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ABSTRACT

Via the magnification bias, gravitational lensing by large-scale structures causes angular cross-correlations be-
tween distant QSOs and foreground galaxies on angular scales of arc minutes and above. We investigate the
three-point cross-correlation between QSOs and galaxy pairs measurable via the second moment of the galaxy
counts around quasars and show that it reaches the level of a few per cent on angular scales near one arc minute.
Combining two- and three-point correlations, a skewness parameter can be defined which is shown to be virtually
independent on the shape and normalisation of the dark-matter power spectrum. If the galaxy bias is linear and
deterministic, the skewness depends on the cosmic matter density parameterΩ0 only; otherwise, it can be used to
probe the linearity and stochasticity of the bias. We finally estimate the signal-to-noise ratio of a skewness determi-
nation and find that a few thousand distant QSOs e.g. from the Sloan Digital Sky Survey should suffice for a direct
measurement ofΩ0.

1. INTRODUCTION

It is widely believed that structures and galaxies in the Universe
formed from gravitational growth of Gaussian primordial mass
density fluctuations dominated by dark matter. Direct support
for this picture is provided by the recent weak lensing surveys
of galaxies, dubbedcosmic shear, which measured the system-
atic distortion of faint background-galaxy images produced by
the gravitational tidal field of intervening dark-matter inhomo-
geneities (Bacon et al. 2000 and 2002; Hämmerle et al.; 2002;
Hoekstra et al. 2002; Kaiser et al. 2000; Maoli et al. 2001;
Réfrégier et al 2002; Rhodes et al. 2001; Van Waerbeke et al.
2000, 2001, 2002; Wittman et al. 2000). The shape of the cos-
mic shear signal as a function of angular scale remarkably fol-
lows theoretical expectations, which successfully confirms the
gravitational instability scenario, even on small scales where
non-linear structures dominate the lensing signal.

Further evidence for lensing is provided by the gravitational
magnification bias. In addition to distortion, distant objets are
magnified or demagnified, depending on whether the matter
along their lines-of-sight is over- or underdense compared to
the mean. Magnified sources are preferentially included into
flux-limited samples, thus sources behind matter overdensities
are somewhat over-represented. Since galaxies are biased with
respect to the dark-matter distribution, it is expected that this ef-
fect induces cross-correlations between distant sources and fore-
ground galaxies. The existence of significant cross-correlations
between distant quasars and foreground galaxies on angular
scales of several arc minutes has indeed been firmly established
(see Bartelmann & Schneider 2001 for a review) and motivated
further theoretical development in order to predict how the mag-
nification bias depends on cosmological models. Following
earlier work by Bartelmann (1995) and Dolag & Bartelmann
(1997), Ḿenard & Bartelmann (2002) demonstrated the high
sensitivity of angular quasar-galaxy cross-correlation function
to several cosmological parameters, namely the matter density
parameter,Ω0, the normalisation and shape of the dark-matter
power spectrum,σ8 andΓ, and the bias parameter of the galax-
ies,b. Hence, magnification bias of quasars is equally efficient
as cosmic shear in constraining the geometry and the dark mat-
ter power spectrum of the Universe. However, like with cosmic

shear, the information provided by the quasar-galaxy correlation
function alone is insufficient for independently constraining all
these parameters.

Following similar motivations as Bernardeau, van Waerbeke
& Mellier (1997) and Jain & Seljak (1997), we decided to
explore how deviations from Gaussian statistics produced by
non-linear growth of structures could modify the galaxy-quasar
cross-correlation signal and eventually break some degeneracies
between comological parameters. The easiest approach is to
focus on the additional information that can be extracted from
higher-order correlations between quasars and galaxies which
are most sensitive to non-Gaussianity, namely the correlation be-
tween distant quasars and foreground galaxypairs. As for the
skewness of the convergence field, we can expect that some pa-
rameter dependencies disappear by normalising the three- with
two-point correlations.

The paper is structured as follows. We briefly present the for-
malism of the quasar-galaxy correlation function in Sect. 2., as-
suming the paradigm of gravitational instability of a Gaussian
random field is valid. In Sect. 3., we then introduce the quasar-
galaxy-galaxy correlator and predict some useful observational
signature. Section 4. deals with density statistics and the numer-
ical evaluation of the triple correlator. We then define a skewness
parameter in Sect. 5. and demonstrate how it can be used for di-
rectly measuringΩ0. Similarly, we show in Sect. 5. how several
properties of the galaxy bias can be constrained. We finally esti-
mate the signal-to-noise ratio of the corresponding observation,
and specialise it for theSloan Digital Sky Surveyin Sect. 6..

2. MAGNIFICATION-INDUCED CORRELATION FUNCTIONS

Basic statistical properties of the magnification due to gravita-
tional lensing by large-scale structure have been studied in ear-
lier papers. To lowest order in the relevant quantities, magni-
fication is proportional to the lensing convergence, which has
identical statistical properties as the lensing-induced distortions,
i.e. the cosmic shear. Those were investigated in many studies,
starting with the pioneering papers of Gunn (1962) and Bland-
ford et al. (1992).

The two-point correlation function caused by gravitational
magnification between background quasars and foreground
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galaxies was first introduced by Bartelmann (1995) and gen-
eralised by Dolag & Bartelmann (1997). We refer the reader
to these papers for detail and only briefly recall the formalism
and approximations leading to the two-point correlation func-
tion. The notation and the definitions used for the three-point
correlation function are presented in the next section.

