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ABSTRACT

We investigate how the probability of the formation of giant arcs in galaxy clusters is expected to change in
cosmological models dominated by dark energy with an equation of gtateypc’> compared to cosmological-
constant or open models. To do so, we use a simple analytic model for arc cross sections based on the Navarro-
Frenk-White density profile which we demonstrate reproduces essential features of numerically determined arc
cross sections. Since analytic lens models are known to be inadequate for accurate absolute quantifications of arc
probabilities, we use them only for studying changes relative to cosmological-constant models. Our main results
are (1) the order of magnitude difference between the arc probabilities in low density, spatially flat and open CDM
models found numerically is reproduced by our analytic model, and (2) dark-energy cosmologi®s witHl
increase the arc optical depth by at most a factor of two and are thus unlikely to reconcile arc statistics with
spatially flat cosmological models with low matter density.

1. INTRODUCTION halos in open models.

A possible third reason is that the gravitational tidal field at

The statistics of giant luminous arcs in the cores of galaxy clushe location of the lens plays a very important role (Bartelmann
ters has long been recognised as a potentially powerful cosnmet-al., 1995; Meneghetti et al., 2001). It is strong if lenses are
logical probe (e.g. Wu & Mao 1996; Bartelmann et al. 1998)highly asymmetric, as clusters frequently are, and if the sur-
Arcs are formed by gravitational lensing from sources whiclounding matter distribution is highly irregular. It is possible
happen to lie close to the caustic curves of a cluster lens, whetet, if cosmic structure forms later, cluster mass distributions
magnification and distortion are particularly strong. are less relaxed and thus more asymmetric, and that also the de-

The cosmological power of arc statistics derives from at leagree of irregularity in their neighbourhood is different than if
two, maybe three principal reasons. First, for clusters to be ejtructures formed earlier. On the other hand, clusters forming
ficient lenses, they have to be located approximately half-wagarlier are built from subhalos which tend to be more concen-
between the sources, typically around redshift unity, and tH&ated and thus more strongly gravitationally bound, hence sub-
observer. Depending mostly on the mean cosmic matter defiructures could then persist within clusters for a longer time and
sity, parameterised b, clusters form earlier or later in cos- contribute to the asymmetry.

mic history if the matter density is low or high, respectively. In Unfortunately, the combination of these effects renders an-
high-density model universes, the cluster population at the rediytic models for arc statistics entirely inadequate for accurate
shifts mostly relevant for lensing,~ 0.3 — 0.4 is substantially quantitative predictions of arc probabilities (Meneghetti et al.,
less rich than in low-density universes, reducing the numbe003). The effects of cosmology on cluster compactness and
of available efficient lenses dramatically (e.g. Richstone et ahsymmetry, and on the tidal field of the matter surrounding the
1992; Bartelmann et al. 1993; Lacey & Cole 1993, 1994).  clusters, cannot be captured by reasonably simple analytic lens
The second principal reason is that strong lensing is a highpodels. Numerical simulations of arc statistics, using clusters
nonlinear phenomenon in the sense that it requires the lensifigmed in sufficiently largéN-body simulations as lenses, led to
mass distribution to be supercritical for strong lensing, whiclthe surprising result that the expected number of giant luminous
means that a suitable combination of surface mass density a@ks on the sky differs by orders of magnitude between different
gravitational tidal field needs to be large enough, and that, oneé@smological models. While a model with critical matter density
a lens is supercritical, even small changes in both can changed no cosmological constant fell below the observed number of
significantly the length of the caustic curves, and thus the lensrcs, extrapolated to the full sky, by two orders of magnitude, a
ability for strong lensing. ACDM model withQq = 0.3 failed by one order of magnitude,
Different cosmological models predict the mass distributio@nd only a low-density open model wigk = 0.3 produced ap-
in clusters to be more or less concentrated. Numerical simulRIoximately the right number of arcs (Bartelmann et al., 1998).
tions consistently show that, the earlier a dark-matter halo forms, The statistics of quasars multiply imaged by galaxies has of-
the more concentrated it is because it appears to keep a rected been used for constraining cosmological parameters. The
of the mean cosmic density at the time when it formed (Navarrbasic argument is that the number of lenses and their redshifts
et al., 1996, 1997). Structure forms later in spatially flat thashould increase a@, increases, which typically yields upper
in open, low density cosmological models, thus halos in modelsnits on Qa < 0.6 — 0.7 (Kochanek, 1996; Falco et al., 1998;
with cosmological constant are generally less concentrated th@uast & Helbig, 1999), although discrepant results have also



been found (Chiba & Yoshii, 1999; Helbig, 1999; Keeton, 2002)ergy density today. The main reason is that halos form earlier in
We emphasise that the sensitivity of cluster lensin@fois of  dark energy models, allowing them to be more compact. Sev-
a different nature. Since clusters form much later in cosmieral different recipes for describing halo concentrations found
history than galaxies, the volume effect is negligible, 8t in numerical simulations as a function of their formation time
changes the dynamics of cluster formation and thus their colead to consistent results. The halo concentration increases no-
structure, to which strong lensing is highly sensitive. ticeably in the interval-1 < w < —0.6. For higher values of

