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ABSTRACT

Via the magnification bias, gravitational lensing by large-scale structures causes angular cross-correlations be-
tween distant QSOs and foreground galaxies on angular scales of arc minutes and above. We investigate the
three-point cross-correlation between QSOs and galaxy pairs measurable via the second moment of the galaxy
counts around quasars and show that it reaches the level of a few per cent on angular scales near one arc minute.
Combining two- and three-point correlations, a skewness parameter can be defined which is shown to be virtually
independent on the shape and normalisation of the dark-matter power spectrum. If the galaxy bias is linear and
deterministic, the skewness depends on the cosmic matter density par@metdy; otherwise, it can be used to
probe the linearity and stochasticity of the bias. We finally estimate the signal-to-noise ratio of a skewness determi-
nation and find that a few thousand distant QSOs e.g. from the Sloan Digital Sky Survey should suffice for a direct
measurement d@q.

1. INTRODUCTION shear, the information provided by the quasar-galaxy correlation
function alone is insufficient for independently constraining all

It is widely believed that structures and galaxies in the Univers&'€S€ parameters. o

formed from gravitational growth of Gaussian primordial mass Following similar motivations as Bernardeau, van Waerbeke
density fluctuations dominated by dark matter. Direct suppoft Mellier (1997) and Jain & Seljak (1997), we decided to
for this picture is provided by the recent weak lensing survey@XPlore how deviations from Gaussian statistics produced by
of galaxies, dubbedosmic shearwhich measured the system- non-linear growth of structures could modify the galaxy-quasar
atic distortion of faint background-galaxy images produced b§ross-correlation signal and eventually break some degeneracies
the gravitational tidal field of intervening dark-matter inhomo-P€tween comological parameters. The easiest approach is to
geneities (Bacon et al. 2000 and 200Zrhmerle et al.; 2002; focus on the additional information that can be extracted from
Hoekstra et al. 2002; Kaiser et al. 2000; Maoli et al. 2001r;1lgher-order correlations between quasars and galaxies which
Réfrégier et al 2002; Rhodes et al. 2001; Van Waerbeke et &€ most sensitive to non-Gaussianity, namely the correlation be-
2000, 2001, 2002; Wittman et al. 2000). The shape of the colveen distant quasars and foreground galpaiys. As for the

mic shear signal as a function of angular scale remarkably fofkewness of the convergence field, we can expect that some pa-
lows theoretical expectations, which successfully confirms tH@meter dependencies disappear by normalising the three- with

gravitational instability scenario, even on small scales whe/0-point correlations. _
non-linear structures dominate the lensing signal. The paper is structured as follows. We briefly present the for-

Further evidence for lensing is provided by the gravitationaiqa".sm of the quasar-galaxy correlation function in Sect. 2., as-
magnification bias In addition to distortion, distant objets are uming the paradigm of gravitational instability of a Gaussian
' gfndom field is valid. In Sect. 3., we then introduce the quasar-

magnified or demagnified, depending on whether the matt ; :
alogg their Iines-of-%ight is ngr_ or L?nderdense compared alaxy-galaxy correlator and predict some useful observational
fgnature. Section 4. deals with density statistics and the numer-

the mean. Magnified sources are preferentially included in evaluation of the triple correlator. We then define a skewness

L . - jcal
gtrjé( 'é'mg\?vhsaatn;f’,fﬁ}etgfessgﬁggessﬂi@%g‘ﬁgg;ﬁ’fg&i@ﬂ“ q;%ameter in Sect. 5. and demonstrate how it can be used for di-
' ctly measurindo. Similarly, we show in Sect. 5. how several

e e L ebioperies of e Gy bias can be consiransd. Vi fnaly s
: ; NP, ._mate the signal-to-noise ratio of the corresponding observation,

ground galaxies. The existence of significant cross-correlanoé'}id ialise it for thel Digital Skv Survew Sect. 6

between distant quasars and foreground galaxies on angu Specialise itfor oan Digital Sky Surven Sect. 6..

scales of several arc minutes has indeed been firmly established

(see Bartelmann & Schneider 2001 for a review) and motivate@. MAGNIFICATION-INDUCED CORRELATION FUNCTIONS

further theoretical development in order to predict how the mag-

nification bias depends on cosmological models. Followin@asic statistical properties of the magnification due to gravita-

earlier work by Bartelmann (1995) and Dolag & Bartelmanrtional lensing by large-scale structure have been studied in ear-

(1997), Menard & Bartelmann (2002) demonstrated the higlier papers. To lowest order in the relevant quantities, magni-

sensitivity of angular quasar-galaxy cross-correlation functiofication is proportional to the lensing convergence, which has

to several cosmological parameters, namely the matter densithentical statistical properties as the lensing-induced distortions,

parameterQg, the normalisation and shape of the dark-mattere. the cosmic shear. Those were investigated in many studies,

power spectrumgg andl", and the bias parameter of the galax-starting with the pioneering papers of Gunn (1962) and Bland-

ies,b. Hence, magnification bias of quasars is equally efficierford et al. (1992).