2.1. The two-point correlation function w(θ)

The angular two-point correlation function between quasars and
galaxies is defined by

wQG(θ) =

〈
[nQ(~φ)− n̄Q] [nG(~θ+~φ)− n̄G]

〉
n̄Q n̄G

, (1)

wherenQ,G are the number densities of quasars and galaxies on
the sky. The bar denotes the average on the sky, and the angular
brackets denote averaging over positions~φ and the directions of
~θ, assuming isotropy.

Lensing magnification increases the flux received from
sources behind matter overdensities, but also stretches the sky
and thus dilutes the sources, modifying their number density.
The net effect, an increase or a decrease of the source number
density, is called the magnification bias. It depends on the num-
ber of sources gained per solid angle by the flux magnification.
Let α be the logarithmic slope of the source number counts as a
function of flux, then the number-density fluctuation is

nQ(~θ)−〈nQ〉
〈nQ〉

= δµα−1(~θ) , (2)

where δµ(~θ) = µ(~θ)− 1 is the magnification fluctuation as a
function of position~θ. The magnification is related to conver-
genceκ and (the complex) shearγ by

µ=
[
(1−κ)2−|γ|2

]−1
. (3)

Thus, to first order inκ andγ, the magnification fluctuation is

δµ≡ µ−1 = 2κ . (4)

Assuming that galaxies are linearly biased with respect to the
dark-matter distribution, we can write

nG(θ)−〈nG〉
〈nG〉

= bδ̄(~θ) , (5)

whereb is the bias factor, and̄δ is the projection

δ̄(~θ) =
∫ wH

0
dw pδ(w)δ[ fK(w)~θ,w] , (6)

of the density contrastδ along the line-of-sight, weighted by the
normalised distance distributionpδ(w) of the observed galax-
ies which are cross-correlated with the quasars. Here,w is the
comoving radial distance along the line-of-sight,fK(w) is the
comoving angular diameter distance, and the upper integration
boundarywH is the comoving radial distance to the “horizon”
at z→ ∞ (For more sophisticated biasing models, e.g. includ-
ing stochasticity or non-linearity, see Pen 1998; Dekel & Lahav
1999; Sommerville et al. 2001.)

We can thus write the two-point correlation function intro-
duced in Eq. (1) as

wQG(~θ) = b〈µα−1(~φ) δ̄(~φ+~θ)〉 . (7)

First-order Taylor expansion of the magnification around unity
yields

wQG(~θ) = 2b(α−1)〈κ(~φ) δ̄(~φ+~θ)〉 . (8)

Like δ̄, κ is a weighted projection of the density contrast along
the line-of-sight. Specifically, we can writeκ as

κ(~θ) =
∫ wH

0
dw pκ(w)δ[ fK(w)~θ,w] , (9)

wherepκ(w) is the projector

pκ(w) =
3
2

Ω0

(
H0

c

)2

×
∫ wH

w

dw′

a(w′)
WQ(w′)

fK(w) fK(w−w′)
fK(w′)

. (10)

The ratio between the angular diameter distancesfK is the usual
effective lensing distance,WQ(w) is the normalised distance dis-
tribution of the sources, in our case the quasars, anda(w) is the
cosmological scale factor.

The correlation functionwκδ appearing on the right-hand side
of Eq. (8) can now be related to the power spectrum of the den-
sity contrastδ,

wκδ(θ) = 〈κ(~φ) δ̄(~φ+~θ)〉

=
∫

dw pκ(w)
∫

dw′ pδ(w
′)

× 〈δ[ fK(w)~θ,w]δ[ fK(w′)(~φ+~θ),w′]〉 , (11)

where the integrations overw andw′ range from 0 towH.
We can now use Limber’s equation for the statistics of pro-

jected homogeneous and isotropic random fields. Inserting the
Fourier transform of the density contrast, and introducing its
power spectrumPδ(k), we find

wκδ(θ) =
∫

dw
pκ(w) pδ(w)

f 2
K(w)

×
∫

sds
2π

Pδ

(
s

fK(w)
,w

)
J0(sθ) . (12)

3. THE THREE-POINT CORRELATION FUNCTION

3.1. Formalism

Let us now extend the formalism introduced in the previous
section to define higher-order statistical quantities. There are
two possibilities for defining a three-point correlator between
quasars and galaxies, either through correlations between sin-
gle quasars and galaxy pairs,zQGG, or between quasar pairs and
single galaxies,zQQG.

By definition, three-point correlations vanish for Gaussian
random fields. They are created in the course of the non-linear
evolution of the underlying density field, hence they are ex-
pected to appear preferentially on small angular scales. Since
the mean separation between quasars is in general much larger
than between galaxies, correlations between quasars and galaxy
pairs should be much easier to measure. We will therefore focus
on the triple correlatorzQGG only.

By definition, and using the formalism introduced in the pre-
vious section, we have

zQGG(~θ1,~θ2) = 〈δµα−1(~φ) δ̄G(~φ+~θ1) δ̄G(~φ+~θ2)〉 , (13)
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where the average extends over all positionsφ.
Assuming as before a linear biasing relation between the

galaxies and the density fluctuations, and expanding the Eq. (13)
to first order inκ andγ leads to

zQGG(θ1,θ2) = 2b2 (α−1)z(~θ1,~θ2) , (14)

wherez(~θ1,~θ2) is the three-point correlation function

z(~θ1,~θ2) = 〈κ(~φ) δ̄(~φ+~θ1) δ̄(~φ+~θ2)〉

=
∫

dw1 pκ(w1)
∫

dw2 pδ(w2)
∫

dw3 pδ(w3)

×
〈

δ[ fK(w1)~φ,w1]δ[ fK(w2)(~φ+~θ1),w2]

× δ[ fK(w3)(~φ+~θ2),w3]
〉

. (15)

Again, the integrations overw1,2,3 extend from 0 towH. Stochas-
tic or non-linear biasing schemes will be discussed in Sect. 5..