These numerical results of Bartelmann et al. (1998) werd. Which are too high for the cosmic acceleration to agree with
tested by Cooray (1999) and Kaufmann & Straumann (2000) ukecent data (Riess et al., 1998; Perimutter et al., 1999), there is a
ing analytic models based on singular isothermal spheres. Thglfongly opposing effect related to the amplitude of fluctuations
could confirm the sensitivity of arc statistics @, but found N the CMB: The high level of the Integrated Sachs-Wolfe (ISW)
only a very weak dependence @, in contrast to the numer- effect on the large scale CMB anisotropies leads to a sharp de-
ical results. The isothermal sphere has two disadvantages wffease in the normalisation of the dark matter power spectrum
respect to arc statistics. First, arc cross sections are very sed&§artelmann et al., 2002). Within a cosmologically interesting
tive to asymmetries in the cluster mass distribution, thus axialli@nge for the equations of state of the dark energy, the balance
Symmetric models lack a property which is Crucia”y importan et[WGen.the ISW effect and the earlier formation of halos is
for arc statistics. Second, numerical simulations show that ttfiite delicate, but halos can typically be expected to be more
central density concentration of clusters depends on cosmolog@ncentrated. i
and this potentially important feature is not reproduced by the The ability of a galaxy cluster to produce giant arcs depends
scale-free isothermal models either. We shall construct in thgensitively on the concentration of its mass profile because of

paper an analytic model which qualitatively reproduces the eai?€ nonlinearity of the strong lensing effect. We therefore wish
lier numerical results. to investigate how the probability for arc formation changes in

gark energy models, compared to cosmological-constant or open
odels. For doing so, we use a simple, analytic description
Bthe arc cross section of a cluster of given mass, which we
emonstrate to possess the relevant features of the fully numer-
E:al results. Although it has been shown that analytic models
re inadequate for quantitatively reliable arc statistics, we are
gre interested only in the relative change of the arc-formation

Bartelmann et al. (1998) used two completely different type
of N-body codes for simulating galaxy clusters. Numerous suh-
sequent tests of the results showed that the arc numbers deriv,
could be off by factors of perhaps5Lto 2, but that there was
no way how order-of-magnitude differences could be bridge
(Meneghetti et al., 2000; Flores et al., 2000). The problem b
came substantially more acute when measurements of the ¢ babilit d by ch in th logical model
mic microwave background (CMB), combined with observaproS at.”ygauﬁh yc angetswé ecotzmo oglcalm(_) el'b ‘
tions of supernovae of type la and large-scale galaxy surveys, ecd|on " ? s € tpapgrdln ro_gjces e_co?mo 0?";? a‘é '
left very little room for model universes which are not spatiallylgJ our? model. >ection fescrll es Oll” S|mp\(/avanﬁy ICc mo h‘?
flat and have density parameters much different ffgw 0.3 Oré (Ia_aré: CfOiSf sect||on|o  a galaxy gug.tl‘?.r' N fj en use this
(e.g. Riess et al. 1998; Perimutter et al. 1999; Lee et al. 200710%€ ml ect. .orsf:a culating arc probabilities, and summarise
Abroe et al. 2002; Efstathiou et al. 2002; Netterfield et al. 200£Ur conclusions in Sect. 5
Wang et al. 2002; Halverson et al. 2002). Obviously, there is
an interesting discrepancy between the statistics of arcs seen on 2. COSMOLOGICAL MODEL
the sky, and the probability for arcs produced in cosmological
models which are convincingly required by various other obseBark energy is characterised by a negative pressusewpc?,
vations. While observations consistently indicate a high probavherepc? is the mean energy density of the universe and the
bility for arc formation in clusters (Le&vre et al., 1994; Gioia equation of statev assumes negative values in order to produce
& Luppino, 1994; Luppino et al., 1999; Zaritsky & Gonzalez,cosmic acceleration according to the data from type la super-
2003; Gladders et al., 2003), we should point out that the digrovae (Riess et al., 1998; Perlmutter et al., 1999). Theoretical
crepancy between theory and observations is so far only base@dels of dark energy, such as Quintessence scalar fields, gen-
on a single set of simulated clusters. erally predict a time variation of the equation of state, as well as

A spatially flat universe with low matter density and a costhe presence of dark energy fluctuations on super-horizon cos-
mological constant is extremely difficult to justify theoretically.mological scales (see e.g. Peebles & Ratra 2002 and references
The vacuum energy density provided by the cosmological cotrerein). In this work, we concentrate on the very basic aspect
stant is tens of orders of magnitudes below any natural scadé dark energy, by neglecting the spatial inhomogeneities and
which is conceivable in particle physics (see Carroll 2001 foassumingw to be a constant. In this case, the adiabatic equation
a review on the cosmological constant problem). This diffirequires the equivalent matter densiy of the dark energy to
culty motivated the introduction of a more general concept foghange with the cosmological scale facaas
a vacuum energy cosmological component, now widely known
as dark energy. The theoretical and observational aspects of the Po = PQo a 31w , ()
dark energy are one of the most important issues in modern cos- ) ) )
mology (see Peebles & Ratra 2002 for a review). In genera$tarting from the densitpgo today. Obviously, cosmological
the most important difference of a dark energy component corionstant models are retained setting= —1. Replacing the
pared to a cosmological constant is that its equation of state, conventional cosmological-constant term by a dark-energy term,
can be different from-1, generally implying a time variation. It Friedmann’s equation reads
should be noted that recent analyses of CMB data seem to favour
a value ofw very close to-1, albeit these results suffer to some H?(a) = HZ [Qo a3+Qq a*3(1+‘”>} : @)
degree from parameter degeneracies and are typically obtained
under restrictive aSSUmptionS (DOUSpiS et al., 2003; MelChiorgssuming with support from recent measurements of
etal., 2003; Spergel et al., 2003). anisotropies in the cosmic microwave background that the