as cosmic shear in constraining the geometry and the dark mat-The two-point correlation function caused by gravitational

ter power spectrum of the Universe. However, like with cosmienagnification between background quasars and foreground



galaxies was first introduced by Bartelmann (1995) and geffrirst-order Taylor expansion of the magnification around unity
eralised by Dolag & Bartelmann (1997). We refer the readeyields _

to these papers for detail and only briefly recall the formalism Woe(8) = 2b(a — 1) (K (@) 3(@+6)) . (8)
and approximations leading to the two-point correlation func-  _

tion. The notation and the definitions used for the three-pointike 8, k is a weighted projection of the density contrast along

correlation function are presented in the next section. the line-of-sight. Specifically, we can writeas

2.1. The two-point correlation function(f) K(8) = /WH dw pi (W) 3] fk (w)é,w] , (9)
The angular two-point correlation function between quasars and 0
galaxies is defined by wherepg(w) is the projector

o (@ -Rline@+9-fcl) o — 20 <Ho>2
WQG( )* rTQ rTG ) ( ) K 2 0 c
W dw/ fi (w) fx (Ww—w
whereng ¢ are the number densities of quasars and galaxies on X / aw) o( )W . (10)
w K

the sky. The bar denotes the average on the sky, and the angular

brackets denote averaging over positigrand the directions of Thg ratig between the angular diameter distarfeds the usual

6, assuming isotropy. ) effective lensing distancg/o (W) is the normalised distance dis-
Lensing magnification increases the flux received frontribution of the sources, in our case the quasars,awj is the

sources behind matter overdensities, but also stretches the gigémological scale factor.

and thus dilutes the sources, modifying their number density. The correlation functiom, s appearing on the right-hand side

The net effect, an increase or a decrease of the source numBeEq. (8) can now be related to the power spectrum of the den-
density, is called the magnification bias. It depends on the nurgity contras®,

ber of sources gained per solid angle by the flux magnification.
Leta be the logarithmic slope of the source number counts as a _ NS B
function of flux, then the number-density fluctuation is Wi (6) (K(®)3(¢+6))

Bt — [ dwpcw) [ dw ps(w)

Q —\"Q/ _ 5,,0-1/8 . Lo

g O @ X (Bt (w)B.w] Bl (W) (- 8).w)) . (11)
el 3 where the integrations overandw’ range from 0 tovy.

where 6u(8) = u(6) — 1 is the magnification fluctuation as a

function of position@. The magnification is related to conver-
gencex and (the complex) shegiby

We can now use Limber's equation for the statistics of pro-
jected homogeneous and isotropic random fields. Inserting the
Fourier transform of the density contrast, and introducing its
power spectrunis(k), we find

-1
n=[(1-k)>—y? . 3
Thus, to first order ik andy, the magnification fluctuation is W(0) = /MW
K
SU=H—-1=2K. (4) sds s
X o' o <fK(W),W) Jo(s9) - (12)

Assuming that galaxies are linearly biased with respect to the
dark-matter distribution, we can write

3. THE THREE-POINT CORRELATION FUNCTION

re® —6) _ p5). © |
(nG) 3.1. Formalism
whereb is the bias factor, andis the projection Let us now extend the formalism introduced in the previous

section to define higher-order statistical quantities. There are

WH - two possibilities for defining a three-point correlator between
5(6) = b dw ps(w) & fic (W)8, W] , (6)  quasars and galaxies, either through correlations between sin-
gle quasars and galaxy paimcg, or between quasar pairs and
of the density contrastalong the line-of-sight, weighted by the single galaxieszooe.
normalised distance distributiops(w) of the observed galax- By definition, three-point correlations vanish for Gaussian
ies which are cross-correlated with the quasars. Heiis,the random fields. They are created in the course of the non-linear
comoving radial distance along the line-of-sigffi¢,(w) is the evolution of the underlying density field, hence they are ex-
comoving angular diameter distance, and the upper integratipected to appear preferentially on small angular scales. Since
boundarywy is the comoving radial distance to the “horizon” the mean separation between quasars is in general much larger
at z — oo (For more sophisticated biasing models, e.g. includthan between galaxies, correlations between quasars and galaxy
ing stochasticity or non-linearity, see Pen 1998; Dekel & Lahapairs should be much easier to measure. We will therefore focus

- =

1999; Sommerville et al. 2001.) on the triple correlatorggg only.
We can thus write the two-point correlation function intro- By definition, and using the formalism introduced in the pre-
duced in Eq. (1) as vious section, we have
Woe(B) = b (W (@) 5(9+6)) . ) 2966(61,62) = (B 1(9) 3(9+61)86(9+82)) ,  (13)



where the average extends over all positipns The normalised extra varian2€6) of galaxy counts in cells
Assuming as before a linear biasing relation between thef areaS near quasars is directly observable and can be ex-
galaxies and the density fluctuations, and expanding the Eq. (1®essed in terms of the integrated correlation functions intro-