The three-point correlation functionzQGG(~θ1,~θ2) is related to
the excess probability with respect to a random distribution for
finding triangle configurations, defined by the two angular sepa-
ration vectors~θ1 and~θ2, formed by one quasar and two galaxies.
As shown by Ḿenard & Bartelmann (2002), the lensing-induced
quasar-galaxy cross-correlation functionwQG has a small ampli-
tude, typically on the order of a few per cent at angular scales of
a few arc minutes. Therefore, in order to achieve a significant
signal-to-noise ratio for a higher-order correlation function such
aszQGG, a very large number of objects will be necessary. More-
over, focusing only on particular triangle configurations (for in-
stance equilateral, isosceles or any other) will dramatically re-
strain the number of possible measurements in a given survey.
For our purpose of measuring a skewness parameter (see Sect.
5.), the detailed angular dependence of a given triangle configu-
ration is not of immediate relevance. Thus, it is observationally
preferable to focus on an angular average ofzQGG(~θ1,~θ2) over
all suitable triangle configurations inside a given aperture, thus
allowing a measurement around each quasar. This point will be
detailed in the next Section, where we will also show how the
averaged three-point correlation function can be observed.

3.2. Observational signature

The statistical meaning ofzQGG(~θ1,~θ2) is illustrated by the ex-
pression for thermsfluctuations in the counts of galaxies around
a given quasar. Following Peebles (1980), and considering pro-
jected (rather than three-dimensional) correlation functions, the
variance of the galaxy counts in cells of solid angleS at fixed
distance from the quasars can be written

〈N2〉−〈N〉2 = 〈N〉+n2
G

∫
S

d2~θd2~θ′
[
wGG(~θ−~θ′)

+ zQGG(~θ,~θ′)−wQG(~θ)wQG(~θ′)
]

, (16)

where the angular brackets denote averages over ensembles of
cells of sizeS . Thus, we have〈N〉 = nGS + nG

∫
S d2~θwQG(~θ),

wherenG is the galaxy number density on the sky.
If the cells wererandomlyplaced rather than at a fixed posi-

tion relative to a quasar, the variance of the galaxy counts would
be

〈N2〉r−〈N〉2r = 〈N〉r +n2
G

∫
S

d2~θd2~θ′wGG(~θ′−~θ) , (17)

with 〈N〉r = nGS .

The normalised extra variance∆(θ) of galaxy counts in cells
of areaS near quasars is directly observable and can be ex-
pressed in terms of the integrated correlation functions intro-
duced above,

∆(θ) ≡ 〈N2〉−〈N〉2

〈N〉2r
− 〈N2〉r−〈N〉2r

〈N〉2r

= z̄QGG(θ)− w̄2
QG(θ)+

w̄QG(θ)
〈N〉r

, (18)

wherew̄QG andz̄QGG are the cell-averaged correlation functions

w̄QG(θ) =
∫

d2~θ′Uθ(~θ′)wQG(~θ′)∫
d2~θ′Uθ(~θ′)

(19)

and

z̄QGG(θ) =
∫

d2~θ1Uθ(~θ1)
∫

d2~θ2Uθ(~θ2)zQGG(~θ1,~θ2)∫
d2~θ1Uθ(~θ1)

∫
d2~θ2Uθ(~θ2)

. (20)

Here, the functionUθ(θ′) is a top-hat filter of radiusθ. Other
filters can be used if one wishes to be more sensitive to spe-
cific wavelength ranges of the dark-matter power spectrum (see
Schneider et al. 1997) but we will not investigate this point in
the present paper.

In summary, the relevant third-order quantity for our purpose
is the cell average ¯zQGG(θ) of the triple correlatorzQGG(~θ1,~θ2)
between quasars and galaxy pairs. We will now estimate its
properties and then show how second and third-order quasar-
galaxy correlations can be combined to measureΩ0 and several
properties of the galaxy bias.

4. EVALUATION OF THE EXCESS GALAXY VARIANCE ∆

4.1. Statistics of the density field

Under the common assumption that the initial density fluctua-
tions were Gaussian and that cosmic structure grew by gravita-
tional instability, the three-point correlation function is intrin-
sically a second-order quantity, and should be detectable only
where non-linearities arise in the density field.

We expand the density field to second order as

δ(~x) = δ(1)(~x)+δ(2)(~x) , (21)

whereδ(2) is of order (δ(1))2 and represents departures from
Gaussian behaviour. Note that since two of the threeδ factors in
Eq.(15) are derived from the fluctuations in the galaxy number
density, this expansion is only valid if galaxies are linearly bi-
ased relative to the dark-matter fluctuations. We will assume this
linearity for now and show in Sect. 5. how cosmic magnification
can be used to measure the matter density parameter. We will
also show that quasar-galaxy correlations can test the assump-
tion of linearity and probe the angular range where this simple
relation between dark matter and galaxies breaks down.