Recently, Bartelmann et al. (2002) argued that dark matter hadrvature term is negligible. Herel(a) is the Hubble parame-
los in simple dark energy models should be more concentratégl as a function of, Hop is the Hubble constant, artd, is the
than in cosmological constant models with the same dark edensity parameter for non-relativistic matter.



The main consequences for the structure formation processdadtermined halo concentrations were well fit assuming these val-
this modified term in Friedmann’s equation have been detailages.
in an earlier paper (Bartelmann et al., 2002), so we summariseBullock et al. (2001) suggested a somewhat simpler algo-
them only briefly here. Starting from a low-density cosmologirithm. Haloes are assigned a collapse redshift defined such that
cal constant model, keepirfgp fixed and increasing, the cos- the non-linear mass scale at that redshift is a fracfipof the
mic volume per unit redshift shrinks, and the linear growth facfinal halo mass. The halo concentration is then assumed to be a
tor for cosmic structures starts rising earlier, hence structurésctor K times the ratio of the scale factors at the redshift when
start forming earlier if the cosmological constant is replaced bthe halo is identified and at the collapse redshift. Comparing
a dark energy component. Additional effects are that the parawith numerical simulations, they founty = 0.01 andK = 4.
eters characterising halo formation, i.e. the linear overdedgity This algorithm reflects the change of halo concentrations with
and the virial overdensity,, are changed (cf. Wang & Stein- redshift more accurately than the approach by Navarro et al.
hardt 1998; Mainini et al. 2003). (1997) predicts.

As we anticipated in the introduction, a further important con- A third algorithm was suggested by Eke et al. (2001). They
sequence of dark energy models is that the gravitational poteassigned the collapse redshift to a halo of mslsby requir-
tial of the density fluctuations changes more rapidly with timeing that the suitably defined amplitude of the linearly evolving
leading to an increased integrated Sachs-Wolfe effect on theyyer spectrum at the mass scMeequals a constar@z .
CMB fluctuations at large angular scales. Given the observ i — S

g g &fumerical results are well represented set@ags = 28.

level of CMB power on large angular scalea decreasing frac-
tion of the observed anisotropies can thus be attributed to the ——r ——
primordial CMB fluctuations, hence the normalisation of the R
power spectrum has to be reducediais increased in order to oL T oM ]
be compliant with the COBE-DMR data. The main result is that L ——— w=-04 ]
the power-spectrum normalisatian is decreasing gently as 3 Ny w=-0.8 .
is increased from-1 to ~ —0.6, and then turns to drop more i Tl w=-1.0 1
rapidly as the ISW effect intensifies. Here and below, we adopt 8 ’
the CDM power spectrum with the Harrison-Zel'dovich power- i
law indexn = 1 and the transfer function given by Bardeen et al.
(1986). Throughout, we us®q = 0.3 andQqg = 0.7. It should
be noted here that our results will be sensitive to the exact value
of nas well as other cosmological parameters.
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3. ARC CROSSSECTIONS
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3.1. Halo Model o

We will assume in the following that the average radial density
profile of galaxy clusters can be described by the profile found in

numerical simulations by Navarro et al. (1996, hereafter NFWY;!G. 1.—Halo concentrations according to Eke et al. (2001) are shown
as functions of halo mass for four spatially flat cosmological models

Ps with different choices for the dark energy parameteand for the
p(r) = 7”', (1+ r/r )2 ) (3 OCDM model, as indicated. Aw increases, halos become more con-
s S centrated untiw ~ —0.6. If w increases further, halo concentrations

; ; ; ; drop because then the amplitudg of the power spectrum has to de-
whereps is a density scale, and a scale radius. The ratio be- %f°P A€ plitu ; .
: : . crease rapidly in order to remain consistent with the COBE-DMR data,
S0 s e CHical do sty Caloq oncematom o, 25 1 INErated Sachs Wofe fctbecmes fger (. Saimar
; ’ - etal .

The two parameterfs andrs, are not independent. Numerical )
simulations showed that the concentration paranmetiEpends
on the halo mass, which is thus the only free parameter.

