing effect related to the amplitude of fluctuations
in the CMB: The high level of the Integrated Sachs-Wolfe (ISW)
effect on the large scale CMB anisotropies leads to a sharp de-
crease in the normalisation of the dark matter power spectrum
(Bartelmann et al., 2002). Within a cosmologically interesting
range for the equations of state of the dark energy, the balance
between the ISW effect and the earlier formation of halos is
quite delicate, but halos can typically be expected to be more
concentrated.

The ability of a galaxy cluster to produce giant arcs depends
sensitively on the concentration of its mass profile because of
the nonlinearity of the strong lensing effect. We therefore wish
to investigate how the probability for arc formation changes in
dark energy models, compared to cosmological-constant or open
models. For doing so, we use a simple, analytic description
for the arc cross section of a cluster of given mass, which we
demonstrate to possess the relevant features of the fully numer-
ical results. Although it has been shown that analytic models
are inadequate for quantitatively reliable arc statistics, we are
here interested only in the relative change of the arc-formation
probability caused by changes in the cosmological model.

Section 2 of the paper introduces the cosmological back-
ground model. Section 3 describes our simple analytic model
for the arc cross section of a galaxy cluster. We then use this
model in Sect. 4 for calculating arc probabilities, and summarise
our conclusions in Sect. 5

2. COSMOLOGICAL MODEL

Dark energy is characterised by a negative pressure,p = wρc2,
whereρc2 is the mean energy density of the universe and the
equation of statew assumes negative values in order to produce
cosmic acceleration according to the data from type Ia super-
novae (Riess et al., 1998; Perlmutter et al., 1999). Theoretical
models of dark energy, such as Quintessence scalar fields, gen-
erally predict a time variation of the equation of state, as well as
the presence of dark energy fluctuations on super-horizon cos-
mological scales (see e.g. Peebles & Ratra 2002 and references
therein). In this work, we concentrate on the very basic aspect
of dark energy, by neglecting the spatial inhomogeneities and
assumingw to be a constant. In this case, the adiabatic equation
requires the equivalent matter densityρQ of the dark energy to
change with the cosmological scale factora as

ρQ = ρQ,0a−3(1+w) , (1)

starting from the densityρQ,0 today. Obviously, cosmological
constant models are retained settingw = −1. Replacing the
conventional cosmological-constant term by a dark-energy term,
Friedmann’s equation reads

H2(a) = H2
0

[
Ω0a−3 +ΩQa−3(1+w)

]
, (2)

assuming with support from recent measurements of
anisotropies in the cosmic microwave background that the
curvature term is negligible. Here,H(a) is the Hubble parame-
ter as a function ofa, H0 is the Hubble constant, andΩ0 is the
density parameter for non-relativistic matter.
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The main consequences for the structure formation process of
this modified term in Friedmann’s equation have been detailed
in an earlier paper (Bartelmann et al., 2002), so we summarise
them only briefly here. Starting from a low-density cosmologi-
cal constant model, keepingΩ0 fixed and increasingw, the cos-
mic volume per unit redshift shrinks, and the linear growth fac-
tor for cosmic structures starts rising earlier, hence structures
start forming earlier if the cosmological constant is replaced by
a dark energy component. Additional effects are that the param-
eters characterising halo formation, i.e. the linear overdensityδc
and the virial overdensity∆v, are changed (cf. Wang & Stein-
hardt 1998; Mainini et al. 2003).

As we anticipated in the introduction, a further important con-
sequence of dark energy models is that the gravitational poten-
tial of the density fluctuations changes more rapidly with time,
leading to an increased integrated Sachs-Wolfe effect on the
CMB fluctuations at large angular scales. Given the observed
level of CMB power on large angular scales1, a decreasing frac-
tion of the observed anisotropies can thus be attributed to the
primordial CMB fluctuations, hence the normalisation of the
power spectrum has to be reduced asw is increased in order to
be compliant with the COBE-DMR data. The main result is that
the power-spectrum normalisationσ8 is decreasing gently asw
is increased from−1 to ∼ −0.6, and then turns to drop more
rapidly as the ISW effect intensifies. Here and below, we adopt
the CDM power spectrum with the Harrison-Zel’dovich power-
law indexn= 1 and the transfer function given by Bardeen et al.
(1986). Throughout, we useΩ0 = 0.3 andΩQ = 0.7. It should
be noted here that our results will be sensitive to the exact value
of n as well as other cosmological parameters.