to first order ink andy leads to duced above,
Zqca(61,02) = 2b7 (a0 — 1) 2(61,6,) , (14) A®) = (N3) = (N)2  (N?); = (N)?
herez(61,6,) is the th int lation functi ) e il
wherez(0,, 6,) is the three-point correlation function B B Nee (0
- I — Ted®) e+ 22 g
2(61,82) = (k(9)d(@+61)5(¢+62)) '
_ / o pe(wi) / oW pa(Wo) / iz pa(Wa) wherewgg andzggg are the cell-averaged correlation functions
- - _ [ o268 Ug(8') woo(8')
x (O] fk (w1)@,wq] 8] fk (w +01),w Wog(8) = = = 19
< [fi( 1)EP i] [Tk (W2) (@+ 61), W] Qa(6) 0 Ug(®) (19)
X 3T (wa) (@-+82),wa] ) (15) g
Again, the integrations ovev; ; 3 extend from O tavyy. Stochas- ~ _ d28,Ug(81) [ d2B,Uq( 61,0
tic or non-linear biasing schemes will be discussed in Sect. 5.. ZQGG(B)Zf tU6(%) J & 62U (%) 2900164, B2 (20)

20 [l 20 B

The three-point correlation functiaaca(B1, 82) is related to J d*61Us(B1) [ d*02Ue(®2)
the excess probability with respect to a random distribution faxere, the functiondg(6') is a top-hat filter of radiu®. Other
finding triangle configurations, defined by the two angular sepiiters can be used if one wishes to be more sensitive to spe-
ration vector$; and6,, formed by one quasar and two galaxiescific wavelength ranges of the dark-matter power spectrum (see
As shown by Menard & Bartelmann (2002), the lensing-inducedSchneider et al. 1997) but we will not investigate this point in
quasar-galaxy cross-correlation functisgg has a small ampli- the present paper.
tude, typically on the order of a few per cent at angular scales of In summary, the relevant third-order quantity for our purpose
a few arc minutes. Therefore, in order to achieve a significaig the cell averageqgca(9) of the triple correlatoerGG(él,éz)
signal-to-noise ratio for a higher-order correlation function sucBetween quasars and galaxy pairs. We will now estimate its
aszqce, a very large number of objects will be necessary. Moreproperties and then show how second and third-order quasar-

over, focusing only on particular triangle configurations (for ingyalaxy correlations can be combined to meafg@nd several
stance equilateral, isosceles or any other) will dramatically rgyoperties of the galaxy bias.

strain the number of possible measurements in a given survey.
For our purpose of measuring a skewness parameter (see Sect.
5.), the detailed angular dependence of a given triangle configu-#- EVALUATION OF THE EXCESS GALAXY VARIANCE A
ration is not of immediate relevance. Thus, it is observationally - L
2 = 4.1. Statistics of the density field
preferable to focus on an angular averagedgic(81,02) over
all suitable triangle configurations inside a given aperture, thusnder the common assumption that the initial density fluctua-
allowing a measurement around each quasar. This point will higns were Gaussian and that cosmic structure grew by gravita-
detailed in the next Section, where we will also show how théional instability, the three-point correlation function is intrin-
averaged three-point correlation function can be observed. sically a second-order quantity, and should be detectable only
where non-linearities arise in the density field.
3.2. Observational signature We expand the density field to second order as

The statistical meaning ahgg(61,8>) is illustrated by the ex- 3(%) =3V (%) + 8@ (%), (21)
pression for themsfluctuations in the counts of galaxies around

a given quasar. Following Peebles (1980), and considering prehere 82 is of order (5Y)2 and represents departures from
jected (rather than three-dimensional) correlation functions, tiféaussian behaviour. Note that since two of the tRrtstors in
variance of the galaxy counts in cells of solid anglat fixed Eq.(15) are derived from the fluctuations in the galaxy number

distance from the quasars can be written density, this expansion is only valid if galaxies are linearly bi-
ased relative to the dark-matter fluctuations. We will assume this

2y NNV2 2 28 126/ 3B linearity for now and show in Sect. 5. how cosmic magnification
(N9 = (N)T = (N)+1g /5d bd6 {WGG(G v) can be used to measure the matter density parameter. We will

S - S also show that quasar-galaxy correlations can test the assump-
+  Zoca(8,9') *WQG(G)WQG(GI)} » (18) " tion of linearity and probe the angular range where this simple
relation between dark matter and galaxies breaks down.
where the angular brackets denote averages over ensembles gfssuming linear biasing and expandiditp second order, we
cells of sizes. Thus, we havéN) = ngS + ng [ d?Bwqs(8),  obtain for(d:5,33)
whereng is the galaxy number density on the sky.
If the cells wererandomlyplaced rather than at a fixed posi- (810203) =~ <5<11>5<21>5<31>> + (6(11)6gl>6(32)>
tion relative to a quasar, the variance of the galaxy counts would 1 cyclic terms (231,312) (22)
be ’
o L The first term in Eq. (22) vanishes because the density fluctua-
(N2); — (N)2 = (N}, +n3 / d?0d°@wes(8 —8), (17) tion field is Gaussian to first order, hence the third moment of
S 3 is zero. Thus, the leading term in Eq. (22) is of the order of