Numerically simulated halos tend to be the more concentrat

We will adopt the latter method for this paper because the con-
gntrations computed from the algorithm by Navarro et al. drop
: : : o slowly with redshift compared to numerical simulations,
the earlier they form. Their central density apparently reflec nd the algorithm by Bullock et al. has problems for high halo

the mean cosmic density at the time of their formation. Sincg asses bacause of the requirernent that a fixed fraction of the fi-
halos of higher mass are formed later in hierarchical models thal} u qui . X cl '
| halo mass should equal the nonlinear mass, which may never

halos of lower mass, the concentration is decreasing with h reached if the halo m is high. Concentration fun
mass. Based on these findings, several algorithms were desigii&d €ache € nalo mass Is high. Loncentrations as a unc-
tion of halo mass for four different choices of the dark energy

for computing halo concentrations from halo masses. g

The algorithm by Navarro et al. (1997) first assigns to a halarametew are shown in Fig. 1.
of massM a collapse redshift.y defined as the redshift at
which half of the final halo mass is contained in progenitors 3.2. Strong Lensing by NFW Haloes
more massive than a fractidygyw of the final mass. Then, the
density scale of the halo is assumed to be some f&dianes the The arc cross section of a galaxy cluster is the area in the source
mean cosmic density at the collapse redshift. They recommepthne where a source has to lie for being imaged as an arc with
setting fyrw = 0.01 andC = 3 x 10° because their numerically specified properties, e.g. exceeding a threshold length-to-width
ratio. A typical cluster lens has two critical curves, defined as
1The only existing data are from the Differential Microwave Radiometercyrves in the lens plane along which the Jacobian matrix of the

(DMR) on board the COsmic Background Explorer satellite (COBE, see Smo ; ; ; ; At ; _
1999 and references therein); more data will be available in the near future fro?r%ns mapping 1S Smgl’"ar’ and the Image magmflcatlon is for

the Microwave Anisotropy Probe (MARap. gsfc.nasa.gov) and thePlanck ~ mally infinite (cf. Fig. 2). The critical curves are the images of
(astro.estec.esa.nl/SA-general/Projects/Planck) satellites. the caustic curves, thus sources close to a caustic are imaged as




highly magnified and distorted images. The two critical curvewhereZ is the critical surface mass density for lensing. The di-
and their corresponding caustic are called tangential and radiatensionless radius=r /rs can conveniently be replaced by the
because of the dominant orientation of the image distortion relangular radiu® = r /Dq = xrs/Dg, WhereDy is the angular di-
tive to the centre of the lens. Seeking to quantify large-arc croseneter distance from the observer to the lens. The gravitational
sections, we are thus looking for an appropriately defined ardiaal field, or shear, of the lens is the two-component quantity
covering the tangential caustic of a cluster.

Itis well known that arc cross sections depend strongly on the 1 _ 7
exact shape of the cluster mass distribution, and on the gravita- 1= E(w“* W22) . Y2=Wi2, )
tional tidal field exerted by density fluctuations in its neighbour- _ ) ) o _
hood (Bartelmann et al., 1995). Thus, the only reliable methodhere the subscripts abbreviate partial derivatives with respect
for exactly quantifying arc cross sections has to use numerically the angular coordinate®;,8,) on the sky. The deflection
simulated cluster models without referring to any symmetry agingle is the gradient of the lensing potential,
sumptions. For a study like ours, however, we only need to de-

scribe how arc cross sections are expected to change relative to a a(6) =0y(®) . (8)
fiducial model when certain cosmological parameters are modi- . . .
fied. The Jacobian matrix of the lens mapping has the components
VYTY{TYTY{TYKT{TYKT‘YTYK‘YTLJYY{YYYY‘YYTY{TYTY{TYKT{TTL ﬂljzélj_wlj' (9)
20 Fow=—1 e=0.1 + w=-1 ; e=0.4 ) )
F + 1 Its eigenvalues ardy = (1—k) +y, wherey = (V2 +y3)4/? is
10 L T / 4 the amplitude of the shear. The tangential critical curve is deter-
. I 1 mined by the conditiodn_ = (1—k) —y=0.
0k & i ol — = We now distort the axially symmetric NFW lens such that the
F T 1 iso-potential lines become ellipses,
— —10 | + =
g CF § \ z & 1/2
= o £ | E we)—yo), o= [ rBu-e] . o)
g Cray ‘ | ‘ | ‘ L1l ‘ L1l ‘ e ‘ | ‘ | ‘ | ‘ | ‘ ]
crr ‘ L ‘ L ‘ LU ‘ LU ‘ LN ‘ T ‘ T L ‘ L ‘ LI
g o0 f w=-06 e=0.1 F w=-0.6 i e=0.4 § As noted by Kassiola & Kovner (1993), an elliptical poten-
— u T 1 tial can lead to dumbbell-shaped mass distributions with locally
< 0k e 4 negative mass density. As real clusters are irregular, dumbbell-
F ¥ 1 shaped mass distributions are acceptable. For the NFW profile
0oF $ + - 3 with elliptical isopotential contours, the mass density does in-
E T 1 deed become mildly negative, but only well outside the core
-10 F -+ 4  where strong lensing occurs. Fer= 0.4, the minimumk is
E ¥ \/ j ~ —0.01 times the convergence in the core (see also Golse &
-20 - / 3 Kneib 2002). We thus use the elliptical lensing potential (10)
:11llllllllllllllllllllll111::1llllllllllllllllllllllll11: forcompUtatlonalSlmpIICIty'