3. ARC CROSSSECTIONS

3.1. Halo Model

We will assume in the following that the average radial density
profile of galaxy clusters can be described by the profile found in
numerical simulations by Navarro et al. (1996, hereafter NFW),

ρ(r) =
ρs

r/rs(1+ r/rs)2 , (3)

whereρs is a density scale, andrs a scale radius. The ratio be-
tweenrs and the radiusr200 enclosing a mean halo density of
200 times the critical density is called concentration,c= rs/r200.
The two parameters,ρs andrs, are not independent. Numerical
simulations showed that the concentration parameterc depends
on the halo mass, which is thus the only free parameter.

Numerically simulated halos tend to be the more concentrated
the earlier they form. Their central density apparently reflects
the mean cosmic density at the time of their formation. Since
halos of higher mass are formed later in hierarchical models than
halos of lower mass, the concentration is decreasing with halo
mass. Based on these findings, several algorithms were designed
for computing halo concentrations from halo masses.

The algorithm by Navarro et al. (1997) first assigns to a halo
of massM a collapse redshiftzcoll defined as the redshift at
which half of the final halo mass is contained in progenitors
more massive than a fractionfNFW of the final mass. Then, the
density scale of the halo is assumed to be some factorC times the
mean cosmic density at the collapse redshift. They recommend
setting fNFW = 0.01 andC = 3×103 because their numerically

1The only existing data are from the Differential Microwave Radiometer
(DMR) on board the COsmic Background Explorer satellite (COBE, see Smoot
1999 and references therein); more data will be available in the near future from
the Microwave Anisotropy Probe (MAP,map.gsfc.nasa.gov) and thePlanck
(astro.estec.esa.nl/SA-general/Projects/Planck) satellites.

determined halo concentrations were well fit assuming these val-
ues.

Bullock et al. (2001) suggested a somewhat simpler algo-
rithm. Haloes are assigned a collapse redshift defined such that
the non-linear mass scale at that redshift is a fractionfB of the
final halo mass. The halo concentration is then assumed to be a
factorK times the ratio of the scale factors at the redshift when
the halo is identified and at the collapse redshift. Comparing
with numerical simulations, they foundfB = 0.01 andK = 4.
This algorithm reflects the change of halo concentrations with
redshift more accurately than the approach by Navarro et al.
(1997) predicts.

A third algorithm was suggested by Eke et al. (2001). They
assigned the collapse redshift to a halo of massM by requir-
ing that the suitably defined amplitude of the linearly evolving
power spectrum at the mass scaleM equals a constantC−1

ENS.
Numerical results are well represented settingCENS = 28.

FIG. 1.—Halo concentrations according to Eke et al. (2001) are shown
as functions of halo mass for four spatially flat cosmological models
with different choices for the dark energy parameterw and for the
OCDM model, as indicated. Asw increases, halos become more con-
centrated untilw≈ −0.6. If w increases further, halo concentrations
drop because then the amplitudeσ8 of the power spectrum has to de-
crease rapidly in order to remain consistent with the COBE-DMR data,
as the integrated Sachs-Wolfe effect becomes larger (cf. Bartelmann
et al. 2002).

We will adopt the latter method for this paper because the con-
centrations computed from the algorithm by Navarro et al. drop
too slowly with redshift compared to numerical simulations,
and the algorithm by Bullock et al. has problems for high halo
masses because of the requirement that a fixed fraction of the fi-
nal halo mass should equal the nonlinear mass, which may never
be reached if the halo mass is high. Concentrations as a func-
tion of halo mass for four different choices of the dark energy
parameterw are shown in Fig. 1.

3.2. Strong Lensing by NFW Haloes

The arc cross section of a galaxy cluster is the area in the source
plane where a source has to lie for being imaged as an arc with
specified properties, e.g. exceeding a threshold length-to-width
ratio. A typical cluster lens has two critical curves, defined as
curves in the lens plane along which the Jacobian matrix of the
lens mapping is singular, and the image magnification is for-
mally infinite (cf. Fig. 2). The critical curves are the images of
the caustic curves, thus sources close to a caustic are imaged as
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highly magnified and distorted images. The two critical curves
and their corresponding caustic are called tangential and radial,
because of the dominant orientation of the image distortion rela-
tive to the centre of the lens. Seeking to quantify large-arc cross
sections, we are thus looking for an appropriately defined area
covering the tangential caustic of a cluster.