with (N); = ng.s. M8 e2),



In second-order perturbation theory, the Fourier decomposithere n = dlogPi, (k) /dlogk is the local slope of the dark-

tion of the density-fluctuation field is given by matter power spectrum at wave numheg = k/kni (), andkni
@ % 3 430 x(1) " is the nonlinear wave number defined b;k%L Rin(knL) =1. To
3 (k) = /d ki d°k2 8 (k1)8' (k2) be specificRin (k) is the linear power spectrum at the required
S W Lo redshift. Finally, the functios(n) is given by
x  Op(ki+ky—K)F(ki, ko), (23)
. __ 2N
with o o Qa(n) = (ﬁ_ 2§+)1) ) (29)
k= Se 1 (k) 2602 o,
LRI 770 ke \k kg 7 Kks which is the so-called saturation value obtained in “hyper-

N ..._extended” perturbation theory (HEPT; Scoccimarro & Frieman
_Note that we have expanded the lensing-induced magnificgggg) ~ These expressions imply that at large scales, where the
tion to first order in qu' (15). The next-order term has a contrizgetficientsa, b andc aproach unity, the tree-level perturbation
bution proportional tac* which, when introduced in Eq. (22), i theory is recovered. On the other hand, at small scales, where
of order(3%)* and thus formally of the same order as the otheg2 _, (7/10)Q3(n)oz%4, b — 0 andc — O, the bispectrum be-

terms in Eq. (22). However, this additional term differs by thg;omes hierarchical with an amplitude which approximately re-

weight factor f (W —w)/ f (W) from the other terms since it produces HEPT foos ~ 1. For more detail, see Scoccimarro &
contains the lensing efficiency. As a result, this additional faczoychman (2000).

tor will be one order of magnitude smaller, even though it is of
the same order in the perturbation seriesdqsee Van Waer-

beke et al. 2000 for more detail). We can therefore neglect its 4.3. Evaluation of gcg(8)
contribution. The formalism is now in place for computing the triple correlator
7(81,02). We start from Eq. (15) and replace the density contrast
4.2. Bispectrum and Non-Linear evolution 0 by its Fourier transform. Next, we employ the approximation

underlying Limber’s equation, which asserts that the coherence
I&hgth of the density fluctuation field is much smaller than the
scales on which both projectopg and ps vary appreciably. Fi-

The ensemble average in Eqg. (22) is related to the bispectrum
Fourier space. By definition,

NS (K ([ _ 3n(k b L nally, we insert the expression for the bispectrum described in
(Ok)o(k)dlks)) = (211)# B(kf’ k2,4k3) the previous section and find
x  Op(ki+ky+Kks). (25) .
Inserting Eq. (24) into Eq. (25) leads to an expression of the 2(61,6,) = /dwpk(w) pg(w)/ d?ky k181 fic ()
bispectrum in terms of the second-order kefgy, k) and the (2m)?
dark-matter power spectrum o2k, L o
A L. x /—ZBa(kl,kz,—kl—kz,W)e'kZ' 2 fk(w)
Blkike.ks) = 2F (K, Ke) Plka)P(ke) (21
+  2F (K2, ks) P(k2)P(ks) We saw in Sect. 3 that the suitable quantity for observations is
+ 2F(R1,R3) P(ky)P(ks) . (26) not directlyz(el,éz), but the corresponding cell-averaged triple
. . . . . lat fi Eqg. (20). Th lar int ti
Note that Eq. (25) implies that the bispectrum is positive only It;ic;rlzjesa orz(B) defined by Eq. (20) © anguiar infegration
the wave vectorgky, ko, ks) form closed triangles.
For describing the bispectrum on all angular scales, we use 2Ky I ke B fie (W
the fitting formula for the non-linear evolution of the bispec- z(8) = 4/de<(W) p%(w)/ 5 L 1|£ gf k(W) (30)
trum derived from numerical CDM models by Scoccimarro & T (21 18 fic (W)
Couchman (2000), extending earlier work assuming scale-free d?k, oo J1[k28 fic (W)]
initial conditions. The kernefF (k;, k) in Eq. (26) is then sim- / (2m)2 Bs(ke ko, —k1 —ko, ) k2B i (W)

ply replaced by aeffectivekernelFeff(ky, k»), reading _ _ _ o
The observational signature of cosmic magnification is ex-

Lo 5 - .
Fefk ko) = >aln ki)aln. k pressed in terms of the normalised excess sca{®@rof galax-
(ky, ko) 7 (nkyja(n ko) ies around quasars; see Eq. (18). This quantity involves both

1K Ko (ki ko the two- and three-point cell-averaged correlation functions
5k <k+k) b(n, kg )b(n,kz) Woc(8) and Zoga(8). For numerically evaluating these ex-
112 2 " pressions, we use the description of the non-linear evolution
2 (¥ -k 2 of the CDM power spectrum provided by Peacock & Dodds
= ( ) c(n,ky)c(n k) . (27)  (1996) fitting formula. We normalise the power spectrum such
7\ kike that the local abundance of galaxy clusters is reproduzgek;
The coefficients, b andc are given by 0.52Q,*%2"*13% a5 determined by Eke et al. (1996).
We assume for simplicity that all quasars are at the same red-
1+05%(2) [0.7Qs(n)] Y2 (g/4)"+35 shift z = 1. More realistic quasar redshift distributions do not
ank) = 17 (q/4)™35 significantly change the following results as long as the fore-
3 ground galaxies are at comparatively low redshift. We approxi-
bink) — 1+0-4(”+§>Lq mate the redshift distribution of the galaxies by
’ 1+qn+ .