-20-10 0 10 20 -20-10 O 10 20 The Jacobian matrix and its eigenvalues can be computed
from (10) using the relations introduced before. Generally, the
zeroes of the tangential eigenvalde have to be determined

numerically. On the coordinate axes, they are given by
FiG. 2.—Tangential and radial caustics for NFW lens models with el-

liptically distorted lensing potential. A halo of mass'¥a—1M,, at { (1—e)a (62=0)
_8 —

B, [arc seconds]

redshiftz= 0.3 is assumed here, and the sources are all placzgée-at. a (0, =0) - (11)
The cosmological model is spatially flat wifby = 0.3 and normalised l1—e 1=0)

to the COBE-DMR data. The upper panels show the caustics for a

dark energy parameter of= —1 and for two ellipticitese= 0.1 and  The corresponding caustic points, i.e. the cusps of the diamond-

e=0.4. The lower two panels show the caustics for= —0.6. The  shaped caustic on coordinate axes, can then be found using the
figure illustrates the high sensitivity of strong lensing to halo ellipticity|g g equation

and concentration. R
B=6-3d(o). (12)
Gravitational lensing by an NFW halo can be described by itg/e thus know the four intersection points of the tangential caus-
lensing potential (e.g. Bartelmann 1996; Meneghetti et al. 2003)¢ curve with the coordinate axes. We defined them to lie at
(81,02) = (0,4+a) and(61,02) = (£b,0). Since the major axis
1, ,x 1—x of the iso-potential ellipses points along tBgaxis, the cusps
W(X) = 4Ks | = In? - —2arctanRy/ = | , (4)  on the®, axis are further away from the lens centre than the
2 2 1+x ; : ; .
cusps on th@; axis, hence > b. Figure 2 illustrates the caustic

L . ._curves for elliptical NFW lens models with two different ellip-
which is related to the lensing convergence through the Poissggities in two spatially flat cosmological models with different

equation values forw.
K(X) = }DZLIJ(X) _ (5) A simple assumption for the large-arc cross sectioof the
2 elliptically distorted NFW lens holds that it is proportional to the
The factorks in Eq. (4) is defined by area enclosed by the critical curve, hewdg ab, with a propor-
tionality constant depending on the exact shape of the caustic
Psf's curve, and thus on the ellipticity of the lens model. Since we
Ks = Sor )  do not require an absolute calibration of the arc cross sections,



we adopto = ab. Earlier work (Meneghetti et al., 2000; Flores 7.5 x 10*h~1M.,. The curves plotted there show qualitatively
et al., 2000) has shown that individual galaxies have a negligibtee same behaviour. Agincreases above1, the arc cross sec-
effect on arc cross sections, which further supports the assuntjpn increases by a factor ef 1.9 untilw~ —0.6, and then drops
tion that they are determined by the overall extent of the caustis the normalisation constraint requires to significantly reduce
curves. 0g. Both curves are arbitrarily normalised to unity at their peaks.
We will later have to integrate over the cluster populationThe differences between the numerically determined cross sec-
conveniently parameterised by the virial mass and described bgns and our simple estimate are unlikely to be significant be-
the mass function. Thus, we have to verify whether our approxéause the numerical method uses the images of a finite num-
mate description of the arc cross section scales with cluster mdsar of discrete sources for determining the cross sections, which
in the same way as numerically determined arc cross sectionsaafuses noise in the results. In any case, the two essential prop-
the same cluster models, given identical ellipticity parametersties of the change in the cross sections witlare well re-
e. We therefore set up deflection-angle maps starting from thoduced, namely the amplitude of the relative increase and the
elliptically distorted lensing potentiap(d) and used them for location of the peak.
imaging randomly distributed, intrinsically elliptical sources by
tracing rays passing the image plane on a rectangular grid. The
sources are placed on adaptively refined grids whose resolution
is progressively increased in the vicinity of caustic curves. The
images are automatically classified according to their length,
width, length-to-width ratio and several other parameters, and
the cross section is determined by counting the number of im-
ages exceeding a threshold length-to-width ratio. More detail ~o

1.4

. . . =
on this method can be found in (Bartelmann & Weiss, 1994; 7 1.2
Meneghetti et al., 2000). Results are shown in Fig. 3. g
T 1 ~
% 1
08 e °
06 . 0.8
= [
v L
0.4 e
I il FiG. 4.—Comparison between cross sections similar to Fig. 3, but for a
0.2 I . fixed halo mass ofl = 7.5 x 10"*h~1M, and varying dark energy pa-
r 1 rametemw. The solid curve showing the numerically determined cross
L ] sections closely follows the dotted curve, which represents the simple
o[, ] cross-section estimate introduced here. The curves are arbitrarily nor-

malised to unity at their starting point, i.e. @t= —1. Increasingw
from —1 to —0.6 increases the cross sections by a factordf9. As
in Fig. 3, lens and source redshifts are set.8dhd 1, respectively, and