It is well known that arc cross sections depend strongly on the
exact shape of the cluster mass distribution, and on the gravita-
tional tidal field exerted by density fluctuations in its neighbour-
hood (Bartelmann et al., 1995). Thus, the only reliable method
for exactly quantifying arc cross sections has to use numerically
simulated cluster models without referring to any symmetry as-
sumptions. For a study like ours, however, we only need to de-
scribe how arc cross sections are expected to change relative to a
fiducial model when certain cosmological parameters are modi-
fied.

FIG. 2.—Tangential and radial caustics for NFW lens models with el-
liptically distorted lensing potential. A halo of mass 1015h−1M� at
redshiftz= 0.3 is assumed here, and the sources are all placed atzs = 1.
The cosmological model is spatially flat withΩ0 = 0.3 and normalised
to the COBE-DMR data. The upper panels show the caustics for a
dark energy parameter ofw =−1 and for two ellipticities,e= 0.1 and
e = 0.4. The lower two panels show the caustics forw = −0.6. The
figure illustrates the high sensitivity of strong lensing to halo ellipticity
and concentration.

Gravitational lensing by an NFW halo can be described by its
lensing potential (e.g. Bartelmann 1996; Meneghetti et al. 2003),

ψ(x) = 4κs

[
1
2

ln2 x
2
−2arctanh2

√
1−x
1+x

]
, (4)

which is related to the lensing convergence through the Poisson
equation

κ(x) =
1
2

∇2ψ(x) . (5)

The factorκs in Eq. (4) is defined by

κs =
ρsrs

Σcr
, (6)

whereΣcr is the critical surface mass density for lensing. The di-
mensionless radiusx= r/rs can conveniently be replaced by the
angular radiusθ = r/Dd = xrs/Dd, whereDd is the angular di-
ameter distance from the observer to the lens. The gravitational
tidal field, or shear, of the lens is the two-component quantity

γ1 =
1
2
(ψ11−ψ22) , γ2 = ψ12 , (7)

where the subscripts abbreviate partial derivatives with respect
to the angular coordinates(θ1,θ2) on the sky. The deflection
angle is the gradient of the lensing potential,

~α(θ) = ∇ψ(θ) . (8)

The Jacobian matrix of the lens mapping has the components

Ai j = δi j −ψi j . (9)

Its eigenvalues areλ± = (1−κ)± γ, whereγ = (γ2
1 + γ2

2)
1/2 is

the amplitude of the shear. The tangential critical curve is deter-
mined by the conditionλ− = (1−κ)− γ = 0.

We now distort the axially symmetric NFW lens such that the
iso-potential lines become ellipses,

ψ(θ)→ ψ(ϑ) , ϑ =
[

θ2
1

1−e
+θ2

2(1−e)
]1/2

. (10)

As noted by Kassiola & Kovner (1993), an elliptical poten-
tial can lead to dumbbell-shaped mass distributions with locally
negative mass density. As real clusters are irregular, dumbbell-
shaped mass distributions are acceptable. For the NFW profile
with elliptical isopotential contours, the mass density does in-
deed become mildly negative, but only well outside the core
where strong lensing occurs. Fore = 0.4, the minimumκ is
∼ −0.01 times the convergence in the core (see also Golse &
Kneib 2002). We thus use the elliptical lensing potential (10)
for computational simplicity.

The Jacobian matrix and its eigenvalues can be computed
from (10) using the relations introduced before. Generally, the
zeroes of the tangential eigenvalueλ− have to be determined
numerically. On the coordinate axes, they are given by

ϑ =

{
(1−e)α (θ2 = 0)

α
1−e

(θ1 = 0) . (11)

The corresponding caustic points, i.e. the cusps of the diamond-
shaped caustic on coordinate axes, can then be found using the
lens equation,

~β =~θ−~α(~θ) . (12)

We thus know the four intersection points of the tangential caus-
tic curve with the coordinate axes. We defined them to lie at
(θ1,θ2) = (0,±a) and(θ1,θ2) = (±b,0). Since the major axis
of the iso-potential ellipses points along theθ2 axis, the cusps
on theθ2 axis are further away from the lens centre than the
cusps on theθ1 axis, hencea> b. Figure 2 illustrates the caustic
curves for elliptical NFW lens models with two different ellip-
ticities in two spatially flat cosmological models with different
values forw.