; ] 4 n+3 BZ 7\ P
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FIGURE 1.—Left panel The two- and three-point quasar-galaxy correlation functions, averaged within rings of@adiesplotted in dependence
of 8 for what cosmology?The dotted curve shows the two-point correlation functigf), the solid line the three-point functiaif). Near one
arc minute, the triple correlatareaches the- 2% level. At larger angular scales, the amplitude drops ste€her curves? Right panel?

with B = 1.5 andz, = 0.3. 5. DETERMINING Qg AND TESTING THE LINEARITY OF
THE BIAS

The slope of the quasar number counts is fairly well con-
strained by the most recent quasar catalogues. We use the vafiie: second- and third-order statistics can be used jointly so
a = 2 suggested by the first SDSS quasar catalogue (Schneidest several parameter dependencies can cancel. The underly-
et al. 2001) for quasars brighter than 19th magnitude. Finallihg physical concept is that second-order statistics quantify the
we assumé = 1 for simplicity. Gaussian characteristics of a random process, while third-order

) _ o statistics are non-Gaussian contributions. When used together,

_The left panel of Fig. 1 showsgeg(8) (solid line) and  one can in principle measure their relative strength, thus isolat-
Wog(8) (dashed line) as a function of angular scale. Thes@g those parameters which are most responsible for deviations
quantities were computed for a low-density, spatially flat unifrom Gaussianity.
verse Qo =0.3,Qp = 0.7). The dotted lines show the expected The reduced skewness (i.e. the ratio of the third and second
amplitude ofwqog(8) if only linear growth of density perturba- moments of a distribution) is a useful practical estimate of non-
tions is taken into account, and the amplitudezeéc(6) for  Gaussian features in galaxy catalogs. However, in the case of
quasi-linear evolution. The difference between the two regimeg,smic magnification, it is not possible to define the skewness
changes the amplitude ahcc by approximately two orders of i, the same way as for cosmic shear with the convergence field
magnitude on small angular scales. On large scales, the amplsernardeau et al. 1997), since we are not considering the auto-
tude ofzgeg(6) decreases quickly with since the density field correlation properties of a single field, but the cross-correlations
tends to gaussianity as the smoothing scale increases, and tBiveen two different fields, namely the distributions of fore-
the triple correlator vanishes. ground galaxies and of the lensing convergerceMoreover,
. . - . the angular-averaged three-point correlation functiggc dis-

Interestingly, the amplitude @by is of the order of one per cussec?in the pre\%ous sectign is not symmetric vﬁ?espect to
cent on arcminute scales. As for the two-point quasar-galafyermutations between quasar and galaxy positions. The three-
correlation function, the amplitude and the shapegic(8) are  gint cross-correlation of quasars with galaxy pairs involves
very sensitive to cosmological paramet¥id: ?? il 'y aque  ihe quasar-galaxy cross-correlation as well as the galaxy-galaxy
Qo = 0.3Qp = 0.7) dont on parle au-dessus??? auto-correlation. Since the latter does not contribute to the two-
point quasar-galaxy correlation function, we cannot apply the
Yisual mathematical definition of skewness which applies to a
'l?ﬁique distribution. Instead, we define a pseudo-skewness for
%l.fl’ purposes by the ratio

In the right panel of Fig. 1, we plot the measurable quantit
A(B) which represents the normalised excess scatter of galax
around quasars; cf. Eq. (18). Again, we have used\G®&M
cosmological model, and we assume a galaxy number density

1arcmin 2, >
S(8) = Zec(®) _ (32)
Evidently, Zoce(0) is the main contribution té(6) on inter- VVZQG(G)

mediate and large angular scales. Below a few arcminutes, the

termwog(8)/(N)r becomes non-neglegible. This contributionMuch like the skewness of cosmic sheg(0) is insensitive in
is due to the shot noise of the galaxies, thus this term can lige linear regime to the normalisation of the power speciogm
lowered when using galaxies with a higher number density. and still remains weakly dependent ageven in the non-linear
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FIGURE 2.—The dependence of the skewn&®n ag andr” is shown for two different cosmologies and three different angular scées,and
10. Evidently, the dependence on both parameters is very weak, quite independent of the cosmological model and the angular scale.

regime. Moreover, if the galaxy bias can be considered linear @nd/or stochasticity of the bias. Indeed, our previous calcula-

certain angular scales, we have tions deriving the two- and three- point correlators used only
two hypotheses, namely the linearity of the bias and the as-
S;(0) = A(0) Qa” (33) sumption that lensing effects occur in the weak regime, i.e.