) ) ] the ellipticity of the NFW lensing potential is setéo= 0.2.
FiG. 3.—Comparison between the numerically determined arc cross

sections of elliptically distorted NFW lenses as a function of their virial
massM (solid curve), and the simple estimate for the arc cross sections

which is proportional to the area covered by the tangential caustic curve . . . . :
(dotted curve). Both curves are arbitrarily normalised to unity at the Finally, we set the cross section to zero if the major axis of the

high-mass end. The lenses are placed at redskifD.3, the sources Cr!tic,al curve falls bg_IOW some thresholhin. The idea behind
at redshiftzs = 1.0, the ellipticity of the NFW potential ie = 0.4.  this is that if the critical curves become too small, the images
The curves were computed for a dark energy cosmological model withgar the critical curves can hardly be called giant arcs. Suppose
w = —0.6. Evidently, the simple estimate for the cross sections coitypical sources have diameters on the order of an arc second,
rectly reproduces the scaling of the cross sections with cluster masmnd the lens should be able to produce arcs with a length-to-
The numerically determined curve is not smooth because the cross segelth ratio around ten. Then, ignoring the source magnifica-
tions are computed from finite numbers of simulated arcs and thus sufion in the radial direction, the tangential critical curve needs to
ject to random fluctuations. have a radius of approximately "L €or this to happen. We thus
setBmin = 10" unless stated otherwise, and show the effect of
The essential feature of the numerically determined arc croghanging®min to 5’ below.
sections is that they increase approximately quadratically with
the lens mass. Since the Einstein radius of an extended lensMe conclude from this section that the scaling of our sim-
typically scales linearly with the lens mass, this indicates thaile estimate for arc cross sections with lens mass and with the
the arc cross section scales approximately like the square of tark energy parametarwell reproduces what is expected from
Einstein radius. Our simple estimate for the arc cross sectionngimerical treatments of the same lens models, i.e. NFW lenses
defined to reproduce this property. with elliptically distorted lensing potential. We emphasise again
We also check whether numerically determined cross sethat the absolute value of the cross sections are unimportant for
tions scale with the dark energy parame#ein a similar way our present purposes, as we are aiming at studying the change
as our simple cross-section estimate does. Figure 4 shows thehe arc-formation probability in various cosmological models
example of an elliptically distorted NFW lens of massk= relativeto theACDM model.

M [h-"Mo]



4. ARCPROBABILITIES FTm T t tTT T

We can now proceed to compute the probability for arc for-
mation by a population of clusters. Given a mass function
dn(M,z)/dM, we can write the so-called optical deptfzs) as

1(z) = /Ozsdz(lJrz)3

av| dn
dZ‘/MmindeMo(M,z), (13)

where z; is the source redshifly is the cosmic volume, and

the factor(1+ z)® accounts for the fact that the mass function

is defined per comoving volume. The lower mass liMit,

is determined by the mass required to produce critical curves

whose major axis exceeds the thresh@igh introduced in the

preceding section, thus it depends on the lens redshift g
For the mass functionrg'dM, we choose the modification by 0

Sheth & Tormen (1999) of the Press & Schechter (1974) mass

function. It well reproduces the halo mass functions found in

numerical simulations. We take into account that our definiz

. . > o FiG. 5.—The redshift integrand of Eq. (13) is plotted as a function of
tion of mass differs slightly from Sheth & Tormen's in that wey, o r gifferent cosmological models /£CDM model withQo — 0.3,