A simple assumption for the large-arc cross sectionσ of the
elliptically distorted NFW lens holds that it is proportional to the
area enclosed by the critical curve, henceσ ∝ ab, with a propor-
tionality constant depending on the exact shape of the caustic
curve, and thus on the ellipticity of the lens model. Since we
do not require an absolute calibration of the arc cross sections,
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we adoptσ = ab. Earlier work (Meneghetti et al., 2000; Flores
et al., 2000) has shown that individual galaxies have a negligible
effect on arc cross sections, which further supports the assump-
tion that they are determined by the overall extent of the caustic
curves.

We will later have to integrate over the cluster population,
conveniently parameterised by the virial mass and described by
the mass function. Thus, we have to verify whether our approxi-
mate description of the arc cross section scales with cluster mass
in the same way as numerically determined arc cross sections of
the same cluster models, given identical ellipticity parameters
e. We therefore set up deflection-angle maps starting from the
elliptically distorted lensing potentialψ(ϑ) and used them for
imaging randomly distributed, intrinsically elliptical sources by
tracing rays passing the image plane on a rectangular grid. The
sources are placed on adaptively refined grids whose resolution
is progressively increased in the vicinity of caustic curves. The
images are automatically classified according to their length,
width, length-to-width ratio and several other parameters, and
the cross section is determined by counting the number of im-
ages exceeding a threshold length-to-width ratio. More detail
on this method can be found in (Bartelmann & Weiss, 1994;
Meneghetti et al., 2000). Results are shown in Fig. 3.

FIG. 3.—Comparison between the numerically determined arc cross
sections of elliptically distorted NFW lenses as a function of their virial
massM (solid curve), and the simple estimate for the arc cross sections
which is proportional to the area covered by the tangential caustic curve
(dotted curve). Both curves are arbitrarily normalised to unity at the
high-mass end. The lenses are placed at redshiftz = 0.3, the sources
at redshiftzs = 1.0, the ellipticity of the NFW potential ise = 0.4.
The curves were computed for a dark energy cosmological model with
w = −0.6. Evidently, the simple estimate for the cross sections cor-
rectly reproduces the scaling of the cross sections with cluster mass.
The numerically determined curve is not smooth because the cross sec-
tions are computed from finite numbers of simulated arcs and thus sub-
ject to random fluctuations.

The essential feature of the numerically determined arc cross
sections is that they increase approximately quadratically with
the lens mass. Since the Einstein radius of an extended lens
typically scales linearly with the lens mass, this indicates that
the arc cross section scales approximately like the square of the
Einstein radius. Our simple estimate for the arc cross section is
defined to reproduce this property.

We also check whether numerically determined cross sec-
tions scale with the dark energy parameterw in a similar way
as our simple cross-section estimate does. Figure 4 shows the
example of an elliptically distorted NFW lens of massM =

7.5×1014h−1M�. The curves plotted there show qualitatively
the same behaviour. Asw increases above−1, the arc cross sec-
tion increases by a factor of∼ 1.9 untilw≈−0.6, and then drops
as the normalisation constraint requires to significantly reduce
σ8. Both curves are arbitrarily normalised to unity at their peaks.
The differences between the numerically determined cross sec-
tions and our simple estimate are unlikely to be significant be-
cause the numerical method uses the images of a finite num-
ber of discrete sources for determining the cross sections, which
causes noise in the results. In any case, the two essential prop-
erties of the change in the cross sections withw are well re-
produced, namely the amplitude of the relative increase and the
location of the peak.

FIG. 4.—Comparison between cross sections similar to Fig. 3, but for a
fixed halo mass ofM = 7.5×1014h−1M� and varying dark energy pa-
rameterw. The solid curve showing the numerically determined cross
sections closely follows the dotted curve, which represents the simple
cross-section estimate introduced here. The curves are arbitrarily nor-
malised to unity at their starting point, i.e. atw = −1. Increasingw
from−1 to−0.6 increases the cross sections by a factor of∼ 1.9. As
in Fig. 3, lens and source redshifts are set to 0.3 and 1, respectively, and
the ellipticity of the NFW lensing potential is set toe= 0.2.

Finally, we set the cross section to zero if the major axis of the
critical curve falls below some thresholdθmin. The idea behind
this is that if the critical curves become too small, the images
near the critical curves can hardly be called giant arcs. Suppose
typical sources have diameters on the order of an arc second,
and the lens should be able to produce arcs with a length-to-
width ratio around ten. Then, ignoring the source magnifica-
tion in the radial direction, the tangential critical curve needs to
have a radius of approximately 10′′ for this to happen. We thus
setθmin = 10′′ unless stated otherwise, and show the effect of
changingθmin to 5′′ below.