Assuming linear biasing and expandingδ to second order, we
obtain for〈δ1δ2δ3〉

〈δ1δ2δ3〉 ' 〈δ(1)
1 δ(1)

2 δ(1)
3 〉+ 〈δ(1)

1 δ(1)
2 δ(2)

3 〉
+ cyclic terms (231,312). (22)

The first term in Eq. (22) vanishes because the density fluctua-
tion field is Gaussian to first order, hence the third moment of
δ(1) is zero. Thus, the leading term in Eq. (22) is of the order of

〈δ(1)
1 δ(1)

2 δ(2)
3 〉.
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In second-order perturbation theory, the Fourier decomposi-
tion of the density-fluctuation field is given by

δ(2)(~k) =
∫

d3~k1d3~k2 δ(1)(k1)δ(1)(k2)

× δD(~k1 +~k2−~k)F(~k1,~k2) , (23)

with

F(~k1,~k2) =
5
7

+
1
2

~k1 ·~k2

k1k2

(
k1

k2
+

k2

k1

)
+

2
7

(~k1 ·~k2)2

k2
1k2

2

. (24)

Note that we have expanded the lensing-induced magnifica-
tion to first order in Eq. (15). The next-order term has a contri-
bution proportional toκ2 which, when introduced in Eq. (22), is
of order(δ(1))4 and thus formally of the same order as the other
terms in Eq. (22). However, this additional term differs by the
weight factor fK(w−w′)/ fK(w′) from the other terms since it
contains the lensing efficiency. As a result, this additional fac-
tor will be one order of magnitude smaller, even though it is of
the same order in the perturbation series forδ (see Van Waer-
beke et al. 2000 for more detail). We can therefore neglect its
contribution.

4.2. Bispectrum and Non-Linear evolution

The ensemble average in Eq. (22) is related to the bispectrum in
Fourier space. By definition,

〈δ(~k1)δ(~k2)δ(~k3)〉 = (2π)3B(~k1,~k2,~k3)

× δD(~k1 +~k2 +~k3) . (25)

Inserting Eq. (24) into Eq. (25) leads to an expression of the
bispectrum in terms of the second-order kernelF(~k1,~k2) and the
dark-matter power spectrum

B(~k1,~k2,~k3) = 2F(~k1,~k2)P(k1)P(k2)

+ 2F(~k2,~k3)P(k2)P(k3)

+ 2F(~k1,~k3)P(k1)P(k3) . (26)

Note that Eq. (25) implies that the bispectrum is positive only if
the wave vectors(~k1,~k2,~k3) form closed triangles.

For describing the bispectrum on all angular scales, we use
the fitting formula for the non-linear evolution of the bispec-
trum derived from numerical CDM models by Scoccimarro &
Couchman (2000), extending earlier work assuming scale-free
initial conditions. The kernelF(~k1,~k2) in Eq. (26) is then sim-
ply replaced by aneffectivekernelFeff(~k1,~k2), reading

Feff(~k1,~k2) =
5
7

a(n,k1)a(n,k2)

+
1
2

~k1 ·~k2

k1k2

(
k1

k2
+

k2

k1

)
b(n,k1)b(n,k2)

+
2
7

(
~k1 ·~k2

k1k2

)2

c(n,k1)c(n,k2) . (27)

The coefficientsa, b andc are given by

a(n,k) =
1+σ−0.2

8 (z) [0.7Q3(n)]1/2 (q/4)n+3.5

1+(q/4)n+3.5

b(n,k) =
1+0.4(n+3)qn+3

1+qn+3.5

c(n,k) =
1+4.5/

[
1.5+(n+3)4

]
(2q)n+3

1+(2q)n+3.5 , (28)

where n = dlogPlin(k)/dlogk is the local slope of the dark-
matter power spectrum at wave numberk, q≡ k/kNL(z), andkNL

is the nonlinear wave number defined by 4πk3
NL Plin(kNL) = 1. To

be specific,Plin(k) is the linear power spectrum at the required
redshift. Finally, the functionQ3(n) is given by

Q3(n) =
(4−2n)

(1+2n+1)
, (29)

which is the so-called saturation value obtained in “hyper-
extended” perturbation theory (HEPT; Scoccimarro & Frieman
1999). These expressions imply that at large scales, where the
coefficientsa, b andc aproach unity, the tree-level perturbation
theory is recovered. On the other hand, at small scales, where
a2 → (7/10)Q3(n)σ−0.4

8 , b→ 0 andc→ 0, the bispectrum be-
comes hierarchical with an amplitude which approximately re-
produces HEPT forσ8 ≈ 1. For more detail, see Scoccimarro &
Couchman (2000).

4.3. Evaluation of zQGG(θ)

The formalism is now in place for computing the triple correlator
z(θ1,θ2). We start from Eq. (15) and replace the density contrast
δ by its Fourier transform. Next, we employ the approximation
underlying Limber’s equation, which asserts that the coherence
length of the density fluctuation field is much smaller than the
scales on which both projectorspκ andpδ vary appreciably. Fi-
nally, we insert the expression for the bispectrum described in
the previous section and find

z(θ1,θ2) =
∫

dw pκ(w) p2
δ(w)

∫
d2~k1

(2π)2 ei~k1·~θ1 fK(w)

×
∫

d2~k2

(2π)2 Bδ(k1,k2,−~k1−~k2,w)ei~k2·~θ2 fK(w) .