use the mass enclosed by a sphere in which the mean densityig open CDM model witfo = 0.3 and no cosmological constant, and
200 times thecritical rather than theneandensity. The mass o spatially-flat dark energy models wifty = 0.3 andw = —0.8 and
function depends on cosmology through the normalisation @f= —0.6. The spatially-flat models are normalised to the COBE-DMR
the power spectrum and the linear overdensity parameter derivéata, and the open CDM model has the sameas the cosmological-
from the spherical collapse model. constant model for easier comparison. The curves show that our simple
We note an important difference to strong lensing by galaxanalytic model succeeds in reproducing the order-of-magnitude differ-
ies. While the population of galaxy lenses is well describe@nce between the open and the cosmological-constant model found in
as isothermal spheres with number counts derived from Og_u_merlcal simulations, and that spatially flat dark energy models cannot
servations (e.g. Ll et al. 2000; Keeton 2002), the lack of ridge the gap between these two models. The ellipticity of the NFW
wide-separation lenses argues against isothermal density pp%nsmg potential was set = 0.3 here.
files in cluster-scale lenses (Flores & Primack, 1994; Porciani
& Madau, 2000). Baryonic physics changes the central density ) o .
profiles of galaxy-scale halos, but is inefficient on cluster scaldgodels with low matter density with the high abundance of large
(e.g. Kochanek & White 2001). Cluster mass functions derive@rCs, which seems to be similarly impossible with cosmological
from X-ray observations are found to agree well with theoreticgfonstant models given the earlier numerical resullts.
predictions based on Press-Schechter type models (e.g. Reipricfrigure 6 shows the optical depthas defined in Eq. (13) for
& Bohringer 2002). Thus modelling the cluster population wittfour different choices of the free parameters we have introduced,
NFW density profiles and the Sheth-Tormen mass functions Ramely the ellipticitye of the lenses and the cutoff radiBgin.
well justified. All curves have in common that the arc optical depth increases
We show in Fig. 5 the redshift integrand of Eq. (13), i.e. théoticeably asvincreases from-1 to ~ —0.6, and drops rapidly
cosmic volume times the integral over mass of the mass functi@$W is increased further. The curves are intended to show the
times the arc cross section. The figure thus illustrates the tot#lative increase imcompared to th&CDM model and are thus
arc cross section contributed by the cluster population at redshifermalised to unity alv= —1. The peak amplitudes range from
z For simplicity, sources are assumed to be at a single redshiftbf t0 2. The largest increase is achieved g, = 10" and
zs = 1 here. The four curves in Fig. 5 are for thé DM model €= 0.3, the smallest foBmin = 5" ande = 0.4.
with Qg = 0.3, the open CDM model with the sarfiy but with Several effects act jointly here. First, we saw in Fig. 4 that
Qa =0, and for dark energy models with the safebutQqo =  the arc cross section of (one example for) an individual halo in-
0.7, andw= —0.6 orw= —0.8. Again, the curves are arbitrarily creases by a factor gf 2 asw is increased from-1 to —0.6.
normalised such that the optical degtbf the OCDM model is An additional effect is that, as the halo concentration increases,
unity. The value obg = 0.88 of theACDM model was also set halos of lower mass become capable of strong lensing. Since
for the OCDM model for easier comparison. The COBE-DMRhe mass function of galaxy clusters is steep, a small extension
data would requireg ~ 0.4 for the OCDM model, which is way of the mass range towards lower masses can markedly increase
below the value required for reproducing the observed numb#re number of clusters available for strong lensing, but the re-
density of massive clusters. We thus have to chapster the quirement that arcs should be large imposes a lower limit on the
OCDM model in conflict with the COBE-DMR data in order to cluster masses. We see the combined effect in Figs. 5 and 6. If
produce comparable results on arc statistics. we set the cutoff radius t@min = 107, we select for higher-mass
Figure 5 shows two important results. First, the simple modellusters in the first place, whose mass function is steeper than for
for arc cross sections introduced here is capable of reproducilyver-mass clusters. Thus, the effect of lowering the lower mass
the order-of-magnitude difference in the total arc cross sectidinit by increasing the halo concentrations is more pronounced
between th\CDM and the OCDM models that had been foundf the cutoff radius is chosen higher.
earlier in numerical simulations, and could not be reproduced Increasing the ellipticity of the lensing potential increases its
by analytic models based on singular isothermal cluster magsavitational tidal field, or shear. The increase in halo concentra-
distributions. Second, although the dark energy models havetian caused by the earlier halo formation in dark energy models
somewhat higher total arc cross section thar'Xi®M model, with w > —1 is then relatively less important for arc formation,
they are still by a factor of 6 below the arc cross section for thewhich explains why the arc optical depth caused by cluster pop-
OCDM model. According to our analytic estimates, dark energulations with lowere changes more strongly witlv than for
models are thus unable to reconcile spatially flat cosmologicalusters with highee. Fitting the elliptical NFW model to nu-

integral kernel

0.01 |




] demonstrate to reproduce the relevant features of fully numeri-
| cal results (e.g. Bartelmann et al. 1998; Meneghetti et al. 2003),
’ 1 as described below.

We have chosen to use lenses with NFW density profile whose
lensing potential was elliptically distorted. This model has sev-
eral advantages. First, it naturally incorporates the dependence
l of central halo concentration on cosmology, through the halo
- formation time. Second, it agrees with density profiles consis-
1 tently found in numerical simulations. Third, the elliptical dis-
tortion strongly decreases the mismatch between analytic and
1 fully numerical lens models (Meneghetti et al., 2003). Although
c elliptical lensing potentials can lead to locally negative surface
min N mass densities for sufficiently large ellipticities, this is a mild
effect which happens only well outside the core for our model,
thus it should be irrelevant for our purposes. We further adopted
a simple estimate for the arc cross section and verified that this
w estimate scaled with cluster mass and dark energy parameter
in the same way as fully numerically determined arc cross sec-

FiG. 6.—Optical deptht(zs = 1) defined by Eq. (13) for spatially-flat tions do. In particular, our simple analytic description for the arc
dark energy models as functions\ef All curves are arbitrarily nor- Cross section well reproduces the approximately quadratic scal-
malised to their values fow = —1, i.e. they show the change in optical ing With cluster mass obtained fully numerically from the same
depth withw relative to the cosmological-constant model. All curveselliptically distorted NFW cluster mass models. Although we
were obtained foy = 0.3 and COBE-normalised CDM power spec- would not trust this model for any accurate quantitative predic-
tra. Results are shown for two different choices each for the ellipticitfion of arc probabilities, we are confident that it can be used for
e and the cutoff angl®nmin, as indicated. The curves show that clustergherelative statements intended here.

in dark energy models can be50% up to~ 100% more efficient in Our main findings are as follows:

forming arcs than in cosmological-constant models, depending in detail
on the exact choices for the ellipticity and the cutoff angle.

optical depth
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e Our simple lens model is indeed capable of reproducing the
order-of-magnitude difference betwe&CDM and open
CDM models found in the earlier numerical study. This
shows that the change in halo concentration between the
two models can explain the sensitivity of arc statistics for
the cosmological constant. An additional effect into the
same direction is contributed by the steep mass function of
galaxy clusters. An increase in halo concentration lowers
the minimum mass required for significant strong lensing,

merically simulated clusters yields values &xloser to 03.