We conclude from this section that the scaling of our sim-
ple estimate for arc cross sections with lens mass and with the
dark energy parameterw well reproduces what is expected from
numerical treatments of the same lens models, i.e. NFW lenses
with elliptically distorted lensing potential. We emphasise again
that the absolute value of the cross sections are unimportant for
our present purposes, as we are aiming at studying the change
in the arc-formation probability in various cosmological models
relativeto theΛCDM model.
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4. ARC PROBABILITIES

We can now proceed to compute the probability for arc for-
mation by a population of clusters. Given a mass function
dn(M,z)/dM, we can write the so-called optical depthτ(zs) as

τ(zs) =
Z zs

0
dz(1+z)3

∣∣∣∣dV
dz

∣∣∣∣ Z ∞

Mmin

dM
dn
dM

σ(M,z) , (13)

wherezs is the source redshift,V is the cosmic volume, and
the factor(1+ z)3 accounts for the fact that the mass function
is defined per comoving volume. The lower mass limitMmin
is determined by the mass required to produce critical curves
whose major axis exceeds the thresholdθmin introduced in the
preceding section, thus it depends on the lens redshiftz.

For the mass function dn/dM, we choose the modification by
Sheth & Tormen (1999) of the Press & Schechter (1974) mass
function. It well reproduces the halo mass functions found in
numerical simulations. We take into account that our defini-
tion of mass differs slightly from Sheth & Tormen’s in that we
use the mass enclosed by a sphere in which the mean density is
200 times thecritical rather than themeandensity. The mass
function depends on cosmology through the normalisation of
the power spectrum and the linear overdensity parameter derived
from the spherical collapse model.

We note an important difference to strong lensing by galax-
ies. While the population of galaxy lenses is well described
as isothermal spheres with number counts derived from ob-
servations (e.g. Leh́ar et al. 2000; Keeton 2002), the lack of
wide-separation lenses argues against isothermal density pro-
files in cluster-scale lenses (Flores & Primack, 1994; Porciani
& Madau, 2000). Baryonic physics changes the central density
profiles of galaxy-scale halos, but is inefficient on cluster scales
(e.g. Kochanek & White 2001). Cluster mass functions derived
from X-ray observations are found to agree well with theoretical
predictions based on Press-Schechter type models (e.g. Reiprich
& Böhringer 2002). Thus modelling the cluster population with
NFW density profiles and the Sheth-Tormen mass functions is
well justified.

We show in Fig. 5 the redshift integrand of Eq. (13), i.e. the
cosmic volume times the integral over mass of the mass function
times the arc cross section. The figure thus illustrates the total
arc cross section contributed by the cluster population at redshift
z. For simplicity, sources are assumed to be at a single redshift of
zs = 1 here. The four curves in Fig. 5 are for theΛCDM model
with Ω0 = 0.3, the open CDM model with the sameΩ0 but with
ΩΛ = 0, and for dark energy models with the sameΩ0 butΩQ =
0.7, andw=−0.6 orw=−0.8. Again, the curves are arbitrarily
normalised such that the optical depthτ of the OCDM model is
unity. The value ofσ8 = 0.88 of theΛCDM model was also set
for the OCDM model for easier comparison. The COBE-DMR
data would requireσ8∼ 0.4 for the OCDM model, which is way
below the value required for reproducing the observed number
density of massive clusters. We thus have to chooseσ8 for the
OCDM model in conflict with the COBE-DMR data in order to
produce comparable results on arc statistics.

Figure 5 shows two important results. First, the simple model
for arc cross sections introduced here is capable of reproducing
the order-of-magnitude difference in the total arc cross section
between theΛCDM and the OCDM models that had been found
earlier in numerical simulations, and could not be reproduced
by analytic models based on singular isothermal cluster mass
distributions. Second, although the dark energy models have a
somewhat higher total arc cross section than theΛCDM model,
they are still by a factor of∼ 6 below the arc cross section for the
OCDM model. According to our analytic estimates, dark energy
models are thus unable to reconcile spatially flat cosmological