We saw in Sect. 3 that the suitable quantity for observations is
not directlyz(~θ1,~θ2), but the corresponding cell-averaged triple
correlator z̄(θ) defined by Eq. (20). The angular integration
yields

z̄(θ) = 4
∫

dw pκ(w) p2
δ(w)

∫
d2~k1

(2π)2

J1[k1θ fK(w)]
k1θ fK(w)

(30)

×
∫

d2~k2

(2π)2 Bδ(k1,k2,−~k1−~k2,w)
J1[k2θ fK(w)]

k2θ fK(w)

The observational signature of cosmic magnification is ex-
pressed in terms of the normalised excess scatter∆(θ) of galax-
ies around quasars; see Eq. (18). This quantity involves both
the two- and three-point cell-averaged correlation functions
w̄QG(θ) and z̄QGG(θ). For numerically evaluating these ex-
pressions, we use the description of the non-linear evolution
of the CDM power spectrum provided by Peacock & Dodds
(1996) fitting formula. We normalise the power spectrum such
that the local abundance of galaxy clusters is reproduced,σ8 =
0.52Ω−0.52+0.13Ω0

0 , as determined by Eke et al. (1996).
We assume for simplicity that all quasars are at the same red-

shift zs = 1. More realistic quasar redshift distributions do not
significantly change the following results as long as the fore-
ground galaxies are at comparatively low redshift. We approxi-
mate the redshift distribution of the galaxies by

p(z)dz=
βz2

z3
0 Γ(3/β)

exp

[
−
(

z
z0

)β
]

dz , (31)
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FIGURE 1.—Left panel: The two- and three-point quasar-galaxy correlation functions, averaged within rings of radiusθ, are plotted in dependence
of θ for what cosmology?The dotted curve shows the two-point correlation function ¯w(θ), the solid line the three-point function ¯z(θ). Near one
arc minute, the triple correlator ¯z reaches the∼ 2% level. At larger angular scales, the amplitude drops steeply.Other curves? Right panel?

with β = 1.5 andz0 = 0.3.

The slope of the quasar number counts is fairly well con-
strained by the most recent quasar catalogues. We use the value
α = 2 suggested by the first SDSS quasar catalogue (Schneider
et al. 2001) for quasars brighter than 19th magnitude. Finally,
we assumeb = 1 for simplicity.

The left panel of Fig. 1 shows ¯zQGG(θ) (solid line) and
w̄QG(θ) (dashed line) as a function of angular scale. These
quantities were computed for a low-density, spatially flat uni-
verse (Ω0 = 0.3, ΩΛ = 0.7). The dotted lines show the expected
amplitude ofw̄QG(θ) if only linear growth of density perturba-
tions is taken into account, and the amplitude of ¯zQGG(θ) for
quasi-linear evolution. The difference between the two regimes
changes the amplitude of ¯zQGG by approximately two orders of
magnitude on small angular scales. On large scales, the ampli-
tude ofz̄QGG(θ) decreases quickly withθ since the density field
tends to gaussianity as the smoothing scale increases, and thus
the triple correlator vanishes.

Interestingly, the amplitude of ¯zQGG is of the order of one per
cent on arcminute scales. As for the two-point quasar-galaxy
correlation function, the amplitude and the shape of ¯zQGG(θ) are
very sensitive to cosmological parametersYM: ?? il n’y a que
Ω0 = 0.3 ΩΛ = 0.7) dont on parle au-dessus???.

In the right panel of Fig. 1, we plot the measurable quantity
∆(θ) which represents the normalised excess scatter of galaxies
around quasars; cf. Eq. (18). Again, we have used theΛCDM
cosmological model, and we assume a galaxy number density of
1arcmin−2.

Evidently, z̄QGG(θ) is the main contribution to∆(θ) on inter-
mediate and large angular scales. Below a few arcminutes, the
term w̄QG(θ)/〈N〉r becomes non-neglegible. This contribution
is due to the shot noise of the galaxies, thus this term can be
lowered when using galaxies with a higher number density.

5. DETERMINING Ω0 AND TESTING THE LINEARITY OF
THE BIAS

The second- and third-order statistics can be used jointly so
that several parameter dependencies can cancel. The underly-
ing physical concept is that second-order statistics quantify the
Gaussian characteristics of a random process, while third-order
statistics are non-Gaussian contributions. When used together,
one can in principle measure their relative strength, thus isolat-
ing those parameters which are most responsible for deviations
from Gaussianity.

The reduced skewness (i.e. the ratio of the third and second
moments of a distribution) is a useful practical estimate of non-
Gaussian features in galaxy catalogs. However, in the case of
cosmic magnification, it is not possible to define the skewness
in the same way as for cosmic shear with the convergence field
(Bernardeau et al. 1997), since we are not considering the auto-
correlation properties of a single field, but the cross-correlations
between two different fields, namely the distributions of fore-
ground galaxies and of the lensing convergenceκ. Moreover,
the angular-averaged three-point correlation function ¯zQGG dis-
cussed in the previous section is not symmetric with respect to
permutations between quasar and galaxy positions. The three-
point cross-correlation of quasars with galaxy pairs involves
the quasar-galaxy cross-correlation as well as the galaxy-galaxy
auto-correlation. Since the latter does not contribute to the two-
point quasar-galaxy correlation function, we cannot apply the
usual mathematical definition of skewness which applies to a
unique distribution. Instead, we define a pseudo-skewness for
our purposes by the ratio

S′3(θ) =
z̄QGG(θ)
w̄2

QG(θ)
. (32)

Much like the skewness of cosmic shear,S′3(θ) is insensitive in
the linear regime to the normalisation of the power spectrumσ8,
and still remains weakly dependent onσ8 even in the non-linear
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FIGURE 2.—The dependence of the skewnessS′3 on σ8 andΓ is shown for two different cosmologies and three different angular scales, 1′, 5′ and
10′. Evidently, the dependence on both parameters is very weak, quite independent of the cosmological model and the angular scale.

regime. Moreover, if the galaxy bias can be considered linear on
certain angular scales, we have

S′3(θ) = A(θ)Ω−n
0 (33)

on such scales, wheren is close to unity and the amplitude
A(θ) can be computed from Eqs. (12), (13) and (31). Inter-
estingly,S′3(θ) does not depend on the linear galaxy bias fac-
tor. We plot the pseudo-skewness in Fig. 3 for different flat and
cluster-normalised CDM model universes with density param-
etersΩ0 = 0.3, 0.5 and 1. The solid line shows the result ob-
tained with the non-linear prescription of the bispectrum, and
the dashed line shows the result of using quasi-linear theory.