5. SUMMARY AND CONCLUSIONS

We investigated how the probability for the formation of large

gravitational arcs in galaxy clusters is expected to change as the
underlying cosmological model is modified. The main reason
for this investigation was our earlier finding that halo concentra-
tions in a simple class of spatially flat, dark-energy dominated
cosmological models are expected to depend sensitively on the
equation-of-state parameter(Bartelmann et al., 2002). Strong
lensing in general, and the formation of large arcs in particular, is
a highly nonlinear effect which depends sensitively on the matter
concentration in the lens cores. It could therefore reasonably be
expected that arc probabilities would change significantly with
w.

This is of cosmological relevance since earlier numerical
simulations (Bartelmann et al., 1998) showed that clusters in
cosmological-constant models fall short by about an order of
magnitude of reproducing the abundance of observed large grav-
itational arcs. While virtually all recent cosmological exper-
iments favour a spatially flat, low-density universe, arc statis-
tics apparently strongly prefers a low-density, open model over
a low-density model with cosmological constant. This numeri-
cal result was questioned on the basis of simple analytic models

and this makes many more halos available for arc forma-
tion.

e Although increasing the dark energy parametdras a no-

ticeable effect on the optical depth for arc formation, it can-
not increase the arc optical depth to a level compatible with
that found in open CDM models. This result arises due to
a combination of three main effects: first, individual halos
of fixed mass get more concentrated in dark energy than
in cosmological constant models; second, lower mass ha-
los than before become able to form large arcs; and third,
the requirement that arcs be large imposes a lower limit
on cluster masses. Our analytic model thus suggests that
arc statistics cannot be reconciled with low-density, spa-
tially flat cosmological models which are now dominated
by dark energy, i.e. the discrepancy between arc statistics
and the cosmological model favoured by most, if not all,
recent cosmological experiments is not expected to disap-
pear if the dark energy is not a cosmological constant, but
has an equation of stafe= wpc? with w > —1.

which failed to reproduce the strong dependence of arc statisticsBeing based on several simple analytic estimates, this study
on Qx found in the simulations (Cooray, 1999; Kaufmann &can only provide a tentative answer. Detailed numerical simu-
Straumann, 2000). Our first goal was thus to investigate whethiations will be necessary for reliable absolute quantifications of
the numerical results could be supported by a more detailed aire arc optical depth expected in cosmological models with dark

alytic model.

energy instead of a cosmological constant; similarly, it is neces-

Earlier studies also showed that analytic models for arc crosary to quantify the dependence of the effect we find here on the
sections are notoriously problematic and inadequate for an ac@pecific dark energy model considered, such as a quintessence
rate absolute quantification of arc probabilities. However, sincgcalar field.

it was our main interest in this paper to quantifigangesin

According to our preliminary analytic results presented here,

the arc optical deptrelative to cosmological-constant models, it appears that the solution to the arc statistics problem as de-
we applied reasonably flexible analytic lens models which wecribed by Bartelmann et al. (1998) is probably not to be found



in the cosmological model alone, but more in the details of clusrerimutter, S., Aldering, G., Goldhaber, G., Knop, R., etal. 1999, ApJ, 517, 565

' i rciani, C. & Madau, P. 2000, 532, 679
ter structure and the history of cluster evolution. The rece ess W. & Schochter, P. 1074, ApJ, 187, 425
suggestion by Wambsganss et al. (2003) that it could SIMpyast. R. & Helbig, P. 1999, A&A, 344, 721

be removed by considering higher-redshift sources is Certainﬁprich, T. & Bohringer, H. 2002, ApJ, 567, 716

i i iRiehstone, D., Loeb, A., & Turner, E. L. 1992, ApJ, 393, 477
not aIV|abIe solut|on"boe|c?usde the prloblefnr*]l_aacl)se fromlcomparl ss, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009
simulations to a well-define sampie or hignly X-ray UmanUSSheth’ R. & Tormen, G. 1999, MNRAS, 308, 119

clusters which were observed for arcs down to a well-defineginoot, G. 1999, in AIP Conference Proceedings, Vol. 476, 3K Cosmology, ed.

ic limi . i L. Maiani, F. Melchiorri, & N. Vittorio
photometric limit (Le fevre et al., 1994; Luppino et al., 1999). , ' & .
. . ) . Spergel, D., Verde, L., Peiris, H., Komatsu, E., et al. 2003, ApJ submitted;
In combination with other recent results on the strong-1ensing™ e rint astro-ph/0302209

properties of dark-matter halos (e.g. Oguri et al. 2001; Oguvilambsganss, J., Bode, P., & Ostriker, J. 2003, ApJ submitted; preprint astro-
2002; Oguri et al. 2003) and the puzzling discoveries of ve% ph/0306088

. . E . . . ang, L. & Steinhardt, P. 1998, ApJ, 508, 483
high-redshift arcs in high-redshift clusters (Zaritsky & Gonzale ang, X., Tegmark, M., & Zaldarriaga, M. 2002, Phys. Rev. D, 65, 123001

2003; Gladders et al. 2003), this seems to imply that arc statigw, X.-P. & Mao, S. 1996, ApJ, 463, 404
tics are teaching us that the properties of individual clusters a@ritsky, D. & Gonzalez, A. 2003, ApJ, 584, 691
their evolution over time is still insufficiently understood.
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