FIG. 5.—The redshift integrand of Eq. (13) is plotted as a function ofz
for four different cosmological models, aΛCDM model withΩ0 = 0.3,
and open CDM model withΩ0 = 0.3 and no cosmological constant, and
two spatially-flat dark energy models withΩ0 = 0.3 andw =−0.8 and
w=−0.6. The spatially-flat models are normalised to the COBE-DMR
data, and the open CDM model has the sameσ8 as the cosmological-
constant model for easier comparison. The curves show that our simple
analytic model succeeds in reproducing the order-of-magnitude differ-
ence between the open and the cosmological-constant model found in
numerical simulations, and that spatially flat dark energy models cannot
bridge the gap between these two models. The ellipticity of the NFW
lensing potential was set toe= 0.3 here.

models with low matter density with the high abundance of large
arcs, which seems to be similarly impossible with cosmological
constant models given the earlier numerical results.

Figure 6 shows the optical depthτ as defined in Eq. (13) for
four different choices of the free parameters we have introduced,
namely the ellipticitye of the lenses and the cutoff radiusθmin.
All curves have in common that the arc optical depth increases
noticeably asw increases from−1 to∼−0.6, and drops rapidly
asw is increased further. The curves are intended to show the
relative increase inτ compared to theΛCDM model and are thus
normalised to unity atw=−1. The peak amplitudes range from
1.5 to 2. The largest increase is achieved forθmin = 10′′ and
e= 0.3, the smallest forθmin = 5′′ ande= 0.4.

Several effects act jointly here. First, we saw in Fig. 4 that
the arc cross section of (one example for) an individual halo in-
creases by a factor of. 2 asw is increased from−1 to−0.6.
An additional effect is that, as the halo concentration increases,
halos of lower mass become capable of strong lensing. Since
the mass function of galaxy clusters is steep, a small extension
of the mass range towards lower masses can markedly increase
the number of clusters available for strong lensing, but the re-
quirement that arcs should be large imposes a lower limit on the
cluster masses. We see the combined effect in Figs. 5 and 6. If
we set the cutoff radius toθmin = 10′′, we select for higher-mass
clusters in the first place, whose mass function is steeper than for
lower-mass clusters. Thus, the effect of lowering the lower mass
limit by increasing the halo concentrations is more pronounced
if the cutoff radius is chosen higher.

Increasing the ellipticity of the lensing potential increases its
gravitational tidal field, or shear. The increase in halo concentra-
tion caused by the earlier halo formation in dark energy models
with w >−1 is then relatively less important for arc formation,
which explains why the arc optical depth caused by cluster pop-
ulations with lowere changes more strongly withw than for
clusters with highere. Fitting the elliptical NFW model to nu-
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FIG. 6.—Optical depthτ(zs = 1) defined by Eq. (13) for spatially-flat
dark energy models as functions ofw. All curves are arbitrarily nor-
malised to their values forw =−1, i.e. they show the change in optical
depth withw relative to the cosmological-constant model. All curves
were obtained forΩ0 = 0.3 and COBE-normalised CDM power spec-
tra. Results are shown for two different choices each for the ellipticity
e and the cutoff angleθmin, as indicated. The curves show that clusters
in dark energy models can be∼ 50% up to∼ 100% more efficient in
forming arcs than in cosmological-constant models, depending in detail
on the exact choices for the ellipticity and the cutoff angle.

merically simulated clusters yields values forecloser to 0.3.

5. SUMMARY AND CONCLUSIONS

We investigated how the probability for the formation of large
gravitational arcs in galaxy clusters is expected to change as the
underlying cosmological model is modified. The main reason
for this investigation was our earlier finding that halo concentra-
tions in a simple class of spatially flat, dark-energy dominated
cosmological models are expected to depend sensitively on the
equation-of-state parameterw (Bartelmann et al., 2002). Strong
lensing in general, and the formation of large arcs in particular, is
a highly nonlinear effect which depends sensitively on the matter
concentration in the lens cores. It could therefore reasonably be
expected that arc probabilities would change significantly with
w.

This is of cosmological relevance since earlier numerical
simulations (Bartelmann et al., 1998) showed that clusters in
cosmological-constant models fall short by about an order of
magnitude of reproducing the abundance of observed large grav-
itational arcs. While virtually all recent cosmological exper-
iments favour a spatially flat, low-density universe, arc statis-
tics apparently strongly prefers a low-density, open model over
a low-density model with cosmological constant. This numeri-
cal result was questioned on the basis of simple analytic models
which failed to reproduce the strong dependence of arc statistics
on ΩΛ found in the simulations (Cooray, 1999; Kaufmann &
Straumann, 2000). Our first goal was thus to investigate whether
the numerical results could be supported by a more detailed an-
alytic model.