The non-linear growth of density perturbations introduces
some dependency of the pseudo-skewnessS′3(θ) on the normal-
isationσ8 and the shape parameterΓ of the dark-matter power
spectrum because ¯wQG and z̄QGG depend on the shape of the
power spectrum in different way; cf. Eqs. (12) and (31). We plot
these dependences in Fig. 2.

The figure shows thatS′3(θ) weakly depends onΓ and σ8.
Varyingσ within from 0.5 to 1.4 changes the amplitude ofS′3(θ)
by less than 5% near one arc minute, and the effect of changing
Γ from 0.14 to 0.23 is even weaker. On larger angular scales,
e.g. 5′, varying σ8 andΓ within these ranges affectsS′3(θ) by
less than 1%. Thus, we can safely consider the pseudo-skewness
S′3(θ) to be insensitive to normalisation and shape of the dark-
matter power spectrum. Likewise, the cosmological constantΩΛ
has a negligible effect(need a plot!).

On large angular scales, the galaxy bias is expected to be lin-
ear (Verde et al. 2001), in which case its contribution toS′3 can-
cels out. Finally, the only effective parameter we are left with is
Ω0, which means that the pseudo-skewnessS′3(θ) can effectively
constrain the matter-density parameter.

The pseudo-skewnessS′3(θ) can also test the linearity and
stochasticity of the bias parameter which is of interest at smaller
scales. For a given cosmology and assuming a CDM power
spectrum, any departure from the angular variation ofS′3(θ)
given in Fig. 3 can be interpreted as resulting from non-linearity

and/or stochasticity of the bias. Indeed, our previous calcula-
tions deriving the two- and three- point correlators used only
two hypotheses, namely the linearity of the bias and the as-
sumption that lensing effects occur in the weak regime, i.e.
δµ= 2κ+O(κ2, |γ2|). The latter relation is expected to be valid
on scales larger than a few arc minutes. Below, medium- and
strong-lensing effects become non-negligible. However, as de-
scribed in Ḿenard et al. (2002), these effects can be accurately
quantified by expanding the Taylor series of the magnification to
second order, thus allowing the investigation of smaller scales.
Therefore, the only remaining explanation for a departure of the
angular variation ofS′3(θ) is a nonlinearity or stochasticity of the
biasing scheme.

The pseudo-skewness can thus probe the angular range and
the corresponding physical scale where the linear relation be-
tween dark matter and galaxy fluctuations breaks down.

6. EXPECTED SIGNAL-TO-NOISE RATIO

We now estimate the expected signal-to-noise ratio in measure-
ments of∆(θ). The determination of the effective skewness also
requires a measurement of the two-point quasar-galaxy corre-
lation function. We refer the reader to Ménard & Bartelmann
(2002) for a detailed study of the signal-to-noise ratio expected
for wQG(θ).

We are not aiming at a detailed noise calculation, but rather
an approximate estimation of the main source of error, i.e. the
finite sampling error caused by the limited number of available
quasars. As shown in Fig. 3, the dominant contribution to the
excess scatter∆(θ) introduced in Eq. (18) is ¯zQGG(θ), except on
small scales. We therefore use the simplifying assumption that
∆ ∼ z̄QGG in the following.

Since the excess scatter of galaxies around quasars defined
in Eq. (18) is a counts-in-cells estimator, its measurement ac-
curacy will be limited by the finite size of the available sample,
by boundary and edge effects, and by the effects of discrete sam-
pling. In practice, measurements of ¯zQGG(θ) will be restricted to
angular scales much smaller than the size of the survey, thus the
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FIGURE 3.—The skewnessS′3(θ) is shown as a function of angleθ for
three different cosmological models. The solid line is the prediction
based on the non-linear description of the power spectrum and the bis-
pectrum. The dashed line shows the perturbation-theory calculation. At
angular scales& 1◦, the non-linear and the linear calculations meet.

errors contributed by boundary effects can be considered neg-
ligibly small compared to the finite sampling of the galaxies,
which causes the main limitation.

In order to estimate this noise, we neglect the auto-correlation
of galaxies and approximate them as being randomly distributed.
Moreover, we also assume the quasars to be at random posi-
tions in the sky, i.e. uncorrelated with the galaxy positions. In
fact, physical correlations are excluded given the required large
separation between the two populations, and on the other hand
the cross-correlations between quasars and galaxies induced by
lensing are so weak that the corresponding change in the galaxy
distribution is entirely negligible in the total error budget. Given
these assumptions, we find the standard deviation of the nor-
malised scatter of the galaxy counts aroundNQSO quasar posi-
tions to be

σ
(
〈N2〉−〈N〉2

〈N〉2r

)
=

1√
NQSO

√
2

N̄2 +
1

N̄3 , (34)

whereN̄ is the average number of galaxies in cells of a given
size. This result is derived in Appendix A.