du= 2k + O(k?,|y?|). The latter relation is expected to be valid
on such scales, wherne is close to unity and the amplitude on scales larger than a few arc minutes. Below, medium- and
A(B) can be computed from Egs. (12), (13) and (31). Interstrong-lensing effects become non-negligible. However, as de-
estingly, S;(8) does not depend on the linear galaxy bias facscribed in Menard et al. (2002), these effects can be accurately
tor. We plot the pseudo-skewness in Fig. 3 for different flat anguantified by expanding the Taylor series of the magnification to
cluster-normalised CDM model universes with density paransecond order, thus allowing the investigation of smaller scales.
etersQp = 0.3, 05 and 1. The solid line shows the result ob-Therefore, the only remaining explanation for a departure of the
tained with the non-linear prescription of the bispectrum, anéngular variation 08;(8) is a nonlinearity or stochasticity of the
the dashed line shows the result of using quasi-linear theory. biasing scheme.

The non-linear growth of density perturbations introduces The pseudo-skewness can thus probe the angular range and
some dependency of the pseudo-skewi&€3) on the normal- the corresponding physical scale Whgare the linear relation be-
isationag and the shape paramefenf the dark-matter power tween dark matter and galaxy fluctuations breaks down.
spectrum becausegg and Zgee depend on the shape of the
power spectrum in different way; cf. Egs. (12) and (31). We plot 6. EXPECTED SIGNAL-TO-NOISE RATIO
these dependences in Fig. 2.

The figure shows tha$;(6) weakly depends oif andds.  \We now estimate the expected signal-to-noise ratio in measure-
Varying o within from 0.5 to 14 changes the amplitude 8f(6)  ments ofA(8). The determination of the effective skewness also
by less than 5% near one arc minute, and the effect of changirgquires a measurement of the two-point quasar-galaxy corre-
I from 0.14 to Q23 is even weaker. On larger angular scalegation function. We refer the reader toélard & Bartelmann
e.g. 8, varyingog andI" within these ranges affec&(8) by  (2002) for a detailed study of the signal-to-noise ratio expected
less than 1%. Thus, we can safely consider the pseudo-skewnfisiswog(8).
$;(8) to be insensitive to normalisation and shape of the dark- We are not aiming at a detailed noise calculation, but rather
matter power spectrum. Likewise, the cosmological con€tant an approximate estimation of the main source of error, i.e. the
has a negligible effedneed a plot!) finite sampling error caused by the limited number of available

On large angular scales, the galaxy bias is expected to be liguasars. As shown in Fig. 3, the dominant contribution to the
ear (Verde et al. 2001), in which case its contributio®j@an-  excess scattek(0) introduced in Eq. (18) igoca(8), except on
cels out. Finally, the only effective parameter we are left with ismall scales. We therefore use the simplifying assumption that
Qo, which means that the pseudo-skewr8g8) can effectively A ~ zogg in the following.
constrain the matter-density parameter. Since the excess scatter of galaxies around quasars defined

The pseudo-skewnes3(6) can also test the linearity and in Eq. (18) is a counts-in-cells estimator, its measurement ac-
stochasticity of the bias parameter which is of interest at smalleuracy will be limited by the finite size of the available sample,
scales. For a given cosmology and assuming a CDM powery boundary and edge effects, and by the effects of discrete sam-
spectrum, any departure from the angular variatiorSgPB)  pling. In practice, measurementsafzg(8) will be restricted to
given in Fig. 3 can be interpreted as resulting from non-linearitgngular scales much smaller than the size of the survey, thus the
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FIGURE3.—The skewnesS;(0) is shown as a function of angéefor ~ FIGURE4.—Number of quasars required for a3detection of the ex-
three different cosmological models. The solid line is the predictiocess scattef of the galaxy counts near quasars, as a function of an-
based on the non-linear description of the power spectrum and the bgilar scaled. Three different values for the galaxy number density are
pectrum. The dashed line shows the perturbation-theory calculation. &ssumed, namely 1, 2, and 3arcifnvertical line?

angular scaleg 1°, the non-linear and the linear calculations meet.

wherev is the desired signal-to-noise ratio. The second term in
g. (34) can be neglected for reasonable galaxy densities. We

- - : : call that the quasar number given by Eq. (35) refers to quasars
Uﬁ:ﬁ% gg:g”eg ?&pr?]fig ﬁ%ittg%crlnmte sampling of the gaIamesWith redshifts higher than those of the galaxy population.