Earlier studies also showed that analytic models for arc cross
sections are notoriously problematic and inadequate for an accu-
rate absolute quantification of arc probabilities. However, since
it was our main interest in this paper to quantifychangesin
the arc optical depthrelative to cosmological-constant models,
we applied reasonably flexible analytic lens models which we

demonstrate to reproduce the relevant features of fully numeri-
cal results (e.g. Bartelmann et al. 1998; Meneghetti et al. 2003),
as described below.

We have chosen to use lenses with NFW density profile whose
lensing potential was elliptically distorted. This model has sev-
eral advantages. First, it naturally incorporates the dependence
of central halo concentration on cosmology, through the halo
formation time. Second, it agrees with density profiles consis-
tently found in numerical simulations. Third, the elliptical dis-
tortion strongly decreases the mismatch between analytic and
fully numerical lens models (Meneghetti et al., 2003). Although
elliptical lensing potentials can lead to locally negative surface
mass densities for sufficiently large ellipticities, this is a mild
effect which happens only well outside the core for our model,
thus it should be irrelevant for our purposes. We further adopted
a simple estimate for the arc cross section and verified that this
estimate scaled with cluster mass and dark energy parameterw
in the same way as fully numerically determined arc cross sec-
tions do. In particular, our simple analytic description for the arc
cross section well reproduces the approximately quadratic scal-
ing with cluster mass obtained fully numerically from the same
elliptically distorted NFW cluster mass models. Although we
would not trust this model for any accurate quantitative predic-
tion of arc probabilities, we are confident that it can be used for
therelativestatements intended here.

Our main findings are as follows:

• Our simple lens model is indeed capable of reproducing the
order-of-magnitude difference betweenΛCDM and open
CDM models found in the earlier numerical study. This
shows that the change in halo concentration between the
two models can explain the sensitivity of arc statistics for
the cosmological constant. An additional effect into the
same direction is contributed by the steep mass function of
galaxy clusters. An increase in halo concentration lowers
the minimum mass required for significant strong lensing,
and this makes many more halos available for arc forma-
tion.

• Although increasing the dark energy parameterw has a no-
ticeable effect on the optical depth for arc formation, it can-
not increase the arc optical depth to a level compatible with
that found in open CDM models. This result arises due to
a combination of three main effects: first, individual halos
of fixed mass get more concentrated in dark energy than
in cosmological constant models; second, lower mass ha-
los than before become able to form large arcs; and third,
the requirement that arcs be large imposes a lower limit
on cluster masses. Our analytic model thus suggests that
arc statistics cannot be reconciled with low-density, spa-
tially flat cosmological models which are now dominated
by dark energy, i.e. the discrepancy between arc statistics
and the cosmological model favoured by most, if not all,
recent cosmological experiments is not expected to disap-
pear if the dark energy is not a cosmological constant, but
has an equation of statep = wρc2 with w >−1.

Being based on several simple analytic estimates, this study
can only provide a tentative answer. Detailed numerical simu-
lations will be necessary for reliable absolute quantifications of
the arc optical depth expected in cosmological models with dark
energy instead of a cosmological constant; similarly, it is neces-
sary to quantify the dependence of the effect we find here on the
specific dark energy model considered, such as a quintessence
scalar field.

According to our preliminary analytic results presented here,
it appears that the solution to the arc statistics problem as de-
scribed by Bartelmann et al. (1998) is probably not to be found
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in the cosmological model alone, but more in the details of clus-
ter structure and the history of cluster evolution. The recent
suggestion by Wambsganss et al. (2003) that it could simply
be removed by considering higher-redshift sources is certainly
not a viable solution because the problem arose from comparing
simulations to a well-defined sample of highly X-ray luminous
clusters which were observed for arcs down to a well-defined
photometric limit (Le F̀evre et al., 1994; Luppino et al., 1999).
In combination with other recent results on the strong-lensing
properties of dark-matter halos (e.g. Oguri et al. 2001; Oguri
2002; Oguri et al. 2003) and the puzzling discoveries of very
high-redshift arcs in high-redshift clusters (Zaritsky & Gonzalez
2003; Gladders et al. 2003), this seems to imply that arc statis-
tics are teaching us that the properties of individual clusters and
their evolution over time is still insufficiently understood.
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