The signal we are interested in is an excess scatter in galaxy
counts. Therefore, the noise of the total measurement is twice
the value ofσ introduced in Eq. (34). It is possible to reduce this
noise by measuring the scatter of the galaxy counts at a larger
number of random locations since there are typically many more
available galaxies than quasars, but we prefer to estimate a con-
servative lower bound to the signal-to-noise ratio, so we will
keep the factor of two in the following calculations. Finally, we
can write the number of required quasars for achieving a detec-
tion at an angular scaleθ:

NQSO∼
8ν2

[z̄QGG(θ)πθ2nG]2
, (35)

FIGURE 4.—Number of quasars required for a 3-σ detection of the ex-
cess scatter∆ of the galaxy counts near quasars, as a function of an-
gular scaleθ. Three different values for the galaxy number density are
assumed, namely 1, 2, and 3arcmin−2. vertical line?

whereν is the desired signal-to-noise ratio. The second term in
Eq. (34) can be neglected for reasonable galaxy densities. We
recall that the quasar number given by Eq. (35) refers to quasars
with redshifts higher than those of the galaxy population.

Several weighting schemes can be used to maximise the
signal-to-noise ratio of the detection. Ménard & Bartelmann
(2002) showed how to optimally weight the contribution of each
quasar with respect to its magnitude. Weighting the galaxies
with respect to their redshift can also increase the signal-to-noise
ratio of the detection. Indeed the triple correlatorzQGG(~θ1,~θ2)
is related to the excess of triangle configurations in which two
galaxies trace a high density region of the dark matter field,
i.e. configurations in which the two galaxies are close in an-
gle and redshift. Projection effects mimicking galaxy pairs will
contribute noise to the final measurement. Therefore, the width
of the galaxy redshift distribution inside a given cell around a
quasar can be used to additionally weight the final measurement.
Numerical simulations will be needed to quantify the change of
the final signal-to-noise ratio, as well as the effects of galaxy
clustering and cosmic variance which were not taken into ac-
count in our noise estimation.

As an application, we now investigate the feasibility of mea-
suring ∆(θ) with the data of theSloan Digital Sky Survey
(SDSS ; York et al. 2000). Within this project, the sky has
already been imaged for two years, and the survey will be
completed in 2005, reaching a sky coverage ofπ steradians or
∼ 10000 square degrees. Depending on the limiting magni-
tude of the selected sample, SDSS can achieve a galaxy density
of n̄G ≈ 1arcmin−2 for galaxies observed down tor ′ = 21, or
n̄G ≈ 3arcmin−2 down tor ′ = 22, but requiring extensive care-
ful masking of regions with poor seeing within the survey, and a
careful star-galaxy separation (Scranton et al. 2001).

In Fig. 4, we present for different values of the galaxy num-
ber density the number of quasars required in order to achieve
a 3-σ detection of the excess scatter∆(θ). The figure shows
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that the measurement becomes more easily reachable at large
angular scales. However, an upper limit exists because we have
assumed isolated quasars in our calculation and Eq. 35 ceases
to be valid at angular scales reaching the average angular sep-
aration of quasars. In the case of SDSS, this angular scale is
close to 20′ for the sample of spectroscopic quasars satisfying
z> 1. This angular scale is indicated by the vertical dashed line
in Fig. 4. On larger angular scales, the real errors will increase
due to correlated galaxy counts, and the number of quasars es-
timated from Eq. (35) will no longer be reliable. The SDSS
will observe 105 spectroscopic and 5×105 to 106 photometric
quasars. Thus, we conclude from Fig. 4 that SDSS will greatly
exceed the number of quasars required for measuring three-point
correlations between quasars and galaxies, thus allowing a new
direct measurement of the matter densityΩ0.

7. CONCLUSION

Via the magnification bias, gravitational lensing by large-scale
structures gives rise to angular cross-correlations between dis-
tant sources and foreground galaxies although the two pop-
ulations are physically uncorrelated. Depending on whether
the matter along the lines-of-sight towards these background
sources is over- or underdense with respect to the mean, and
depending on the value of the slopeα of the cumulative number
counts of the sources, magnification effects can cause an excess
or a deficit of distant sources near foreground galaxies.

These lensing-induced correlations carry information on the
projected dark-matter distribution along the lines-of-sight and
can thus provide constraints on cosmology. Considering dis-
tant quasars and foreground galaxies, Ménard & Bartelmann
(2002) quantified these constraints and showed that given the
large number of parameters involved (the matter density param-
eter,Ω0, the normalisation and shape of the dark-matter power
spectrum,σ8 and Γ, respectively, and the bias parameter of
the galaxies,b), the information provided by the quasar-galaxy
correlation function alone is insufficient for independently con-
straining all of these parameters.

In this paper, we have investigated what additional informa-
tion can be expected from higher-order statistics. Such statistics
have similar weightings of the power spectrum along the line-
of-sight and can measure non-Gaussianities of the density field
due to the non-linear growth of structures. We have specifically
considered correlations beween distant quasars and foreground
galaxypairs and showed that this three-point correlator can be
related to the excess scatter of galaxies around quasars with re-
spect to random positions, which is a straightforwardly measur-
able quantity. Using the assumptions that

• galaxies are linearly biased with respect to the underlying
dark matter,

• the dark-matter distribution is described by a CDM power
spectrum,

• and the lensing magnifications are in the weak regime,
i.e. δµ� 1,

we have computed the amplitude of the expected excess scatter
of galaxies in the vicinity of quasars. For a flat cosmology with
Ω0 = 0.3 andσ8 = 0.93, we find the amplitude of this effect to
reach the per cent level at angular scales near one arc minute.

We further showed that combining second- and third-order
statistics allows a pseudo-skewness parameterS′3 to be defined
which turns out to be virtually insensitive to the normalisation
and the shape of the power spectrum. Moreover, if the linear
biasing scheme is valid, this parameter is only sensitive to the

matter densityΩ0; the dependences on the other parameters (σ8,
Γ, Λ andb) are negligible or cancel out completely. Thus the
skewnessS′3 provides a direct and independent measurement of
Ω0.