In order to estimate this noise, we neglect the auto-correlation S€veral weighting schemes can be used to maximise the

of galaxies and approximate them as being randomly distributegfgn@l-to-noise ratio of the detection. &ard & Bartelmann
Moreover, we also assume the quasars to be at random p :002) showed how to optimally weight the contribution of each

tions in the sky, i.e. uncorrelated with the galaxy positions. Iguasar with respect to its magnitude. Weighting the galaxies
fact, physical correlations are excluded given the required lardth respect to their redshift can also increase the signal-to-noise
separation between the two populations, and on the other haf@dio of the detection. Indeed the triple correlatgeg(61.,62)

the cross-correlations between quasars and galaxies induced®yelated to the excess of triangle configurations in which two
lensing are so weak that the corresponding change in the galag§laxies trace a high density region of the dark matter field,
distribution is entirely negligible in the total error budget. Giveri-€. configurations in which the two galaxies are close in an-
these assumptions, we find the standard deviation of the ngfe and redshift. Projection effects mimicking galaxy pairs will
malised scatter of the galaxy counts arolsko quasar posi- contribute noise to the final measurement. Therefore, the width

errors contributed by boundary effects can be considered n

tions to be of the galaxy redshift distribution inside a given cell around a
guasar can be used to additionally weight the final measurement.

(N2 —(N)2\ 1 2 1 a4y Numerical simulations will be needed to quantify the change of

o (N)2 - /Naso N2 TN (34)  the final signal-to-noise ratio, as well as the effects of galaxy

clustering and cosmic variance which were not taken into ac-

whereN is the average number of galaxies in cells of a givefgOuntin our noise estimation. . o
size. This result is derived in Appendix A. As an application, we now investigate the feasibility of mea-
The signal we are interested in is an excess scatter in galayring A(8) with the data of theSloan Digital Sky Survey
counts. Therefore, the noise of the total measurement is twi€@DSS ; York et al. 2000). Within this project, the sky has
the value ofs introduced in Eq. (34). It is possible to reduce thisalready been imaged for two years, and the survey will be
noise by measuring the scatter of the galaxy counts at a largeg@mpleted in 2005, reaching a sky coveragetstteradians or
number of random locations since there are typically many more 10000 square degrees. Depending on the limiting magni-
available galaxies than quasars, but we prefer to estimate a cénde of the selected sample, SDSS can achieve a galaxy density
servative lower bound to the signal-to-noise ratio, so we wilbf ng ~ larcmin? for galaxies observed down 1§ = 21, or
keep the factor of two in the following calculations. Finally, weng ~ 3arcmin? down tor’ = 22, but requiring extensive care-
can write the number of required quasars for achieving a detefed masking of regions with poor seeing within the survey, and a

tion at an angular scake careful star-galaxy separation (Scranton et al. 2001).
) In Fig. 4, we present for different values of the galaxy num-
Noso~ 8v (35) ber density the number of quasars required in order to achieve

[Zoca(6) T2 nG]Z ’ a 30 detection of the excess scati®{0). The figure shows



that the measurement becomes more easily reachable at lang&tter densitf2g; the dependences on the other parametgy;s (
angular scales. However, an upper limit exists because we hadveA andb) are negligible or cancel out completely. Thus the
assumed isolated quasars in our calculation and Eq. 35 ceaskewnessS; provides a direct and independent measurement of
to be valid at angular scales reaching the average angular s€hy

aration of quasars. In the case of SDSS, this angular scale iswe computed the expected angular variatio8gdnd showed
close to 20for the sample of spectroscopic quasars satisfyinthat for a given cosmology and assuming a CDM power spec-
z> 1. This angular scale is indicated by the vertical dashed lingum any departure from the predicted angular shape must be
in Fig. 4. On larger angular scales, the real errors will increasgue to a non-linear and/or stochastic behaviour of the galaxy
due to correlated galaxy counts, and the number of quasars e#s, on scales larger than a few arc minutes.

timated from Eq. (35) will no longer be reliable. The SDSS Finally, we estimated the signal-to-noise ratio of the expected
will observe 10 spectroscopic and 5 10° to 1P photometric  excess scatter of galaxies near quasars, which is the main source
quasars. Thus, we conclude from Fig. 4 that SDSS will greatlyf noise inS;. We derived the noise coming from the finite sam-
exceed the number of quasars required for measuring three-pgiting of galaxies having Poisson distributions. Applying our re-
correlations between quasars and galaxies, thus allowing a neult to the Sloan Digital Sky Survey, we find thg should be
direct measurement of the matter den$iy. measurable from that survey on angular scales around 10 arc
minutes using a few thousand distant and bright quasars, allow-
ing thus a direct and independent measuremer®@®f With
more quasars, a measurementShfon smaller angular scales
will be feasible, and it will probe the angular range and the corre-
%}onding physical scales where the linear relation between dark
atter and galaxy fluctuations may break down.