We computed the expected angular variation ofS′3 and showed
that for a given cosmology and assuming a CDM power spec-
trum any departure from the predicted angular shape must be
due to a non-linear and/or stochastic behaviour of the galaxy
bias, on scales larger than a few arc minutes.

Finally, we estimated the signal-to-noise ratio of the expected
excess scatter of galaxies near quasars, which is the main source
of noise inS′3. We derived the noise coming from the finite sam-
pling of galaxies having Poisson distributions. Applying our re-
sult to the Sloan Digital Sky Survey, we find thatS′3 should be
measurable from that survey on angular scales around 10 arc
minutes using a few thousand distant and bright quasars, allow-
ing thus a direct and independent measurement ofΩ0. With
more quasars, a measurement ofS′3 on smaller angular scales
will be feasible, and it will probe the angular range and the corre-
sponding physical scales where the linear relation between dark
matter and galaxy fluctuations may break down.
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A. NOISE ESTIMATION

We use the formalism developed by Szapudi & Colombi (1996)
for calculating errors due to finite sampling, and we refer the
reader to this paper as well as to the excellent review on “Large-
Scale Structure of the Universe and Cosmological Perturbation
Theory” by Bernardeau et al. (2001). We first define some use-
ful quantities and then derive the error on our estimator due to
Poissonian noise.

We have the estimator

E2 = σ2
(
〈N2〉−〈N〉2

〈N〉2

)
= σ2

(
〈N2〉
〈N〉2

)
. (36)

Let PN denote the probability of findingN galaxies in a cell of a
given size. The factorial moments are defined as

Fk = 〈(N)k〉= ∑(N)k PN , (37)

where(N)k = N(N− 1)...(N− k+ 1) is thek-th falling facto-
rial of N, and the ensemble average can be evaluated using the
known probability distributionPN. We can write the error on our
estimator in terms of factorial moments,

E2 = σ2
(

F1 +F2

F2
1

)
=

〈(
F1 +F2

F2
1

)2
〉

C

−
〈

F1 +F2

F2
1

〉2

C

,

(38)
where the operator〈. . .〉C averages over all possible ways of
throwingC cells into the survey volume. In order to compute
the difference, we now perturbF1 andF2 asF1 = F̄1(1+ δF1

F̄1
)

andF2 = F̄2(1+ δF2
F̄2

), with 〈δF1〉= 〈δF2〉= 0.
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This yields

E2 = 〈δF2
1 〉+

4F̄2

F̄1
〈δF2

1 〉+
4F̄2

2

F̄2
1

〈δF2
1 〉−

2F̄2
2

F̄2
1

〈δF1 δF2〉

−
4F̄3

2

F̄3
1

〈δF1 δF2〉+
4F̄4

2

F̄4
1

〈δF2
2 〉 . (39)

For evaluating this expression, we need to compute the variances
and the covariance ofF1 andF2. We will do this using the gen-
erating function of the probability distributionPN introduced in
Eq. (37),

P(x) = ∑
N

PN xN . (40)

The nice property of this quantity is that the factorial moments
are obtained by a Taylor expansion ofP(x) aroundx = 1. The
cosmic covariance on factorial moments can then be written as

Cov(Fi ,Fj) =
(

∂
∂x

)i( ∂
∂y

) j

E(x,y)|x=y=1 , (41)

and for estimating the finite-sampling error, the error generating
functionE is

E(x,y) =
P(xy)−P(x)P(y)

C
(42)

(Szapudi & Colombi 1996), whereC is the number of cells used,
i.e. the number of quasars or random positions involved in the
measurement. Thus, we can compute the variances and covari-
ances needed in Eq. (39),

〈δF2
1 〉 =

1
C

∂
∂x

∂
∂y

[P(xy)−P(x)P(y)]|x=y=1

=
1
C

[
∑
N

N(N−1)PN +N PN− (∑
N

N PN)2

]

=
1
C

(F2 +F1−F2
1 ) . (43)

For Poissonian noise, we have the simple relationFk = N̄k,
whereN̄ is the average number of galaxies in a cell. Thus, the
expression reduces to

〈δF2
1 〉=

N̄
C

. (44)

In the same way, we obtain

〈δF2
2 〉 =

1
C

∂2

∂x2

∂2

∂y2 [P(xy)−P(x)P(y)]|x=y=1

=
1
C

[
∑
N

N2(N−1)2PN− (∑
N

N(N−1)PN)2

]

=
1
C

(4F3 +2F2)

=
4N̄3 +2N̄2

C
(45)

and

〈δF1δF2〉 =
1
C

∂
∂x

∂2

∂y2 [P(xy)−P(x)P(y)]|x=y=1

=
1
C

[
∑
N

N2(N−1)PN−∑
N

N(N−1)PN

× ∑
N

N PN

]

=
1
C

(F3 +2F2−F1F2)

=
2N̄2

C
. (46)

Inserting those terms into Eq. (39), we find after further sim-
plifications

E2
(
〈N2〉−〈N〉2

〈N〉2

)
=

2
CN̄2 +

1
CN̄3 , (47)

which is the error due to the finite quasar number.
In order to check this result, we have performed a numer-

ical simulation in which we measured our estimator on two-
dimensional Poisson distributions of particules. We then com-
puted its standard deviation for several cell numbers and partic-
ular point densities and find the numerical results to completely
confirming the previous expression.
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