7. CONCLUSION

Via the magnification bias, gravitational lensing by large-scal
structures gives rise to angular cross-correlations between d
tant sources and foreground galaxies although the two pop-
ulations are physically uncorrelated. Depending on whether
the matter along the lines-of-sight towards these background
sources is over- or underdense with respect to the mean, and

depending on the value of thgslop@f the cumulative number thank Francis Bernardeau,éghane Colombi and Peter
counts of the sources, magnification effects can cause an exc %meider for heloful discussions. and Ludovic Van Waerbeke
or a deficit of distant sources near foreground galaxies, for providing his c%de on lensing statistics. This work was sup-
These lensing-induced correlations carry information on thglorted in part by the TMR Network “Gravitational Lensing:
projected dark-matter distribution along the lines-of-sight an ew Constraints on Cosmology and the Distribution of Dark

can thus provide constraints on cosmology. Considering diﬁﬂatter” of the EC under contract No. ERBEMRX-CT97-0172
tant quasars and foreground galaxieséridrd & Bartelmann ' '

(2002) quantified these constraints and showed that given the
large number of parameters involved (the matter density param-
eter,Qop, the normalisation and shape of the dark-matter power

spectrum,og and r respec_t|vely, and the bias parameter OWe use the formalism developed by Szapudi & Colombi (1996)
the galaxiesb), the information provided by the quasar-galaxy; - calculating errors due to finite sampling, and we refer the
correlation function alone is insufficient for independently CONzoader to this paper as well as to the excellent review on “Large-
straining all of these parameters. Scale Structure of the Universe and Cosmological Perturbation

In this paper, we have investigated what additional inform h ” : "
. ’ ! L9 ._..1heory” by Bernardeau et al. (2001). We first define some use-
tion can be expected from higher-order statistics. Such statistigy qugntitli/es and then derive (the e?ror on our estimator due to
have similar weightings of the power spectrum along the |Il’le|5 issonian noise

of-sight and can measure non-Gaussianities of the density fiel \We h h timat
due to the non-linear growth of structures. We have specifically € have the estimator
considered correlations beween distant quasars and foreground N2 N2 N2

galaxypairs and showed that this three-point correlator can be E2 = g2 (<>‘<>> — g2 <<>> ) (36)
related to the excess scatter of galaxies around quasars with re- (N)? (N)2

spect to random positions, which is a straightforwardly measur-

able quantity. Using the assumptions that Let Py denote the probability of findinly galaxies in a cell of a

] ] ] ) _ given size. The factorial moments are defined as
e galaxies are linearly biased with respect to the underlying
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A. NOISE ESTIMATION

dark matter, Fc=((N)) =Y (N)kPn (37)
o the dark-matter distribution is described by a CDM power _ )
spectrum, where (N)x = N(N —1)...(N —k+1) is thek-th falling facto-

rial of N, and the ensemble average can be evaluated using the
e and the lensing magnifications are in the weak regimé&nown probability distributiodPy. We can write the error on our

ie.dp<k 1, estimator in terms of factorial moments,
2 2
of galaxies in the vicinity of quasars. For a flat cosmology with g2 — g2 Rt F2> = <Fl+ FZ) — < Pt F2>
Qo = 0.3 andog = 0.93, we find the amplitude of this effect to F? F2 c F2 /¢’
reach the per cent level at angular scales near one arc minute. (38)
We further showed that combining second- and third-ordefhere the operatot...)c averages over all possible ways of
statistics allows a pseudo-skewness parantgf¢o be defined throwing C cells into the survey volume. In order to compute

which turns out to be virtually insensitive to the normalisatio ; = 3F
and the shape of the power spectrum. Moreover, if the IinerfE\rr]e difference, we now pertufy, andF; asfy = Fi(1+ Fi )

biasing scheme is valid, this parameter is only sensitive to trdF = F_2(1+ %':22), with (dF;) = (dF) = 0.

we have computed the amplitude of the expected excess scatter (

8



This yields
y X % N H\l]
45 4F2 2F2
B2 = (SFP)+ EL(OFD) + 22 (OFF) - 22 (5F15R2) L
R H i = ¢cR+2R-RR)
0B o)+ A (o) (39) 2
) - (46)
End e covanance 8 andie. WWe wil do this teing the gen. . InSerting those terms into Eq. (39), we find after further sim-
erating function of the probability distributioRy introduced in  Phrications
Eq. (37), 2) = (N)?
N2 (N 2 1
o) N 40 g2 ¢ _ 47
(x) ZPNX (40) < (N)2 cN2 tens “7)

The nice property of this quantity is that the factorial momentghich is the error due to the finite quasar number.

are obtained by a Taylor expansionRfx) aroundx = 1. The In order to check this result, we have performed a numer-
cosmic covariance on factorial moments can then be written ag.5| simulation in which we measured our estimator on two-

aN' /3! dimensional Poisson distributions of particules. We then com-

Cov(F,Fj) = ( = — | EXY)|y (41) puted its standard deviation for several cell numbers and partic-
[ER| P F} vy x=y=1 > . . . .

X y ular point densities and find the numerical results to completely

oo . : . confirming the previ Xpression.
and for estimating the finite-sampling error, the errorgeneratm%]0 g the previous expressio

functionE is
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(OFF) = & - (44)
In the same way, we obtain
1 0% ¢?
BF) = C ooy [P(xy) = P(X)P(Y)][x—y—1
1
= Z |IN3](N-1)?Py— (T N(N-1)Py 2]
S |2 NEIN=2R— (3 N(N-DRy)
1
= 6(4F3+2F2)
4N3 4 2N2
- T ¢ (49)
and
10 0°
(BFOF) = & 3xay2 POV —POIPOllys
_ 1 2N _ _ _
= ¢ %N (N—1)Py %N(N 1) Py




